WO2009152418A1 - Évaluation par micro-onde passive des gradients de température du corps humain du centre jusqu’à la surface et du taux métabolique basal - Google Patents
Évaluation par micro-onde passive des gradients de température du corps humain du centre jusqu’à la surface et du taux métabolique basal Download PDFInfo
- Publication number
- WO2009152418A1 WO2009152418A1 PCT/US2009/047187 US2009047187W WO2009152418A1 WO 2009152418 A1 WO2009152418 A1 WO 2009152418A1 US 2009047187 W US2009047187 W US 2009047187W WO 2009152418 A1 WO2009152418 A1 WO 2009152418A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microwave
- temperature
- recited
- noise
- frequency range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/0507—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves using microwaves or terahertz waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/41—Detecting, measuring or recording for evaluating the immune or lymphatic systems
- A61B5/411—Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/006—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of the effect of a material on microwaves or longer electromagnetic waves, e.g. measuring temperature via microwaves emitted by the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/20—Clinical contact thermometers for use with humans or animals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K3/00—Thermometers giving results other than momentary value of temperature
- G01K3/08—Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
- G01K3/14—Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space
Definitions
- BMI body mass index
- Body mass index is given by a person's weight in kilograms divided by the square of that person ' s height in meters.
- a typical body mass index for a middle aged person is between 19 and 27.
- a value over 25 is generally recognized as an indicator of overweight and a value over 30 is recognized as an indicator of obesity.
- Obesity can typically be corrected by diet and exercise, but in extreme situations, surgery to restrict stomach volume and/or bypass a portion of the small intestine have been used to advantageously cause and sustain weight loss.
- Basal metabolic rate is an indicator or potential causal factor of obesity.
- Basal metabolic rate may be measured in terms of respiratory quotient (RQ) which is a ratio of volume of carbon dioxide produced to oxygen consumed per unit of time.
- Basal metabolic rate has been recognized as important to the study of medicine since at least the beginning of the twentieth century.
- US 4,386,604 to Hershey describes the history of the dete ⁇ nination of basal metabolic rate by various apparatus.
- One apparatus known in the art determines the quantity of oxygen consumed within the body to energy via an oxygen filled spirometer and a carbon dioxide absorbing system.
- Hershey describes a whole-body calorimeter for measuring basal metabolism rate including a chamber 4 into which air may be provided through an inlet port 7 and the air collected at an outlet port 8 analyzed via, for example, relative enthalpy of an inlet airstrcam and corresponding outlet airstream along with heat generation and heat loss from the whole body.
- Passive infrared and microwave thermography or radiography is a known medical diagnostic process which primarily relics on the infrared but may be known to utlize emission across the microwave or other energy across the acoustic through the radio frequency spectrum naturally emitted by the human body, for example, to record hot and cold areas of the human body, for example, via increases and decreases in blood flow.
- a passive microwave thermographic receiver utilizes no microwave energy emission from the receiver, only from the human body, and is therefore completely safe in that it results in no damage to living organisms.
- the infrared band of frequencies is immediately proximate to the microwave band. Infrared scanning thermography has been utilized for the purposes of determining skin surface temperature.
- infrared thermography for example, as described in US Patent No. 3,862.423 to Kutas et al., has been utilized to demonstrate and quantify the differentiation in body temperature found at the skin surface.
- Humans are able to control their heat production rate and heat loss rate to maintain a nearly constant core temperature of 37° C or 310 K.
- a typical skin/fat layer of a human may have a thickness of 3 mm and conductivity k of .3 VvVm K and their surface area may be 1 .8 m 2 . If it is 297 K in air, convection heat transfer to the air for this person is characterized by a coefficient h of 2 WVm 2 K. While if immersed in the same temperature of water, the same individual will exhibit a high convection heat transfer rate to the water of 200 WVm 2 K. Heat losses due to convection and radiation arc calculable to 37 W and 109 W respectively.
- ⁇ typical rate of metabolic heat generation is on the order of 100 W. 109 W exceeds 100 W; so if the person stays in the water too long, the core body temperature will begin to fall.
- the person may develop hypothermia.
- the skin temperature in air may be 34° C while the skin temperature in water may be 28° C or uncomfortably cold (depending on the individual and how long the person stays in the water).
- a tumor may be located by its radiating temperature as differentiated from surrounding tissue.
- the temperature increase may be reflected back at the interface with the non-cancerous surrounding tissue or be refracted at the interface.
- passive microwave thermography is in cancer detection.
- Other applications than cancer diagnosis include diagnosis of hypothermia, first degree burns (while third degree burns are cold), infected organs, phlebitis, trauma, cysts and the like where a temperature differential from a normal may be detected.
- Another application suggested for thermograms is the detection of pregnancy. For example, temperatures of the breasts of a female are known to elevate during early stages of pregnancy.
- the systems described above have been applied to the human hand, the human leg, the head, and it has been suggested to utilize the human car.
- the walls of the car canal present an extreme case of achieving a high or low equilibrium temperature while the ear canal closely approximates a core temperature of 98.6° F (37° C).
- the tympanic membrane has been utilized and relied upon by researchers as an important location for the measurement of core body temperature.
- a thermocouple thermometer is inserted into the ear canal so as to touch the tympanic membrane and measure a core body temperature. Core body temperature is especially accurate at its source, the hypothalamus.
- insertion of a temperature probe into via brain tissue to reach the hypothalamus is invasive and not practical.
- Minimally invasive monitoring of core temperature is practiced under the tongue, insertion into the rectum, under the arm, in the esophagus at or near the level of the heart and in the nasopharyngeal cavity.
- the ear has a large capillary system, and its surface, for example, the top of the ear can quickly be called upon to collect or radiate heat depending on low or high environmental temperature.
- Capillary blood vessels under control of the sympathetic nervous system, are capable of opening or closing completely and of changing their caliber within wide ranges such that the skin performs remarkably well as a heat exchanger and as a regulator of body temperature.
