[go: up one dir, main page]

WO2009110253A1 - Information recommendation system, information recommendation server device, and information recommendation method - Google Patents

Information recommendation system, information recommendation server device, and information recommendation method Download PDF

Info

Publication number
WO2009110253A1
WO2009110253A1 PCT/JP2009/050836 JP2009050836W WO2009110253A1 WO 2009110253 A1 WO2009110253 A1 WO 2009110253A1 JP 2009050836 W JP2009050836 W JP 2009050836W WO 2009110253 A1 WO2009110253 A1 WO 2009110253A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
index
user
calculated
calculation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2009/050836
Other languages
French (fr)
Japanese (ja)
Inventor
直人 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010501814A priority Critical patent/JPWO2009110253A1/en
Publication of WO2009110253A1 publication Critical patent/WO2009110253A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/901Indexing; Data structures therefor; Storage structures

Definitions

  • the present invention relates to an information recommendation system for information published on a network, and in particular, information using a viewed tendency as a method of browsing individual information and a browsing tendency as a method of browsing by individual users. Regarding the recommendation system.
  • a typical example of this type of technology is keyword extraction.
  • Information extraction using keywords is particularly effective when the field or range of information to be extracted is determined to some extent. Moreover, if the field of information browsed in the past and the keywords used are extracted from the browsing history of each user, and the information is periodically searched using the extracted keywords, etc., the browsing tendency of the users is reflected. Information can be narrowed down.
  • Patent Document 1 An example of another technique related to information narrowing is described in Patent Document 1.
  • a third party can browse the browsing history of others such as experts, so that a useful web page can be browsed without special skills. For example, referring to a doctor's browsing history may help extract medical information.
  • JP 2005-148843 A JP 2005-148843 A
  • Patent Document 1 The method described in Patent Document 1 is effective depending on how it is used because it enables browsing of information similar to that of an expert simply by selecting the browsing history of the expert. However, since the browsing tendency of each user is not considered at all, it is not possible to narrow down information reflecting the browsing tendency of the user.
  • the browsing tendency of the user in this case is a browsing tendency regarding the content of information.
  • the browsing tendency of the user has a browsing tendency determined by the relationship with other users in addition to the browsing tendency regarding the contents of information as described above. For example, if you prefer to browse information that is not viewed by others, and vice versa, you may prefer to browse information that many people are browsing. It is an example of a simple browsing tendency. If it becomes possible to narrow down information using such a relative browsing tendency, it becomes possible to narrow down information effectively for a user who has a particularly remarkable browsing tendency.
  • the present invention has been proposed in view of such circumstances, and an object of the present invention is to make it possible to narrow down information by using the relative browsing tendency of individual users viewed from all users. It is in.
  • the information recommendation server device of the present invention calculates an information index, which is an index based on a browsing tendency, which is how the information is browsed, for each piece of information from the browsing history of information by a plurality of users.
  • a user index for calculating a user index based on a browsing tendency which is a method of browsing the information of the user, from the information index calculated for the information browsed by the user for each user.
  • Computation means, and index matching means for extracting information having an information index similar to the calculated user index for the user from a recommendation target information group.
  • the information recommendation system of the present invention transmits the information recommendation request including the user identifier to the information recommendation server device of the present invention and the information recommendation server device, and the information recommendation result including the information identifier returned as a response thereto.
  • a terminal device that receives the information, and an information providing server device that provides the terminal device with information specified by the information identifier.
  • the information index calculation means is an index based on the browsing tendency, which is how the information is browsed for each piece of information from the browsing history of information by a plurality of users.
  • the present invention it is possible to narrow down information using the relative browsing tendency of individual users viewed from all users.
  • the reason is that, from the browsing history, an information index that is an index based on the browsing tendency, which is how individual information is browsed, is calculated, and for each user, the information index calculated for the information browsed by the user is calculated.
  • an information index that is an index based on the browsing tendency, which is how individual information is browsed, is calculated, and for each user, the information index calculated for the information browsed by the user is calculated.
  • a user index based on a browsing tendency that is a way of browsing the information of the user and to extract information having an information index similar to the user index calculated for the user from the recommended target information group is there.
  • Information recommendation servers 11, 11A, 11B Browsing history storage units 12, 12A, 12B ... Information index calculation means 13, 13A, 13B ... User index means 14, 14A, 14B ... Index storage unit 15, 15A, 15C ... information query means 16, 16A-16C ... index matching means 2 ... network 3 ... information providing server 4 ... terminals 41, 41C ... information reference means 101-104 ... information recommendation system
  • an information recommendation system 101 includes an information recommendation server 1, an information providing server 3, a terminal 4, and a network 2 connecting them. Yes.
  • the information providing server 3 is a computer that provides information to the terminal 4 through the network 2.
  • the type of information to be provided is not limited to documents, but may be multimedia information such as images and sounds.
  • provision information each piece of information provided by the information providing server 3 is referred to as provision information.
  • one information providing server 3 is shown in FIG. 1, a plurality of information providing servers 3 may exist.
  • the network 2 connects the information recommendation server 1, the information providing server 3, and the terminal 4 so that they can communicate with each other.
  • the network 2 may be a public network or a closed network such as a LAN.
  • the terminal 4 is a computer such as a personal computer or a mobile phone, and includes information reference means 41.
  • the information reference unit 41 has a function of browsing information provided by the information providing server 3, a function of transmitting an information recommendation request to the information recommendation server 1 according to a request from the user, and a response transmitted from the information recommendation server 1. Receiving information recommendation results and presenting them to the user through a display or the like.
  • the information recommendation request transmitted to the information recommendation server 1 includes a user identifier for identifying the user.
  • the information recommendation result received from the information recommendation server 1 includes an information identifier for identifying information provided by the information providing server 3.
  • the information reference means 41 may be realized by dedicated hardware or software, or a general-purpose web browser may be used.
  • the information recommendation server 1 receives the information recommendation request transmitted from the terminal 4, and sends the information recommendation result including the identifier of the provided information suitable for the user specified by the user identifier included in the recommendation request to the terminal 4. It is a computer with a function to return.
  • the information recommendation server 1 according to the present embodiment includes a browsing history storage unit 11, an information index calculation unit 12, a user index calculation unit 13, an index storage unit 14, an information query unit 15, an index matching unit 16, and the like. It has. Each of these means has the following functions.
  • the browsing history storage unit 11 stores an information browsing history that is a history of browsing information provided by the user of the information recommendation system 101 on the information providing server 3.
  • the information browsing history is a set of a user identifier, an information identifier of the browsed provided information, and a browse date and time when the provided information is browsed.
  • a browsing log in the information providing server 3 or an access log such as a proxy server connected to the network 2 can be used.
  • a URI may be used, or a document ID in a document management system may be used.
  • the information index calculation means 12 uses the information browsing history stored in the browsing history storage unit 11 to calculate an information index representing a viewed tendency, which is how each information is browsed, and this calculated information index. Is stored in the index storage unit 14.
  • the user index calculation means 13 uses the information browsing history stored in the browsing history storage unit 11 and the information index stored in the index storage unit 14 to browse each user's information. A user index representing a tendency is calculated, and the calculated user index is stored in the index storage unit 14.
  • the index storage unit 14 stores the information index for each provided information calculated by the information index calculation unit 12 and the user index for each user calculated by the user index calculation unit 13.
  • the information query unit 15 receives an information recommendation request including a user identifier from the terminal 4 and transmits the user identifier to the index matching unit 16. Also, the information recommendation result transmitted from the index matching means 16 is received, and this information recommendation result is transmitted to the terminal 4 as the recommendation request source.
  • the index matching unit 16 receives the user identifier transmitted from the information query unit 15, searches the index storage unit 14 for the user index of the user specified by the user identifier, and searches for the user index searched for. Are matched with the information index of each provided information in the index storage unit 14, and a list of information identifiers of provided information having an information index similar to the user index is extracted. The list of information identifiers is transmitted to the information query unit 15 as an information recommendation result.
  • the information index calculation unit 12 acquires a browsing history from the browsing history storage unit 11 (S21), and calculates an information index for each provided information using the acquired browsing history. (S22, S23).
  • the information index is composed of a set of two indices, a recognition index and a retention index.
  • the recognition index is an index indicating how many users of the user group of the information recommendation system 101 have viewed the provided information during a predetermined period d, and which provided information is It only represents what is widely recognized.
  • the recognition index is calculated according to the flowchart of FIG.
  • the fixing index is an index indicating how many times each user of the information recommendation system 101 browses the provided information during the period d, and how long the provided information is browsed. To express. Here, in order to prevent an arbitrary recommendation result from being manipulated, even if a plurality of times of browsing within a unit time are viewed, it is handled that only one browsing has been performed within the unit time.
  • the fixing index is calculated according to the flowchart of FIG.
  • the information index calculation means 12 stores, for each provided information, the information identifier of the provided information, the calculated recognition index, and the established index in the index storage unit 14 (S24).
  • the information index calculation unit 12 pays attention to one provided information recorded in the browsing history storage unit 11 and extracts the total number of users who browsed the provided information at least once in the period d. (S32). Next, a ratio of the total number of extracted users to the total number of users of the information recommendation system 101 is calculated, and this ratio is set as a recognition index of the provided information (S33). The information index calculation means 12 repeats such calculation for all the remaining individual provision information recorded in the browsing history storage unit 11 (S31s, S31e).
  • the user index calculation means 13 pays attention to one provided information and one user recorded in the browsing history storage unit 11 and determines whether or not the user has browsed the provided information.
  • the unit time is calculated for each unit time in the period d (S43), the total number of unit times that have been browsed is calculated (S44), and the ratio of the calculated total number to the total number of unit times in the period d
  • a fixing index related to the user S45.
  • the fixing index for the remaining users is calculated in the same manner (S42s, S42e), and the average value of the fixing index of all the users for the provision information is calculated, and the calculated average value is used as the provision index. It is set as an information fixing index (S47).
  • a user who does not browse the provided information at all during the period d (a user whose fixing index calculated in step S45 is 0) is excluded from the elements for calculating the average value (S46).
  • the reason is that the fixed index of certain provided information is an index indicating how many times the provided information has been browsed on the assumption that the provided information has been browsed.
  • the user index calculation means 13 repeats the same calculation for all remaining provision information (S41s, S41e).
  • the user index calculation unit 13 acquires the browsing history from the browsing history storage unit 11 (S51), and further provides the information browsed from the index storage unit 14 for each individual user (S52s). Are obtained (S53), and a user index is calculated (S54).
  • the user index is composed of a set of two indexes, a recognition index and a retention index, in the same manner as the information index.
  • the recognition index of the user index is calculated as the average value of the recognition index of the provided information that has been viewed by each individual user
  • the retention index of the user index is the information provided by the individual user. Calculated as the average value of the fixing index.
  • the user index represents a browsing tendency indicating how each individual user is viewing information that is positioned for the user group.
  • the user index calculation means 13 stores the user identifier of the user and the user index (recognition index, fixing index) of the user in the index storage unit 14 (S55).
  • the index matching unit 16 when the index matching unit 16 receives the user identifier transmitted from the information query unit 15 (S61), the index matching unit 16 receives the user identifier specified by the received user identifier from the index storage unit 14. A user index is acquired, and information indexes of all provided information are extracted from the index storage unit 14 (S62).
  • the index matching means 16 pays attention to the extracted one piece of provided information, and calculates the distance between the information index of the provided information and the user index of the user (S64).
  • the distance between the user index and the information index is on a plane around the recognition index and the retention index. It is a distance and is calculated by the formula shown in FIG.
  • the index matching unit 16 calculates the distance between the information index and the user index for all the remaining extracted extracted information (S63s, S63e).
  • the index matching unit 16 generates a list in which the information identifiers of the provided information are arranged in ascending order of the distance, and returns the list to the information query unit 15 (S65).
  • the index matching means 16 may set a certain threshold value and exclude the information identifier of the provided information whose distance is larger than the threshold value from the list.
  • the index matching unit 16 may remove the identifier of the provided information that the user has already browsed from the generated list. Which provided information in the list has been browsed is determined by searching the browsing history storage unit 11 with the set of information identifier and user identifier of the provided information in the list, and the corresponding set is stored in the browsing history storage unit 11. If so, it can be determined that it has been browsed, and if not, it has not been browsed.
  • the present embodiment it is possible to recommend the information in consideration of the positioning of the individual provided information for the user group and the browsing tendency of the individual users.
  • the reason for this is that an information index, which is how each of the provided information is browsed, is calculated from the browsing history of the provided information of the user group, and the usage is calculated from the average of the information indices of one or more provided information viewed by each user. This is because the user information of the user is calculated, and the provided information having the information index similar to the user index is used as the recommended information.
  • a recognition index is used as an information index and a user index.
  • the recognition index of information is generally an index indicating whether or not the information is viewed by many people
  • the recognition index of the user index is generally a tendency to browse only information viewed by many people. It is an index indicating whether there is a tendency to browse exclusively information that has not been browsed much. Therefore, for users who tend to browse the information browsed by many people, the information provided by the information providing server 3 can recommend the information viewed by many people. It is possible to recommend information that has not been browsed so much to users who tend to browse information that has not been browsed so much.
  • a fixing index is used as an information index and a user index.
  • the fixing index is generally an index indicating whether or not the information is repeatedly viewed when viewed, and the fixing index of the user index generally browses information that is repeatedly viewed many times. It is an index indicating whether there is a tendency, or whether the information tends to be browsed exclusively for information that is not browsed many times. Therefore, for users who tend to exclusively browse information that is repeatedly viewed, information that is repeatedly viewed among the information provided by the information providing server 3 can be recommended. It is possible to recommend information that has not been browsed many times to users who tend to browse information that has not been browsed many times.
  • a recognition index and a fixing index is used, for example, information that is viewed by many people and that is repeatedly viewed many times when viewed is exclusively viewed.
  • FIG. 9 shows an information index of provided information browsed by the entire user, an information index of provided information browsed by a certain user, and a user on a plane around the recognition index and the established index.
  • the user index ⁇ is plotted.
  • provision information having an information index ⁇ in the vicinity of the user index ⁇ is recommended for the user.
  • the information index is calculated based on the number of browsing without the duplication, an arbitrary recommendation result operation by a specific user intentionally browsing specific information, etc. Can be prevented.
  • the information recommendation system 102 according to the second exemplary embodiment of the present invention is compared with the information recommendation system 101 according to the first exemplary embodiment illustrated in FIG. Instead, the information recommendation server 1A is provided.
  • the information recommendation server 1A is a browsing history storage unit 11, an information index calculation unit 12, a user index calculation unit 13, and an index storage unit. 14.
  • a browsing history storage unit 11A an information index calculation unit 12A, a user index calculation unit 13A, an index storage unit 14A, and an index matching unit 16A are provided.
  • Each of these means has the following functions.
  • the browsing history storage unit 11 ⁇ / b> A stores an information browsing history that is a history of browsing information provided by the user of the information recommendation system 102 on the information providing server 3.
  • the information browsing history is a set of a user identifier, an information identifier of the browsed information, a browsing date and time when the information is browsed, and a residence time, as illustrated in FIG. 10B. That is, the residence time is added to the information browsing history stored in the browsing history storage unit 11 in the first embodiment.
  • the residence time is a time during which the user has browsed the provided information.
  • an access log such as a browsing log in the information providing server 3 or a proxy server connected to the network 2 can be used.
  • the information index calculation unit 12A uses the information browsing history stored in the browsing history storage unit 11A as an information index that represents a browsing tendency, which is how each information is browsed, as a recognition index and a fixing index.
  • a residence index is calculated, and the calculated information index is stored in the index storage unit 14A.
  • the retention index of a certain provided information is an index representing how much time the user spends browsing the provided information.
  • the staying index may be used as a standard for advertisement placement.
  • the user index calculation means 13A uses the information browsing history stored in the browsing history storage unit 11A and the information index stored in the index storage unit 14A, and is a browsing method for browsing individual user information. A user index representing a trend is calculated, and the calculated user index is stored in the index storage unit 14A.
  • the user index is a set of a recognition index, a fixing index, and a staying index.
  • the index storage unit 14A stores the information index for each provided information calculated by the information index calculation unit 12A and the user index for each user calculated by the user index calculation unit 13A.
  • the information query unit 15 is the same as that in the first embodiment, receives an information recommendation request including a user identifier from the terminal 4, and transmits the user identifier to the index matching unit 16A. Further, the information recommendation result transmitted from the index matching means 16A is received, and this information recommendation result is transmitted to the terminal 4 as the recommendation request source.
  • the index matching unit 16A receives the user identifier transmitted from the information query unit 15, searches the index storage unit 14A for the user index of the user specified by the user identifier, and searches the user index. Are matched with the information indexes of the individual provided information in the index storage unit 14A, and a list of information identifiers of the provided information having information indexes similar to the user indexes is extracted. The list of information identifiers is transmitted to the information query unit 15 as an information recommendation result.
  • the browsing history storage unit 11A of the information recommendation server 1A stores information browsing history as shown in FIG. 10B in advance.
  • the information index calculation unit 12A acquires the browsing history from the browsing history storage unit 11A (S111), and calculates the information index for each piece of information using the acquired browsing history ( S22, S23, S114).
  • the information indicator is composed of a set of three indicators: a recognition indicator, a retention indicator, and a stay indicator.
  • the meaning and calculation method of the two indicators, the recognition indicator and the establishment indicator, are the same as those in the first embodiment.
  • the fixing index is calculated according to the flowchart of FIG.
  • the information index calculation unit 12A pays attention to one provided information recorded in the browsing history storage unit 11A, and calculates the sum of the residence time for each browsing of the provided information (S122). ). Next, a quotient obtained by dividing the sum of the residence times by the product of the unit time and the number of browsing times is obtained, and the obtained quotient is used as a residence index of the provided information (S123). The information index calculation unit 12A repeats such calculation for all the remaining individual provision information recorded in the browsing history storage unit 11 (S121s, S121e).
  • the information index calculating unit 12A stores the information identifier of the information, the calculated recognition index, the fixing index, and the staying index in the index storage unit 14A (S115).
  • the user index calculation means 13A acquires the browsing history from the browsing history storage unit 11A (S131), and further browses individual users (S132s) from the index storage unit 14A.
  • the information index of the obtained information is acquired (S133), and the user index is calculated (S134).
  • the user index is composed of a set of three indicators, a recognition indicator, a retention indicator, and a stay indicator, in the same manner as the information indicator.
  • the meaning and calculation method of the user index recognition index and the retention index are the same as those in the first embodiment.
  • the retention index of the user index is the average value of the retention index of the provided information that has been viewed by individual users, and the browsing of how much information each user has appealed to the user group Represents a trend.
  • the user index calculation unit 13A stores the user identifier of the user and the user index of the user as a set in the index storage unit 14A (S135).
  • the index matching unit 16A performs the same operation as the index matching unit 16 in the first embodiment except for the following points.
  • the index matching means 16A uses the formula shown in FIG. 14 when calculating the distance between the user index and the information index in step S64 of FIG. That is, in the present embodiment, the distance between the user index and the information index is a distance in a space with the recognition index, the fixing index, and the staying index as axes.
  • the same effects as the first embodiment can be obtained, and at the same time, the following effects can be obtained.
  • retention is used as an information index and a user index.
  • the retention index of the information index is generally an index indicating whether or not the information is viewed for a long time by one browsing, and the recognition index of the user index generally browses information that is viewed for a long time by one browsing. It is an index that indicates whether there is a tendency, or whether there is a tendency to browse exclusively information that has not been browsed for a long time in a single browsing. Therefore, for a user who tends to browse information that is browsed for a long time only once, information that has been browsed for a long time can be recommended out of the information provided by the information providing server 3. For users who tend to browse information that is not browsed for a long time by one browsing, it is possible to recommend information that is not browsed for a long time by browsing once, among the information provided by the information providing server 3.
  • a set of a recognition index, a fixing index, and a staying index is used, for example, information that has been browsed by many people and is browsed over and over again when viewed. For users who are exclusively browsing information that is browsed for a long time, it is possible to recommend a method of recommending such information.
  • the information recommendation system 103 according to the third exemplary embodiment of the present invention is compared with the information recommendation system 101 according to the first exemplary embodiment illustrated in FIG. Instead, it is different in that an information recommendation server 1B is provided.
  • the information recommendation server 1B is a browsing history storage unit 11, an information index calculation unit 12, a user index calculation unit 13, and an index storage unit. 14.
  • a browsing history storage unit 11B an information index calculation unit 12B, a user index calculation unit 13B, an index storage unit 14B, and an index matching unit 16B are provided.
  • Each of these means has the following functions.
  • the browsing history storage unit 11 ⁇ / b> B stores an information browsing history that is a history of browsing provided information published on the information providing server 3 by a user of the information recommendation system 103.
  • the information browsing history is a set of a user identifier, an information identifier of the browsed information, a browsing date and time of browsing the information, and a time difference, as illustrated in FIG. That is, a time difference is added to the information browsing history stored in the browsing history storage unit 11 in the first embodiment.
  • the time difference is a time indicating how much the user browses the provided information with a delay from the reference time.
  • the reference time can be the time when the provided information is browsed for the first time or when the provided information can be disclosed on the information providing server 3.
  • an access log such as a browsing log in the information providing server 3 or a proxy server connected to the network 2 can be used.
  • the browsing date and time in FIG. 16 is the browsing date and time used when calculating the time difference, and may be deleted after the time difference is calculated.
  • the information index calculation means 12B uses the information browsing history stored in the browsing history storage unit 11B to calculate a time difference index as an information index that represents a browsing tendency, which is how each information is browsed.
  • the calculated information index is stored in the index storage unit 14B.
  • the time difference index of certain provision information is an index representing how early the provision information is referred to.
  • the user index calculation unit 13B uses the information browsing history stored in the browsing history storage unit 11B and the information index stored in the index storage unit 14B, and is a browsing that is a way of browsing information of individual users. A user index representing a trend is calculated, and the calculated user index is stored in the index storage unit 14B.
  • the user index is a time difference index in the present embodiment.
  • the index storage unit 14B stores the information index for each provided information calculated by the information index calculation unit 12B and the user index for each user calculated by the user index calculation unit 13B.
  • the information query unit 15 is the same as that in the first embodiment, receives an information recommendation request including a user identifier from the terminal 4, and transmits the user identifier to the index matching unit 16B. Further, the information recommendation result transmitted from the index matching means 16B is received, and this information recommendation result is transmitted to the terminal 4 as the recommendation request source.
  • the index matching unit 16B receives the user identifier transmitted from the information query unit 15, searches the index storage unit 14B for the user index of the user specified by the user identifier, and searches the user index. Is matched with the information index of each provision information in the index storage unit 14B, and a list of information identifiers of the provision information having the information index similar to the user index is extracted. The list of information identifiers is transmitted to the information query unit 15 as an information recommendation result.
  • the information index calculation unit 12B acquires the browsing history from the browsing history storage unit 11B (S171), and calculates the information index for each piece of information using the acquired browsing history ( S172).
  • the information index is composed of a time difference index.
  • the time difference index is calculated according to the flowchart of FIG.
  • the information index calculation unit 12B pays attention to one provided information recorded in the browsing history storage unit 11, and calculates the sum of time differences for each user who browsed the provided information (S182). ). Next, a quotient obtained by dividing the sum of the time differences by the number of browsed users is obtained, and the obtained quotient is set as a time difference index of the provided information (S183). The information index calculation unit 12B repeats such calculation for all the remaining individual provision information recorded in the browsing history storage unit 11 (S181s, S181e).
  • the information index calculation means 12B sets the information identifier of the information and the calculated time difference index as a set and stores them in the index storage unit 14B (S173).
  • the user index calculation unit 13B acquires the browsing history from the browsing history storage unit 11B (S191), and further browses individual users (S192s) from the index storage unit 14B.
  • the information index of the obtained information is acquired (S193), and the user index is calculated (S194).
  • the user index is composed of a time difference index.
  • the time difference index of the user index represents a browsing tendency indicating how quickly each user is browsing the provided information.
  • the time difference index of a certain user is calculated as an average value of the time difference indices of the provided information browsed by the user.
  • the user index calculation means 13B sets the user identifier of the user and the user index of the user as a set and stores them in the index storage unit 14B (S195).
  • the index matching unit 16B performs the same operation as the index matching unit 16 in the first embodiment except for the following points.
  • the index matching means 16B uses the formula shown in FIG. 20 when calculating the distance between the user index and the information index in step S64 of FIG.
  • the present embodiment it is possible to recommend the information in consideration of the positioning of the individual provided information for the user group and the browsing tendency of the individual users.
  • the reason for this is that the time difference index, which is how the individual provided information is browsed, is calculated from the browsing history of the provided information of the user group as an information index, and the average of the time difference indices of one or more provided information viewed by each user This is because the time difference index of the user is calculated as the user index, and the provided information having the information index similar to the user index is used as the recommended information.
  • a time difference index is used as an information index and a user index.
  • the time difference index of information is generally an index indicating how early the information is browsed, and the time difference index of the user index generally tends to browse information browsed early. It is an index indicating whether or not it tends to browse exclusively information that has not been browsed early. Therefore, for users who tend to browse information browsed early, the information provided by the information providing server 3 recommends information that has been browsed early after it has been published or since it was first viewed. On the contrary, for users who tend to browse information that has not been browsed at an early stage, the information provided by the information providing server 3 has not been browsed at an early stage after being published or first viewed. It becomes possible to recommend information.
  • the information recommendation system 104 according to the fourth exemplary embodiment of the present invention is compared with the information recommendation system 101 according to the first exemplary embodiment illustrated in FIG. Instead, the information recommendation server 1C is provided. Further, the terminal 4 includes an information reference unit 41C instead of the information reference unit 41.
  • the information reference unit 41C of the terminal 4 is different from the information reference unit 41 in that a keyword serving as a recommendation condition is further included in the information recommendation request in addition to the user identifier.
  • the keyword is specified by the user, for example.
  • the information recommendation server 1C includes an information query unit 15C and an index matching unit 16C instead of the information query unit 15 and the index matching unit 16. And the difference is that an index storage unit 17 is newly provided.
  • the index storage unit 17 stores an index of provided information provided by the information providing server 3. Specifically, for example, a list of keywords included in the provided information is stored in association with the information identifier of the provided information.
  • the information query unit 15C and the index matching unit 16C extract the recommended information based on the suitability of the keyword in addition to the similarity between the information index and the user index, and thus the information query unit 15 according to the first embodiment. And the index matching means 16 is different.
  • the information query unit 15C upon receiving an information recommendation request including a user identifier and a keyword from the terminal 4 (S221), the information query unit 15C obtains the information identifier of the provided information including the keyword from the index storage unit 17. Extraction is performed (S222), and the received user identifier and the list of extracted information identifiers are transmitted to the index matching means 16C.
  • the index matching unit 16C When the index matching unit 16C receives the user identifier and the information identifier list transmitted from the information query unit 15C (S223), the user index of the user specified by the received user identifier from the index storage unit 14 is obtained. And the information index of the information specified by the received information identifier is further extracted from the index storage unit 14 (S224). Next, the index matching unit 16C calculates the distance between the user index of the user and the information index of the extracted information (S225s, S226, S225e). Here, the distance between the user index and the information index is calculated by the equation shown in FIG. 8 as in the first embodiment. Further, the index matching unit 16C returns a list of information identifiers as an information recommendation result to the information query unit 15C in order of increasing distance, and the information query unit 15C returns the information recommendation result to the terminal 4 (S227).
  • the information query unit 15C performs a process of removing the information identifier of information that does not include a keyword from the list of information identifiers returned from the index matching unit 16 of the first embodiment. May be. Further, as in the first embodiment, the information identifier of the provided information that has already been browsed by the user may be removed from the list of information identifiers.
  • the index storage unit 17 is added to the second or third embodiment to narrow down recommendation candidates by keywords as in this embodiment.
  • An embodiment in which it is performed is also conceivable.
  • Example 1 corresponds to the first embodiment shown in FIG.
  • the period d at the time of calculating the information index is 3 days from September 23, 2007 to the same day 25, and the unit The time is one day.
  • the information browsing history shown in FIG. 7 is stored in advance.
  • the user specified by the user identifier 000005 is not browsing the provision information specified by the information identifier http://aaa.jp in the period d, the user is specified by the information identifier http://aaa.jp.
  • the calculation of the fixing index for the provided information is excluded from the calculation target (S46).
  • the information identifier, the calculated recognition index, and the fixing index are paired and stored in the index storage unit 14 (S24).
  • An example of the contents of the index storage unit 14 at this time is shown in FIG.
  • the user index calculation unit 13 acquires the information browsing history shown in FIG. 7 from the browsing history storage unit 11.
  • the calculated information index shown in FIG. 23 is acquired from the index storage unit 14, and the recognition index and the fixing index are calculated.
  • the information identifiers of the information browsed by the user specified by the user identifier 000001 in the period d are http://aaa.jp and http://bbb.jp, and the respective information indices (recognition index and establishment index) Are (0.8, 0.5) and (0.6, 0.66) (S53).
  • the average values of the recognition index and the fixing index are obtained for the information index, (0.7, 0.58) is obtained (S54).
  • the calculated set of average values is stored in the index storage unit 14 as a user index (S24).
  • an information index is calculated for other information
  • a user index is calculated for other users, and stored in the index storage unit 14.
  • An example of the contents of the index storage unit 14 at this time is shown in FIGS.
  • the user specified by the user identifier 000001 uses the information reference means 41 of the terminal 4 to transmit an information recommendation request including its own user identifier 000001 to the information recommendation server 1.
  • the information query unit 15 receives the information recommendation request from the terminal 4 and transmits the user identifier 000001 included in the request to the index matching unit 16.
  • the index matching unit 16 When the index matching unit 16 receives the user identifier 000001 from the information query unit 15 (S61), the user index (0.7, 0.58) of the user specified by the user identifier 000001 from the index storage unit 14 is obtained. Is acquired (S62).
  • the distance between the acquired user index (0.7, 0.58) and the information index (0.8, 0.5) of the information specified by the information identifier http://aaa.jp is shown in FIG. When calculated according to the above formula, 0.13 is obtained. Similarly, the distance between the information index (0.6, 0.66) of the information specified by the information identifier http://bbb.jp is 0.13, and the information specified by the information identifier http://ccc.jp The distance from the information index (0.1, 0.9) is 0.68 (S63s, S64, S63e).
  • the index matching unit 16 arranges information identifiers in the order of ⁇ http://aaa.jp, http://bbb.jp, http://ccc.jp ⁇ , and sends the information identifier to the terminal 4 via the information query unit 15. return.
  • the present invention is not limited to the above examples, and various other additions and modifications can be made.
  • a combination of a recognition index and a fixing index in the first embodiment, a pair of a recognition index, a fixing index, and a staying index in the second embodiment a third embodiment
  • the time difference index is used.
  • any one of the recognition index, the fixation index, the staying index, and the time difference index can be used alone or in any combination.
  • the information recommendation server of the present invention can be realized by a computer and a program as well as the functions of the information recommendation server by hardware.
  • the program is provided by being recorded on a computer-readable recording medium such as a magnetic disk or a semiconductor memory, and is read by the computer at the time of starting up the computer, etc.
  • a computer-readable recording medium such as a magnetic disk or a semiconductor memory
  • the present invention can be applied to a search result narrowing system and a ranking system in a search engine.
  • the user group's preferences are relatively similar, so that a good recommendation result can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Information Transfer Between Computers (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

