WO2009147875A1 - 力学パラメータの同定法 - Google Patents
力学パラメータの同定法 Download PDFInfo
- Publication number
- WO2009147875A1 WO2009147875A1 PCT/JP2009/052885 JP2009052885W WO2009147875A1 WO 2009147875 A1 WO2009147875 A1 WO 2009147875A1 JP 2009052885 W JP2009052885 W JP 2009052885W WO 2009147875 A1 WO2009147875 A1 WO 2009147875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- minimum
- link
- identification
- parameter
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
Definitions
- the present invention relates to a method for identifying mechanical parameters, and more particularly, to a method for identifying mechanical parameters such as mass, center of gravity, and inertia tensor of the whole body of a moving system having legs such as humans and humanoid robots.
- the dynamic parameters include all the dynamic parameters, that is, generally 10 parameters of 1 mass, the product of the center of gravity and mass 3 and the inertia tensor 6 per rigid body.
- normal mechanics parameters phi made, and the minimum inertial parameters (base inertial parameters, or minimal set of inertial parameters) include phi B.
- the minimum dynamic parameter ⁇ means for calculating B numerical-analytically has been established, for example, described in Non-Patent Documents 1 to 3. Equations of motion can be expressed only with a minimum dynamic parameter phi B.
- Humanoid robots are expected to advance into human society such as labor and nursing care. Identification technology is important to realize advanced motion control safely because parameters such as the humanoid carry luggage and change its own mass and center of gravity during exercise.
- Mechanistic identification is a major research field in robotics, and it can be applied in many fields, but there are few examples of application to humanoids. The following reasons are conceivable.
- the structure of the motion equation of each joint is often used, and sensor information on generalized coordinates, floor reaction force, and joint torque is required.
- sensor information on generalized coordinates, floor reaction force, and joint torque is required.
- it is relatively easy to measure the floor reaction force using a 6-axis force sensor or force plate many humanoids do not have a torque sensor on each joint, so accurate joint torque measurement is difficult. is there.
- Mechanical parameters can be estimated from CAD, but modeling including electrical systems and actuators is difficult. In addition to theoretical modeling based on CAD or the like, it is desirable to actually measure dynamic parameters by identification.
- the dynamic parameters in the human body are highly useful in periodic medical diagnosis such as rehabilitation and physical analysis such as sports, and it is desirable to identify the dynamic parameters without burdening the subject.
- Gautier M Numerical calculation of the base inertial parameters of robots.Proc. Of the IEEE Int. Conf. On Robotics and Automation, Vol. 2, pp. 1020.1025, May 1990. H. Kawasaki, Y. Beniya, and K. Kanzaki. Minimum dynamics parameters of tree structure robot models. In Int. Conf. Of Industrial Electronics, Control and Instrumentation, Vol. 2, pp. 1100. 1105, 1991. W. Khalil and F. Bennis. Symbolic calculation of the base inertial parameters of closed-loop robots. The Int. J. of Robotics Research, Vol. 14 (2), pp. 112.128, April 1995.
- An object of the present invention is to provide a method for identifying mechanical parameters that do not require joint torque measurement.
- the present invention represents the motion of a subject expressed by an articulated link mechanism that is not fixed to the environment, as arbitrarily selected base link spatial motion and link system joint motion,
- Y B1 is an observation matrix obtained from the generalized coordinates of the base link, each joint angle, and their velocity and acceleration
- F k is an external force acting on the contact point k
- K k1 is a matrix that converts an external force at the contact point k into a generalized force
- N c is the total number of contact points between the articulated link structure and the environment, It is.
- the base link is a link corresponding to a root of a tree structure that represents an articulated link structure.
- the root link is set to a trunk link, one of which is a plurality of links, or a part corresponding to the hip joint or the lower abdomen.
- the observation matrix is a function of a base link generalized coordinate (a generalized coordinate vector of 6 degrees of freedom) and its derivative (derivative), and each joint angle and the speed and acceleration of each joint angle.
- a regressor matrix is a transpose of the Jacobian matrix to point k.
- the subject is a humanoid. In one aspect, the subject is a human body.
- the human body can be modeled as a rigid link structure having a plurality of joints.
- the present invention is not limited to humanoids and human bodies, and can be applied to mobile systems having legs.
- Information such as dynamic parameters (mass, center of gravity, inertia tensor, etc.) of each part of the whole body of a robot such as a humanoid robot or a quadruped walking robot is motion information (for example, information when moving on a floor reaction force meter)
- motion information for example, information when moving on a floor reaction force meter
- the type of subject exercise used for mechanical parameter identification is not limited, and examples include walking, side step, trunk bending, squat, etc. Is done.
- a combination of movements that greatly change the total center of gravity is used.
- the external force is a floor reaction force.
- the floor reaction force can be obtained by a floor reaction force measuring means capable of detecting six-axis forces, and such means are well known to those skilled in the art. More specifically, the floor reaction force can be measured by a force sensor (for example, a force plate) laid on the floor surface or a force sensor (for example, a shoe sole force sensor) attached to the leg of the subject. It is.
- each said joint angle is measured by the encoder mounted in each joint.
- an encoder is mounted on each joint.
- each joint angle is obtained by inverse kinematic calculation from time series data of marker positions obtained by placing a marker at each link of a subject and obtaining motion. It is well known to those skilled in the art to acquire time series data of each joint angle from the motion data of a subject acquired by motion capture.
- the generalized coordinates of the base link are measured by a gyro acceleration sensor mounted on the base link.
- the generalized coordinates of the base link are obtained by placing a marker on the subject's base link and calculating the position and orientation of the base link from the time series data of the marker position obtained by motion capture.
- a subject moving on a floor reaction force measurement force plate laid on the floor is photographed with a camera of a motion capture system synchronized with the measurement of the floor reaction force,
- the floor reaction force is measured by the force plate,
- the generalized coordinates of the base link and the joint angles are calculated from the time-series data of marker positions acquired by motion capture.
- the motion capture system for acquiring necessary information is an optical motion capture system of a type in which a marker is placed on a subject in one preferred example, but the motion capture method is only this type of optical capture system. It is not limited to.
- the hardware configuration for carrying out the present invention includes a plurality of imaging means (cameras) for imaging a subject with a marker, a floor reaction force measuring means (force plate), and one or
- the computer apparatus includes an arithmetic processing unit that performs various calculations, an input unit, an output unit, a display unit, and a storage unit that stores various data.
- the minimum dynamic parameters are calculated in real time when measuring the generalized coordinates of the base link, each joint angle and their velocity, acceleration, and the external force acting on the contact point with the environment.
- the subject is a human body and the minimum dynamic parameters are calculated in real time as the subject exercises. It will be appreciated by those skilled in the art that real-time calculation of the minimum dynamic parameters is possible, for example, by solving the least square method sequentially. In an embodiment to be described later, real-time calculation is performed using a so-called forgetting function sequential generalized least square method.
- the link mechanism model of the subject is displayed on the display unit, and the degree of identification of the minimum mechanical parameter of each link is visually determined according to the degree of identification for each link in the displayed link mechanism model. indicate.
- the color of the link is changed and displayed according to the degree of identification of the minimum dynamic parameter. Any combination of color changes can be used as long as the degree of identification can be recognized by the color change.
- the color transparency and luminance may be changed.
- the degree of identification of the minimum dynamic parameter may be visually displayed by a change in shading or texture. Other forms may be used as long as the degree of identification can be understood.
- the degree of identification may be displayed by changing the shape, such as changing the size of each link of the human figure for display.
