[go: up one dir, main page]

WO2009127589A1 - Fluides de forage et de traitement de puits - Google Patents

Fluides de forage et de traitement de puits Download PDF

Info

Publication number
WO2009127589A1
WO2009127589A1 PCT/EP2009/054281 EP2009054281W WO2009127589A1 WO 2009127589 A1 WO2009127589 A1 WO 2009127589A1 EP 2009054281 W EP2009054281 W EP 2009054281W WO 2009127589 A1 WO2009127589 A1 WO 2009127589A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water
drilling
castor oil
blown castor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2009/054281
Other languages
English (en)
Inventor
Luigi Merli
Pierangelo Pirovano
Eleonora Monti
Giuseppe Li Bassi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lamberti SpA
Original Assignee
Lamberti SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lamberti SpA filed Critical Lamberti SpA
Publication of WO2009127589A1 publication Critical patent/WO2009127589A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/32Non-aqueous well-drilling compositions, e.g. oil-based
    • C09K8/36Water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/64Oil-based compositions

Definitions

  • the present invention relates to water in oil drilling and well treatment fluids (drilling fluids) with improved stability and environmental compatibility, and to their use in subterranean applications; more particularly, the drilling and well treatment fluids comprise blown castor oil as the emulsion stabilizer.
  • Drilling fluids are meant to include drilling and completion fluids; well treatment fluids include all water based systems used in well operations such as work-over, milling stimulation, fracturing, spotting fluids, cementing, etc STATE OF THE ART
  • Emulsions usually comprise two immiscible phases: a continuous (or external) phase and a discontinuous (or internal) phase, the discontinuous phase usually being a liquid dispersed in droplets in the continuous phase.
  • Oil-in-water emulsions usually include a fluid at least partially immiscible in oil (an aqueous-based fluid) as the continuous phase and an oil phase as the discontinuous phase.
  • Water-in-oil emulsions are the opposite, having the oil phase as the continuous phase and a fluid at least partially immiscible in the oil phase (usually an aqueous-based fluid) as the discontinuous phase.
  • Water-in-oil emulsions may also be referred to as invert emulsions. Both kinds of emulsions have been used widely in oil and gas applications, for instance, for drilling and other subterranean treatment applications. Invert emulsions are preferred as drilling fluids when the formation is remarkably sensitive to contact with water and they usually guarantee better lubrication of the drill strings and downhole tools, thinner filter cake formation, and better thermal resistance and hole stability. Emulsions are generally stabilized by addition of one or more emulsion stabilizing agents, also referred to as emulsifiers, preventing the droplets coalescence, phase separation and compromising of their performance.
  • emulsion stabilizing agents also referred to as emulsifiers
  • emulsions When used in subterranean applications, emulsions undergo exceptional mechanical and thermal stress, and therefore stability is an especially critical aspect of their formulation.
  • the emulsifiers that are traditionally used in drilling and well treatment fluids have surfactant-character, comprising a hydrophobic portion and a hydrophilic portion.
  • the scope of this invention is to describe new drilling and well treatment fluids with better resistance to separation and to contamination from drilling residues even at high temperature, that can be obtained more economically and with a lower environmental impact, with the same performances.
  • the present invention provides a water in oil drilling fluid or well treatment fluid that comprises an oil phase, an aqueous phase and blown castor oil as the emulsion stabilizing agent.
  • the present invention provides a method for drilling a well bore in a subterranean formation using a water in oil drilling fluid comprising an oil phase, an aqueous phase and blown castor oil as the emulsion stabilizing agent.
  • the present invention provides a method of treating oil wells that comprises: providing a water in oil well treatment fluid containing an oil phase, an aqueous phase and blown castor oil as the emulsion stabilizing agent; and treating the well.
  • the present invention provides a method of fracturing a subterranean formation that comprises: providing a water in oil fluid containing an oil phase, an aqueous phase, blown castor oil as the emulsion stabilizing agent and proppant particulates; placing the water in oil fluid into the subterranean formation at a pressure sufficient to create or enhance at least one fracture therein; and removing the water in oil fluid from the subterranean formation while leaving at least a portion of the proppant particulates in the fracture.
  • Blown oils are produced at elevated temperatures by blowing air through unsaturated oils; the oils polymerize by crosslinking and incorporation of 0-0 bridges. Blown oils are also known as oxidized, thickened or oxidatively polymerized oils and are generally manufactured to viscosity specifications. For the realization of the present invention only blown castor oil having Brookfield viscosity RVT at 25°C, 20 rpm higher than 1,000 mPa * s can be used, preferably from 5,000 to 40,000 mPa * s, more preferably from 10,000 to 30,000 mPa * s.
  • the acidity number of the blown castor oil should not exceed 60 mg KOH/g.
  • the water in oil drilling and well treatment fluids according to the invention contain from 0.5 to 4.0% by weight, based on the total weight of the fluid, of blown castor oil.
  • blown castor oil is used in quantity of 1.0 to 3.0% by weight, in order to optimally develop its effect as emulsifier.