This system aims to narrow information utilizing the viewing tendency of an individual user relative to all the users. An information index calculation means (12) calculates an information index being an index based on a viewed tendency being how the information is viewed with respect to each information, from the viewing histories of the information by a plurality of users. A user index calculation means (13) calculates a user index based on the viewing tendency being how the user views information, from the information index calculated about the information viewed by the user with respect to each user. An index matching means (16) extracts information having an information index similar to the user index calculated about the user from a group of recommendation object information.

Description

情報推薦システム、情報推薦サーバ装置および情報推薦方法Information recommendation system, information recommendation server device, and information recommendation method

 本発明はネットワーク上で公開されている情報の情報推薦システムに関し、特に個々の情報の閲覧のされ方である被閲覧傾向と、個々の利用者の閲覧の仕方である閲覧傾向とを利用した情報推薦システムに関する。 The present invention relates to an information recommendation system for information published on a network, and in particular, information using a viewed tendency as a method of browsing individual information and a browsing tendency as a method of browsing by individual users. Regarding the recommendation system.

 ネットワーク上で公開されている情報が膨大になると、公開されている全ての情報を閲覧することは時間的に到底不可能である。また、無作為に閲覧すると多くの無駄な時間を費やす結果となる。このため、ネットワーク上に公開されている多数の情報の中から優先的に閲覧する情報を絞り込む技術が重要である。 When the amount of information disclosed on the network becomes enormous, it is impossible to browse all the information disclosed in time. Also, random viewing results in a lot of wasted time. For this reason, a technique for narrowing down information to be browsed preferentially from a large number of information disclosed on the network is important.

 この種の技術の典型例は、キーワードによる抽出である。キーワードによる情報の抽出は、特に抽出対象となる情報の分野や範囲が或る程度定まっている場合に有効である。また、各利用者の閲覧履歴から過去に閲覧した情報の分野や使用したキーワードを抽出し、この抽出したキーワード等を利用して定期的に情報を検索すれば、利用者の閲覧傾向を反映した情報の絞り込みが行える。 A typical example of this type of technology is keyword extraction. Information extraction using keywords is particularly effective when the field or range of information to be extracted is determined to some extent. Moreover, if the field of information browsed in the past and the keywords used are extracted from the browsing history of each user, and the information is periodically searched using the extracted keywords, etc., the browsing tendency of the users is reflected. Information can be narrowed down.