- Radio astronomy is internationally allocated certain bands of frequencies for research purposes according to the 1979 International Telecommunication Union's World Administrative Radio Conference, also known as "WARC-79,” (J. Cohen, et al., CRAF Handbook for Astronomy, Committee on Radio Astronomy Frequencies, European Science Foundation, 3d Ed. (2005)). These bands are free of microwave active transmission and so are relatively free of noise when used for passive detection, for example, from the stars or planets. Use of passive microwave frequencies at these internationally protected frequencies within the microwave radiation spectra may guarantee that reception is free of interference from active microwave radiation.
- Microwave radiation from human subjects is in the form of white noise and at very low amplitude. While passive microwave detection of microwave radiation is known and has been explored, for example, for purposes of tumor diagnosis, improvements in antenna design, electronic circuitry, image analysis and the like remain to be made. [0023] The study of temperature variation in the human body was documented by Pennes, ''Analy sis of Tissue and Arterial Blood Temperature in the Resting Human Forearm," Journal of Applied Physiology. V. 1, August, 1948, No. 2, pp. 93-121.
- This invention uses microwave radiation emanating from various appendages of a human body to measure precise short-term changes in temperature that correlate with changes in metabolism.
- a plurality of relatively noise-free voltage readings corresponding to different radial depths in human tissue as given by microwave center frequency can be obtained and compared with the Pennes model.
- the result of a short, one or two minute (or less) assessment can be a radial temperature gradient for a given individual (at different depths of human tissue) for comparison with a norm.
- An assessment method also comprises the measurement of metabolic response changes at a given depth or at skin surface in response to stimulus by cither externally applied temperatures or the controlled use of thermogenic response-inducing liquids, foods or drugs, via exercise as in a known stress test or via other known stress inducing scenarios such as the intentional loud play of disturbing music.
- ⁇ specific dietary plan may be suggested for treatment after assessing the response to such stimuli.
- the measurement or detection of human body temperature may generally provide an overall mass screening of individuals in the event of an epidemic of, for example, the bird flu at border crossings and the like at a gateway such as a border checkpoint, an airport or seaport.
- Another application may be the remote monitoring of a new-born baby care unit or an intensive care unit for abnormal human body temperature changes.
- one embodiment differs greatly from normal microwave thermography applications in that it measures dynamic responses to various stimuli either externally applied temperatures or the oral ingestion of measured amounts of thermogenic liquids, foods or drugs.
- This enables assessment of thermogenic responses to, for example, foods and to pharmacological stimuli, thereby providing an assessment of energy metabolism. Since these thermal responses are an indication of an individual's rate of metabolism, an assessment can be used for differential medical diagnoses of energy metabolism, obesity, and metabolic disease.
- the application of this embodiment enhances the ability to quantify and map small changes in radiant heat resulting from metabolism.
- Several applications include the diagnostic assessment of defects in thermogenesis that result in promotion of weight gain and resistance to weight loss during standard caloric-deficit programs. Resultant data will be used to target alternative approaches to weight management to individuals demonstrating such deficits.
- Other applications include the assessment of patient responses to thermogenic foods and pharmaceuticals to facilitate individualization of treatment.
- An assessment method for assessing human metabolic rate comprises directing a passive microwave receiver having one or a plurality of noise-measuring channels having a directional antenna along a radial direction toward a given body part or a human under observation.
- a corresponding radial depth of human body is determined from the received frequency of the passive microwave noise- measuring channel from known data for different types of body tissue such as muscle tissue having low water content and fat tissue having high water content.
- the location of measurement and radial depth is compared with stored data for temperature of a normal human body at the location and a temperature gradient for the plurality of noise- measuring channels and corresponding radial depths is determined.
- a dosage of caffeine may demonstrate a vasoconstrictive response in a hypertensive individual followed by a thermogenic response over a time period, for example, of less than 20 minutes.
- a dosage of nicotine may demonstrate a different response in the same individual, for, for example, 40 minutes. These responses may be utilized to assist a nutritionist in the assessment of metabolic response and the prescription of a personalized diet, exercise or other course of treatment if deemed useful.
- the assessment method may be for use at a gateway for detecting a carrier of infectious disease.
- a system for the assessment of human temperature gradients at varying radial depth of a subject comprises a passive microwave receiver for operation, for example, within a selected WARC protected frequency range, each selected frequency range comprising at least one noise measuring channel.
- the passive microwave receiver comprises a directional antenna for radial direction toward the subject in order to receive natural noise emission at the predetermined WARC protected frequency and an associated human tissue depth.
- the system further comprises a computer coupled to the passive microwave receiver and memory for storing three dimensional coordinates of a human body and corresponding expected temperatures for the coordinates of blood vessels for comparison with measurements of the at least one noise measuring channel.
- the frequencies for adjacent noise measuring channels and associated tissue depths may be selected to represent intercellular distances for a given type of tissue.
- other frequencies that are "primary shared with active'" such as the 1.6 to 1 .7GHz band providing I OOMI Iz bandwidth may be used as a single noise measuring channel or wide bandwidth or sub-divided into adjacent noise measurement channels.
- some WARC allocated bands are labeled as "PRIMARY exclusive * ' and may be used in some embodiments but are restricted according to region of the Earth ' s surface.
- Still other microwave frequencies and bandwidths may be utilized which are particularly selected for their being rarely used in a given geographic area.
- a further embodiment comprises a passive microwave received for directional application at low microwave frequency for radial placement proximate the hypothalamus for non-invasive measurement of precise core body temperature.
- the low microwave frequency is chosen to receive radiation from the vicinity of the hypothalamus as a received voltage measurement proportional to temperature.
- a high microwave frequency on the order of greater than 100 GHz may be received via a probe placed proximate the ear canal so as to directional Iy receive radiation from the tympanic membrane for an alternate measurement of core body temperature.
- FIG. 1 is an exemplary plot of wavelength versus frequency for different dielectric substances and air and, in particular, shows exemplary penetrations of microwave radiation into muscle, skin tissue with high water content and into fat, bone tissue with low water content.
- FIG. 2 provides an exemplary plot of increasing depth of microwave wavelength as a function of a skin layer, an underlying fat layer and a further underlying muscle layer, the deeper the penetration, the more likely an accurate reading of body core temperature may be obtained.
- FIG. 4 is a schematic block diagram of a typical superheterodyne microwave receiver with a signal amplifier.
- FIG. 5 is a detailed schematic diagram of a microwave superheterodyne receiver.