  • the use of blown castor oil as emulsifier of water in oil drilling and well treatment fluids leads to a remarkably improved rheological profile of the fluids when a comparison is made with other oxidized oils; this is especially apparent with drilling fluids contaminated with drill cuttings and comprising concentrated brines, where a more stable rheology, i.e. a rheology profile with less variation before and after heat aging of the fluid, is obtained.
  • the peculiarity of blown castor oil is possibly due to its characeristic chemical composition, in which ricinoleic chains bearing hydroxyl groups prevail.
  • the addition of blown castor oil as emulsifier also provides good high pressure and temperature (HPHT) filtrate properties to the corresponding fluids.
  • the water in oil fluids do not comprise any additional emulsifier, except blown castor oil.
  • the water in oil fluids of the present invention comprise an oil phase, an aqueous phase (a water based fluid that is at least partially immiscible with the oil phase), and blown castor oil and may be suitable for use in a variety of oil field applications wherein water-in-oil emulsions are used; these include subterranean applications comprising drilling, completion and stimulation operations (such as fracturing), sand control treatments such as installing a gravel pack, cementing, maintenance and reactivation.
  • the oil phase used in the invert emulsions of the present invention may comprise any oil-based fluid suitable for use in emulsions.
  • the oil phase may derive from a natural or synthetic source.
  • suitable oil phase include, without limitation, diesel oils, paraffin oils, mineral oils, low toxicity mineral oils, olefins, esters, amides, amines, synthetic oils such as polyolefins, ethers, acetals, dialkylcarbonates, hydrocarbons and combinations thereof.
  • the preferred oil phases are paraffin oils, low toxicity mineral oils, diesel oils, mineral oils, polyolefins, olefins and mixtures thereof.
  • the invert emulsions of the present invention also comprise an aqueous phase that is at least partially immiscible in the oil phase.
  • aqueous phase examples include fresh water, sea water, salt water, and brines (e.g., saturated salt waters), glycerine, glycols, polyglycol amines, polyols and derivatives thereof, that are partially immiscible in the oleaginous fluid, and combinations thereof.
  • Suitable brines may include heavy brines.
  • Heavy brines for the purposes of this application, include brines with various salts at variable concentrations, that may be used to weight up a fluid; generally of the use of weighting agents is required to provide the desired density of the fluid.
  • Brines generally comprise water soluble salts.
  • Suitable water soluble salts are sodium chloride, calcium chloride, calcium bromide, zinc bromide, sodium formate, potassium formate, sodium acetate, potassium acetate, calcium acetate, ammonium acetate, ammonium chloride, ammonium bromide, sodium nitrate, potassium nitrate, ammonium nitrate, calcium nitrate, sodium carbonate, potassium carbonate, and mixtures thereof.
  • the aqueous phase is chosen taking into account several factors including cost, environmental and health safety profile, density, availability, and which oil phase has been chosen. Another factor that may be considered is the application of the emulsion. For example, if the application needs an emulsion with a heavy weight, a zinc bromide brine (for example) may be chosen.
  • the water in oil drilling and well treatment fluids of the invention may further comprise conventional additives including weighting agents, wetting agents, fluid loss agents, thickeners, thinning agents, lubricants, anti-oxidants, corrosion inhibitors, scale inhibitors, defoamers, biocides, pH modifiers, and the like.
  • Such fluids in particular, also contain at least one filtrate reducer preferably chosen among gilsonite, organophilic lignite, organophilic tannins, synthetic polymers, polycarboxylic fatty acids.
  • at least one filtrate reducer preferably chosen among gilsonite, organophilic lignite, organophilic tannins, synthetic polymers, polycarboxylic fatty acids.
  • the fluids may include particulates such as proppant or gravel.
  • a water in oil fluid (based on mineral paraffinic oil and containing a clay simulating the solid drilling cuttings) was prepared by mixing the here below ingredients with an Hamilton Beach mixer, as described in A.P.I. Specification 13A, in the reported order and with the following stirring times:
  • BSO blown soybean oil with Brookfield® viscosity about 11,000 mPa * s at 20 rpm and 25°C.
  • BCO Iv low viscosity blown castor oil, with Brookfield® viscosity about 4,500 mPa * s at 20 rpm and 25°C.
  • BCO hv high viscosity blown castor oil, with Brookfield® viscosity about 22,500 mPa * s at 20 rpm and 25°C.
  • Brookfield® viscosity about 22,500 mPa * s at 20 rpm and 25°C. The characteristics of the fluids are shown in the table here below:
  • the rheological properties of the invert emulsion drilling fluids were measured at 50°C before and after hot rolling (BHR and AHR) with a viscosimeter, as reported in ISO standard 10414-2. Electrical stability has been measured at a temperature of 50°C by means of an electrical stability meter as reported in ISO standard 10414-2.
  • HTHP fluid loss has been measured at a temperature of 150°C by means of a high temperature/high pressure filter press as reported in ISO 10414-2.
  • Table 1 The results are reported in Table 1, 2 and 3.
  • Table 3 reports the results of the comparative fluid. Table 1.
  • the blown castor oils give better resistance to the contamination than blown soybean oil (the rheology of the aged drilling fluids with blown castor oils is better than the rheology of the aged drilling fluid with blown soybean oil).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Lubricants (AREA)