- the subject visually recognizes a link for which identification of the minimum mechanical parameter is insufficient, thereby urging the body part corresponding to the link to move.
- the degree of identification of each minimum dynamic parameter is obtained for each link, and the degree of identification of the minimum mechanical parameter as each link is calculated using the obtained degree of identification of the plurality of minimum mechanical parameters.
- each minimum dynamic parameter is classified into three groups according to the obtained degree of identification, and each group is assigned three primary colors (typically RGB), and each group is assigned to each group.
- the density value of each color in the pixel of the link displayed on the display unit is determined based on the ratio of the number of minimum dynamic parameters to which it belongs.
- the indicator of the degree of identification of each minimum dynamic parameter is a variance of errors between each estimated value of the time series data of the estimated value of each minimum dynamic parameter and the target value of the minimum dynamic parameter. That is, at the time of estimating the minimum dynamic parameter, how much error each estimated minimum dynamic parameter has with respect to the target value, that is, the variance of the error estimated up to a certain time t is sequentially calculated, and the variance is calculated. If becomes smaller, it is determined that the parameters are well identified.
- the true value of the minimum mechanical parameter is known from CAD, etc.
- the true value of the minimum dynamic parameter is generally not known. Therefore, an estimated value of the external force is calculated from the estimated value of the minimum dynamic parameter, and an error between the estimated value of the external force and the actual measured value of the external force is obtained.
- the variance of the error of the minimum dynamic parameter estimated indirectly can be calculated from the error between the obtained estimated value of the external force and the measured value of the external force and the regressor matrix Y representing the motion data as a matrix.
- the error variance of each minimum dynamic parameter is directly calculated from the error of the external force.
- the variance of errors as the indicator is a relative standard deviation.
- this virtual true value may be used as the target value.
- the means for confirming the degree of identification is not limited to “confirming the variance of the estimated parameter values” as described above. When the true value of the parameter is known, the degree of identification may be confirmed by directly comparing the estimated value and the true value. In this case, the current values are compared. Moreover, you may use the virtual true value obtained from said database or literature. You may confirm whether the estimated value of a floor reaction force and the measured value of a floor reaction force correspond.
- the estimated ground reaction force value and the measured value of the floor reaction force are respectively displayed as vectors on the display unit with arrows, and if both vectors are in good agreement, it can be determined that the degree of identification is good.
- the current measured value of the external force may be compared with the estimated value, but it is desirable to check whether the external force is correctly estimated in all of a certain time series frame.
- a total mechanical parameter is estimated from the prior information and the identified minimum mechanical parameter.
- the prior art information on all mechanical parameters can use the technique disclosed in Japanese Patent Application Laid-Open No. 2008-77551. In this method, explanatory variables are selected from the variables that represent the dimensions of each part of the body, the other variables are used as objective variables, the values of the objective variables are estimated based on the measured values of the explanatory variables, and modeled with a rigid link mechanism.
- Ask for. Using the database including the dimensions of each part of the body and data obtained by measuring several parts of the body of the subject, the total mechanical parameters of each part can be estimated. In the case of using optical motion capture, the size of a desired body part can be measured using the position of an optical marker attached to a subject. Prior information on all dynamic parameters may be obtained by directly using human mass database or literature values.
- the minimum mechanical parameters of the whole body of the multi-joint link structure can be identified by measuring the total external force only from the equation of motion of the base link of the multi-joint link structure without measuring the torque of each joint. . Since identification of the dynamic parameters of the present invention does not require measurement of each joint torque, the identification method of the present invention can be used even for a system in which a torque sensor is not mounted on a joint. This technology can be used widely for existing systems. Further, the present invention can perform dynamic parameter identification using a completed machine (a robot equipped with electrical wiring and additional parts).
- the present invention is based on external force measurement, it is not affected by internal forces such as friction.
- identification is possible without depending on the ground contact state. Also, since only the base link equation of motion is used for identification, the amount of calculation required for identification is less than that of a normal method using all equations of motion.
- the present invention can also be used for measuring a human body.
- This method can estimate the dynamic parameters of each part of the whole body from the information that the human moves on the floor reaction force meter, so the load on the subject is light and the dynamic parameters are identified by simple motion measurement. Is possible. It is particularly useful for periodic medical diagnosis such as rehabilitation and body analysis such as sports.
- Preliminary information on all mechanics parameters, estimated minimum mechanics parameters, and more accurate total mechanics parameters can be estimated.
- Fig. 4 shows the organization of minimum mechanical parameters from base link to end link.
- a small humanoid robot UT- ⁇ 2 is shown.
- An experiment using a small humanoid robot UT- ⁇ 2 is shown.
- the identification result by simulation data is shown.
- Experimental results (4 steps walking) are shown.
- An experimental result (bending operation) is shown.
- a human body structure model with 34 degrees of freedom is shown.
- the calibration data (calibration data) in the figure means information related to the length of each part of the subject calculated from the measurement value of the motion capture marker.
- FIG. 10 is an enlarged view of the middle two frames of FIG. 9. It is a figure which expands and shows the last 2 frames of FIG.
- Equation (1) An equation of motion of a moving system having legs, such as a bipedal walking system, can be expressed by the model shown in Equation (1).
- Such mobile systems typically include humanoids and human bodies.
- the upper part represents the free movement of the base link, and the lower part represents N bodies (N: limbs, trunk, head, etc., depending on the selected model). Represents the chain movement.
- the base link is a base and can be set to any link, but is generally a trunk link (near the hip joint).
- the equation of motion of the multi-link system can be expressed by a linear relational expression with respect to mechanical parameters such as a product of mass / center of gravity and mass / inertia tensor.
- equation (1) can be transformed into equation (2).
- m j is the mass
- I j, xx , I j, yy , I j, zz , I j, yz , I j, zx , I j, xy are six independent elements of the inertia matrix I j
- ms j, x , ms j, y , ms j, z are each element of the vector ms j , the product of the center of gravity position and the mass, It is.
- the dynamic parameter ⁇ is redundant and cannot be uniquely identified, and it is necessary to formulate it to the minimum parameter necessary for the calculation of the dynamic model.
- Means for calculating the minimum dynamic parameters numerically and analytically have been established, and are described in Non-Patent Documents 1 to 3, for example.
- Equation (6) Only the upper stage of Equation (5), that is, the equation of motion of the base link was focused.
- a major feature of Equation (6) is a mechanical constraint condition in which the generalization force is zero.
- the joint torque ⁇ is not included, and the generalization force is always zero. Therefore, information necessary for identification using the formula (6) is each contact point k, the external force F k acting on the contact point k , the joint angle ⁇ , and the generalized coordinate q 0 of the base link (see FIG. 1).
- Such information can be measured by an encoder, a six-axis force sensor, an acceleration sensor, a gyro sensor, a motion capture system, and the like, and this identification method can be applied to many humanoids and human bodies.
- the right side of equation (6) is the total external force F of 6 axes applied to the base link origin. If F can be directly measured from the outside, it can be identified without depending on the ground contact condition such as one-leg support or both-leg support. . Furthermore, since the identification of the base link does not include the frictional force of individual joints in the equation (6), there is a great advantage that it is not affected by these effects.
- ⁇ B needs to be the minimum dynamic parameter in the equation (6).
- the identifiability in the equation of motion of the base link is an argument that organizes the minimum dynamic parameters from the base link to the end link. Assume that the sub-link system C j-1 surrounded by the chain line on the left side of FIG. Next, a new link j is added as shown on the right side of the figure, and the minimum dynamic parameters are organized for the sublink system C j . By repeating this up to link n-1, the minimum dynamic parameters of all links are derived. The inventors of the present application verified by simulation and experiment that ⁇ B can be identified even when only Equation (6) is used.