 情報の絞り込みに関する他の技術の例が特許文献1に記載されている。特許文献1では、専門家などの他人の閲覧履歴を第三者が閲覧できるようにすることで、特別なスキル無しに有益なWebページを閲覧できるようにしている。例えば、医者の閲覧履歴を参考にすれば、医学的な情報の抽出に役立つと考えられる。
特開2005-148843号公報
An example of another technique related to information narrowing is described in Patent Document 1. In Patent Document 1, a third party can browse the browsing history of others such as experts, so that a useful web page can be browsed without special skills. For example, referring to a doctor's browsing history may help extract medical information.
JP 2005-148843 A

 特許文献1に記載される方法は、専門家の閲覧履歴を選択するだけで専門家と同様の情報の閲覧が可能になるため、利用の仕方によっては有効である。しかし、各利用者の閲覧傾向は全く考慮されないため、利用者の閲覧傾向を反映した情報の絞り込みは行えない。 The method described in Patent Document 1 is effective depending on how it is used because it enables browsing of information similar to that of an expert simply by selecting the browsing history of the expert. However, since the browsing tendency of each user is not considered at all, it is not possible to narrow down information reflecting the browsing tendency of the user.

 他方、利用者の閲覧履歴から過去に閲覧したキーワード等を抽出し、この抽出したキーワード等を利用して情報を検索する方法によれば、利用者の閲覧傾向を反映した情報の絞り込みが可能になる。しかし、この場合の利用者の閲覧傾向は、情報の内容に関する閲覧傾向である。 On the other hand, according to the method of extracting keywords or the like browsed in the past from the browsing history of the user and searching for information using the extracted keywords or the like, it is possible to narrow down the information reflecting the browsing tendency of the user Become. However, the browsing tendency of the user in this case is a browsing tendency regarding the content of information.

 利用者の閲覧傾向には、上述したように情報の内容に関する閲覧傾向以外に、他の利用者との関係で定まる閲覧傾向がある。例えば、あまり他人が閲覧していないような情報を好んで閲覧する、その逆に多くの人が閲覧している情報を好んで閲覧するなどは、全利用者から見た各利用者の相対的な閲覧傾向の一例である。このような相対的な閲覧傾向を利用した情報の絞り込みが可能になれば、特に顕著な閲覧傾向を持つ利用者にとっては情報の有効な絞り込みが可能になる。 The browsing tendency of the user has a browsing tendency determined by the relationship with other users in addition to the browsing tendency regarding the contents of information as described above. For example, if you prefer to browse information that is not viewed by others, and vice versa, you may prefer to browse information that many people are browsing. It is an example of a simple browsing tendency. If it becomes possible to narrow down information using such a relative browsing tendency, it becomes possible to narrow down information effectively for a user who has a particularly remarkable browsing tendency.

 本発明はこのような事情に鑑みて提案されたものであり、その目的は、全利用者から見た個々の利用者の相対的な閲覧傾向を利用して情報の絞り込みが行えるようにすることにある。 The present invention has been proposed in view of such circumstances, and an object of the present invention is to make it possible to narrow down information by using the relative browsing tendency of individual users viewed from all users. It is in.

 本発明の情報推薦サーバ装置は、複数の利用者による情報の閲覧履歴から、個々の情報ごとに、その情報の閲覧のされ方である被閲覧傾向に基づく指標である情報指標を計算する情報指標計算手段と、前記利用者ごとに、前記利用者が閲覧した情報について計算された前記情報指標から、前記利用者の情報の閲覧の仕方である閲覧傾向に基づく利用者指標を計算する利用者指標計算手段と、前記利用者について前記計算された利用者指標に類似する情報指標を持つ情報を推薦対象情報群から抽出する指標マッチング手段とを備える。 The information recommendation server device of the present invention calculates an information index, which is an index based on a browsing tendency, which is how the information is browsed, for each piece of information from the browsing history of information by a plurality of users. A user index for calculating a user index based on a browsing tendency, which is a method of browsing the information of the user, from the information index calculated for the information browsed by the user for each user. Computation means, and index matching means for extracting information having an information index similar to the calculated user index for the user from a recommendation target information group.

 本発明の情報推薦システムは、本発明の情報推薦サーバ装置と、該情報推薦サーバ装置に対して利用者識別子を含む情報推薦要求を送信し、その応答として返される情報識別子を含む情報推薦結果を受信する端末装置と、該端末装置に対して前記情報識別子で特定される情報を提供する情報提供サーバ装置とを含む。 The information recommendation system of the present invention transmits the information recommendation request including the user identifier to the information recommendation server device of the present invention and the information recommendation server device, and the information recommendation result including the information identifier returned as a response thereto. A terminal device that receives the information, and an information providing server device that provides the terminal device with information specified by the information identifier.

 本発明の情報推薦方法は、a)情報指標計算手段が、複数の利用者による情報の閲覧履歴から、個々の情報ごとに、その情報の閲覧のされ方である被閲覧傾向に基づく指標である情報指標を計算するステップと、b)利用者指標計算手段が、前記利用者ごとに、前記利用者が閲覧した情報について計算された前記情報指標から、前記利用者の情報の閲覧の仕方である閲覧傾向に基づく利用者指標を計算するステップと、c)指標マッチング手段が、前記利用者について前記計算された利用者指標に類似する情報指標を持つ情報を推薦対象情報群から抽出するステップとを含む。 In the information recommendation method of the present invention, a) the information index calculation means is an index based on the browsing tendency, which is how the information is browsed for each piece of information from the browsing history of information by a plurality of users. A step of calculating an information index, and b) a user index calculation means for browsing the user information from the information index calculated for the information browsed by the user for each user. A step of calculating a user index based on a browsing tendency; and c) a step of index matching means extracting, from the recommendation target information group, information having an information index similar to the calculated user index for the user. Including.

 本発明によれば、全利用者から見た個々の利用者の相対的な閲覧傾向を利用した情報の絞り込みが可能になる。その理由は、閲覧履歴から個々の情報の閲覧のされ方である被閲覧傾向に基づく指標である情報指標を計算し、利用者ごとに、その利用者が閲覧した情報について計算された情報指標から、その利用者の情報の閲覧の仕方である閲覧傾向に基づく利用者指標を計算し、利用者について計算された利用者指標に類似する情報指標を持つ情報を推薦対象情報群から抽出するためである。 According to the present invention, it is possible to narrow down information using the relative browsing tendency of individual users viewed from all users. The reason is that, from the browsing history, an information index that is an index based on the browsing tendency, which is how individual information is browsed, is calculated, and for each user, the information index calculated for the information browsed by the user is calculated. In order to calculate a user index based on a browsing tendency that is a way of browsing the information of the user, and to extract information having an information index similar to the user index calculated for the user from the recommended target information group is there.

本発明の第1の実施の形態のブロック図である。It is a block diagram of a 1st embodiment of the present invention. 本発明の第1の形態の形態の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the form of the 1st form of this invention. 本発明の第1の実施の形態における情報指標の一つである認知指標を計算する手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates the recognition parameter | index which is one of the information parameters | indexes in the 1st Embodiment of this invention. 本発明の第1の実施の形態における情報指標の他の一つである定着指標を計算する手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates the fixing parameter | index which is another one of the information parameter | index in the 1st Embodiment of this invention. 本発明の第1の実施の形態における利用者指標を計算する手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates the user parameter | index in the 1st Embodiment of this invention. 本発明の第1の実施の形態における指標マッチング手段の処理例を示すフローチャートである。It is a flowchart which shows the process example of the parameter | index matching means in the 1st Embodiment of this invention. 本発明の第1の実施の形態における情報閲覧履歴の具体例を示す図である。It is a figure which shows the specific example of the information browsing history in the 1st Embodiment of this invention. 本発明の第1の実施の形態における指標間の距離を求める式を示す図である。It is a figure which shows the type | formula which calculates | requires the distance between the indices in the 1st Embodiment of this invention. 認知指標と定着指標とを軸とする平面上に、利用者全体で閲覧された提供情報の情報指標★と、或る利用者が閲覧した提供情報の情報指標●と、その利用者の利用者指標◎とをプロットした図である。On the plane centered on the recognition index and the establishment index, the information index of the provided information browsed by the entire user, the information index of the provided information viewed by a certain user, and the user of the user It is the figure which plotted the parameter | index (double-circle). 本発明の第2の実施の形態のブロック図である。It is a block diagram of the 2nd Embodiment of this invention. 本発明の第2の実施の形態における情報閲覧履歴の具体例を示す図である。It is a figure which shows the specific example of the information browsing history in the 2nd Embodiment of this invention. 本発明の第2の実施の形態の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation | movement of the 2nd Embodiment of this invention. 本発明の第2の実施の形態における情報指標の一つである滞留指標を計算する手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates the residence parameter | index which is one of the information parameters | indexes in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における利用者指標を計算する手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates the user parameter | index in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における指標間の距離を求める式を示す図である。It is a figure which shows the type | formula which calculates | requires the distance between the indices in the 2nd Embodiment of this invention. 本発明の第3の実施の形態のブロック図である。It is a block diagram of the 3rd Embodiment of this invention. 本発明の第3の実施の形態における情報閲覧履歴の具体例を示す図である。It is a figure which shows the specific example of the information browsing history in the 3rd Embodiment of this invention. 本発明の第3の実施の形態の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation | movement of the 3rd Embodiment of this invention. 本発明の第3の実施の形態における情報指標である時差指標を計算する手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates the time difference parameter | index which is the information parameter | index in the 3rd Embodiment of this invention. 本発明の第3の実施の形態における利用者指標を計算する手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates the user parameter | index in the 3rd Embodiment of this invention. 本発明の第3の実施の形態における指標間の距離を求める式を示す図である。It is a figure which shows the type | formula which calculates | requires the distance between the indices in the 3rd Embodiment of this invention. 本発明の第4の実施の形態のブロック図である。It is a block diagram of the 4th Embodiment of this invention. 本発明の第4の実施の形態における情報クエリ手段および指標マッチング手段の処理例を示すフローチャートである。It is a flowchart which shows the example of a process of the information query means in the 4th Embodiment of this invention, and a parameter | index matching means. 本発明の実施例1における情報指標の具体例である。It is a specific example of the information parameter | index in Example 1 of this invention. 本発明の実施例1における利用者指標の具体例である。It is a specific example of the user parameter | index in Example 1 of this invention.

符号の説明Explanation of symbols

1、1A~1C…情報推薦サーバ
11、11A、11B…閲覧履歴記憶部
12、12A、12B…情報指標計算手段
13、13A、13B…利用者指標手段
14、14A、14B…指標記憶部
15、15A、15C…情報クエリ手段
16、16A~16C…指標マッチング手段
2…ネットワーク
3…情報提供サーバ
4…端末
41、41C…情報参照手段
101~104…情報推薦システム
1, 1A to 1C: Information recommendation servers 11, 11A, 11B ... Browsing history storage units 12, 12A, 12B ... Information index calculation means 13, 13A, 13B ... User index means 14, 14A, 14B ... Index storage unit 15, 15A, 15C ... information query means 16, 16A-16C ... index matching means 2 ... network 3 ... information providing server 4 ... terminals 41, 41C ... information reference means 101-104 ... information recommendation system

 次に、本発明を実施するための最良の形態について図面を参照して詳細に説明する。 Next, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

 『第1の実施の形態』
 図1を参照すると、本発明の第1の実施の形態に係る情報推薦システム101は、情報推薦サーバ1と、情報提供サーバ3と、端末4と、これらを接続するネットワーク2とから構成されている。
“First Embodiment”
Referring to FIG. 1, an information recommendation system 101 according to the first embodiment of the present invention includes an information recommendation server 1, an information providing server 3, a terminal 4, and a network 2 connecting them. Yes.

 情報提供サーバ3は、ネットワーク2を通じて端末4に対して情報を提供する計算機である。提供する情報の種類は、文書のみに限定されず、画像や音声などのマルチメディア情報であっても良い。以下、情報提供サーバ3が提供する個々の情報を提供情報と呼ぶ。図1には1台の情報提供サーバ3が示されているが、情報提供サーバ3は複数台存在しても良い。 The information providing server 3 is a computer that provides information to the terminal 4 through the network 2. The type of information to be provided is not limited to documents, but may be multimedia information such as images and sounds. Hereinafter, each piece of information provided by the information providing server 3 is referred to as provision information. Although one information providing server 3 is shown in FIG. 1, a plurality of information providing servers 3 may exist.

 ネットワーク2は、情報推薦サーバ1と情報提供サーバ3と端末4とを通信可能に接続する。ネットワーク2は、公衆ネットワークであっても良いし、LANなどの閉域ネットワークであっても良い。 The network 2 connects the information recommendation server 1, the information providing server 3, and the terminal 4 so that they can communicate with each other. The network 2 may be a public network or a closed network such as a LAN.

 端末4は、パーソナルコンピュータや携帯電話機等の計算機であり、情報参照手段41を備えている。情報参照手段41は、情報提供サーバ3の提供する情報を閲覧する機能、利用者からの要求に従って情報推薦サーバ1に対して情報推薦要求を送信する機能、その応答として情報推薦サーバ1から送信される情報推薦結果を受信し、ディスプレイ等を通じて利用者に提示する機能を有する。情報推薦サーバ1に対して送信する情報推薦要求には、利用者を識別するための利用者識別子が含まれる。情報推薦サーバ1から受信する情報推薦結果には、情報提供サーバ3が提供する情報を識別するための情報識別子が含まれる。情報参照手段41は、専用のハードウェアあるいはソフトウェアで実現しても良いし、汎用的なWebブラウザを利用しても良い。 The terminal 4 is a computer such as a personal computer or a mobile phone, and includes information reference means 41. The information reference unit 41 has a function of browsing information provided by the information providing server 3, a function of transmitting an information recommendation request to the information recommendation server 1 according to a request from the user, and a response transmitted from the information recommendation server 1. Receiving information recommendation results and presenting them to the user through a display or the like. The information recommendation request transmitted to the information recommendation server 1 includes a user identifier for identifying the user. The information recommendation result received from the information recommendation server 1 includes an information identifier for identifying information provided by the information providing server 3. The information reference means 41 may be realized by dedicated hardware or software, or a general-purpose web browser may be used.

 情報推薦サーバ1は、端末4から送信された情報推薦要求を受け付けて、この推薦要求に含まれる利用者識別子で特定される利用者に適合する提供情報の識別子を含む情報推薦結果を端末4へ返す機能を備えた計算機である。本実施の形態の情報推薦サーバ1は、閲覧履歴記憶部11と、情報指標計算手段12と、利用者指標計算手段13と、指標記憶部14と、情報クエリ手段15と、指標マッチング手段16とを備えている。これらの手段はそれぞれ次のような機能を有する。 The information recommendation server 1 receives the information recommendation request transmitted from the terminal 4, and sends the information recommendation result including the identifier of the provided information suitable for the user specified by the user identifier included in the recommendation request to the terminal 4. It is a computer with a function to return. The information recommendation server 1 according to the present embodiment includes a browsing history storage unit 11, an information index calculation unit 12, a user index calculation unit 13, an index storage unit 14, an information query unit 15, an index matching unit 16, and the like. It has. Each of these means has the following functions.

 閲覧履歴記憶部11は、情報推薦システム101の利用者が情報提供サーバ3で公開されている提供情報を閲覧した履歴である情報閲覧履歴を記憶する。ここで情報閲覧履歴は、本実施の形態の場合、図7に例示するように、利用者識別子と閲覧した提供情報の情報識別子と提供情報を閲覧した閲覧日時との組である。このような情報閲覧履歴としては、情報提供サーバ3での閲覧ログやネットワーク2に接続されるプロキシサーバなどのアクセスログを利用することができる。なお情報識別子としては、URIを利用しても良いし、文書管理システムにおける文書IDなどを利用しても良い。 The browsing history storage unit 11 stores an information browsing history that is a history of browsing information provided by the user of the information recommendation system 101 on the information providing server 3. Here, in the case of the present embodiment, the information browsing history is a set of a user identifier, an information identifier of the browsed provided information, and a browse date and time when the provided information is browsed. As such information browsing history, a browsing log in the information providing server 3 or an access log such as a proxy server connected to the network 2 can be used. As the information identifier, a URI may be used, or a document ID in a document management system may be used.