Abstract

L'invention porte sur des fluides de forage et de traitement de puits de type eau-dans-l'huile comprenant de l'huile de ricin soufflée ayant une viscosité Brookfield RVT à 25°C, 20 tours/min supérieure à 1 000 mPa•s comme émulsifiant, lesquels fluides présentent une stabilité améliorée et une compatibilité environnementale améliorée.
PCT/EP2009/054281 2008-04-14 2009-04-09 Fluides de forage et de traitement de puits Ceased WO2009127589A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITVA2008A000020 2008-04-14
ITVA20080020 ITVA20080020A1 (it) 2008-04-14 2008-04-14 Fluidi di perforazione e per il trattamento di pozzi petroliferi

Publications (1)

Publication Number Publication Date
WO2009127589A1 true WO2009127589A1 (fr) 2009-10-22

Family

ID=40297384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/054281 Ceased WO2009127589A1 (fr) 2008-04-14 2009-04-09 Fluides de forage et de traitement de puits

Country Status (2)

Country Link
IT (1) ITVA20080020A1 (fr)
WO (1) WO2009127589A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191026A (zh) * 2011-03-28 2011-09-21 曾琛 一种利用油田污水处理废渣制得的注水井在线调剖剂
DE102011054101A1 (de) 2011-09-30 2013-04-04 Albert-Ludwigs-Universität Freiburg Verfahren zur räumlichen Anordnung von Probenfragmenten zur Amplifikation und Immobilisierung für weitere Derivatisierungen
WO2017202465A1 (fr) * 2016-05-25 2017-11-30 Emery Oleochemicals Gmbh Nouvelle composition anti-mousse
WO2018048385A1 (fr) * 2016-09-06 2018-03-15 Halliburton Energy Services, Inc. Émulsion inverse contenant de l'huile végétale