- the multi-joint link structure of UT- ⁇ 2 has a total of 21 links and a total of 26 degrees of freedom.
- Base link B 0 (trunk), links B 1 to B 6 (right leg), links B 7 to B 12 (left leg), links B 13 to B 16 (right arm), links B 17 to B 20 (left arm) It consists of. Focus on the identification of the lower body and keep the upper body inactive (brake) during exercise. At this time, since UT- ⁇ 2 has six rotary joints for each leg, it has a total of 13 links and a total of 18 degrees of freedom.
- Minimum dynamic parameter phi B of each link was calculated using the analytical technique (Non-Patent Document 2). Details of the calculation of ⁇ B and the corresponding regressor matrix Y B1 will be described later.
- a dynamics simulation was performed, and identification was performed using the motion data at that time.
- the purpose of the simulation is to verify whether the minimum dynamic parameter ⁇ B in the equation of motion (5) of all links can be identified by the equation of motion (6) of the base link, and to identify the motion that can accurately identify ⁇ B. It is to seek the type.
- Simulation is based on a dynamics calculation software library (K. Yamane and Y. Nakamura. Dynamics computation of structure-varying kinematic chains and its application to human figures. IEEE Trans. On Robotics and Automation, Vol. 16, No. 2, pp. 124. 134, 2000.).
- the contact force with the ground was calculated using a spring / damper model.
- the value ⁇ Bapriori calculated in advance from CAD was used as the true value ⁇ B of the mechanical parameter used in the simulation.
- the error of each of the identified 94 parameters is small, and the dynamic parameter identification method according to the present invention is effective, and it can be seen from the walking data that the lower body has been successfully identified.
- the dynamic parameters of each link can be estimated from CAD.
- an error occurs from the actual dynamic parameters.
- the total mass of the robot on CAD is 6.7 [kg]
- the actual measured total mass is 8.0 [kg].
- Additional parts may be added to both feet, but there is an error of 16.25 [%], which greatly affects the dynamic parameters of the entire robot, and understands the importance of identifying the dynamic parameters.
- q 0 is measured using an optical motion capture in the experiment.
- An optical marker is attached to the body of the robot, and the movement of the robot is measured using 10 cameras.
- a force plate capable of measuring 6-axis contact force is used instead of the force sensor mounted on the ankle of the robot.
- the force plate can measure the total contact force F of 6 axes with a resolution of about 70 [g] in synchronization with the motion capture.
- the joint angle ⁇ of the robot is measured by an encoder mounted on each joint. The state of the experiment is shown in FIG. 3A.
- the identification results are shown in FIGS. 5A and 5B.
- the sampling time of the data is 3 [ms]
- the thick solid line in the figure shows the measured external force K 1 F and the external force Y B1 ⁇ (hat) Bwalk calculated from the identified mechanical parameter ⁇ (hat) Bwalk. , Shows a state where they overlap with each other.
- the thin dotted line is the external force Y B1 ⁇ Bapriori calculated from the mechanical parameter ⁇ Bapriori obtained from CAD.
- the 94-dimensional mechanical parameters are identified and the external force obtained from the identified parameters is well estimated. Further, the parameters identified from the walking data can reproduce the external force pattern even in the operation of bending the trunk. On the other hand, there is a clear difference between FZ, NX and NY between the identified parameter and the parameter obtained in advance from CAD, and the identified parameter can reproduce the external force pattern more accurately.
- the total mass of the identified robot is 7.93 [kg], and there is an error of 0.07 [kg] with respect to the actual total mass measurement value.
- An error of about 0.2 [Nm] occurs in NY and NZ. These are within a force plate resolution of 0.7 [N].
- the upper matrix Y 1 related to the base link is obtained.
- [w ⁇ ] and [w ⁇ ] are the following matrices.
- M i , MS i , and J i are calculated.
- M i , MS i , and J i are represented by a combination of mechanical parameters of all links belonging to the end side of link i, and are calculated in order from the end link.
- all the joints are rotary joints and the base link has six degrees of freedom, it can be calculated as follows.
- i-1 ri and U are set as follows.
- the matrix Y B1 corresponding to the minimum dynamic parameter ⁇ B is as follows.
- UT- ⁇ 2 has 21 links and 26 degrees of freedom, but in this paper, the upper body is considered to be fixed, assuming that each leg has 6 joints, all 13 links, and all 18 degrees of freedom.
- the body link is represented as a base link B 0 , the right leg 6 link from the body side as B 1 -B 6 , and the left leg 6 link from the body side as B 7 -B 12 .
- the dynamic parameter of the B j (0 ⁇ j ⁇ 12) link is ⁇ j , and the whole body dynamic parameter ⁇ is configured as follows.
- the minimum dynamic parameter ⁇ B can be calculated from the dynamic parameter ⁇ of the human body model.
- M i is the link i dynamic parameter representing the sum of the masses of the lower links in the chain;
- m i is the mass of link i (1-14);
- MS i is the dynamic parameter of link i representing the sum of the first moments of inertia (i: 1 to 14);
- J i is a mechanical parameter representing the inertia of link i; It is.
- the position / posture of the base link, the joint angle of each joint, and the contact force with the environment are required.
- these information are obtained by a motion capture system synchronized with the force plate.
- Systems that simultaneously measure exercise data and floor reaction force are known to those skilled in the art. For example, Seri, Yamane, Nakamura: “Simultaneous real-time measurement of conscious behavior by behavior capture system”, Robotics Mechatronics Lecture, '01 Lecture Proceedings, 1P1-H7, 2001.
- the force plate acquires 6-axis contact force.
- the base link movement is obtained from the motion capture data.
- each joint angle can be calculated from the motion capture data by inverse kinematics calculation of the human body model.
- motion data and contact force were acquired by photographing that a subject wearing 35 markers (see FIG. 6B) moved in a predetermined position on the force plate.
- the movement of the subject in the experiment is walking, side step, bending of the trunk, and random movement of the upper body.
- K 1 F obtained from the force plate was compared reconstituted Y B1 phi B from the identified phi B, as in the case of humanoid experiments, resulted in substantially coincides.
- a method for identifying dynamic parameters of a human body was proposed.
- the proposed method can identify a mechanical parameter (minimum mechanical parameter ⁇ B ) necessary and sufficient for constructing a whole body motion equation using only motion capture and a floor reaction force meter.
- ⁇ B minimum mechanical parameter
- a mechanical parameter is estimated in advance using a method for estimating a mechanical parameter from a measured value of a human body dimension and a database (Japanese Patent Laid-Open No. 2008-77551, etc.), and the previously estimated value and the minimum dynamic parameter ⁇
- a method for estimating all mechanical parameters by combining the identification results of B.
- the estimated value can be obtained in a format that strictly satisfies the result of the dynamic identification and minimizes an error from prior information.
- a method for improving the identification performance by further performing identification in real time during motion measurement and visually displaying the identification result of each body part is proposed.
- the test subject can generate a motion sufficient to identify the parameters of the whole body by specifying a site that is insufficiently identified during measurement and moving the site sufficiently.
- Humanoid identification model When a human body is modeled by a rigid multi-link system, the equation of motion of a humanoid with n links and N j degrees of freedom is It becomes like (1).
- the upper part of equation (1) is the base link equation of motion.
- the base link is a base and can be set to any link, but is generally a trunk link.
- equation of motion of the multi-link system can be expressed by a linear relational expression with respect to mechanical parameters such as mass, center of gravity, and inertia tensor.