 情報指標計算手段12は、閲覧履歴記憶部11に記憶された情報閲覧履歴を利用して、個々の情報の閲覧のされ方である被閲覧傾向を表す情報指標を計算し、この計算した情報指標を指標記憶部14へ記憶する。 The information index calculation means 12 uses the information browsing history stored in the browsing history storage unit 11 to calculate an information index representing a viewed tendency, which is how each information is browsed, and this calculated information index. Is stored in the index storage unit 14.

 利用者指標計算手段13は、閲覧履歴記憶部11に記憶された情報閲覧履歴と指標記憶部14に記憶された情報指標とを利用して、個々の利用者の情報の閲覧の仕方である閲覧傾向を表す利用者指標を計算し、この計算した利用者指標を指標記憶部14へ記憶する。 The user index calculation means 13 uses the information browsing history stored in the browsing history storage unit 11 and the information index stored in the index storage unit 14 to browse each user's information. A user index representing a tendency is calculated, and the calculated user index is stored in the index storage unit 14.

 指標記憶部14は、情報指標計算手段12で計算された各提供情報毎の情報指標と、利用者指標計算手段13で計算された各利用者毎の利用者指標とを記憶する。 The index storage unit 14 stores the information index for each provided information calculated by the information index calculation unit 12 and the user index for each user calculated by the user index calculation unit 13.

 情報クエリ手段15は、端末4から利用者識別子を含む情報推薦要求を受け付け、前記利用者識別子を指標マッチング手段16へ送信する。また指標マッチング手段16から送信される情報推薦結果を受信し、この情報推薦結果を推薦要求元の端末4へ送信する。 The information query unit 15 receives an information recommendation request including a user identifier from the terminal 4 and transmits the user identifier to the index matching unit 16. Also, the information recommendation result transmitted from the index matching means 16 is received, and this information recommendation result is transmitted to the terminal 4 as the recommendation request source.

 指標マッチング手段16は、情報クエリ手段15から送信される利用者識別子を受信し、この利用者識別子で指定される利用者の利用者指標を指標記憶部14から検索し、この検索した利用者指標と指標記憶部14中の個々の提供情報の情報指標とのマッチングを行い、利用者指標と類似している情報指標を持つ提供情報の情報識別子の一覧を抽出する。また、この情報識別子の一覧を情報推薦結果として情報クエリ手段15へ送信する。 The index matching unit 16 receives the user identifier transmitted from the information query unit 15, searches the index storage unit 14 for the user index of the user specified by the user identifier, and searches for the user index searched for. Are matched with the information index of each provided information in the index storage unit 14, and a list of information identifiers of provided information having an information index similar to the user index is extracted. The list of information identifiers is transmitted to the information query unit 15 as an information recommendation result.

 次に、本実施の形態の全体の動作について詳細に説明する。なお、情報推薦サーバ1の閲覧履歴記憶部11には、図7に示したような情報閲覧履歴があらかじめ蓄積されているものとする。 Next, the overall operation of this embodiment will be described in detail. It is assumed that the information browsing history as shown in FIG. 7 is stored in advance in the browsing history storage unit 11 of the information recommendation server 1.

 図2のフローチャートを参照すると、情報指標計算手段12は、閲覧履歴記憶部11から閲覧履歴を取得し(S21)、この取得した閲覧履歴を利用して個々の提供情報ごとに情報指標を計算する(S22、S23)。 Referring to the flowchart of FIG. 2, the information index calculation unit 12 acquires a browsing history from the browsing history storage unit 11 (S21), and calculates an information index for each provided information using the acquired browsing history. (S22, S23).

 本実施の形態では、情報指標を認知指標と定着指標との2つの指標の組で構成する。 In this embodiment, the information index is composed of a set of two indices, a recognition index and a retention index.

 ここで認知指標は、予め定められた期間dの間に情報推薦システム101の利用者集団のうちのどれだけの利用者が当該提供情報を閲覧したかを示す指標であり、当該提供情報がどれだけ広範囲に認知されているかを表す。認知指標は図3のフローチャートに従って計算する。 Here, the recognition index is an index indicating how many users of the user group of the information recommendation system 101 have viewed the provided information during a predetermined period d, and which provided information is It only represents what is widely recognized. The recognition index is calculated according to the flowchart of FIG.

 また定着指標は、期間dの間に情報推薦システム101の個々の利用者が、当該提供情報を何回閲覧したかを示す指標であり、当該提供情報がどれだけ継続的に閲覧されているかを表す。ここで、恣意的な推薦結果の操作を防ぐために、単位時間内で複数回閲覧されても、その単位時間内では唯一度の閲覧が行われたとして扱う。定着指標は図4のフローチャートに従って計算する。 Further, the fixing index is an index indicating how many times each user of the information recommendation system 101 browses the provided information during the period d, and how long the provided information is browsed. To express. Here, in order to prevent an arbitrary recommendation result from being manipulated, even if a plurality of times of browsing within a unit time are viewed, it is handled that only one browsing has been performed within the unit time. The fixing index is calculated according to the flowchart of FIG.

 情報指標計算手段12は、各提供情報ごとに、その提供情報の情報識別子と上記計算された認知指標と定着指標とを組にして、指標記憶部14に記憶する(S24)。 The information index calculation means 12 stores, for each provided information, the information identifier of the provided information, the calculated recognition index, and the established index in the index storage unit 14 (S24).

 ここで図3のフローチャートと図4のフローチャートとを参照して、認知指標と定着指標の計算方法を説明する。なお、それぞれの指標の計算に当たり、あらかじめ情報推薦システム101の利用者総数を取得しておく。 Here, with reference to the flowchart of FIG. 3 and the flowchart of FIG. 4, a calculation method of the recognition index and the establishment index will be described. In addition, in calculating each index, the total number of users of the information recommendation system 101 is acquired in advance.

 図3のフローチャートを参照すると、情報指標計算手段12は、閲覧履歴記憶部11に記録された1つの提供情報に注目し、その提供情報を期間dに1回以上閲覧した利用者の総数を抽出する(S32)。次に、この抽出した利用者の総数が情報推薦システム101の利用者総数に占める割合を計算し、この割合を当該提供情報の認知指標とする(S33)。情報指標計算手段12は、このような計算を、閲覧履歴記憶部11に記録された残りの個々の提供情報全てについて繰り返す(S31s、S31e)。 Referring to the flowchart of FIG. 3, the information index calculation unit 12 pays attention to one provided information recorded in the browsing history storage unit 11 and extracts the total number of users who browsed the provided information at least once in the period d. (S32). Next, a ratio of the total number of extracted users to the total number of users of the information recommendation system 101 is calculated, and this ratio is set as a recognition index of the provided information (S33). The information index calculation means 12 repeats such calculation for all the remaining individual provision information recorded in the browsing history storage unit 11 (S31s, S31e).

 図4のフローチャートを参照すると、利用者指標計算手段13は、閲覧履歴記憶部11に記録された1つの提供情報および一人の利用者に注目し、当該利用者の当該提供情報に対する閲覧の有無を、期間dの各単位時間ごとに算出し(S43)、閲覧のあった単位時間の総数を算出し(S44)、この算出した総数が期間dにおける単位時間の総数に占める割合を、当該提供情報の当該利用者に関する定着指標として算出する(S45)。同じ提供情報について、残りの利用者に関する定着指標を同様に算出し(S42s、S42e)、当該提供情報についての全ての利用者の定着指標の平均値を計算し、この計算した平均値を当該提供情報の定着指標とする(S47)。なお、期間dにおいて当該提供情報の閲覧が全くない利用者(ステップS45で計算された定着指標が0の利用者)は、平均値を算出する際の要素から除外する(S46)。その理由は、或る提供情報の定着指標は、その提供情報が閲覧されたことを前提に、その後に何回繰り返し閲覧されているかを示す指標だからである。利用者指標計算手段13は、残りの全ての提供情報について、同様の計算を繰り返す(S41s、S41e)。 Referring to the flowchart of FIG. 4, the user index calculation means 13 pays attention to one provided information and one user recorded in the browsing history storage unit 11 and determines whether or not the user has browsed the provided information. The unit time is calculated for each unit time in the period d (S43), the total number of unit times that have been browsed is calculated (S44), and the ratio of the calculated total number to the total number of unit times in the period d As a fixing index related to the user (S45). For the same provision information, the fixing index for the remaining users is calculated in the same manner (S42s, S42e), and the average value of the fixing index of all the users for the provision information is calculated, and the calculated average value is used as the provision index. It is set as an information fixing index (S47). Note that a user who does not browse the provided information at all during the period d (a user whose fixing index calculated in step S45 is 0) is excluded from the elements for calculating the average value (S46). The reason is that the fixed index of certain provided information is an index indicating how many times the provided information has been browsed on the assumption that the provided information has been browsed. The user index calculation means 13 repeats the same calculation for all remaining provision information (S41s, S41e).

 図5のフローチャートを参照すると、利用者指標計算手段13は、閲覧履歴記憶部11から閲覧履歴を取得し(S51)、さらに個々の利用者について(S52s)、指標記憶部14から閲覧した提供情報の情報指標を取得し(S53)、利用者指標を計算する(S54)。 Referring to the flowchart of FIG. 5, the user index calculation unit 13 acquires the browsing history from the browsing history storage unit 11 (S51), and further provides the information browsed from the index storage unit 14 for each individual user (S52s). Are obtained (S53), and a user index is calculated (S54).

 本実施の形態では、利用者指標を情報指標と同様に認知指標と定着指標との2つの指標の組で構成する。ここで、利用者指標の認知指標は、個々の利用者が閲覧したことがある提供情報の認知指標の平均値として計算し、利用者指標の定着指標は、個々の利用者が閲覧した提供情報の定着指標の平均値として計算する。利用者指標は、利用者集団にとってどのような位置付けである情報を個々の利用者が、どのように閲覧しているかという閲覧傾向を表す。 In the present embodiment, the user index is composed of a set of two indexes, a recognition index and a retention index, in the same manner as the information index. Here, the recognition index of the user index is calculated as the average value of the recognition index of the provided information that has been viewed by each individual user, and the retention index of the user index is the information provided by the individual user. Calculated as the average value of the fixing index. The user index represents a browsing tendency indicating how each individual user is viewing information that is positioned for the user group.

 利用者指標計算手段13は、当該利用者の利用者識別子と当該利用者の利用者指標(認知指標、定着指標)とを組にして、指標記憶部14に記憶する(S55)。 The user index calculation means 13 stores the user identifier of the user and the user index (recognition index, fixing index) of the user in the index storage unit 14 (S55).

 図6のフローチャートを参照すると、指標マッチング手段16は、情報クエリ手段15から送信された利用者識別子を受信すると(S61)、指標記憶部14から前記受信した利用者識別子で指定される利用者の利用者指標を取得し、さらに指標記憶部14から全ての提供情報の情報指標を抽出する(S62)。 Referring to the flowchart of FIG. 6, when the index matching unit 16 receives the user identifier transmitted from the information query unit 15 (S61), the index matching unit 16 receives the user identifier specified by the received user identifier from the index storage unit 14. A user index is acquired, and information indexes of all provided information are extracted from the index storage unit 14 (S62).

 次に指標マッチング手段16は、前記抽出された1つの提供情報に注目し、その提供情報の情報指標と当該利用者の利用者指標との距離を計算する(S64)。本実施の形態では利用者指標と情報指標とが認知指標と定着指標の組で構成されているため、利用者指標と情報指標との距離は、認知指標と定着指標とを軸とする平面における距離のことであり、図8に示す式で計算される。指標マッチング手段16は、前記抽出された残りの全ての提供情報について、その情報指標と利用者指標との距離を計算する(S63s、S63e)。最後に指標マッチング手段16は、前記距離が小さい順に提供情報の情報識別子を並べた一覧を生成し、情報クエリ手段15に返す(S65)。 Next, the index matching means 16 pays attention to the extracted one piece of provided information, and calculates the distance between the information index of the provided information and the user index of the user (S64). In this embodiment, since the user index and the information index are composed of a combination of a recognition index and a retention index, the distance between the user index and the information index is on a plane around the recognition index and the retention index. It is a distance and is calculated by the formula shown in FIG. The index matching unit 16 calculates the distance between the information index and the user index for all the remaining extracted extracted information (S63s, S63e). Finally, the index matching unit 16 generates a list in which the information identifiers of the provided information are arranged in ascending order of the distance, and returns the list to the information query unit 15 (S65).

 ここで、指標マッチング手段16は、或る閾値を設定し、前記距離が閾値より大きな提供情報の情報識別子は一覧から除外するようにしても良い。また、指標マッチング手段16は、前記生成した一覧から、当該利用者が既に閲覧している提供情報の識別子を取り除いても良い。一覧中のどの提供情報が閲覧済みか否かは、一覧中の提供情報の情報識別子と利用者識別子の組で閲覧履歴記憶部11を検索し、該当する組が閲覧履歴記憶部11に記憶されていれば閲覧済み、そうでなければ未閲覧と判断することができる。 Here, the index matching means 16 may set a certain threshold value and exclude the information identifier of the provided information whose distance is larger than the threshold value from the list. In addition, the index matching unit 16 may remove the identifier of the provided information that the user has already browsed from the generated list. Which provided information in the list has been browsed is determined by searching the browsing history storage unit 11 with the set of information identifier and user identifier of the provided information in the list, and the corresponding set is stored in the browsing history storage unit 11. If so, it can be determined that it has been browsed, and if not, it has not been browsed.

 次に、本実施の形態の効果について説明する。 Next, the effect of this embodiment will be described.

 本実施の形態によれば、利用者集団にとっての個々の提供情報の位置付け、および、個々の利用者の閲覧傾向を考慮した情報の推薦が可能になる。その理由は、利用者集団の提供情報の閲覧履歴から個々の提供情報の閲覧のされ方である情報指標を計算し、各利用者が閲覧した1以上の提供情報の情報指標の平均からその利用者の利用者指標を計算し、利用者指標に類似する情報指標を持つ提供情報を推薦情報としているためである。 According to the present embodiment, it is possible to recommend the information in consideration of the positioning of the individual provided information for the user group and the browsing tendency of the individual users. The reason for this is that an information index, which is how each of the provided information is browsed, is calculated from the browsing history of the provided information of the user group, and the usage is calculated from the average of the information indices of one or more provided information viewed by each user. This is because the user information of the user is calculated, and the provided information having the information index similar to the user index is used as the recommended information.

 また本実施の形態では、情報指標および利用者指標として認知指標を用いる。情報の認知指標は、概ね、多くの人に閲覧されている情報か否かを示す指標であり、利用者指標の認知指標は、概ね、多くの人に閲覧されている情報を専ら閲覧する傾向にあるのか、それとも余り閲覧されていない情報を専ら閲覧する傾向にあるのかを示す指標である。従って、多くの人に閲覧されている情報を専ら閲覧する傾向にある利用者には、情報提供サーバ3が提供する情報のうち、多くの人に閲覧されている情報を推薦でき、逆に、余り閲覧されていない情報を専ら閲覧する傾向にある利用者には、余り閲覧されていない情報を推薦することが可能になる。 In this embodiment, a recognition index is used as an information index and a user index. The recognition index of information is generally an index indicating whether or not the information is viewed by many people, and the recognition index of the user index is generally a tendency to browse only information viewed by many people. It is an index indicating whether there is a tendency to browse exclusively information that has not been browsed much. Therefore, for users who tend to browse the information browsed by many people, the information provided by the information providing server 3 can recommend the information viewed by many people. It is possible to recommend information that has not been browsed so much to users who tend to browse information that has not been browsed so much.

 また本実施の形態では、情報指標および利用者指標として定着指標を用いる。定着指標は、概ね、閲覧された場合に何度も繰り返し閲覧される情報か否かを示す指標であり、利用者指標の定着指標は、概ね、何度も繰り返し閲覧される情報を専ら閲覧する傾向にあるのか、それとも何度も閲覧されない情報を専ら閲覧する傾向にあるのかを示す指標である。従って、何度も繰り返し閲覧される情報を専ら閲覧する傾向にある利用者には、情報提供サーバ3が提供する情報のうち、何度も繰り返し閲覧されている情報を推薦でき、逆に、繰り返し何度も閲覧されない情報を専ら閲覧する傾向にある利用者には、繰り返し何度も閲覧されていない情報を推薦することが可能になる。 Also, in this embodiment, a fixing index is used as an information index and a user index. The fixing index is generally an index indicating whether or not the information is repeatedly viewed when viewed, and the fixing index of the user index generally browses information that is repeatedly viewed many times. It is an index indicating whether there is a tendency, or whether the information tends to be browsed exclusively for information that is not browsed many times. Therefore, for users who tend to exclusively browse information that is repeatedly viewed, information that is repeatedly viewed among the information provided by the information providing server 3 can be recommended. It is possible to recommend information that has not been browsed many times to users who tend to browse information that has not been browsed many times.