- FIG. 6A is a frequency versus amplitude plot of first and second noise measuring channels at center frequencies, for example, of 1 .40675 GHz and 1 .42025 GHz and a third noise measuring channel centered at 2.695 GHz.
- FIG. 6B is a frequency versus amplitude plot of a fourth and fifth noise measuring channel centered at 10.685 and 10.695 GHz respectively.
- FlG. 7 is a plot of voltage versus time steps in seconds showing detection of a human at approximately 25 feet and 50 feet and corresponding temperatures measured in voltage levels by a passive microwave receiver.
- FlG. 8 depicts an exemplary embodiment of a wearable apparatus resembling headphones containing a directional microwave antenna interfaced with a receiver in accordance with one of more aspects described herein.
- FIG. 9 depicts an exemplary embodiment of a handheld apparatus containing a microwave antenna array interfaced with a receiver in accordance with one of more aspects described herein.
- FIG. 10 depicts an exemplary embodiment of a fixed bedside apparatus containing a microwave antenna array in accordance with one of more aspects described herein.
- FIG. 1 1 is the expected evoked temperature response to thermogenic food and pharmacological stimuli.
- FIG. 12 contains graphs showing the time and temperature (voltage) responses of one human hand while the other hand is subjected to thermal stimuli by being immersion into ice water.
- a passive microwave core or skin temperature detection method in accordance with the aspects described herein can rely upon the fact that thermal radiation from persons can generate a detectable signal in the microwave portion of the electromagnetic spectrum. It is one aspect of such apparatus that a number of protected spectra be utilized in microwave receiver apparatus to provide a plurality of depths of penetration toward the core temperature region of a given body part under analysis. Antennae, preferably passive microwave directional antennae providing some signal strength gain, are utilized to receive different protected frequency ranges. Each WARC protected frequency range may be sub-divided into a plurality of human body noise gathering channels for obtaining voltage levels directly corresponding to temperatures at calculable radial depths of human tissue.
- apparatus may resemble headsets worn for listening to music and comprise small radio astronomy directional antennae for receiving protected WARC frequencies.
- Embodiments described herein can use characteristics of microwave radiation at various frequencies in a method and system for thermal measurements of human body temperatures. Because of the high frequency/short wavelength nature of microwaves, microwave radiation can, at lower protected frequencies such as 1.4 GHz (27 MHz band) or 2.69 GHz (10 MHz band) penetrate (that is, a receiver may detect temperatures at radial depths of) several centimeters, sufficient to gather core temperature data at a predetermined depth depending on the composition of the body tissue (and water content) at the location of measurement.
- 1.4 GHz 27 MHz band
- 2.69 GHz (10 MHz band) penetrate (that is, a receiver may detect temperatures at radial depths of) several centimeters, sufficient to gather core temperature data at a predetermined depth depending on the composition of the body tissue (and water content) at the location of measurement.
- any protected bandwidth can be split into many different internationally protected bands of varying bandwidth according to WARC-79 radio astronomy allocations, with each of a plurality of receivers receiving a subset of the emitted microwave radiation.
- bands may be reserved in the future for passive detection, such frequencies and bands may also come within the scope of an embodiment.
- other bands in the microwave regions may be utilized, including bands which overlap internationally protected bands and known microwave radio frequencies in a given area subtracted or filtered from results.
- other frequencies that are '"primary shared with active" such as the 1.6 to 1.7 GH/ band providing 100 MHz bandwidth may be used as a single noise measuring channel of 100 MHz or having wide bandwidth or sub-divided into adjacent noise measurement channels within the 100 MHz of this band.
- a further alternative embodiment regarding the 1.6 to 1.7 GHz band or other frequency range providing as much as 100 or more megahertz of bandwidth is to provide two 10 Mi Iz wide noise measuring channels spread by a guard band, for example, 50 MHz wide band, from one another. Still other microwave frequencies and bandwidths may be utilized which are particularly selected for their being rarely used for active microwave transmission in a given geographic area.
- FIG. 1 is an exemplary plot of wavelength versus frequency for different dielectric substances and air and, in particular, shows exemplary penetrations of microwave radiation into muscle, skin tissue with high water content and into fat, bone tissue with low water content.
- the plot of FlG. 1 provides an example of how core temperature may be detected and measured below skin level easily, for example, via apparatus radially directed at an ear or other appendage or central structure of the human body.
- a microwave signal at 1.4 GHz translates to a radial depth within muscle, skin tissue of high water content on the order of 3 to 4 centimeters or over an inch below skin surface, deep enough to reach human body core temperature.
- This data is analogous to data collected by Pennes, whose measurements stop short of the bones in mapping the temperature distribution in the upper arm, forearm and hand at different ambient environmental temperatures.
- the graph translates this frequency to a depth on the order often or more centimeters or four inches in depth.
- a 1.6 to 1.7 GHz microwave band translates to a radial depth on the Z axis of approximately 2 to 3 centimeters.
- a microwave signal at 2.69 GHz translates to a depth of between one and two centimeters in muscle or skin and a depth of four or five centimeters in fat or bone.
- FIG. 2 provides an exemplary plot of increasing radial depth of microwave wavelength as a function of a skin layer having a radial depth d s , an underlying fat layer having a radial depth d f and a further underlying muscle layer having a radial depth d m .
- representative points P) and P 2 represent first and second temperature points measured within, for example, muscle tissue at a radial depth along the Z axis within a core of a human body. These may be obtained by first and second noise channels of a first WARC protected frequency range reaching different, closely proximate depths in a predetermined body portion such as a hand, forearm, head, ear or other body part center. Referring to Figure 6A, two noise- measuring channels at 1.40675 GHz and 1 .42025 GHz within the 1 .4 to 1 .427 GHz range are shown respectively. The 27 MHz bandwidth may be allocated to provide multiple noise measurement channels, not just the two shown.
- the first and second channels of FIG. 6A may have guard bands allocated three Ml Iz and be approximately twelve MHz wide each.
- the pass band of 27 MHz may be more narrowly divided into three, four or more adjacent noise measurement channels of decreasing bandwidth.
- ⁇ further third channel may obtain a less deep P 3 for example, in fat tissue with a center WARC protected frequency of 2.695 GHz and a pass band of approximately 9 MHz of noise, per Figure 6A.