- equation (1) can be transformed into equation (2).
- the mechanical parameter ⁇ is redundant in describing the dynamic model, and it is possible to identify only the minimum parameters necessary for expressing the model.
- the minimum identifiable mechanical parameter ⁇ B ⁇ R NB depends on the structure of the dynamic model, and is obtained by reducing and reconstructing redundant parameters in the equation of motion. Means for calculating the minimum mechanical parameter numerically and analytically have been established (Non-Patent Documents 1, 2, and 3), and Equation (2) can be transformed as Equation (3).
- Y B ⁇ R NJ ⁇ NB corresponds to the regressor matrix of the minimum dynamic parameter.
- Equation (3) that is, only the equation of motion of the base link.
- the characteristic of the equation (4) is a mechanical constraint condition that the generalization force is always zero. Since the equation (4) does not include the joint torque ⁇ , measurement of ⁇ is unnecessary. Information necessary for identification is each contact point k, an external force F ext k acting thereon, a joint angle q c, and a generalized coordinate q 0 of the base link.
- Such information can be measured by an encoder, a six-axis force sensor, an acceleration sensor, a gyro sensor, or the like in the case of a robot, and can be measured by a motion capture and a floor reaction force meter in the case of a human. Furthermore, when the total external force F ext can be directly measured, there is a merit that does not depend on the contact situation such as one-leg support or both-leg support. Moreover, since the identification formula is composed of only the base link, the amount of calculation is light, and this is a great advantage in performing real-time identification described later. Refer to FIG. 1 for an overview of the identification method.
- dynamic identification means not identifying the dynamic parameter ⁇ but identifying the minimum dynamic parameter ⁇ B.
- the minimum dynamic parameter ⁇ B is the minimum necessary information for constructing a multi-link system equation of motion, and there is no practical problem even if this minimum expression is used for controlling the robot.
- normal mechanical parameters are reconstructed in a complicated manner according to the link mechanism, so that it is difficult to understand intuitively.
- the minimum dynamic parameter ⁇ B ⁇ R NB can be expressed as follows using the normal dynamic parameter ⁇ R 10n .
- Z ⁇ R NB ⁇ 10n is a knitting matrix of minimum dynamic parameters obtained by a link system mechanism.
- the knitting matrix Z is a matrix used for knitting the minimum dynamic parameters from the normal dynamic parameters. That is, as shown in Expression (5), the minimum dynamic parameter ⁇ B can be obtained from the normal dynamic parameter ⁇ and the knitting matrix Z.
- the total dynamic parameter is estimated by performing the inverse projection.
- reverse projection can be performed by using values in literatures and databases. For details of the organization matrix, the following documents can be referred to.
- the estimation method of all mechanical parameters is as follows. First, the least squares solution of the linear equation (5) is as follows. However, z ⁇ R 10n is an arbitrary vector, and E is a unit matrix. When the estimated value ⁇ (hat) B of the minimum dynamic parameter obtained by dynamic identification is used, how to determine z projected by the null space of the knitting matrix Z becomes a problem.
- z ⁇ ref is selected using the prior information ⁇ ref of normal mechanical parameters using documents and databases.
- the estimated value ⁇ (hat) of the dynamic parameter is obtained as follows. However, It was. Since Expression (7) satisfies Expression (5), it can be seen that the minimum expression of the estimated value ⁇ (hat) matches the identified parameter ⁇ (hat) B. Also from equation (7), phi (hat) is a solution that minimizes the norm of the ⁇ - ⁇ ref, it can be seen that is the solution that minimizes the error norm between the prior information phi ref.
- FIG. 1 Real-time identification and visualization application
- a motion capture and a floor reaction force meter using optical marker position measurement are used for generalized coordinates and external force measurement.
- the capture system measures optical markers every 5 [ms] using 10 cameras.
- the floor reaction force can be measured every 1 [ms], and both can be measured synchronously.
- the flow of identification is as follows. An overview is shown in FIG. 1.
- a geometric model (link length, orientation, thickness (circumference dimension), etc.) is determined from the measured marker position, and all mechanical parameters are estimated in advance from the geometric model and the human body database.
- the minimum dynamic parameters are identified in real time, and the total dynamic parameters are estimated from the identification results of the minimum dynamic parameters and prior information of the total dynamic parameters.
- the identification performance is improved by displaying the identification result of the minimum dynamic parameter for each link in color, and identifying and exercising a part with insufficient motion. Each item will be explained for each measure.
- the geometric parameters of the model are required as well.
- the link length and direction as well as the thickness (circumference dimension), etc. are required as well.
- accurate values can be calculated from CAD, but in the case of humans, it is necessary to actually measure these parameters.
- 35 optical markers as shown in FIG. 6B were used. Since the marker is arranged at a feature point near the joint of the human body, the geometric parameter of each joint can be easily measured by calculating the distance between the joints from the measured marker position.
- the total mechanical parameters are estimated from the obtained geometric model.
- a technique for estimating human dynamic parameters from a human body size database is used.
- the database to be used records the characteristic 49 dimensions and weight parameters of 308 Japanese people, a total of 50 parameters.
- Examples of the human body dimension database include the Digital Human Research Center, National Institute of Advanced Industrial Science and Technology, "Human Body Dimension Database," http://unit.aist.go.jp/collab-pro/indusstan/jis/theme/final/finalreports/ You can use measure / anthrop.htm.
- Examples of methods for estimating human mechanical parameters include Nobuo Yamaguchi, Katsuru Yamane, and Hitoshi Nakamura, “Identification of Muscle, Tendon and Mass Parameters of Human Musculoskeletal Model,” The Japan Society of Mechanical Engineers Robotics and Mechatronics Lecture '06 The method disclosed in the collection of lecture papers, 2A1-D07, 2006. and Japanese Patent Application Laid-Open No. 2008-77551 can be used.
- the estimation method is as follows. First, some parameters are measured from 50. The remaining unmeasured parameters are estimated from the regression line with the most correlated measurement parameter. Next, as shown in FIG. 8, the geometric shape of each link of the human body is modeled by an elliptical sphere or an elliptical frustum, and the volume of each link is calculated from 49 human body dimensions. Furthermore, by approximating the density to be constant, the mass, center of gravity, and inertia tensor of each link can be estimated from the total weight.
- the geometric shape and dynamic parameters are estimated using the geometric parameters measurable from the marker and the total weight obtained from the floor reaction force meter as inputs to the estimator. It should be noted that the prior information of all dynamic parameters may be replaced with human mass database or literature values, and the above method is merely an example.
- Equation (4) The regressor matrix and the total external force in equation (4) can be calculated from these measured values.
- ⁇ B can be identified from the least squares method. In order to identify in real time, it is necessary to solve the least square method sequentially.
- the external force term on the right side of Equation (4) the physical dimension differs between force and moment, and the measurement accuracy of each component differs. In such a case, a least square method in which the variance of the error between the estimated value and the measured value is weighted is often used. If the dynamic parameters change over time, it is necessary to forget the measured past data. In the case of human body measurement, the mechanical parameters can change due to holding luggage, using tools, and daily changes in body shape.
- the present embodiment uses the following sequential generalized least squares method with a forgetting function.
- the sequential generalized least square method with a forgetting function for example, the following documents can be referred to. J.-JESlotione, W.Li, "On the Adaptive Control of Robot Manipulatiors," Int. J. of Robotics Research, vol. 5, no. 2, pp. 49.59, 1987. Seto Sagara, Akio Akizuki, Takayoshi Nakamizo, Toru Katayama, System Identification, Society of Instrument and Control Engineers, 1994.