 また本実施の形態では、認知指標と定着指標との組を用いるため、例えば、多くの人に閲覧されている情報であって且つ閲覧された場合に何度も繰り返し閲覧される情報を専ら閲覧している利用者には、そのような情報を推薦でき、多くの人に閲覧されている情報であって且つ閲覧された場合に余り繰り返し閲覧されていない情報を専ら閲覧している利用者には、そのような情報を推薦でき、多くの人に閲覧されていない情報であって且つ閲覧された場合に何度も繰り返し閲覧される情報を専ら閲覧している利用者には、そのような情報を推薦でき、多くの人に閲覧されていない情報であって且つ閲覧された場合に余り繰り返し閲覧されていない情報を専ら閲覧している利用者には、そのような情報を推薦することができる。 In this embodiment, since a set of a recognition index and a fixing index is used, for example, information that is viewed by many people and that is repeatedly viewed many times when viewed is exclusively viewed. Can recommend such information to users who are browsing the information that has been viewed by many people and has not been viewed repeatedly. Can recommend such information to users who are exclusively browsing information that has not been viewed by many people and that is repeatedly viewed when viewed. Information that can be recommended and recommended to users who are browsing information that has not been browsed by many people and that has not been browsed too often when viewed. it can.

 図9は認知指標と定着指標とを軸とする平面上に、利用者全体で閲覧された提供情報の情報指標★と、或る利用者が閲覧した提供情報の情報指標●と、その利用者の利用者指標◎とをプロットしている。この例の場合、当該利用者に対しては、利用者指標◎の近傍に情報指標★がある提供情報が推薦される。 FIG. 9 shows an information index of provided information browsed by the entire user, an information index of provided information browsed by a certain user, and a user on a plane around the recognition index and the established index. The user index ◎ is plotted. In the case of this example, provision information having an information index ★ in the vicinity of the user index ◎ is recommended for the user.

 また本実施の形態では、重複を除いた閲覧数を基に情報指標を計算しているため、特定の利用者が特定の情報を故意に集中的に閲覧するなどによる恣意的な推薦結果の操作を防ぐことができる。 In this embodiment, since the information index is calculated based on the number of browsing without the duplication, an arbitrary recommendation result operation by a specific user intentionally browsing specific information, etc. Can be prevented.

 『第2の実施の形態』
 図10Aを参照すると、本発明の第2の実施の形態に係る情報推薦システム102は、図1に示した第1の実施の形態に係る情報推薦システム101と比較して、情報推薦サーバ1の代わりに情報推薦サーバ1Aを備えている点で相違する。
“Second Embodiment”
Referring to FIG. 10A, the information recommendation system 102 according to the second exemplary embodiment of the present invention is compared with the information recommendation system 101 according to the first exemplary embodiment illustrated in FIG. Instead, the information recommendation server 1A is provided.

 情報推薦サーバ1Aは、第1の実施の形態に係る情報推薦システム101の情報推薦サーバ1と比較して、閲覧履歴記憶部11、情報指標計算手段12、利用者指標計算手段13、指標記憶部14、指標マッチング手段16の代わりに、閲覧履歴記憶部11A、情報指標計算手段12A、利用者指標計算手段13A、指標記憶部14A、指標マッチング手段16Aを備えている。これらの手段はそれぞれ次のような機能を有する。 Compared with the information recommendation server 1 of the information recommendation system 101 according to the first embodiment, the information recommendation server 1A is a browsing history storage unit 11, an information index calculation unit 12, a user index calculation unit 13, and an index storage unit. 14. Instead of the index matching unit 16, a browsing history storage unit 11A, an information index calculation unit 12A, a user index calculation unit 13A, an index storage unit 14A, and an index matching unit 16A are provided. Each of these means has the following functions.

 閲覧履歴記憶部11Aは、情報推薦システム102の利用者が情報提供サーバ3で公開されている提供情報を閲覧した履歴である情報閲覧履歴を記憶する。ここで情報閲覧履歴は、本実施の形態の場合、図10Bに例示するように、利用者識別子と閲覧した情報の情報識別子と情報を閲覧した閲覧日時と滞留時間との組である。すなわち、第1の実施の形態における閲覧履歴記憶部11に記憶される情報閲覧履歴へ滞留時間が追加されている。滞留時間は、利用者が当該提供情報を閲覧していた時間である。このような滞留時間を含む情報閲覧履歴としては、情報提供サーバ3での閲覧ログやネットワーク2に接続されるプロキシサーバなどのアクセスログを利用することができる。 The browsing history storage unit 11 </ b> A stores an information browsing history that is a history of browsing information provided by the user of the information recommendation system 102 on the information providing server 3. Here, in the case of the present embodiment, the information browsing history is a set of a user identifier, an information identifier of the browsed information, a browsing date and time when the information is browsed, and a residence time, as illustrated in FIG. 10B. That is, the residence time is added to the information browsing history stored in the browsing history storage unit 11 in the first embodiment. The residence time is a time during which the user has browsed the provided information. As the information browsing history including such residence time, an access log such as a browsing log in the information providing server 3 or a proxy server connected to the network 2 can be used.

 情報指標計算手段12Aは、閲覧履歴記憶部11Aに記憶された情報閲覧履歴を利用して、個々の情報の閲覧のされ方である被閲覧傾向を表す情報指標として、認知指標と定着指標とに加えてさらに、滞留指標を計算し、この計算した情報指標を指標記憶部14Aへ記憶する。ここで、或る提供情報の滞留指標とは、その提供情報の閲覧にどれだけの時間を利用者が費やしているかを表す指標である。滞留指標は広告出稿の基準として利用しても良い。 The information index calculation unit 12A uses the information browsing history stored in the browsing history storage unit 11A as an information index that represents a browsing tendency, which is how each information is browsed, as a recognition index and a fixing index. In addition, a residence index is calculated, and the calculated information index is stored in the index storage unit 14A. Here, the retention index of a certain provided information is an index representing how much time the user spends browsing the provided information. The staying index may be used as a standard for advertisement placement.

 利用者指標計算手段13Aは、閲覧履歴記憶部11Aに記憶された情報閲覧履歴と指標記憶部14Aに記憶された情報指標とを利用して、個々の利用者の情報の閲覧の仕方である閲覧傾向を表す利用者指標を計算し、この計算した利用者指標を指標記憶部14Aへ記憶する。ここで、利用者指標は、本実施の形態の場合、認知指標と定着指標と滞留指標の組である。 The user index calculation means 13A uses the information browsing history stored in the browsing history storage unit 11A and the information index stored in the index storage unit 14A, and is a browsing method for browsing individual user information. A user index representing a trend is calculated, and the calculated user index is stored in the index storage unit 14A. Here, in the case of the present embodiment, the user index is a set of a recognition index, a fixing index, and a staying index.

 指標記憶部14Aは、情報指標計算手段12Aで計算された各提供情報毎の情報指標と、利用者指標計算手段13Aで計算された各利用者毎の利用者指標とを記憶する。 The index storage unit 14A stores the information index for each provided information calculated by the information index calculation unit 12A and the user index for each user calculated by the user index calculation unit 13A.

 情報クエリ手段15は、第1の実施の形態におけるものと同じであり、端末4から利用者識別子を含む情報推薦要求を受け付け、前記利用者識別子を指標マッチング手段16Aへ送信する。また指標マッチング手段16Aから送信される情報推薦結果を受信し、この情報推薦結果を推薦要求元の端末4へ送信する。 The information query unit 15 is the same as that in the first embodiment, receives an information recommendation request including a user identifier from the terminal 4, and transmits the user identifier to the index matching unit 16A. Further, the information recommendation result transmitted from the index matching means 16A is received, and this information recommendation result is transmitted to the terminal 4 as the recommendation request source.

 指標マッチング手段16Aは、情報クエリ手段15から送信される利用者識別子を受信し、この利用者識別子で指定される利用者の利用者指標を指標記憶部14Aから検索し、この検索した利用者指標と指標記憶部14A中の個々の提供情報の情報指標とのマッチングを行い、利用者指標と類似している情報指標を持つ提供情報の情報識別子の一覧を抽出する。また、この情報識別子の一覧を情報推薦結果として情報クエリ手段15へ送信する。 The index matching unit 16A receives the user identifier transmitted from the information query unit 15, searches the index storage unit 14A for the user index of the user specified by the user identifier, and searches the user index. Are matched with the information indexes of the individual provided information in the index storage unit 14A, and a list of information identifiers of the provided information having information indexes similar to the user indexes is extracted. The list of information identifiers is transmitted to the information query unit 15 as an information recommendation result.

 次に、本実施の形態の全体の動作について詳細に説明する。なお、情報推薦サーバ1Aの閲覧履歴記憶部11Aには、図10Bに示したような情報閲覧履歴があらかじめ蓄積されているものとする。 Next, the overall operation of this embodiment will be described in detail. It is assumed that the browsing history storage unit 11A of the information recommendation server 1A stores information browsing history as shown in FIG. 10B in advance.

 図11のフローチャートを参照すると、情報指標計算手段12Aは、閲覧履歴記憶部11Aから閲覧履歴を取得し(S111)、この取得した閲覧履歴を利用して個々の情報ごとに情報指標を計算する(S22、S23、S114)。 Referring to the flowchart of FIG. 11, the information index calculation unit 12A acquires the browsing history from the browsing history storage unit 11A (S111), and calculates the information index for each piece of information using the acquired browsing history ( S22, S23, S114).

 本実施の形態では、情報指標は認知指標と定着指標と滞留指標の3つの指標の組で構成される。認知指標と定着指標の2つの指標の意味と計算方法は第1の実施の形態と同じである。定着指標は図12のフローチャートに従って計算する。 In this embodiment, the information indicator is composed of a set of three indicators: a recognition indicator, a retention indicator, and a stay indicator. The meaning and calculation method of the two indicators, the recognition indicator and the establishment indicator, are the same as those in the first embodiment. The fixing index is calculated according to the flowchart of FIG.

 図12のフローチャートを参照すると、情報指標計算手段12Aは、閲覧履歴記憶部11Aに記録された1つの提供情報に注目し、その提供情報の閲覧1回ごとの滞留時間の和を計算する(S122)。次に、この滞留時間の和を、単位時間と閲覧回数の積で割った商を求め、この求めた商を当該提供情報の滞留指標とする(S123)。情報指標計算手段12Aは、このような計算を、閲覧履歴記憶部11に記録された残りの個々の提供情報全てについて繰り返す(S121s、S121e)。 Referring to the flowchart of FIG. 12, the information index calculation unit 12A pays attention to one provided information recorded in the browsing history storage unit 11A, and calculates the sum of the residence time for each browsing of the provided information (S122). ). Next, a quotient obtained by dividing the sum of the residence times by the product of the unit time and the number of browsing times is obtained, and the obtained quotient is used as a residence index of the provided information (S123). The information index calculation unit 12A repeats such calculation for all the remaining individual provision information recorded in the browsing history storage unit 11 (S121s, S121e).

 最後に情報指標計算手段12Aは、当該情報の情報識別子と上記計算された認知指標と定着指標と滞留指標とを組にして、指標記憶部14Aに記憶する(S115)。 Finally, the information index calculating unit 12A stores the information identifier of the information, the calculated recognition index, the fixing index, and the staying index in the index storage unit 14A (S115).

 次に、図13のフローチャートを参照すると、利用者指標計算手段13Aは、閲覧履歴記憶部11Aから閲覧履歴を取得し(S131)、さらに個々の利用者について(S132s)、指標記憶部14Aから閲覧した情報の情報指標を取得し(S133)、利用者指標を計算する(S134)。 Next, referring to the flowchart of FIG. 13, the user index calculation means 13A acquires the browsing history from the browsing history storage unit 11A (S131), and further browses individual users (S132s) from the index storage unit 14A. The information index of the obtained information is acquired (S133), and the user index is calculated (S134).

 本実施の形態では、利用者指標を情報指標と同様に認知指標と定着指標と滞留指標の3つの指標の組で構成する。利用者指標の認知指標と定着指標の意味と計算方法は第1の実施の形態と同じである。利用者指標の滞留指標は、個々の利用者が閲覧したことがある提供情報の滞留指標の平均値であり、個々の利用者が利用者集団にとってどのぐらい訴求した情報を閲覧しているかという閲覧傾向を表す。 In the present embodiment, the user index is composed of a set of three indicators, a recognition indicator, a retention indicator, and a stay indicator, in the same manner as the information indicator. The meaning and calculation method of the user index recognition index and the retention index are the same as those in the first embodiment. The retention index of the user index is the average value of the retention index of the provided information that has been viewed by individual users, and the browsing of how much information each user has appealed to the user group Represents a trend.

 利用者指標計算手段13Aは、当該利用者の利用者識別子と当該利用者の利用者指標とを組にして、指標記憶部14Aに記憶する(S135)。 The user index calculation unit 13A stores the user identifier of the user and the user index of the user as a set in the index storage unit 14A (S135).

 指標マッチング手段16Aは、第1の実施の形態における指標マッチング手段16と以下の点を除いて同じ動作を行う。指標マッチング手段16Aは、図6のステップS64において、利用者指標と情報指標の距離を計算する際、図14に示す式を用いる。すなわち利用者指標と情報指標との距離は、本実施の形態の場合、認知指標と定着指標と滞留指標とを軸とする空間における距離のことである。 The index matching unit 16A performs the same operation as the index matching unit 16 in the first embodiment except for the following points. The index matching means 16A uses the formula shown in FIG. 14 when calculating the distance between the user index and the information index in step S64 of FIG. That is, in the present embodiment, the distance between the user index and the information index is a distance in a space with the recognition index, the fixing index, and the staying index as axes.

 本実施の形態によれば、第1の実施の形態と同様の効果が得られると同時に、以下のような効果が得られる。 According to the present embodiment, the same effects as the first embodiment can be obtained, and at the same time, the following effects can be obtained.

 本実施の形態では、情報指標および利用者指標として滞留を用いる。情報指標の滞留指標は、概ね、一度の閲覧で長く閲覧される情報か否かを示す指標であり、利用者指標の認知指標は、概ね、一度の閲覧で長く閲覧される情報を専ら閲覧する傾向にあるのか、それとも一度の閲覧で長く閲覧されない情報を専ら閲覧する傾向にあるのかを示す指標である。従って、一度の閲覧で長く閲覧される情報を専ら閲覧する傾向にある利用者には、情報提供サーバ3が提供する情報のうち、一度の閲覧で長く閲覧されている情報を推薦でき、逆に、一度の閲覧で長く閲覧されない情報を専ら閲覧する傾向にある利用者には、情報提供サーバ3が提供する情報のうち、一度の閲覧で長く閲覧されない情報を推薦することが可能になる。 In this embodiment, retention is used as an information index and a user index. The retention index of the information index is generally an index indicating whether or not the information is viewed for a long time by one browsing, and the recognition index of the user index generally browses information that is viewed for a long time by one browsing. It is an index that indicates whether there is a tendency, or whether there is a tendency to browse exclusively information that has not been browsed for a long time in a single browsing. Therefore, for a user who tends to browse information that is browsed for a long time only once, information that has been browsed for a long time can be recommended out of the information provided by the information providing server 3. For users who tend to browse information that is not browsed for a long time by one browsing, it is possible to recommend information that is not browsed for a long time by browsing once, among the information provided by the information providing server 3.

 また本実施の形態では、認知指標と定着指標と滞留指標の組を用いるため、例えば、多くの人に閲覧されている情報であって且つ閲覧された場合に何度も繰り返し閲覧され然も一度の閲覧で長く閲覧される情報を専ら閲覧している利用者には、そのような情報を推薦できるといった推薦方法が可能になる。 Further, in this embodiment, since a set of a recognition index, a fixing index, and a staying index is used, for example, information that has been browsed by many people and is browsed over and over again when viewed. For users who are exclusively browsing information that is browsed for a long time, it is possible to recommend a method of recommending such information.

 『第3の実施の形態』
 図15を参照すると、本発明の第3の実施の形態に係る情報推薦システム103は、図1に示した第1の実施の形態に係る情報推薦システム101と比較して、情報推薦サーバ1の代わりに情報推薦サーバ1Bを備えている点で相違する。
“Third embodiment”
Referring to FIG. 15, the information recommendation system 103 according to the third exemplary embodiment of the present invention is compared with the information recommendation system 101 according to the first exemplary embodiment illustrated in FIG. Instead, it is different in that an information recommendation server 1B is provided.