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994660A (en) * 1957-05-27 1961-08-01 Magnet Cove Barium Corp Water-in-oil emulsion drilling fluid
GB2115459A (en) * 1982-02-18 1983-09-07 Milchem Inc Drilling fluids and methods of using them
WO2006123143A1 (fr) * 2005-05-20 2006-11-23 Halliburton Energy Services, Inc. Procedes destines a traiter les surfaces dans les formations souterraines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994660A (en) * 1957-05-27 1961-08-01 Magnet Cove Barium Corp Water-in-oil emulsion drilling fluid
GB2115459A (en) * 1982-02-18 1983-09-07 Milchem Inc Drilling fluids and methods of using them
WO2006123143A1 (fr) * 2005-05-20 2006-11-23 Halliburton Energy Services, Inc. Procedes destines a traiter les surfaces dans les formations souterraines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191026A (zh) * 2011-03-28 2011-09-21 曾琛 一种利用油田污水处理废渣制得的注水井在线调剖剂
DE102011054101A1 (de) 2011-09-30 2013-04-04 Albert-Ludwigs-Universität Freiburg Verfahren zur räumlichen Anordnung von Probenfragmenten zur Amplifikation und Immobilisierung für weitere Derivatisierungen
WO2017202465A1 (fr) * 2016-05-25 2017-11-30 Emery Oleochemicals Gmbh Nouvelle composition anti-mousse
WO2018048385A1 (fr) * 2016-09-06 2018-03-15 Halliburton Energy Services, Inc. Émulsion inverse contenant de l'huile végétale
US20200181482A1 (en) * 2016-09-06 2020-06-11 Halliburton Energy Services, Inc. Invert emulsion containing vegetable oil
US10815417B2 (en) 2016-09-06 2020-10-27 Halliburton Energy Services, Inc. Invert emulsion containing vegetable oil

Also Published As

Publication number Publication date
ITVA20080020A1 (it) 2009-10-15

Similar Documents

Publication Publication Date Title
AU2002246768B2 (en) Invert emulsion drilling fluids and muds having negative alkalinity and elastomer compatibility
US5189012A (en) Oil based synthetic hydrocarbon drilling fluid
CA2875750C (fr) Modificateur de rheologie pour fluides de traitement de forage et de puits
US11142677B2 (en) High solids tolerant invert emulsion fluids
CA2772133C (fr) Caracteristiques de suspension ameliorees dans des emulsions inverses
MXPA04006567A (es) Aditivo para fluidos de perforacion basados en petroleo.
WO2005026287A1 (fr) Fluide de forage et procede de suspension ameliore
MX2008016454A (es) Aditivo para la pérdida de fluido para lodos a base de petróleo.
WO2021007531A1 (fr) Modificateur de rhéologie pour systèmes de fluide de forage à émulsion inverse sans argile organique
US10208540B2 (en) Non-toxic, inexpensive, low viscosity mineral oil based drilling fluid
Zhao et al. Flat-rheology oil-based drilling fluid for deepwater drilling
WO2009127589A1 (fr) Fluides de forage et de traitement de puits
US10738230B2 (en) Invert emulsion drilling fluids
WO2009005503A1 (fr) Fluides de forage à émulsion inversée à base de carburant diesel et procédé de forage de puits de forage
CN113136181A (zh) 一种生物合成基钻井液及其制备方法
CA2920803C (fr) Fluides de forage a base d'une emulsion inverse utilisant une fumee de silice et procedes de forage de trous de sondage
US11390792B2 (en) Clay-free drilling fluid composition
Daya et al. Experimental investigation of new additive to optimize the properties of synthetic-based drilling fluid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09732660

Country of ref document: EP

Kind code of ref document: A1