- K n ⁇ R NB ⁇ NB is the following gain matrix.
- P n ⁇ R NB ⁇ NB is an inverse matrix defined by Equation (10), and the inverse matrix solution can be sequentially calculated as in Equation (11).
- ⁇ n ⁇ R 6 ⁇ 6 is a weight matrix.
- ⁇ n (0 ⁇ ⁇ n ⁇ 1) is a forgetting factor, which is a weighting factor applied every time to data before the current time, and is forgotten exponentially.
- V n ⁇ R 6 ⁇ 6 is a matrix defined as follows.
- a covariance matrix of the output signal F is selected as the weight matrix ⁇ n .
- ⁇ n is a diagonal matrix.
- Each diagonal element ⁇ 2 ii, n (1 ⁇ i ⁇ 6) , when the error of the variance of each six-axis components of the external force measurement value F estimated value Y OB phi B at up to t n.
- the identification status of each link is visually displayed during motion measurement, so that the subject can identify the part with insufficient motion and feed it back to the motion. Propose a mechanism to improve performance. Although it is not necessarily the optimal exercise plan, it can be expected that PE suitable can be improved by intuitively understanding and immediately reflecting the exercise suitable for identification.
- the identification status of each link uses the relative standard deviation of the estimated value of each identified minimum parameter in each link as an index.
- the following documents can be referred to. M. Gautier and W. Khalil, "Exciting trajectories for inertial parameters identification,” Int. J. of Robotics Research, vol. 11 (4), pp. 362.375, 1992. G. Venture, PJ Ripert, W. Khalil, M. Gautier, and P. Bodson, "Modeling and identification of passenger car dynamics using robotics formalism," IEEE Trans. On Intelligent Transportation Systems, vol. 7, no. 3, pp 349.359, September 2006.
- the estimated value of the external force is calculated from the estimated value of the minimum dynamic parameter, and the error between the estimated value of the external force and the actual measured value of the external force Ask for.
- the variance of the error of the minimum dynamic parameter estimated indirectly can be calculated from the error between the obtained estimated value of the external force and the measured value of the external force and the regressor matrix Y representing the motion data as a matrix.
- the second term on the right side is an external force estimated value F (hat) calculated by multiplying the regressor matrix Y OB by the estimated value ⁇ (hat) B
- ⁇ is an error of the external force.
- Equation 29 to Equation 34 the sequential generalized least square method (Equation 29 to Equation 34) is solved.
- the error ⁇ n of the external force at time n is a term of F n ⁇ Y OB, n ⁇ (hat) B, n ⁇ 1 on the right side of Equation 29.
- the matrix P n (Equation 31) is obtained in the process from Equation 29 to Equation 34.
- This matrix P n matches the covariance matrix C n of the error of the minimum dynamic parameter at time n.
- the variance (relative standard deviation) of the error of the minimum dynamic parameter can be obtained from each diagonal component of the C n matrix. The description will be repeated below.
- Equation (4) Y OB is deterministic and the estimation error ⁇ Assuming a normal distribution with zero mean, using the estimated value ⁇ (hat) B, n obtained by the successive generalized least squares method, the covariance matrix C n ⁇ R NB ⁇ NB can be calculated as follows: .
- ⁇ ⁇ j % By using the above relative standard deviation ⁇ ⁇ j %, it is possible to determine whether or not the motion data currently being measured can easily identify each minimum dynamic parameter. If ⁇ ⁇ j % falls below a threshold value that varies depending on the identification target, it is often determined that the minimum dynamic parameter is well identified. However, it may be difficult to determine the minute parameter because the relative value becomes large.
- the human figure (link mechanism model of the human body) of the subject captured in real time is presented on the screen, and the color of each link of the human figure is changed according to the following rules.
- n Bj link j sigma .phi.j% 15 [%] of lower than the number of parameters n Bj, G, ⁇ ⁇ j% 15 [%] of the above but estimates minute ( ⁇ 0.02)
- the number of parameters n Bj, B , and the number of parameters that are neither of them, n Bj, R n Bj ⁇ n Bj, G ⁇ n Bj, B , were used to determine the RGB color using the respective ratios.
- each pixel value P R , P G , P B is determined as follows.
- P R n Bj, R / n Bj ⁇ 100;
- P G n Bj, G / n Bj ⁇ 100:
- P B n Bj, B / n Bj ⁇ 100;
- the pixel values here are normalized values with the maximum value being 1 and the minimum value being 0. Therefore, in this embodiment, as the identification progresses, the color of the link changes from red to green.
- FIG. 9 shows the external force measured from the floor reaction force meter and the external force obtained from the identified parameters, as vectors.
- arrows In the first frame of FIG. 9A, two arrows are displayed, but in the other frames, the two arrows substantially match.
- a dark sphere represents the total center of gravity.
- FIG. 9 shows the result of actual online identification, and it can be seen that as the measurement progresses, the color of the link changes and the parameters are identified.
- the regressor matrix every 50 [ms] and the external force data are used for identification.
- Table 3 shows the three measured data obtained, the condition number cond (Y OB ) when all of them are combined, and the number of samples used. Put it on.
- ⁇ ⁇ j, n % is less than 15% and the total number of non-small parameters (> 0.02) is also listed. It can be seen that the number of conditions for all measured values is around 30.
- the number of conditions for one measurement data is often around 500, and a condition number of around 50 is realized by combining multiple measurement data of whole body movements such as gymnastics. Was. From this, it can be understood that the PE property can be greatly improved by using the visualization application.
- the mass distribution is close to the pre-estimated value.
- the values of the torso, the right toe, and the toe inertia tensors also tend to be relatively similar to the pre-estimated values.
- the center of gravity of the lower abdomen, the center of gravity of the head, the inertia tensor, the inertia tensor of the right thigh, etc. are located outside the convex hull of each link shape or have a negative inertia principal component, so estimation fails You can see that There are several possible causes for the estimation failure. First, the case where sufficient Excitation is not obtained is considered.
- PE performance can be improved by measuring many movements and cutting out and combining parts with a low condition number.
- accuracy of the prior estimated value is low.
- the remaining parameters that are not known in the normal dynamic identification, that is, not included in the minimum dynamic parameters are estimated based on the normal dynamic parameters obtained from the database. Therefore, the remaining parameters depend on the accuracy of the prior values obtained from the database. Since the minimum dynamic parameter is a value obtained by multiplying the center of mass by the mass, the estimated value of the center of gravity also depends on the accuracy of mass estimation. It will be understood by those skilled in the art that improvement measures may include measures such as improving the accuracy of prior information derivation and taking into account the mechanical constraints of the center of gravity and inertia tensor.
- a visualization application based on identification and real-time identification of all human dynamic parameters is summarized.
- the identification performance conditional number of the regressor matrix
- the identification method of the present invention can be used for a system in which a torque sensor is not mounted on a joint of a robot, the present invention can be widely applied to an existing system.
- humanoids are expected to advance human society such as labor and nursing care.
- Identification technology is important to realize advanced motion control safely because parameters such as the humanoid carry luggage and change its own mass and center of gravity during exercise.
- the identification method of the present invention can also be used for measuring a human body.