- Such a channel may likewise be further divided into a plurality of noise measurement channels. In deed, if the number of channels is increased, the difference in depth between noise measurement frequencies may be decreased to an intra-cell level and actually detect the difference in human tissue heat transfer between radially adjacent cells over time in the radial Z direction of passive microwave noise measurement.
- interface 200 represents an interface between skin and fat tissue and interface 210 represents an interface between muscle and fat tissue.
- Interface 230 may represent an interface between muscle tissue and bone tissue.
- Thermal radiation emitted from a point P 2 along a radial Z direction toward a passive microwave antenna receiver is highly attenuated as it reaches point Pi passing through one or more cells, in this case, muscle tissue of high water content.
- point Pi passing through one or more cells, in this case, muscle tissue of high water content.
- a portion of the radiated heat may be reflected back at the interface toward the muscle tissue and at the same time refracted.
- the emitted noise beginning at P 2 reaches interface 200 between fat tissue of low water content and skin tissue of high water content.
- the signal is highly attenuated and is reflected and refracted as at the interface 220.
- the impact of a stimulus originating within the body is radiated as microwave energy from the skin surface. Some microwave energy is reflected back at the skin surface into the body.
- the radial distance along Z between skin surface Si and interface 200 may be known from Pennes/Wissler data, derived from such data or experimentally determined for temperature distribution within a human body part, such as an arm, at a given ambient temperature for a given point of measurement.
- the radial distance along Z between interface 200 and interface 220 comprising the fat tissue layer at a given point of measurement may be similarly determined.
- the radial distance between fat/muscle interface 220 and muscle/bone interface 230 may be determined.
- points P 2 , Pi, ?3 . and S 2 may be calculated as per Figure 1 and Pennes/Wissler data for a given noise measurement channel of a passive microwave receiver receiving at a selected passive microwave frequency range.
- the temperature of blood flowing in the artery or vein may be measured over time and in response to stimuli.
- the temperature of blood flow in a given artery, vein or capillary may thus be detected by passive microwave reception according to one embodiment appropriately directed by directional antennae and choice of microwave transmission frequency/wavelength and determined by body part and point of measurement on that body part.
- ⁇ n occlusion may be intentionally introduced and antennae focused at a blood flow temperature, a core temperature radial depth and a skin temperature and simultaneous readings over time at different radial depths (different frequencies) obtained non-invasively.
- points S i and S 2 represent points at and just below the skin surface and temperatures can be obtained by a superheterodyne receiver having at least, first and second center frequencies at 10.685 and 10.695 GI Iz for human noise measuring channels, each reaching different radial depths as shown of skin where microwave noise amplitude may be detected as with deeper tissue as a voltage signal and a temperature gradient determined.
- the ten MI Iz bandwidth available at 10.68 GHz may be divided into a greater number of noise measuring channels of decreasing bandwidth. All such temperature gradients between/among noise measuring channels may represent a body temperature convection process of heat transfer from a body core outward to the skin or inward toward the core depending on the environment.
- ambient temperature of the environment requires a greater than 100 W metabolic rate then heat conveys outward as explained above with respect to air and water. If the ambient temperature of the environment requires less than a 100 W metabolic rate, then temperature at the skin will be higher than temperature in the core.
- known temperature measurement methods such as via passive infrared measurement or thermocouple or other known means may be employed.
- FIG. 3 is block diagram of an integrated passive microwave system for the passive medical assessment method for thermogenesis, obesity risk, unobtrusive non-contact monitoring of patients, intrusion detection and other detection of thermal events.
- ⁇ reference array is also provided that may be used, for example, for detecting a body temperature of a right hand maintained in a comfortable or reference mode while the left hand may be stressed by application of cold or is exercised to originate heat/energy change.
- any antenna array or antenna configuration it can be desirable to calibrate an antenna using a reference target having a known temperature to provide a baseline reference temperature and a reference received energy level.
- One such method for calibration can involve using a Dicke switch method to compare the detected radiation with a known temperature source. Typical frequencies of operating a Dicke switch may be from 1 Hz to 10 KH/, with a conventional range being from 100 Hz to 1 KHz.
- the purpose of the Dicke switch is to correct for gain changes due to temperature drift in the electronics. With two sets of electronics (one looking at a stable reference and the other an unknown), both will drift equally with a common change in temperature.
- a reference temperature can be provided by using a "'hot load.” for example, an object having a temperature of 100 0 C, and the microwave radiation emanating from that object can be measured to use as a baseline reference.
- a baseline temperature that may be used is a floor temperature or other predeterminable reference temperature.
- Other reference temperatures can be used depending on the configuration and application of the antennae.
- the core human body for antennae that are worn or hand-held, the core human body (skull or chest cavity) or a rectal thermometer as suggested by Pennes may provide an appropriate reference temperature for measurement of other body parts such as skin.
- the wall or floor may be used as a suitable reference source.
- the ground can be used as a source of baseline reference energy because of its predictable temperature variance in view of time of day and weather conditions.
- a signal processor 305 may process the electrical signals received and quantify the signals as temperature levels and store them with a .1 ° C accuracy in memory 313.
- the signal processor 305 shown in FIG. 3 at a central site may comprise elements 407 to 413 shown in FlG. 4.
- Memory 313 may also contain corresponding expected normal temperatures as demonstrated by the Pennes/Wissler model or other human temperature versus three dimensional location data or data collected for arterial, venous or capillary blood flow at given ambient temperature.
- the received IF signal may be detected as a voltage at detector 407, provided to a video amplifier 409 and integrator 41 1 for integrating the baseband signal across a human noise band of interest, and displayed at display 413.
- An exemplary medical assessment method apparatus for thermogenesis and obesity risk using passive microwave radio reception may comprise various antenna detector arrays worn by the patient or located external but directed toward the patient, for example, scanning a plurality of patients in a medical care unit, to detect radiation in one or more of the WARC protected frequency bands in the microwave range resulting in a unique temperature reading depending on the body part under analysis.
- Signal processing can be in the same or different location as the antenna arrays, and signals can be transmitted by wire or wireless means. If by wireless transmission, for example, within a wireless local area network according to IEEE 802.1 1 , each such wirelessly transmitted signal can include a data signal uniquely indicative of the location of the array, antenna identification, antenna direction, frequency band and bandwidth detected so the signal can be appropriately identified.