 情報推薦サーバ1Bは、第1の実施の形態に係る情報推薦システム101の情報推薦サーバ1と比較して、閲覧履歴記憶部11、情報指標計算手段12、利用者指標計算手段13、指標記憶部14、指標マッチング手段16の代わりに、閲覧履歴記憶部11B、情報指標計算手段12B、利用者指標計算手段13B、指標記憶部14B、指標マッチング手段16Bを備えている。これらの手段はそれぞれ次のような機能を有する。 Compared with the information recommendation server 1 of the information recommendation system 101 according to the first embodiment, the information recommendation server 1B is a browsing history storage unit 11, an information index calculation unit 12, a user index calculation unit 13, and an index storage unit. 14. Instead of the index matching unit 16, a browsing history storage unit 11B, an information index calculation unit 12B, a user index calculation unit 13B, an index storage unit 14B, and an index matching unit 16B are provided. Each of these means has the following functions.

 閲覧履歴記憶部11Bは、情報推薦システム103の利用者が情報提供サーバ3で公開されている提供情報を閲覧した履歴である情報閲覧履歴を記憶する。ここで情報閲覧履歴は、本実施の形態の場合、図16に例示するように、利用者識別子と閲覧した情報の情報識別子と情報を閲覧した閲覧日時と時差との組である。すなわち、第1の実施の形態における閲覧履歴記憶部11に記憶される情報閲覧履歴へ時差が追加されている。時差は、基準時からどの程度の遅れで利用者が当該提供情報を閲覧したかを示す時間である。基準時としては、当該提供情報が一番最初に閲覧された時、または当該提供情報が情報提供サーバ3で公開可能となった時とすることができる。このような時差を含む情報閲覧履歴としては、情報提供サーバ3での閲覧ログやネットワーク2に接続されるプロキシサーバなどのアクセスログを利用することができる。なお、図16の閲覧日時は時差を計算するときに用いた閲覧日時であり、時差を計算した後は削除しても良い。 The browsing history storage unit 11 </ b> B stores an information browsing history that is a history of browsing provided information published on the information providing server 3 by a user of the information recommendation system 103. Here, in the case of the present embodiment, the information browsing history is a set of a user identifier, an information identifier of the browsed information, a browsing date and time of browsing the information, and a time difference, as illustrated in FIG. That is, a time difference is added to the information browsing history stored in the browsing history storage unit 11 in the first embodiment. The time difference is a time indicating how much the user browses the provided information with a delay from the reference time. The reference time can be the time when the provided information is browsed for the first time or when the provided information can be disclosed on the information providing server 3. As an information browsing history including such a time difference, an access log such as a browsing log in the information providing server 3 or a proxy server connected to the network 2 can be used. Note that the browsing date and time in FIG. 16 is the browsing date and time used when calculating the time difference, and may be deleted after the time difference is calculated.

 情報指標計算手段12Bは、閲覧履歴記憶部11Bに記憶された情報閲覧履歴を利用して、個々の情報の閲覧のされ方である被閲覧傾向を表す情報指標として、時差指標を計算し、この計算した情報指標を指標記憶部14Bへ記憶する。ここで、或る提供情報の時差指標とは、その提供情報がどれだけ早期に参照されているかを表す指標である。 The information index calculation means 12B uses the information browsing history stored in the browsing history storage unit 11B to calculate a time difference index as an information index that represents a browsing tendency, which is how each information is browsed. The calculated information index is stored in the index storage unit 14B. Here, the time difference index of certain provision information is an index representing how early the provision information is referred to.

 利用者指標計算手段13Bは、閲覧履歴記憶部11Bに記憶された情報閲覧履歴と指標記憶部14Bに記憶された情報指標とを利用して、個々の利用者の情報の閲覧の仕方である閲覧傾向を表す利用者指標を計算し、この計算した利用者指標を指標記憶部14Bへ記憶する。ここで、利用者指標は、本実施の形態の場合、時差指標である。 The user index calculation unit 13B uses the information browsing history stored in the browsing history storage unit 11B and the information index stored in the index storage unit 14B, and is a browsing that is a way of browsing information of individual users. A user index representing a trend is calculated, and the calculated user index is stored in the index storage unit 14B. Here, the user index is a time difference index in the present embodiment.

 指標記憶部14Bは、情報指標計算手段12Bで計算された各提供情報毎の情報指標と、利用者指標計算手段13Bで計算された各利用者毎の利用者指標とを記憶する。 The index storage unit 14B stores the information index for each provided information calculated by the information index calculation unit 12B and the user index for each user calculated by the user index calculation unit 13B.

 情報クエリ手段15は、第1の実施の形態におけるものと同じであり、端末4から利用者識別子を含む情報推薦要求を受け付け、前記利用者識別子を指標マッチング手段16Bへ送信する。また指標マッチング手段16Bから送信される情報推薦結果を受信し、この情報推薦結果を推薦要求元の端末4へ送信する。 The information query unit 15 is the same as that in the first embodiment, receives an information recommendation request including a user identifier from the terminal 4, and transmits the user identifier to the index matching unit 16B. Further, the information recommendation result transmitted from the index matching means 16B is received, and this information recommendation result is transmitted to the terminal 4 as the recommendation request source.

 指標マッチング手段16Bは、情報クエリ手段15から送信される利用者識別子を受信し、この利用者識別子で指定される利用者の利用者指標を指標記憶部14Bから検索し、この検索した利用者指標と指標記憶部14B中の個々の提供情報の情報指標とのマッチングを行い、利用者指標と類似している情報指標を持つ提供情報の情報識別子の一覧を抽出する。また、この情報識別子の一覧を情報推薦結果として情報クエリ手段15へ送信する。 The index matching unit 16B receives the user identifier transmitted from the information query unit 15, searches the index storage unit 14B for the user index of the user specified by the user identifier, and searches the user index. Is matched with the information index of each provision information in the index storage unit 14B, and a list of information identifiers of the provision information having the information index similar to the user index is extracted. The list of information identifiers is transmitted to the information query unit 15 as an information recommendation result.

 次に、本実施の形態の全体の動作について詳細に説明する。なお、情報推薦サーバ1Bの閲覧履歴記憶部11Bには、図16に示したような情報閲覧履歴があらかじめ蓄積されているものとする。 Next, the overall operation of this embodiment will be described in detail. It is assumed that the information browsing history as shown in FIG. 16 is stored in advance in the browsing history storage unit 11B of the information recommendation server 1B.

 図17のフローチャートを参照すると、情報指標計算手段12Bは、閲覧履歴記憶部11Bから閲覧履歴を取得し(S171)、この取得した閲覧履歴を利用して個々の情報ごとに情報指標を計算する(S172)。 Referring to the flowchart of FIG. 17, the information index calculation unit 12B acquires the browsing history from the browsing history storage unit 11B (S171), and calculates the information index for each piece of information using the acquired browsing history ( S172).

 本実施の形態では、情報指標は時差指標で構成される。時差指標は図18のフローチャートに従って計算する。 In this embodiment, the information index is composed of a time difference index. The time difference index is calculated according to the flowchart of FIG.

 図18のフローチャートを参照すると、情報指標計算手段12Bは、閲覧履歴記憶部11に記録された1つの提供情報に注目し、その提供情報を閲覧した利用者ごとの時差の和を計算する(S182)。次に、この時差の和を、閲覧した利用者の数で割った商を求め、この求めた商を当該提供情報の時差指標とする(S183)。情報指標計算手段12Bは、このような計算を、閲覧履歴記憶部11に記録された残りの個々の提供情報全てについて繰り返す(S181s、S181e)。 Referring to the flowchart of FIG. 18, the information index calculation unit 12B pays attention to one provided information recorded in the browsing history storage unit 11, and calculates the sum of time differences for each user who browsed the provided information (S182). ). Next, a quotient obtained by dividing the sum of the time differences by the number of browsed users is obtained, and the obtained quotient is set as a time difference index of the provided information (S183). The information index calculation unit 12B repeats such calculation for all the remaining individual provision information recorded in the browsing history storage unit 11 (S181s, S181e).

 最後に情報指標計算手段12Bは、当該情報の情報識別子と上記計算された時差指標とを組にして、指標記憶部14Bに記憶する(S173)。 Finally, the information index calculation means 12B sets the information identifier of the information and the calculated time difference index as a set and stores them in the index storage unit 14B (S173).

 次に、図19のフローチャートを参照すると、利用者指標計算手段13Bは、閲覧履歴記憶部11Bから閲覧履歴を取得し(S191)、さらに個々の利用者について(S192s)、指標記憶部14Bから閲覧した情報の情報指標を取得し(S193)、利用者指標を計算する(S194)。 Next, referring to the flowchart of FIG. 19, the user index calculation unit 13B acquires the browsing history from the browsing history storage unit 11B (S191), and further browses individual users (S192s) from the index storage unit 14B. The information index of the obtained information is acquired (S193), and the user index is calculated (S194).

 本実施の形態では、利用者指標を時差指標で構成する。利用者指標の時差指標は、個々の利用者がどれだけ早くに提供情報を閲覧しているかという閲覧傾向を表す。或る利用者の時差指標は、その利用者が閲覧した提供情報の時差指標の平均値として計算する。 In this embodiment, the user index is composed of a time difference index. The time difference index of the user index represents a browsing tendency indicating how quickly each user is browsing the provided information. The time difference index of a certain user is calculated as an average value of the time difference indices of the provided information browsed by the user.

 利用者指標計算手段13Bは、当該利用者の利用者識別子と当該利用者の利用者指標とを組にして、指標記憶部14Bに記憶する(S195)。 The user index calculation means 13B sets the user identifier of the user and the user index of the user as a set and stores them in the index storage unit 14B (S195).

 指標マッチング手段16Bは、第1の実施の形態における指標マッチング手段16と以下の点を除いて同じ動作を行う。指標マッチング手段16Bは、図6のステップS64において、利用者指標と情報指標の距離を計算する際、図20に示す式を用いる。 The index matching unit 16B performs the same operation as the index matching unit 16 in the first embodiment except for the following points. The index matching means 16B uses the formula shown in FIG. 20 when calculating the distance between the user index and the information index in step S64 of FIG.

 次に、本実施の形態の効果を説明する。 Next, the effect of this embodiment will be described.

 本実施の形態によれば、利用者集団にとっての個々の提供情報の位置付け、および、個々の利用者の閲覧傾向を考慮した情報の推薦が可能になる。その理由は、利用者集団の提供情報の閲覧履歴から個々の提供情報の閲覧のされ方である時差指標を情報指標として計算し、各利用者が閲覧した1以上の提供情報の時差指標の平均からその利用者の時差指標を利用者指標として計算し、利用者指標に類似する情報指標を持つ提供情報を推薦情報としているためである。 According to the present embodiment, it is possible to recommend the information in consideration of the positioning of the individual provided information for the user group and the browsing tendency of the individual users. The reason for this is that the time difference index, which is how the individual provided information is browsed, is calculated from the browsing history of the provided information of the user group as an information index, and the average of the time difference indices of one or more provided information viewed by each user This is because the time difference index of the user is calculated as the user index, and the provided information having the information index similar to the user index is used as the recommended information.

 また本実施の形態では、情報指標および利用者指標として時差指標を用いる。情報の時差指標は、概ね、どれだけ早期に閲覧されている情報か否かを示す指標であり、利用者指標の時差指標は、概ね、早期に閲覧されている情報を専ら閲覧する傾向にあるのか、それとも早期に閲覧されていない情報を専ら閲覧する傾向にあるのかを示す指標である。従って、早期に閲覧されている情報を専ら閲覧する傾向にある利用者には、情報提供サーバ3が提供する情報のうち、公開後あるいは最初に閲覧されてから早期に閲覧されている情報を推薦でき、逆に、早期に閲覧されていない情報を専ら閲覧する傾向にある利用者には、情報提供サーバ3が提供する情報のうち、公開後あるいは最初に閲覧されてから早期に閲覧されていない情報を推薦することが可能になる。 In this embodiment, a time difference index is used as an information index and a user index. The time difference index of information is generally an index indicating how early the information is browsed, and the time difference index of the user index generally tends to browse information browsed early. It is an index indicating whether or not it tends to browse exclusively information that has not been browsed early. Therefore, for users who tend to browse information browsed early, the information provided by the information providing server 3 recommends information that has been browsed early after it has been published or since it was first viewed. On the contrary, for users who tend to browse information that has not been browsed at an early stage, the information provided by the information providing server 3 has not been browsed at an early stage after being published or first viewed. It becomes possible to recommend information.

 『第4の実施の形態』
 図21を参照すると、本発明の第4の実施の形態に係る情報推薦システム104は、図1に示した第1の実施の形態に係る情報推薦システム101と比較して、情報推薦サーバ1の代わりに情報推薦サーバ1Cを備えている点で相違する。また、端末4は、情報参照手段41の代わりに情報参照手段41Cを備えている。
“Fourth embodiment”
Referring to FIG. 21, the information recommendation system 104 according to the fourth exemplary embodiment of the present invention is compared with the information recommendation system 101 according to the first exemplary embodiment illustrated in FIG. Instead, the information recommendation server 1C is provided. Further, the terminal 4 includes an information reference unit 41C instead of the information reference unit 41.

 端末4の情報参照手段41Cは、情報推薦要求に利用者識別子に加えてさらに、推薦条件となるキーワードを含める点で、情報参照手段41と相違する。キーワードは、例えば利用者から指定される。 The information reference unit 41C of the terminal 4 is different from the information reference unit 41 in that a keyword serving as a recommendation condition is further included in the information recommendation request in addition to the user identifier. The keyword is specified by the user, for example.

 情報推薦サーバ1Cは、第1の実施の形態に係る情報推薦システム101の情報推薦サーバ1と比較して、情報クエリ手段15および指標マッチング手段16の代わりに情報クエリ手段15Cおよび指標マッチング手段16Cを備え、またインデックス記憶部17を新たに備えている点で相違する。 Compared with the information recommendation server 1 of the information recommendation system 101 according to the first embodiment, the information recommendation server 1C includes an information query unit 15C and an index matching unit 16C instead of the information query unit 15 and the index matching unit 16. And the difference is that an index storage unit 17 is newly provided.

 インデックス記憶部17は、情報提供サーバ3で提供されている提供情報のインデックスを記憶する。具体的には、例えば、提供情報の情報識別子に対応して、その提供情報に含まれるキーワードのリストを記憶している。 The index storage unit 17 stores an index of provided information provided by the information providing server 3. Specifically, for example, a list of keywords included in the provided information is stored in association with the information identifier of the provided information.

 情報クエリ手段15Cおよび指標マッチング手段16Cは、情報指標と利用者指標との類似性に加えてキーワードの適合性に基づいて推薦情報を抽出する点で、第1の実施の形態の情報クエリ手段15および指標マッチング手段16と相違する。 The information query unit 15C and the index matching unit 16C extract the recommended information based on the suitability of the keyword in addition to the similarity between the information index and the user index, and thus the information query unit 15 according to the first embodiment. And the index matching means 16 is different.

 図22のフローチャートを参照すると、情報クエリ手段15Cは、端末4から利用者識別子とキーワードとを含む情報推薦要求を受信すると(S221)、インデックス記憶部17から前記キーワードを含む提供情報の情報識別子を抽出し(S222)、前記受信した利用者識別子と前記抽出した情報識別子の一覧とを指標マッチング手段16Cへ送信する。 Referring to the flowchart of FIG. 22, upon receiving an information recommendation request including a user identifier and a keyword from the terminal 4 (S221), the information query unit 15C obtains the information identifier of the provided information including the keyword from the index storage unit 17. Extraction is performed (S222), and the received user identifier and the list of extracted information identifiers are transmitted to the index matching means 16C.

 指標マッチング手段16Cは、情報クエリ手段15Cから送信された利用者識別子と情報識別子一覧とを受信すると(S223)、指標記憶部14から前記受信した利用者識別子で指定される利用者の利用者指標を取得すると共に、さらに指標記憶部14から前記受信した情報識別子で指定される情報の情報指標を抽出する(S224)。次に指標マッチング手段16Cは、当該利用者の利用者指標と前記抽出された情報の情報指標との距離をそれぞれ計算する(S225s、S226、S225e)。ここで利用者指標と情報指標との距離は、第1の実施の形態と同様に図8に示す式で計算される。さらに指標マッチング手段16Cは、前記距離が小さい順に情報識別子の一覧を情報推薦結果として情報クエリ手段15Cへ返し、さらに情報クエリ手段15Cは、前記情報推薦結果を端末4へ返す(S227)。 When the index matching unit 16C receives the user identifier and the information identifier list transmitted from the information query unit 15C (S223), the user index of the user specified by the received user identifier from the index storage unit 14 is obtained. And the information index of the information specified by the received information identifier is further extracted from the index storage unit 14 (S224). Next, the index matching unit 16C calculates the distance between the user index of the user and the information index of the extracted information (S225s, S226, S225e). Here, the distance between the user index and the information index is calculated by the equation shown in FIG. 8 as in the first embodiment. Further, the index matching unit 16C returns a list of information identifiers as an information recommendation result to the information query unit 15C in order of increasing distance, and the information query unit 15C returns the information recommendation result to the terminal 4 (S227).