- the identification method of the present invention has a light load on a subject and can be identified by simple motion measurement. It is considered to be particularly useful for periodic medical diagnosis such as rehabilitation and body analysis such as sports.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Manipulator (AREA)
Abstract
関節トルク計測が不要な力学パラメータの同定法を提供する。環境に固定されていない多関節リンク機構で表現されるヒューマノイドの運動を、任意に選択されたベースリンクの空間運動とリンク系の関節運動で表す。ヒューマノイドのベースリンクの運動方程式のみを利用し、ロボットの胴体(ベースリンク)の位置と姿勢、各関節角度、床反力を計測することで、ヒューマノイドの全身の力学パラメータを同定する。力学パラメータの同定法は、人体にも適用することができる。
Description
本発明は、力学パラメータの同定法に係り、詳しくは、人間やヒューマノイドロボットなど脚を持つ移動システム等の全身の質量・重心・慣性テンソルといった力学パラメータを同定する方法に関するものである。
本明細書において、力学パラメータ(inertial parameters or dynamic parameters)には、全力学パラメータ、すなわち、一般に、剛体1個あたり、質量1、重心位置と質量の積3、慣性テンソル6の10個のパラメータからなる通常の力学パラメータφ、および、最小力学パラメータ(base inertial parameters, or minimal set of inertial parameters)φBが含まれる。
最小力学パラメータφBを数値的・解析的に計算する手段は確立されており、例えば、非特許文献1乃至3に記載されている。
運動方程式は、最小力学パラメータφBのみで表すことができる。
本明細書において、力学パラメータ(inertial parameters or dynamic parameters)には、全力学パラメータ、すなわち、一般に、剛体1個あたり、質量1、重心位置と質量の積3、慣性テンソル6の10個のパラメータからなる通常の力学パラメータφ、および、最小力学パラメータ(base inertial parameters, or minimal set of inertial parameters)φBが含まれる。
最小力学パラメータφBを数値的・解析的に計算する手段は確立されており、例えば、非特許文献1乃至3に記載されている。
運動方程式は、最小力学パラメータφBのみで表すことができる。
ヒューマノイドロボットは、労働力や介護など人間社会への進出が今後期待されている。ヒューマノイドは荷物を持つなど、運動中に自分自身の質量・重心などのパラメータが変化するため、高度な運動制御を安全に実現するためには同定技術は重要である。
力学同定はロボティクスにおける大きな研究分野であり、多分野への応用も見られるが、ヒューマノイドへの応用例は少ない。これには以下のような理由が考えられる。力学同定を行う場合、各関節の運動方程式の構造を利用することが多く、一般化座標、床反力、関節トルクのセンサ情報を必要とする。6軸力センサやフォースプレート等を利用して床反力を計測することは比較的容易であるが、多くのヒューマノイドは各関節にトルクセンサを搭載していないため正確な関節トルク計測は困難である。
力学パラメータはCADから概算可能であるが、電装系やアクチュエータも含めたモデル化は困難である。またCADなどに基づく理論的なモデル化に留まらず、力学パラメータを同定によって実測することが望ましい。
また、人体における力学パラメータは、リハビリなど医療の定期診断やスポーツなどの身体解析において利用価値が高く、力学パラメータの同定を被験者に負担を与えずに行うことが望まれる。
Gautier M. Numerical calculation of the base inertial parameters of robots. Proc. of the IEEE Int. Conf. on Robotics and Automation, Vol. 2, pp. 1020.1025, May 1990. H. Kawasaki, Y. Beniya, and K. Kanzaki. Minimum dynamics parameters of tree structure robot models. In Int. Conf. of Industrial Electronics, Control and Instrumentation, Vol. 2, pp. 1100. 1105, 1991. W. Khalil and F. Bennis. Symbolic calculation of the base inertial parameters of closed-loop robots. The Int. J. of Robotics Research, Vol. 14(2), pp. 112.128, April 1995.
Gautier M. Numerical calculation of the base inertial parameters of robots. Proc. of the IEEE Int. Conf. on Robotics and Automation, Vol. 2, pp. 1020.1025, May 1990. H. Kawasaki, Y. Beniya, and K. Kanzaki. Minimum dynamics parameters of tree structure robot models. In Int. Conf. of Industrial Electronics, Control and Instrumentation, Vol. 2, pp. 1100. 1105, 1991. W. Khalil and F. Bennis. Symbolic calculation of the base inertial parameters of closed-loop robots. The Int. J. of Robotics Research, Vol. 14(2), pp. 112.128, April 1995.
本発明の目的は、関節トルク計測が不要な力学パラメータの同定法を提供することにある。
本発明は、環境に固定されていない多関節リンク機構で表現される被験体の運動を、任意に選択されたベースリンクの空間運動とリンク系の関節運動で表し、
ベースリンクの一般化座標、各関節角度及びこれらの速度、加速度、ならびに環境との接触点に働く外力、の各計測値と、
数1に示す多関節リンク機構のベースリンクに関する運動方程式と、
を用いて、多関節リンク構造の最小力学パラメータφBを同定する方法、である。
ここで、
YB1は、ベースリンクの一般化座標、各関節角度及びこれらの速度、加速度、から求められる観測行列、
Fkは、接触点kに働く外力、
Kk1は、接触点kにおける外力を一般化力へ変換する行列、
Ncは、多関節リンク構造と環境との接触点の総数、
である。
ベースリンクの一般化座標、各関節角度及びこれらの速度、加速度、ならびに環境との接触点に働く外力、の各計測値と、
数1に示す多関節リンク機構のベースリンクに関する運動方程式と、
を用いて、多関節リンク構造の最小力学パラメータφBを同定する方法、である。
YB1は、ベースリンクの一般化座標、各関節角度及びこれらの速度、加速度、から求められる観測行列、
Fkは、接触点kに働く外力、
Kk1は、接触点kにおける外力を一般化力へ変換する行列、
Ncは、多関節リンク構造と環境との接触点の総数、
である。
ベースリンクは、多関節リンク構造を表現する木構造のルート(根)に相当するリンクである。典型的な態様例では、ルートリンクは体幹リンク、体幹が複数のリンクからなる場合はその中の1つ、あるいは、腰関節あるいは下腹部に対応する部位に設定される。
1つの態様では、前記観測行列は、ベースリンクの一般化座標(6自由度の一般化座標ベクトル)およびその微分(導関数)、及び、各関節角度及び各関節角度の速度、加速度の関数であるリグレッサ行列である。