- the received microwave radiation can be converted into a signal wherein a voltage can be determined as result of the difference in radiation detected.
- the radiation detected is compared to baseline ratio from, for example, a floor of a room, the ground, or other stable references.
- a directional passive microwave antenna is preferred to avoid interference from natural sources of radiation such as the sun or a fire or other objects that may emit microwave radiation such as a vehicle or other combustion or chemical process, for example, for use in a medical device.
- FIG. 4 is a schematic block diagram of a typical superheterodyne microwave receiver with a signal amplifier and FIG. 5 is a detailed schematic diagram of a microwave superheterodyne receiver.
- a superheterodyne receiver with a signal amplifier can comprise an amplifier 401, for example, a conventional low noise block amplifier or low noise amplifier possibly requiring a bandpass filter having superior noise performance, a mixer 403, and a local oscillator 415 for demodulating the received signal to an intermediate frequency (IF) signal, for example, in the 100 MHz to 1.5 GHz range.
- IF intermediate frequency
- the IF signal may then be amplified at amplifier 405 and transmitted by wired or wireless means to a signal processor 305 at a central site as shown in FIG. 1 for further processing.
- an intermediate frequency (IF) amplifier 501 may be tuned for the receive frequencies of one antenna array and may match impedances for optimum transmission of data regarding passively detected temperatures (voltages). 1 he output of such an IF amplifier 501 can be fed via a transformer (which can perform impedance matching, isolation and other functions) to a detector 503 such as a 50 Hz to 2.7 GHz analog detector circuit such as Analog Device AD 8362 circuit 330, which may be likewise tuned to a specific frequency or frequency range; (see Figures 6A and 6B for typical frequency bands).
- circuitry 505 which includes a reference source voltage, for example, an LTl 461 -5 circuit 340 for providing a reference voltage of five volts for use at a LTC 2400 analog to digital converter 507.
- the digital output of A/D converter 507 can be provided to a CPU 509 for conversion into, for example, ASCII for data entry into a signal processing unit computer 305 and memory 3 13 shown in FIG. 3.
- the depicted CPU is one manufactured and known as a PIC 16F628 microcontroller but any suitable CPU can be used.
- the output of CPU 509 can be provided to a conventional serial driver 51 1 (for example, a 232 IC) for serial input to a signal processor/memory 305/313.
- the output may be temperature compensated (via the Dicke switch) for a reference input and then fed to a central processing unit for analysis and, for example, display.
- a central processing unit for analysis and, for example, display.
- Such a circuit may provide one input of many to signal processor 305 shown in FIG. 3.
- the design of such devices should be made to comply with the collection of a plurality of noise channels at varying depths of a human body toward a core using WARC protected frequencies as exemplified by the plots of Figures 6A and 6B.
- a known self-balancing radiometer may be used in place of the well known Dicke radiometer which may require recalibration for each radial location collection of temperature data.
- input power is compared with power from an internal noise source.
- voltage at the output of a low-pass filter goes to zero and the result of measurement is independent of the gain of the radiometer.
- noise additive receiver temperature drift is compensated for by injecting a known amount of signal on top of the received signal and the difference is gain drift.
- FIG. 6A is a frequency versus amplitude plot of first and second noise measuring channels at center frequencies, for example, of 1.40675 GHz and 1.42025 GHz and a third noise measuring channel centered at 2.695 GHz.
- FIG. 6A is only one example of dividing the 1.400 to 1.427 GHz spectrum into a plurality of channels. As has been described above, the 2.69 GHz frequency band may be divided into a plurality of noise channels as well.
- FIG. 6B is a frequency versus amplitude plot of a fourth and fifth noise measuring channel centered at 10.685 and 10.695 GHz respectively. The 10.68 GHz frequency range may be divided further into more noise measuring channels. Referring again to FIG.
- these noise measuring channels may be used to determine temperature gradients at predetermined radial depths, depending on the body part under analysis and direction of body measurement from a body core toward skin surface, typically a radial direction, under varying or constant environmental conditions over time.
- FIG. 7 is a plot of voltage versus time steps in seconds showing detection of a human at approximately 25 feet and 50 feet and corresponding temperatures measured in voltage levels by a passive microwave receiver.
- a human subject was asked to stand at 25 feet and 50 feet away from a passive microwave receiver. Not only was the person detectable at such a distance, but their body temperature was given as a voltage signal readout.
- the measured individual may be evaluated for carrying an infectious disease.
- FlG. 8 depicts an exemplary embodiment of a wearable apparatus resembling headphones containing a microwave antenna array interfaced with a receiver in accordance with one of more aspects described herein. It is suggested that the ear is an excellent region of the human body for study due to its high concentration of capillaries. ⁇ n exemplary embodiment of a wearable apparatus may resemble headphones containing a microwave antenna array interfaced with a receiver. In this embodiment, the patient's ears are the targeted source of radiation for which their temperature is measured. The headphones can be sanitized after each use. The signal from the headphones can be interfaced by wire or wireless means to a receiver, a signal processor and/or associated equipment, for example, using wireless LAN frequencies per IEEE 802.1 1 and the depicted antenna.
- shielding may be provided around any internally directed antennae of a passive microwave receiver of each ear compartment and connected to ground, for example, a wire net radio frequency shield (not shown).
- a small parabolic microwave radio astronomy antenna is known that is approximately 4 inches in diameter and may comprise a portion of a passive microwave receiver directed inwards toward an associated ear that is operable to provide a plurality of ear noise measuring channels between 1.400 and 1.427 GHz.
- An exemplary antenna array may be similar to that depicted in FIGS. 6 and 7 of U.S. Patent No. 5,563,610 to Reudink. Such an array or directional antenna may receive microwave frequencies via a first element provided with a low noise amplifier circuit such as.
- an assessment method for metabolic activity may include the steps of ingestion of an activity inducer such as caffeine and measurement over time of the voltage/temperature proportional response to the stimulus.
- FIG. 9 depicts an exemplary embodiment of a handheld apparatus containing a microwave antenna array interfaced with a receiver in accordance with one of more aspects described herein.