 なお、図22の処理とは異なり、情報クエリ手段15Cが、第1の実施の形態の指標マッチング手段16から返される情報識別子の一覧中からキーワードを含まない情報の情報識別子を除去する処理を行っても良い。また、第1の実施の形態と同様に、情報識別子の一覧から当該利用者が既に閲覧した提供情報の情報識別子を取り除くようにしても良い。 Unlike the process of FIG. 22, the information query unit 15C performs a process of removing the information identifier of information that does not include a keyword from the list of information identifiers returned from the index matching unit 16 of the first embodiment. May be. Further, as in the first embodiment, the information identifier of the provided information that has already been browsed by the user may be removed from the list of information identifiers.

 本実施の形態によれば、第1の実施の形態と同様の効果が得られると同時に、端末4の利用者から指定されたキーワードによる推薦候補の絞り込みを行うことが可能である。 According to the present embodiment, it is possible to obtain the same effects as those of the first embodiment, and at the same time, it is possible to narrow down the recommended candidates by the keyword specified by the user of the terminal 4.

 本実施の形態は、第1の実施の形態を前提としたが、第2または第3の実施の形態にインデックス記憶部17を追加して本実施の形態と同様にキーワードによる推薦候補の絞り込みを行うようにした実施の形態も考えられる。 Although this embodiment is based on the first embodiment, the index storage unit 17 is added to the second or third embodiment to narrow down recommendation candidates by keywords as in this embodiment. An embodiment in which it is performed is also conceivable.

 次に、具体的な実施例を用いて本発明の実施例1を説明する。この実施例1は、図1に示した第1の実施の形態に対応する。 Next, Example 1 of the present invention will be described using specific examples. Example 1 corresponds to the first embodiment shown in FIG.

 本実施例では、情報推薦システムの利用者は利用者識別子000001から000005までの5名であり、情報指標計算時の期間dは2007年9月23日から同25日までの3日間とし、単位時間は1日とする。 In this embodiment, there are five users of the information recommendation system, user identifiers 000001 to 000005, and the period d at the time of calculating the information index is 3 days from September 23, 2007 to the same day 25, and the unit The time is one day.

 閲覧履歴記憶部11には、あらかじめ図7で示す情報閲覧履歴が記憶されている。 In the browsing history storage unit 11, the information browsing history shown in FIG. 7 is stored in advance.

 情報指標計算手段12は、閲覧履歴記憶部11から図7の情報閲覧履歴を取得し(S21)、情報指標を計算する(S22)。まず情報識別子http://aaa.jpで指定される提供情報について、認知指標を計算する(S31s)。期間dに情報識別子http://aaa.jpで指定される情報を閲覧した利用者は、利用者識別子000001、000002、000003、000004で指定される4名であるので(S32)、情報識別子http://aaa.jpで指定される情報の情報指標は4/5=0.8となる(S33)。同様に、情報識別子http://bbb.jpで指定される情報を閲覧した利用者は(S31s)、利用者識別子000001、000002、000003で指定される3名であるので(S32)、情報識別子http://bbb.jpで指定される情報の情報指標は3/5=0.6となる(S33)。 The information index calculation means 12 acquires the information browsing history of FIG. 7 from the browsing history storage unit 11 (S21), and calculates the information index (S22). First, a recognition index is calculated for the provided information specified by the information identifier http://aaa.jp (S31s). Since the users who have browsed the information specified by the information identifier http://aaa.jp in the period d are four users specified by the user identifiers 000001, 000002, 000003, and 000004 (S32), the information identifier http The information index of information specified by: //aaa.jp is 4/5 = 0.8 (S33). Similarly, since the users who have browsed the information specified by the information identifier http://bbb.jp (S31s) are the three names specified by the user identifiers 000001, 000002, and 000003 (S32), the information identifier The information index of information specified by http://bbb.jp is 3/5 = 0.6 (S33).

 次に、定着指標を情報識別子http://aaa.jpで指定される提供情報、情報識別子http://bbb.jpで指定される提供情報の順に計算する(S41s)。情報識別子http://aaa.jpで指定される提供情報へ利用者識別子000001で指定される利用者は(S42s)、2007年9月23日、同24日に閲覧しているため(S43)、利用者識別子000001で指定される利用者が情報識別子http://aaa.jpで指定される提供情報を閲覧した単位時間の総数は2である(S44)。よって利用者識別子000001で指定される利用者の情報識別子http://aaa.jpで指定される提供情報についての定着指標は2/3=0.67である(S45)。同様に利用者識別子000002で指定される利用者(S42s)の情報識別子http://aaa.jpで指定される提供情報についての定着指標は2/3=0.67であり(S43,S44,S45)、利用者識別子000003で指定される利用者(S42s)の情報識別子http://aaa.jpで指定される提供情報についての定着指標は1/3=0.33であり(S43,S44,S45)、利用者識別子000004で指定される利用者(S42s)の情報識別子http://aaa.jpで指定される提供情報についての定着指標も1/3=0.33である(S43,S44,S45)。利用者識別子000005で指定される利用者は、期間dにおいて情報識別子http://aaa.jpで指定される提供情報を閲覧していないので、情報識別子http://aaa.jpで指定される提供情報についての定着指標の計算においては計算対象外とする(S46)。 Next, the fixing index is calculated in the order of provision information specified by the information identifier http://aaa.jp and provision information specified by the information identifier http://bbb.jp (S41s). Since the user specified by the user identifier 000001 is browsing the provided information specified by the information identifier http://aaa.jp (S42s) on September 24, 2007 and the same day (S43). The total number of unit times that the user specified by the user identifier 000001 browses the provided information specified by the information identifier http://aaa.jp is 2 (S44). Therefore, the fixing index for the provided information specified by the user information identifier http://aaa.jp specified by the user identifier 000001 is 2/3 = 0.67 (S45). Similarly, the fixing index for the provided information specified by the information identifier http://aaa.jp of the user (S42s) specified by the user identifier 000002 is 2/3 = 0.67 (S43, S44, S45), the fixing index for the provided information specified by the information identifier http://aaa.jp of the user (S42s) specified by the user identifier 000003 is 1/3 = 0.33 (S43, S44). , S45), the fixing index for the provided information specified by the information identifier http://aaa.jp of the user (S42s) specified by the user identifier 000004 is also 1/3 = 0.33 (S43, S44, S45). Since the user specified by the user identifier 000005 is not browsing the provision information specified by the information identifier http://aaa.jp in the period d, the user is specified by the information identifier http://aaa.jp. The calculation of the fixing index for the provided information is excluded from the calculation target (S46).

 前記計算した情報識別子http://aaa.jpで指定される提供情報についての利用者ごとの定着指標について、平均値を計算すると(S47)、(0.67+0.67+0.33+0.33)/4=0.5となり、これを情報識別子http://aaa.jpで指定される提供情報の定着指標とする(S23)。 When an average value is calculated for the fixing index for each user for the provided information specified by the calculated information identifier http://aaa.jp (S47), (0.67 + 0.67 + 0.33 + 0.33) / 4. = 0.5, and this is set as a fixing index of the provided information specified by the information identifier http://aaa.jp (S23).

 同様に情報識別子http://bbb.jpで指定される情報の定着指標は、((2/3)+(2/3)+(2/3))/3=0.66となる(図4)。 Similarly, the fixing index of information specified by the information identifier http://bbb.jp is ((2/3) + (2/3) + (2/3)) / 3 = 0.66 (FIG. 4).

 最後に情報識別子と、上記計算された認知指標と、定着指標とを組にして、指標記憶部14へ記憶する(S24)。このときの指標記憶部14の内容例を図23に示す。 Finally, the information identifier, the calculated recognition index, and the fixing index are paired and stored in the index storage unit 14 (S24). An example of the contents of the index storage unit 14 at this time is shown in FIG.

 次に個々の利用者について利用者指標を計算する。利用者指標計算部13は、閲覧履歴記憶部11から図7で示す情報閲覧履歴を取得する。 Next, calculate the user index for each individual user. The user index calculation unit 13 acquires the information browsing history shown in FIG. 7 from the browsing history storage unit 11.

 まず利用者識別子000001で指定される利用者について(S52s)、指標記憶部14から図23で示す前記計算した情報指標を取得し、認知指標と定着指標を計算する。期間dにおいて利用者識別子000001で指定される利用者が閲覧した情報の情報識別子は、http://aaa.jpとhttp://bbb.jpであり、それぞれの情報指標(認知指標と定着指標との組)は、(0.8,0.5)と(0.6,0.66)である(S53)。前記情報指標について、認知指標と定着指標のそれぞれの平均値を求めると、(0.7,0.58)となる(S54)。前記計算した平均値の組を利用者指標として指標記憶部14へ記憶する(S24)。 First, for the user specified by the user identifier 000001 (S52s), the calculated information index shown in FIG. 23 is acquired from the index storage unit 14, and the recognition index and the fixing index are calculated. The information identifiers of the information browsed by the user specified by the user identifier 000001 in the period d are http://aaa.jp and http://bbb.jp, and the respective information indices (recognition index and establishment index) Are (0.8, 0.5) and (0.6, 0.66) (S53). When the average values of the recognition index and the fixing index are obtained for the information index, (0.7, 0.58) is obtained (S54). The calculated set of average values is stored in the index storage unit 14 as a user index (S24).

 同様に、他の情報について情報指標を計算し、他の利用者について利用者指標を計算して、指標記憶部14に記憶する。このときの指標記憶部14の内容例を図23、図24に示す。 Similarly, an information index is calculated for other information, a user index is calculated for other users, and stored in the index storage unit 14. An example of the contents of the index storage unit 14 at this time is shown in FIGS.

 次に、利用者識別子000001で指定される利用者で指定される利用者が、情報の推薦を受ける場合について説明する。 Next, a case where the user specified by the user specified by the user identifier 000001 receives information recommendation will be described.

 利用者識別子000001で指定される利用者は、端末4の情報参照手段41を利用して、情報推薦サーバ1へ自身の利用者識別子000001を含む情報推薦要求を送信する。 The user specified by the user identifier 000001 uses the information reference means 41 of the terminal 4 to transmit an information recommendation request including its own user identifier 000001 to the information recommendation server 1.

 情報クエリ手段15は端末4から前記情報推薦要求を受信し、この要求に含まれる利用者識別子000001を指標マッチング手段16へ送信する。 The information query unit 15 receives the information recommendation request from the terminal 4 and transmits the user identifier 000001 included in the request to the index matching unit 16.

 指標マッチング手段16は、情報クエリ手段15から利用者識別子000001を受信すると(S61)、指標記憶部14から利用者識別子000001で指定される利用者の利用者指標(0.7,0.58)を取得する(S62)。 When the index matching unit 16 receives the user identifier 000001 from the information query unit 15 (S61), the user index (0.7, 0.58) of the user specified by the user identifier 000001 from the index storage unit 14 is obtained. Is acquired (S62).

 そして前記取得した利用者指標(0.7,0.58)と、情報識別子http://aaa.jpで指定される情報の情報指標(0.8,0.5)との距離を図8の式に従って計算すると、0.13となる。同様に情報識別子http://bbb.jpで指定される情報の情報指標(0.6,0.66)との距離は0.13、情報識別子http://ccc.jpで指定される情報の情報指標(0.1,0.9)との距離は0.68となる(S63s、S64、S63e)。よって指標マッチング手段16は、{http://aaa.jp,http://bbb.jp,http://ccc.jp}の順に情報識別子を並べ、情報クエリ手段15を経由して端末4へ返す。 The distance between the acquired user index (0.7, 0.58) and the information index (0.8, 0.5) of the information specified by the information identifier http://aaa.jp is shown in FIG. When calculated according to the above formula, 0.13 is obtained. Similarly, the distance between the information index (0.6, 0.66) of the information specified by the information identifier http://bbb.jp is 0.13, and the information specified by the information identifier http://ccc.jp The distance from the information index (0.1, 0.9) is 0.68 (S63s, S64, S63e). Therefore, the index matching unit 16 arranges information identifiers in the order of {http://aaa.jp, http://bbb.jp, http://ccc.jp}, and sends the information identifier to the terminal 4 via the information query unit 15. return.

 以上本発明の実施の形態および実施例について説明したが、本発明は以上の例に限定されず、その他各種の付加変更が可能である。例えば、情報指標および利用者指標として、第1の実施の形態では認知指標と定着指標の組、第2の実施の形態では認知指標と定着指標と滞留指標との組、第3の実施の形態では時差指標を用いたが、認知指標、定着指標、滞留指標および時差指標の何れかを単独で、あるいは任意の複数を組み合わせて利用することが可能である。 Although the embodiments and examples of the present invention have been described above, the present invention is not limited to the above examples, and various other additions and modifications can be made. For example, as an information index and a user index, a combination of a recognition index and a fixing index in the first embodiment, a pair of a recognition index, a fixing index, and a staying index in the second embodiment, a third embodiment In this example, the time difference index is used. However, any one of the recognition index, the fixation index, the staying index, and the time difference index can be used alone or in any combination.

 また、本発明の情報推薦サーバは、その有する機能をハードウェア的に実現することは勿論、コンピュータとプログラムとで実現することができる。プログラムは、磁気ディスクや半導体メモリ等のコンピュータ可読記録媒体に記録されて提供され、コンピュータの立ち上げ時などにコンピュータに読み取られ、そのコンピュータの動作を制御することにより、そのコンピュータを前述した各実施の形態における情報推薦サーバとして機能させる。 In addition, the information recommendation server of the present invention can be realized by a computer and a program as well as the functions of the information recommendation server by hardware. The program is provided by being recorded on a computer-readable recording medium such as a magnetic disk or a semiconductor memory, and is read by the computer at the time of starting up the computer, etc. In the form of an information recommendation server.

 また、この出願は、2008年3月6日に出願された日本出願特願2008-55752を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-55752 filed on Mar. 6, 2008, the entire disclosure of which is incorporated herein.

 本発明は、検索エンジンにおける検索結果の絞り込みシステムやランキングシステムに適用できる。特に企業における部門内を対象とした検索サーバへ適用すると、利用者集団の嗜好が比較的類似しているため、良好な推薦結果が得られる。 The present invention can be applied to a search result narrowing system and a ranking system in a search engine. In particular, when applied to a search server for a department in a company, the user group's preferences are relatively similar, so that a good recommendation result can be obtained.

Claims (25)