1つの態様では、接触点kにおける外力を一般化力へ変換する行列は、点kへのヤコビ行列の転置行列である。
1つの態様では、前記観測行列は、ベースリンクの一般化座標(6自由度の一般化座標ベクトル)およびその微分(導関数)、及び、各関節角度及び各関節角度の速度、加速度の関数であるリグレッサ行列である。
1つの態様では、接触点kにおける外力を一般化力へ変換する行列は、点kへのヤコビ行列の転置行列である。
1つの態様では、前記被験体は、ヒューマノイドである。
1つの態様では、前記被験体は、人体である。人体は複数の関節を備えた剛体リンク構造としてモデル化することができる。
また、本発明は、ヒューマノイドや人体に限らず、脚を持つ移動システムに応用可能である。ヒューマノイドロボットや4足歩行ロボットなどのロボットの全身の各部位の力学パラメータ(質量、重心位置、慣性テンソル等)などの情報を運動情報(例えば、床反力計の上を移動したときの情報)から推定することができる。
本発明において、被験体が環境と接触した状態での運動であれば、力学パラメータ同定に用いられる被験体の運動の種類は限定されず、歩行、サイドステップ、体幹の折り曲げ、スクワット等が例示される。典型的には、全重心を大きく変化させる運動の組み合わせが用いられる。
1つの態様では、前記被験体は、人体である。人体は複数の関節を備えた剛体リンク構造としてモデル化することができる。
また、本発明は、ヒューマノイドや人体に限らず、脚を持つ移動システムに応用可能である。ヒューマノイドロボットや4足歩行ロボットなどのロボットの全身の各部位の力学パラメータ(質量、重心位置、慣性テンソル等)などの情報を運動情報(例えば、床反力計の上を移動したときの情報)から推定することができる。
本発明において、被験体が環境と接触した状態での運動であれば、力学パラメータ同定に用いられる被験体の運動の種類は限定されず、歩行、サイドステップ、体幹の折り曲げ、スクワット等が例示される。典型的には、全重心を大きく変化させる運動の組み合わせが用いられる。
1つの態様では、前記外力は床反力である。床反力は、6軸の力を検出することができる床反力計測手段によって取得することができ、このような手段は当業者によく知られている。より具体的には、床反力は、床面に敷設した力センサ(例えば、フォースプレート)、あるいは、被験体の脚部に装着した力センサ(例えば靴底力センサ)、によって計測することが可能である。
1つの態様では、前記各関節角度は、各関節に搭載されているエンコーダによって計測される。例えば、ヒューマノイドの場合、各関節にエンコーダが搭載されている。
1つの態様では、前記各関節角度は、被験体の各リンクにマーカを配置し、モーションキャプチャによって取得されたマーカ位置の時系列データから逆運動学計算によって取得される。モーションキャプチャによって取得した被験体の運動データから各関節角度の時系列データを取得することは当業者によく知られている。
1つの態様では、前記各関節角度は、被験体の各リンクにマーカを配置し、モーションキャプチャによって取得されたマーカ位置の時系列データから逆運動学計算によって取得される。モーションキャプチャによって取得した被験体の運動データから各関節角度の時系列データを取得することは当業者によく知られている。
1つの態様では、ベースリンクの一般化座標は、ベースリンクに搭載されたジャイロ加速度センサによって計測される。
1つの態様では、ベースリンクの一般化座標は、被験体のベースリンクにマーカを配置し、モーションキャプチャによって取得されたマーカ位置の時系列データからベースリンクの位置・姿勢を計算することで取得される。
1つの態様では、ベースリンクの一般化座標は、被験体のベースリンクにマーカを配置し、モーションキャプチャによって取得されたマーカ位置の時系列データからベースリンクの位置・姿勢を計算することで取得される。
1つの態様では、床面に敷設した床反力計測用のフォースプレート上で運動する被験体を、床反力の計測と同期するモーションキャプチャシステムのカメラで撮影し、
前記床反力は、前記フォースプレートにより計測され、
前記ベースリンクの一般化座標、前記各関節角度、は、モーションキャプチャによって取得されたマーカ位置の時系列データから計算される。
こうすることで、被験体に負担をかけることなく、力学パラメータ同定に必要な情報を取得することができる。
本発明において、必要な情報を取得するためのモーションキャプチャシステムは一つの好適な例ではマーカを被験体に配置するタイプの光学式モーションキャプチャシステムであるが、モーションキャプチャ方式はこのタイプの光学式のみには限定されない。
1つの態様では、本発明を実行するためのハードウェア構成としては、マーカが付された被験者を撮影する複数の撮像手段(カメラ)と、床反力計測手段(フォースプレート)と、一つ又は複数のコンピュータ装置とを含み、コンピュータ装置は、各種計算を行う演算処理部、入力部、出力部、表示部、各種データを格納する記憶部を備えている。
前記床反力は、前記フォースプレートにより計測され、
前記ベースリンクの一般化座標、前記各関節角度、は、モーションキャプチャによって取得されたマーカ位置の時系列データから計算される。
こうすることで、被験体に負担をかけることなく、力学パラメータ同定に必要な情報を取得することができる。
本発明において、必要な情報を取得するためのモーションキャプチャシステムは一つの好適な例ではマーカを被験体に配置するタイプの光学式モーションキャプチャシステムであるが、モーションキャプチャ方式はこのタイプの光学式のみには限定されない。
1つの態様では、本発明を実行するためのハードウェア構成としては、マーカが付された被験者を撮影する複数の撮像手段(カメラ)と、床反力計測手段(フォースプレート)と、一つ又は複数のコンピュータ装置とを含み、コンピュータ装置は、各種計算を行う演算処理部、入力部、出力部、表示部、各種データを格納する記憶部を備えている。
1つの態様では、ベースリンクの一般化座標、各関節角度及びこれらの速度、加速度、ならびに環境との接触点に働く外力、の計測時に、前記最小力学パラメータを実時間で計算する。
1つの態様では、前記被験体は人体であり、被験者の運動時に前記最小力学パラメータを実時間で計算する。
最小力学パラメータの実時間計算は、例えば、逐次的に最小二乗法を解くことで可能であることが当業者に理解される。後述する実施形態では、いわゆる忘却機能付き逐次的一般化最小二乗法を用いて実時間計算を行っている。
1つの態様では、前記被験体は人体であり、被験者の運動時に前記最小力学パラメータを実時間で計算する。
最小力学パラメータの実時間計算は、例えば、逐次的に最小二乗法を解くことで可能であることが当業者に理解される。後述する実施形態では、いわゆる忘却機能付き逐次的一般化最小二乗法を用いて実時間計算を行っている。
1つの態様では、前記被験体のリンク機構モデルを表示部に表示し、各リンクの最小力学パラメータの同定の程度を、表示されたリンク機構モデルにおいてリンク毎に同定の程度に応じて視覚的に表示する。
1つの態様では、前記最小力学パラメータの同定の程度に応じてリンクの色を変化させて表示する。
同定の程度を色の変化で認識できるものであれば、色の変化の組み合わせは任意である。また、色の透明度や輝度などを変化させてもよい。
また、前記最小力学パラメータの同定の程度を濃淡やテクスチャの変化で視覚的に表示してよい。
同定の程度を理解できるのであれば他の形態でもよい。例えば、表示用のヒューマンフィギュアの各リンクの大きさを変化させるなど、形状変化によって同定の程度を表示してもよい。
1つの態様では、前記最小力学パラメータの同定が不十分なリンクを被験者に視覚的に認識させることで、当該リンクに対応する身体部位の運動を促す。
1つの態様では、各リンク毎に、各最小力学パラメータの同定の程度を求め、求めた複数の最小力学パラメータの同定の程度を用いて、各リンクとしての最小力学パラメータの同定の程度を算出する。
1つの態様では、各リンクにおいて、各最小力学パラメータを、求めた同定の程度に応じて3つのグループに分類して各グループに3原色(典型的にはRGB)の各色を割り当て、各グループに属する最小力学パラメータの数の割合に基づいて表示部に表示された当該リンクの画素における各色の濃度値を決定する。
個々の最小力学パラメータの同定の程度を用いて、リンク全体としての同定の程度をどのように決定するかについては、他にも手法があり得ることが当業者に理解される。