- gradient body temperatures of a person exercising or standing still can be measured. Due to the directionality of the handheld apparatus, various portions of the body may be individually targeted and assessed based on choice of passive microwave receive frequency.
- the signal from the handheld apparatus can be interfaced by wire or wireless means to a receiver, signal processor and associated equipment via an antenna, not shown.
- FIG. 10 depicts an exemplary embodiment of a fixed bedside apparatus containing a microwave antenna array in accordance with one of more aspects interfaced with a receiver, signal processor and associated instrumentation.
- this bedside apparatus can be affixed to the headboards of the bed.
- ⁇ known dual energy X- ray absorptiometry (DEX ⁇ ) device is typically placed about thirty inches above the patient body and sweeps. DEX ⁇ devices are utilized for determination of bone density and the like.
- a passive microwave receiver may provide measurements similar to those obtainable by a DEXA device without active radiation.
- a microwave antenna array may ⁇ be associated with such DEXA apparatus or be utilized alone in a similar configuration.
- the antenna array can be affixed to the sides of the bed's carrier.
- the signal from the bedside apparatus can be interfaced by wire or wireless to the receiver, signal processor and associated equipment. This embodiment would allow for remote temperature monitoring and data collection of patients without periodically disturbing them.
- FlG. 1 1 is the expected evoked temperature response to thermogenic food and pharmacological stimuli (Fig. 1 IA) versus the theoretically expected evoked temperature response to thermogenic food and pharmacological stimuli (Fig. 1 I B).
- the stimulus is represented as a step function, while the evoked response predictably increases and then decreases over time as measured for a given body part.
- the response will vary depending on tissue content at the point at which the passive microwave receiver is directed, the frequency, depth of penetration, ambient temperature, any preexisting medical conditions such as a cancerous tumor, hypertension or other heat producing infection and other factors including possible allergic reaction.
- FIG. 12 contains graphs showing the time and temperature (voltage) responses of one human hand while the other hand is subjected to thermal stimuli by being immersion into ice water. These tests were conducted utilizing a thermocouple for skin temperature rather than utilizing a microwave receiver. While infrared sensing could have been used. a suitable inexpensive temperature sensor or thermocouple is available from www.pasco.com/cngineering known as a PASPORT Temperature Sensor and associated skin/surface temperature flat sensor for skin surfaces. While the temperature of one hand of a test subject is being measured by the thermocouple, the other hand is immersed into a beaker of ice water. As the temperature of the free hand increases and then decreases, this temperature change demonstrates the evoked response.
- thermocouple readings are shown as Series 1 for an individual who, for example, may demonstrate a higher metabolic response.
- Series 2 represents an individual with a lower metabolic response.
- a given body part is subjected to passive microwave readings at a plurality of noise measuring channels representing a plurality of radial depths at the given body part.
- These data including ambient temperature of the environment, may be compared with Pennes/Wissler data to determine normal/abnormal conditions.
- the radial composition of human tissue typically varies from skin to fat to muscle to bone. However, for example, the relative depths of different types of tissue will vary depending on the location on the human body under passive microwave receiver thermographic study.
- the differential microwave emission properties of bone, adipose tissue such as fat, muscle and skin may be determined and quantified as measurements of bone mineral content and density, measures of body fat and the like when compared to a norm.
- Visceral adipose tissue may be localized utilizing a passive microwave receiver without having to use active C 1 or MRI scanning.
- [0075J Pennes/Wissler and related data for temperature distribution within the human body is three dimensional location dependent, (for example, where the needle thermocouple was specifically placed within the subject's arm) and ambient environmental temperature dependent. Consequently, the type and depth of human tissue at the location under study is plotted for comparison to determine a depth of microwave penetration at a given channel frequency for comparison with the Pennes/Wissler and related data.
- the resultant temperature data from Pennes/Wissler can then be compared with radial Z axis location and direction of passive microwave thermography to determine the expected temperature for a given frequency of noise-measuring microwave channel which in turn corresponds to a given point within a three dimensional human body per Figure 2, such as P
- the stimulation of a core temperature change may be induced, for example, by controlled exercise or. for example, the ingestion of nicotine, capsaicin (a food seasoning), caffeine or beta-adrenogic agent or agonist.
- Other possible ingestible substances that may cause a predictable core temperature change are theophylline or other methylxanthines.
- a nicotine gum for example, provides rapid absorption via the oral mucosa and so a high degree of speed in the stimulus compared with caffeine, which may require a longer time for absorption.
- An alternative stimulus is stress caused by exercise or an extra-body event such as being required to listen to a loud, stressful noise.
- the given stimulus may be compared with a predicted response and, from the temperature gradients measured at different radial depths and/or reflected in increased blood flow temperature at a given depth or at the surface provide an indicator from which a basal metabolic response may be calculated and compared with a predicted response.
- a course of treatment may be determined for a given condition such as obesity, diabetes or metabolic disease.
- a goal, for example, for obesity is to translate excess body fat into as much carbon dioxide as possible, for example, by provoking comfortable yet constantly higher metabolic rates than their basal metabolic rate by suitable diet or exercise.
- a passive microwave receiver for outpulting an indication of basal metabolic rate could be utilized in the home by a patient to monitor their progress and storing historically calculated metabolic responses in memory for a given individual.
- passive microwave apparatus comprises a directional antenna 1301.
- Directional antenna 1301 ma> comprise a standard microwave receiver for receiving a selected microwave frequency for a desired depth of penetration related to a target location on or in a subject at which the directional antenna is radially pointed.
- Directional antenna 1301 may comprise a substantially cylindrical microwave catcher open at its distal (subject) end.
- the apparatus further comprises a passive microwave receiver at 1 1 .7 to 12.2 GH/ where the receiving waveguide is surrounded by the microwave-catching cylinder 1301 so as to comprise a directional passive microwave antenna.
- Circuitry 1303 is provided for down-converting the received microwave radiation from the vicinity of the human's ear.
- the directional antenna 1301 is pointed radially at the ear of the subject 1300.
- antenna and waveguide 1301 represents a standard Ku band frontcnd from a satellite receiver which covers a microwave frequency range 1 1.7 to 12.2 Ghz.