 複数の利用者による情報の閲覧履歴から、個々の情報ごとに、その情報の閲覧のされ方である被閲覧傾向に基づく指標である情報指標を計算する情報指標計算手段と、
 前記利用者ごとに、前記利用者が閲覧した情報について計算された前記情報指標から、前記利用者の情報の閲覧の仕方である閲覧傾向に基づく利用者指標を計算する利用者指標計算手段と、
 前記利用者について前記計算された利用者指標に類似する情報指標を持つ情報を推薦対象情報群から抽出する指標マッチング手段とを備えた情報推薦サーバ装置。
Information index calculation means for calculating an information index that is an index based on a browsing tendency, which is how the information is browsed, for each individual information from the browsing history of information by a plurality of users;
For each user, from the information index calculated for the information browsed by the user, user index calculation means for calculating a user index based on a browsing tendency that is a way of browsing the information of the user;
An information recommendation server device comprising: index matching means for extracting information having an information index similar to the calculated user index for the user from a recommendation target information group.
 前記情報指標計算手段で計算された個々の情報ごとの情報指標および前記利用者指標計算手段で計算された個々の利用者ごとの利用者指標を記憶する指標記憶手段を備えることを特徴とする請求項1に記載の情報推薦サーバ装置。 An index storage means for storing an information index for each individual information calculated by the information index calculation means and a user index for each individual user calculated by the user index calculation means. Item 4. The information recommendation server device according to Item 1.  ネットワークを介して端末から利用者識別子を含む情報推薦要求を受け付け、前記利用者識別子で特定される利用者について前記利用者指標計算手段で計算された利用者指標に類似する情報指標を持つ情報を前記指標マッチング手段によって前記推薦対象情報群から抽出し、該抽出結果を前記端末へ送信する情報クエリ手段を備えることを特徴とする請求項1または2に記載の情報推薦サーバ装置。 An information recommendation request including a user identifier is received from a terminal via a network, and information having an information index similar to the user index calculated by the user index calculation means for the user specified by the user identifier The information recommendation server apparatus according to claim 1, further comprising an information query unit that extracts from the recommendation target information group by the index matching unit and transmits the extraction result to the terminal.  前記推薦対象情報群に含まれるキーワードを記録したインデックス記憶手段と、
 ネットワークを介して端末から利用者識別子およびキーワードを含む情報推薦要求を受け付け、前記インデックス記憶手段を参照して前記推薦対象情報群から前記キーワードを含む情報を抽出し、該抽出した情報から、前記利用者識別子で特定される利用者について前記利用者指標計算手段で計算された利用者指標に類似する情報指標を持つ情報を前記指標マッチング手段によって抽出し、該抽出結果を前記端末へ送信する情報クエリ手段を備えることを特徴とする請求項1または2に記載の情報推薦サーバ装置。
Index storage means for recording keywords included in the recommendation target information group;
An information recommendation request including a user identifier and a keyword is received from a terminal via a network, information including the keyword is extracted from the recommendation target information group with reference to the index storage unit, and the use is extracted from the extracted information. An information query for extracting information having an information index similar to the user index calculated by the user index calculating means for the user specified by the user identifier by the index matching means and transmitting the extraction result to the terminal The information recommendation server device according to claim 1, further comprising: means.
 前記情報指標計算手段は、どれだけの範囲の利用者によって閲覧されたかを示す認知指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記認知指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項1乃至4の何れか1項に記載の情報推薦サーバ装置。 The information index calculation means calculates a recognition index indicating how many users have been viewed as one of the information indexes, and the user index calculation means is calculated for information viewed by the user. 5. The information recommendation server device according to claim 1, wherein an average value of the recognition indices is calculated as one of the user indices.  前記情報指標計算手段は、どれだけ継続的に閲覧されているかを示す定着指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記定着指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項1乃至4の何れか1項に記載の情報推薦サーバ装置。 The information index calculation means calculates a fixing index indicating how continuously browsed as one of the information indices, and the user index calculation means calculates the information calculated by the user 5. The information recommendation server device according to claim 1, wherein an average value of a fixing index is calculated as one of the user indices.  前記情報指標計算手段は、1回あたりの閲覧時間を示す滞留指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記滞留指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項1乃至4の何れか1項に記載の情報推薦サーバ装置。 The information index calculating means calculates a staying index indicating a browsing time per time as one of the information indices, and the user index calculating means calculates the staying index calculated for the information viewed by the user. The information recommendation server device according to claim 1, wherein an average value is calculated as one of the user indexes.  前記情報指標計算手段は、どれだけ早期に閲覧されているかを示す時差指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記時差指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項1乃至4の何れか1項に記載の情報推薦サーバ装置。 The information index calculation means calculates a time difference index indicating how quickly the information is viewed as one of the information indices, and the user index calculation means calculates the time difference calculated for information viewed by the user. The information recommendation server device according to any one of claims 1 to 4, wherein an average value of an index is calculated as one of the user indices.  請求項1乃至8の何れか1項に記載された情報推薦サーバ装置と、該情報推薦サーバ装置に対して利用者識別子を含む情報推薦要求を送信し、その応答として返される情報識別子を含む情報推薦結果を受信する端末装置と、該端末装置に対して前記情報識別子で特定される情報を提供する情報提供サーバ装置とを含むことを特徴とする情報推薦システム。 The information recommendation server device according to any one of claims 1 to 8, and information including an information identifier returned as a response to an information recommendation request including a user identifier transmitted to the information recommendation server device An information recommendation system comprising: a terminal device that receives a recommendation result; and an information providing server device that provides the terminal device with information specified by the information identifier.  a)情報指標計算手段が、複数の利用者による情報の閲覧履歴から、個々の情報ごとに、その情報の閲覧のされ方である被閲覧傾向に基づく指標である情報指標を計算するステップと、
 b)利用者指標計算手段が、前記利用者ごとに、前記利用者が閲覧した情報について計算された前記情報指標から、前記利用者の情報の閲覧の仕方である閲覧傾向に基づく利用者指標を計算するステップと、
 c)指標マッチング手段が、前記利用者について前記計算された利用者指標に類似する情報指標を持つ情報を推薦対象情報群から抽出するステップとを含むことを特徴とする情報推薦方法。
a) a step of calculating an information index, which is an index based on a viewed tendency, which is how the information is browsed, for each piece of information, from information browsing history of information by a plurality of users;
b) For each user, the user index calculation means calculates a user index based on a browsing tendency, which is a method of browsing the user's information, from the information index calculated for the information browsed by the user. A calculating step;
and c) an index recommendation unit including, from the recommendation target information group, extracting information having an information index similar to the calculated user index for the user.
 前記情報指標計算手段で計算された個々の情報ごとの情報指標および前記利用者指標計算手段で計算された個々の利用者ごとの利用者指標を記憶する指標記憶手段を備えることを特徴とする請求項10に記載の情報推薦方法。 An index storage means for storing an information index for each individual information calculated by the information index calculation means and a user index for each individual user calculated by the user index calculation means. Item 13. The information recommendation method according to Item 10.  d)情報クエリ手段が、ネットワークを介して端末から利用者識別子を含む情報推薦要求を受け付け、前記利用者識別子で特定される利用者について前記利用者指標計算手段で計算された利用者指標に類似する情報指標を持つ情報を前記指標マッチング手段によって前記推薦対象情報群から抽出し、該抽出結果を前記端末へ送信するステップを含むことを特徴とする請求項10または11に記載の情報推薦方法。 d) Information query means accepts an information recommendation request including a user identifier from a terminal via a network, and is similar to the user index calculated by the user index calculation means for the user specified by the user identifier The information recommendation method according to claim 10 or 11, further comprising: extracting information having an information index to be extracted from the recommendation target information group by the index matching unit and transmitting the extraction result to the terminal.  d)情報クエリ手段が、ネットワークを介して端末から利用者識別子およびキーワードを含む情報推薦要求を受け付け、前記推薦対象情報群から前記キーワードを含む情報を抽出し、該抽出した情報から、前記利用者識別子で特定される利用者について前記利用者指標計算手段で計算された利用者指標に類似する情報指標を持つ情報を前記指標マッチング手段によって抽出し、該抽出結果を前記端末へ送信するステップを含むことを特徴とする請求項10または11に記載の情報推薦方法。 d) An information query means receives an information recommendation request including a user identifier and a keyword from a terminal via the network, extracts information including the keyword from the recommendation target information group, and extracts the user from the extracted information. Extracting information having an information index similar to the user index calculated by the user index calculation means for the user specified by the identifier by the index matching means, and transmitting the extraction result to the terminal 12. The information recommendation method according to claim 10 or 11, characterized in that:  前記情報指標計算手段は、どれだけの範囲の利用者によって閲覧されたかを示す認知指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記認知指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項10乃至13の何れか1項に記載の情報推薦方法。 The information index calculation means calculates a recognition index indicating how many users have been viewed as one of the information indexes, and the user index calculation means is calculated for information viewed by the user. The information recommendation method according to claim 10, wherein an average value of the recognition indices is calculated as one of the user indices.  前記情報指標計算手段は、どれだけ継続的に閲覧されているかを示す定着指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記定着指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項10乃至13の何れか1項に記載の情報推薦方法。 The information index calculation means calculates a fixing index indicating how continuously browsed as one of the information indices, and the user index calculation means calculates the information calculated by the user The information recommendation method according to claim 10, wherein an average value of the fixing index is calculated as one of the user indices.  前記情報指標計算手段は、1回あたりの閲覧時間を示す滞留指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記滞留指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項10乃至13の何れか1項に記載の情報推薦方法。 The information index calculating means calculates a staying index indicating a browsing time per time as one of the information indices, and the user index calculating means calculates the staying index calculated for the information viewed by the user. 14. The information recommendation method according to claim 10, wherein an average value is calculated as one of the user indexes.  前記情報指標計算手段は、どれだけ早期に閲覧されているかを示す時差指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記時差指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項10乃至13の何れか1項に記載の情報推薦方法。 The information index calculation means calculates a time difference index indicating how quickly the information is viewed as one of the information indices, and the user index calculation means calculates the time difference calculated for information viewed by the user. The information recommendation method according to claim 10, wherein an average value of an index is calculated as one of the user indices.  コンピュータを、
 複数の利用者による情報の閲覧履歴から、個々の情報ごとに、その情報の閲覧のされ方である被閲覧傾向に基づく指標である情報指標を計算する情報指標計算手段と、
 前記利用者ごとに、前記利用者が閲覧した情報について計算された前記情報指標から、前記利用者の情報の閲覧の仕方である閲覧傾向に基づく利用者指標を計算する利用者指標計算手段と、
 前記利用者について前記計算された利用者指標に類似する情報指標を持つ情報を推薦対象情報群から抽出する指標マッチング手段として機能させるためのプログラム。
Computer
Information index calculation means for calculating an information index that is an index based on a browsing tendency, which is how the information is browsed, for each individual information from the browsing history of information by a plurality of users;
For each user, from the information index calculated for the information browsed by the user, user index calculation means for calculating a user index based on a browsing tendency that is a way of browsing the information of the user;
A program for causing the user to function as an index matching unit that extracts information having an information index similar to the calculated user index from a recommendation target information group.
 前記コンピュータは、前記情報指標計算手段で計算された個々の情報ごとの情報指標および前記利用者指標計算手段で計算された個々の利用者ごとの利用者指標を記憶する指標記憶手段を備えることを特徴とする請求項18に記載のプログラム。 The computer comprises index storage means for storing an information index for each individual information calculated by the information index calculation means and a user index for each individual user calculated by the user index calculation means. The program according to claim 18, wherein  前記コンピュータをさらに、
 ネットワークを介して端末から利用者識別子を含む情報推薦要求を受け付け、前記利用者識別子で特定される利用者について前記利用者指標計算手段で計算された利用者指標に類似する情報指標を持つ情報を前記指標マッチング手段によって前記推薦対象情報群から抽出し、該抽出結果を前記端末へ送信する情報クエリ手段として機能させるための請求項18または19に記載のプログラム。
The computer further
An information recommendation request including a user identifier is received from a terminal via a network, and information having an information index similar to the user index calculated by the user index calculation means for the user specified by the user identifier 20. The program according to claim 18 or 19, wherein the program is made to function as an information query unit that extracts from the recommendation target information group by the index matching unit and transmits the extraction result to the terminal.
 前記コンピュータをさらに、
 前記推薦対象情報群に含まれるキーワードを記録したインデックス記憶手段と、
 ネットワークを介して端末から利用者識別子およびキーワードを含む情報推薦要求を受け付け、前記インデックス記憶手段を参照して前記推薦対象情報群から前記キーワードを含む情報を抽出し、該抽出した情報から、前記利用者識別子で特定される利用者について前記利用者指標計算手段で計算された利用者指標に類似する情報指標を持つ情報を前記指標マッチング手段によって抽出し、該抽出結果を前記端末へ送信する情報クエリ手段として機能させるための請求項18または19に記載のプログラム。
The computer further
Index storage means for recording keywords included in the recommendation target information group;
An information recommendation request including a user identifier and a keyword is received from a terminal via a network, information including the keyword is extracted from the recommendation target information group with reference to the index storage unit, and the use is extracted from the extracted information. An information query for extracting information having an information index similar to the user index calculated by the user index calculating means for the user specified by the user identifier by the index matching means and transmitting the extraction result to the terminal 20. The program according to claim 18 or 19 for functioning as a means.
 前記情報指標計算手段は、どれだけの範囲の利用者によって閲覧されたかを示す認知指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記認知指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項18乃至21の何れか1項に記載のプログラム。 The information index calculation means calculates a recognition index indicating how many users have been viewed as one of the information indices, and the user index calculation means is calculated for information viewed by the user. The program according to any one of claims 18 to 21, wherein an average value of the recognition indices is calculated as one of the user indices.  前記情報指標計算手段は、どれだけ継続的に閲覧されているかを示す定着指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記定着指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項18乃至21の何れか1項に記載のプログラム。 The information index calculation means calculates a fixing index indicating how continuously browsed as one of the information indices, and the user index calculation means calculates the information calculated by the user The program according to any one of claims 18 to 21, wherein an average value of a fixing index is calculated as one of the user indices.  前記情報指標計算手段は、1回あたりの閲覧時間を示す滞留指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記滞留指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項18乃至21の何れか1項に記載のプログラム。 The information index calculation means calculates a staying index indicating a browsing time per time as one of the information indices, and the user index calculation means calculates the staying index calculated for the information viewed by the user. The program according to any one of claims 18 to 21, wherein an average value is calculated as one of the user indexes.  前記情報指標計算手段は、どれだけ早期に閲覧されているかを示す時差指標を前記情報指標の一つとして計算し、前記利用者指標計算手段は、利用者が閲覧した情報について計算された前記時差指標の平均値を前記利用者指標の一つとして計算することを特徴とする請求項18乃至21の何れか1項に記載のプログラム。 The information index calculation means calculates a time difference index indicating how quickly the information is viewed as one of the information indices, and the user index calculation means calculates the time difference calculated for information viewed by the user. The program according to any one of claims 18 to 21, wherein an average value of an index is calculated as one of the user indices.
PCT/JP2009/050836 2008-03-06 2009-01-21 Information recommendation system, information recommendation server device, and information recommendation method Ceased WO2009110253A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010501814A JPWO2009110253A1 (en) 2008-03-06 2009-01-21 Information recommendation system, information recommendation server device, and information recommendation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008055752 2008-03-06
JP2008-055752 2008-03-06

Publications (1)

Publication Number Publication Date
WO2009110253A1 true WO2009110253A1 (en) 2009-09-11

Family

ID=41055817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050836 Ceased WO2009110253A1 (en) 2008-03-06 2009-01-21 Information recommendation system, information recommendation server device, and information recommendation method

Country Status (2)

Country Link
JP (1) JPWO2009110253A1 (en)
WO (1) WO2009110253A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102999497A (en) * 2011-09-09 2013-03-27 腾讯科技(北京)有限公司 Method and system for recommending medium information bits

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000132568A (en) * 1998-10-28 2000-05-12 Nippon Telegr & Teleph Corp <Ntt> Network equipment
JP2001282838A (en) * 2000-03-31 2001-10-12 Kyocera Communication Systems Co Ltd Contents recommendation system
JP2002342366A (en) * 2001-05-17 2002-11-29 Matsushita Electric Ind Co Ltd Information recommendation system and method, information recommendation program and recording medium recording the same
JP2002351916A (en) * 2001-05-30 2002-12-06 Bevoid Corporation Ltd WEB information search device, WEB information search method, and program for causing computer to execute the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000132568A (en) * 1998-10-28 2000-05-12 Nippon Telegr & Teleph Corp <Ntt> Network equipment
JP2001282838A (en) * 2000-03-31 2001-10-12 Kyocera Communication Systems Co Ltd Contents recommendation system
JP2002342366A (en) * 2001-05-17 2002-11-29 Matsushita Electric Ind Co Ltd Information recommendation system and method, information recommendation program and recording medium recording the same
JP2002351916A (en) * 2001-05-30 2002-12-06 Bevoid Corporation Ltd WEB information search device, WEB information search method, and program for causing computer to execute the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MANABU NAGAI: "Konomi no Shohin o Jidoteki ni Suisen suru Recommendation", NIKKEI MULTIMEDIA FOR BUSINESS, vol. 43, 15 January 1999 (1999-01-15), pages 144 - 145 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102999497A (en) * 2011-09-09 2013-03-27 腾讯科技(北京)有限公司 Method and system for recommending medium information bits

Also Published As

Publication number Publication date
JPWO2009110253A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
US8352396B2 (en) Systems and methods for improving web site user experience
AU2010226779C1 (en) Online ad placement based on user metrics for hosted media
JP6511455B2 (en) Method and system for extracting features of user behavior and personalizing recommendations
US9953063B2 (en) System and method of providing a content discovery platform for optimizing social network engagements
US9519716B2 (en) System and method for conducting a profile based search
US9569499B2 (en) Method and apparatus for recommending content on the internet by evaluating users having similar preference tendencies
US8393002B1 (en) Method and system for testing an entity
US9727880B2 (en) Predicting user responses
WO2009021198A9 (en) Method and apparatus for context-based content recommendation
KR20090100430A (en) Get answers to your questions
KR20160020429A (en) Contextual mobile application advertisements
TW200925909A (en) Traffic predictor for network-accessible informaton modules
JP2008251008A (en) Method of providing advertisement information for exposure, and system therefor
JP2011248831A (en) Information processor and information processing method, and program
JP2011165059A (en) Usability evaluation method of web application, analysis server, and program therefor
KR20130033693A (en) Method, apparatus and computer readable recording medium for search with exetension data-set of concept keywords
Menczer et al. Adaptive assistants for customized e-shopping
KR100856916B1 (en) Method and system for providing information extracted by reflecting interests
JP2006099341A (en) Update history generation device and program
JP2020057221A (en) Information processing method, information processing device, and program
JP2010140433A (en) Content recommendation system, content recommendation method and content recommendation program
JP5290041B2 (en) Information search apparatus and information search method
US20100198604A1 (en) Generation of concept relations
WO2009110253A1 (en) Information recommendation system, information recommendation server device, and information recommendation method
US8510289B1 (en) Systems and methods for detecting commercial queries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501814

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09717196

Country of ref document: EP

Kind code of ref document: A1