- the passive microwave receiver circuitry within housing 1303 converts this 1 1.7 to 12.2 GHz frequency range down to an intermediate frequency (IF) of 950 to 1450 MHz.
- IF intermediate frequency
- the receiver takes this IF and first filters it to remove all signals below 1000 MHz (low pass filter). Then the output of the low pass filter is mixed with a 1000 MHz local oscillator (low side injection or subtraction) to convert the IF range of 1000 to 1450 MHz to a baseband 0 to 450 MHz signal. The baseband signal is then passed thru another low pass filter with a cutoff of 400 Mhz resulting in a 400 MHz wide noise-measuring channel. Since 1 1.7 to 12.2 GHz is normally used for audio and television reception, a television receiver antenna is typically pointed in the direction of a geostationary satellite. By pointing the antenna 1301 radially at the human ear of the subject, noise from satellite signal reception is minimized.
- the resulting 0 to 400 MHz noise measuring channel range is then amplified and passed to a power detector that provides 100 Mv output per Db of signal input.
- This dc signal output is then passed via cable connector 1305 (cable not shown) to a known usb analog to digital converter for subsequent graphing per the depicted results of FlG. 's 14- 16.
- the analog to digital converter recorded samples at one second intervals during the periods of the tests. ⁇ higher sampling rate than once per second may be useful for measuring other parameters or events that occur over a shorter period of time than a transient response to. for example, an ingested stimulus as per Figures 14-16.
- the embodiment of Figure 4 basically conforms to the embodiment of circuitry 1303 but lacks the depiction of the above-mentioned low-pass filters.
- FIG. 14 clearly shows a drop in voltage signal (temperature) over the twenty minutes of Test 01 from the time of ingestion of caffeine.
- a 12 degree Kelvin change at the input there was exhibited approximately a 320 Mv dc output. Consequently, there was approximately a 10 Mv change (or 1/32 of 12 degrees K) or a .375 degree Kelvin change drop in skin temperature in the three tests of FlG.'s 14-16.
- the .375 degree temperature change is believed to be within 50% of actual temperature change or the temperature change may be as high as .57 degree.
- the selected passive microwave frequency corresponds to a surface temperature reading of the ear skin surface, rather than at any depth within the car.
- the subject 1300 is reclining in a comfortable chair as shown, at rest. The room environment in which the tests were conducted was maintained at constant temperature and humidity. The subject is asked to move as little as possible during the duration of each test.
- Subject ⁇ is described as a Caucasian male, 59 years of age, 6 " 0" tall, weighing 200 pounds but having a preexisting hypertensive medical condition.
- Subject B is described as a Caucasian male, 54 years of age, 6' 0" tall, weighing 176 pounds but known to not exhibit much thermogenic response due to a caffeine stimulant.
- Figure 13 is a reconstruction of a photograph showing Subject B in a reclining position with the apparatus directed towards the external surface of his left ear.
- An lnfraRed (IR) camera was also used at approximately the same view for measuring a surface temperature of a subject's exterior earlobe. The camera recorded a temperature of approximately 84 degrees Fahrenheit (28.9 degrees Celsius) for the surface skin temperature of the ear at rest.
- Figure 14 represents a time-varying graph of voltage over a time span of approximately twenty minutes or 1200 seconds (Test 01 - Subject A).
- Figure 15 also represents a time- varying graph of voltage over a time span of approximately twenty minutes (Test 02 - Subject B). Both Figures 14 and 15 show the results of Subjects A and B drinking water at a temperature less than body temperature, respectively.
- Subject A unlike subject B, and due to Subject A's preexisting condition exhibits vasoconstriction (a constriction of the blood vessels of the ear) causing a decrease in voltage output over time from the point in time of drinking water and ingesting caffeine.
- noise measuring channels may be focused, for example, radially at a region of interest in the human body to a wide range of uses only limited by the human imagination.
- core body temperature, basal metabolic rate, temperature gradients at tissue interfaces, locations of infections and at a skin surface with the air, and the like may be determinable via a passive microwave receiver.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Electromagnetism (AREA)
- Immunology (AREA)
- Vascular Medicine (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
L’invention concerne un appareil de thermographie micro-onde passive (1301, 1303) utilisant des antennes à micro-onde passive conçues pour fonctionner, par exemple, à des fréquences WARC protégées comprises entre 1.400 et 1.427 GHz, ainsi qu’entre 2.690 et 2.70 GHz (pour la mesure du gradient de température du centre du corps) et entre 10.68 et 10.700 GHz ou à une fréquence micro-onde supérieure (pour la mesure du gradient de température de la surface du corps), et utilisant également une antenne directionnelle ou un réseau d’antennes (1301) associés pour mesurer le rayonnement micro-onde émanant d’un animal, et en particulier d’un corps humain (1302). Les antennes peuvent être dirigées radialement vers un point situé à l’intérieur ou à la surface d’un corps humain, à des fins de comparaison avec des données connues de répartition de température concernant ce point et une température ambiante donnée. Chaque bande de fréquence peut comprendre une pluralité de canaux adjacents de mesure de bruit, permettant de mesurer le bruit micro-ondes naturellement émis par le corps humain. L’appareil mesure les changements à court terme affectant, par exemple, les températures au centre et à la surface du corps, afin d’établir un taux métabolique basal. Les changements affectant la température du centre du corps peuvent être stimulés par l’administration de nourriture ou de certaines substances de type médicamenteux ou organique ou par le stress, aux fins d’induire un changement dans le taux métabolique basal. Ces changements sont en corrélation directe avec le taux métabolique d’un être humain au repos et subissant certaines contraintes alimentaires, et peuvent être utilisés pour déterminer l’évolution de traitements contre l’obésité, les maladies du métabolisme et d’autres troubles. L’appareil peut également servir à surveiller à distance des patients et sujets, sans contact physique.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA2727435A CA2727435A1 (fr) | 2008-06-13 | 2009-06-12 | Evaluation par micro-onde passive des gradients de temperature du corps humain du centre jusqu'a la surface et du taux metabolique basal |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US6151308P | 2008-06-13 | 2008-06-13 | |
| US61/061,513 | 2008-06-13 | ||
| US12/336,822 | 2008-12-17 | ||
| US12/336,822 US8049620B2 (en) | 2007-06-15 | 2008-12-17 | Passive microwave fire and intrusion detection system including black body and spectral emission at the hydrogen, hydroxyl and hydrogen chloride lines |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2009152418A1 true WO2009152418A1 (fr) | 2009-12-17 |
Family
ID=41417136
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/047187 Ceased WO2009152418A1 (fr) | 2008-06-13 | 2009-06-12 | Évaluation par micro-onde passive des gradients de température du corps humain du centre jusqu’à la surface et du taux métabolique basal |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2009152418A1 (fr) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3048959A4 (fr) * | 2013-09-28 | 2017-06-14 | Brain Temp, Inc. | Systèmes et procédés de détermination non invasive de la température interne |
| CN111797909A (zh) * | 2020-06-22 | 2020-10-20 | 上海工程技术大学 | 一种基于机器视觉的指针式仪表读数方法 |
| CN114916914A (zh) * | 2022-05-16 | 2022-08-19 | 云教(北京)科技有限公司 | 一种具有自动佩戴检测的可穿戴设备和实现方法 |
| CN119124385A (zh) * | 2024-09-25 | 2024-12-13 | 江苏雷奥信息科技有限公司 | 基于超声治疗的微波皮下温度动态检测方法和系统 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4190053A (en) * | 1977-06-20 | 1980-02-26 | Rca Corporation | Apparatus and method for hyperthermia treatment |
| US6030342A (en) * | 1996-06-12 | 2000-02-29 | Seiko Epson Corporation | Device for measuring calorie expenditure and device for measuring body temperature |
| US6773159B2 (en) * | 2002-03-21 | 2004-08-10 | Samsung Electronics Co., Ltd. | Non-invasive apparatus for measuring a temperature of a living body and method therefor |
| US20050107692A1 (en) * | 2003-11-17 | 2005-05-19 | Jian Li | Multi-frequency microwave-induced thermoacoustic imaging of biological tissue |
-
2009
- 2009-06-12 WO PCT/US2009/047187 patent/WO2009152418A1/fr not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4190053A (en) * | 1977-06-20 | 1980-02-26 | Rca Corporation | Apparatus and method for hyperthermia treatment |
| US6030342A (en) * | 1996-06-12 | 2000-02-29 | Seiko Epson Corporation | Device for measuring calorie expenditure and device for measuring body temperature |
| US6773159B2 (en) * | 2002-03-21 | 2004-08-10 | Samsung Electronics Co., Ltd. | Non-invasive apparatus for measuring a temperature of a living body and method therefor |
| US20050107692A1 (en) * | 2003-11-17 | 2005-05-19 | Jian Li | Multi-frequency microwave-induced thermoacoustic imaging of biological tissue |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3048959A4 (fr) * | 2013-09-28 | 2017-06-14 | Brain Temp, Inc. | Systèmes et procédés de détermination non invasive de la température interne |
| CN111797909A (zh) * | 2020-06-22 | 2020-10-20 | 上海工程技术大学 | 一种基于机器视觉的指针式仪表读数方法 |
| CN111797909B (zh) * | 2020-06-22 | 2024-03-29 | 上海工程技术大学 | 一种基于机器视觉的指针式仪表读数方法 |
| CN114916914A (zh) * | 2022-05-16 | 2022-08-19 | 云教(北京)科技有限公司 | 一种具有自动佩戴检测的可穿戴设备和实现方法 |
| CN119124385A (zh) * | 2024-09-25 | 2024-12-13 | 江苏雷奥信息科技有限公司 | 基于超声治疗的微波皮下温度动态检测方法和系统 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20120029369A1 (en) | Passive Microwave Assessment of Human Body Core to Surface Temperature Gradients and Basal Metabolic Rate | |
| US8013745B2 (en) | Passive microwave assessment of human body core to surface temperature gradients and basal metabolic rate | |
| Tamura et al. | Current developments in wearable thermometers | |
| Ramirez-GarciaLuna et al. | Infrared thermography in wound care, surgery, and sports medicine: a review | |
| Childs | Body temperature and clinical thermometry | |
| Chen | Thermometry and interpretation of body temperature | |
| Stauffer et al. | Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case | |
| Hasselberg et al. | The validity, reliability, and utility of the iButton® for measurement of body temperature circadian rhythms in sleep/wake research | |
| US4428382A (en) | Method for identifying the presence of abnormal tissue | |
| Togawa | Body temperature measurement | |
| US10506930B2 (en) | Microwave thermometer for internal body temperature retrieval | |
| EP2459976B1 (fr) | Capteur et procédé pour déterminer la température corporelle centrale | |
| JPH10503944A (ja) | 人体と検出器の間の熱交換ならびに人血中のグルコーゼ濃度とのその相関を検知する方法と装置 | |
| Rodrigues et al. | Microwave radiometry for noninvasive monitoring of brain temperature | |
| Cetas | Will thermometric tomography become practical for hyperthermia treatment monitoring? | |
| Churkin et al. | Millimeter-wave radar for vital signs monitoring | |
| Sim et al. | Estimation of circadian body temperature rhythm based on heart rate in healthy, ambulatory subjects | |
| Baksheeva et al. | The sub-THz emission of the human body under physiological stress | |
| Haines et al. | Wireless system for continuous monitoring of core body temperature | |
| WO2009152418A1 (fr) | Évaluation par micro-onde passive des gradients de température du corps humain du centre jusqu’à la surface et du taux métabolique basal | |
| Nola et al. | Thermography in biomedicine | |
| Arunachalam et al. | Characterization of a digital microwave radiometry system for noninvasive thermometry using a temperature-controlled homogeneous test load | |
| CA2727435A1 (fr) | Evaluation par micro-onde passive des gradients de temperature du corps humain du centre jusqu'a la surface et du taux metabolique basal | |
| KR102301731B1 (ko) | 심부 체온 측정용 rf 수신기에 사용되는 이중 대역 바이오 정합 보우타이 안테나를 구비하는 시스템 | |
| Rodrigues et al. | Monitoring brown fat metabolic activity using microwave radiometry: antenna design and frequency selection |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09763706 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2727435 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 09763706 Country of ref document: EP Kind code of ref document: A1 |