1つの態様では、各最小力学パラメータの同定の程度の指標は、各最小力学パラメータの推定値の時系列データの各推定値と当該最小力学パラメータの目標値との誤差の分散である。
すなわち、最小力学パラメータの推定時に、推定された各最小力学パラメータが目標値に対してどれくらいの誤差を持っているか、すなわち、ある時刻tまでに推定された誤差の分散を逐次計算して、分散が小さくなったならばパラメータが良く同定できている判定する。
逐次推定されていく最小力学パラメータの推定値と目標値(真値)との誤差の分散を計算する時に、被験体がロボットであればCAD等から最小力学パラメータの真値が分かるが、被験体が人体の場合には、最小力学パラメータの真値は一般に分からない。そこで、最小力学パラメータの推定値から外力の推定値を計算して、この外力の推定値と実際の外力の計測値との誤差を求める。求めた外力の推定値と外力の計測値との誤差と、運動データを行列表現したリグレッサ行列Yから、間接的に推定された最小力学パラメータの誤差の分散を計算することができる。すなわち、外力の誤差から、各々の最小力学パラメータの誤差の分散を直接計算する。
1つの態様では、前記指標としての誤差の分散は、相対標準偏差である。
また、データベースや文献から得られた値を最小力学パラメータの真値と仮定して、この仮想真値を目標値として用いても良い。
同定の程度を確認する手段は、上述のような「パラメータの推定値の分散を確認する」ことに限定されない。
パラメータの真値が分かっている場合は、推定値と真値を直接比較することで同定の程度を確認してもよい。この場合、現時点での値を比較する。また、上記のデータベースや文献から得られた仮想真値を用いてもよい。
床反力の推定値と床反力の計測値とが一致しているか否かを確認してもよい。また、床反力の推定地値と計測値はそれぞれベクトルとして矢印で表示部に表示され、両ベクトルがよく一致していれば、同定の程度は良いと判断できる。この場合、現時点での外力の計測値と推定値を比較すればよいが、ある一定の時系列フレームの全てにおいて外力が正しく推定できているかどうかを確認することが望ましい。
1つの態様では、前記最小力学パラメータの同定の程度に応じてリンクの色を変化させて表示する。
同定の程度を色の変化で認識できるものであれば、色の変化の組み合わせは任意である。また、色の透明度や輝度などを変化させてもよい。
また、前記最小力学パラメータの同定の程度を濃淡やテクスチャの変化で視覚的に表示してよい。
同定の程度を理解できるのであれば他の形態でもよい。例えば、表示用のヒューマンフィギュアの各リンクの大きさを変化させるなど、形状変化によって同定の程度を表示してもよい。
1つの態様では、前記最小力学パラメータの同定が不十分なリンクを被験者に視覚的に認識させることで、当該リンクに対応する身体部位の運動を促す。
1つの態様では、各リンク毎に、各最小力学パラメータの同定の程度を求め、求めた複数の最小力学パラメータの同定の程度を用いて、各リンクとしての最小力学パラメータの同定の程度を算出する。
1つの態様では、各リンクにおいて、各最小力学パラメータを、求めた同定の程度に応じて3つのグループに分類して各グループに3原色(典型的にはRGB)の各色を割り当て、各グループに属する最小力学パラメータの数の割合に基づいて表示部に表示された当該リンクの画素における各色の濃度値を決定する。
個々の最小力学パラメータの同定の程度を用いて、リンク全体としての同定の程度をどのように決定するかについては、他にも手法があり得ることが当業者に理解される。
1つの態様では、各最小力学パラメータの同定の程度の指標は、各最小力学パラメータの推定値の時系列データの各推定値と当該最小力学パラメータの目標値との誤差の分散である。
すなわち、最小力学パラメータの推定時に、推定された各最小力学パラメータが目標値に対してどれくらいの誤差を持っているか、すなわち、ある時刻tまでに推定された誤差の分散を逐次計算して、分散が小さくなったならばパラメータが良く同定できている判定する。
逐次推定されていく最小力学パラメータの推定値と目標値(真値)との誤差の分散を計算する時に、被験体がロボットであればCAD等から最小力学パラメータの真値が分かるが、被験体が人体の場合には、最小力学パラメータの真値は一般に分からない。そこで、最小力学パラメータの推定値から外力の推定値を計算して、この外力の推定値と実際の外力の計測値との誤差を求める。求めた外力の推定値と外力の計測値との誤差と、運動データを行列表現したリグレッサ行列Yから、間接的に推定された最小力学パラメータの誤差の分散を計算することができる。すなわち、外力の誤差から、各々の最小力学パラメータの誤差の分散を直接計算する。
1つの態様では、前記指標としての誤差の分散は、相対標準偏差である。
また、データベースや文献から得られた値を最小力学パラメータの真値と仮定して、この仮想真値を目標値として用いても良い。
同定の程度を確認する手段は、上述のような「パラメータの推定値の分散を確認する」ことに限定されない。
パラメータの真値が分かっている場合は、推定値と真値を直接比較することで同定の程度を確認してもよい。この場合、現時点での値を比較する。また、上記のデータベースや文献から得られた仮想真値を用いてもよい。
床反力の推定値と床反力の計測値とが一致しているか否かを確認してもよい。また、床反力の推定地値と計測値はそれぞれベクトルとして矢印で表示部に表示され、両ベクトルがよく一致していれば、同定の程度は良いと判断できる。この場合、現時点での外力の計測値と推定値を比較すればよいが、ある一定の時系列フレームの全てにおいて外力が正しく推定できているかどうかを確認することが望ましい。
1つの態様では、
前記被験体のリンク機構モデルの各リンクの全力学パラメータの事前情報を用意し、
前記同定された最小力学パラメータを満たすように前記事前情報を補正することで、前記事前情報と前記同定された最小力学パラメータとから全力学パラメータを推定する。
1つの態様では、全力学パラメータの事前情報は、特開2008-77551号に開示された手法を用いることができる。この手法では、身体の各部位の寸法を表す変数から説明変数を選択し、他の変数を目的変数として、説明変数の実測値に基づいて目的変数の値を推定し、剛体リンク機構でモデル化した身体の各リンクの体積を前記説明変数及び前記目的変数の少なくとも一部を用いて算出し、身体の総体積と体重とから比重を算出し、算出された比重から各リンクの質量及び慣性モーメントを求める。身体各部位の寸法を含むデータベースと、被験者の身体の数箇所を計測したデータを用いて、各部位の全力学パラメータを推定することができる。光学式モーションキャプチャを用いる場合には、被験者に装着する光学式マーカの位置を用いて所望の身体部位の寸法を計測することができる。
全力学パラメータの事前情報は、人間の質量データベースや文献の値をそのまま用いるものでもよい。
前記被験体のリンク機構モデルの各リンクの全力学パラメータの事前情報を用意し、
前記同定された最小力学パラメータを満たすように前記事前情報を補正することで、前記事前情報と前記同定された最小力学パラメータとから全力学パラメータを推定する。
1つの態様では、全力学パラメータの事前情報は、特開2008-77551号に開示された手法を用いることができる。この手法では、身体の各部位の寸法を表す変数から説明変数を選択し、他の変数を目的変数として、説明変数の実測値に基づいて目的変数の値を推定し、剛体リンク機構でモデル化した身体の各リンクの体積を前記説明変数及び前記目的変数の少なくとも一部を用いて算出し、身体の総体積と体重とから比重を算出し、算出された比重から各リンクの質量及び慣性モーメントを求める。身体各部位の寸法を含むデータベースと、被験者の身体の数箇所を計測したデータを用いて、各部位の全力学パラメータを推定することができる。光学式モーションキャプチャを用いる場合には、被験者に装着する光学式マーカの位置を用いて所望の身体部位の寸法を計測することができる。
全力学パラメータの事前情報は、人間の質量データベースや文献の値をそのまま用いるものでもよい。
本発明では、各関節のトルクを計測せずに、多関節リンク構造のベースリンクの運動方程式のみから、全外力を計測することで、多関節リンク構造の全身の最小力学パラメータが同定可能である。
本発明の力学パラメータの同定には、各関節トルクの計測が不要であるため、関節にトルクセンサが搭載されていないシステムに対しても、本発明の同定法を利用することが可能であるため、既存のシステムに対して広範囲に本技術を利用できる。また、本発明は、完成機(電気系の配線や追加部品が装着されたロボット)を用いた力学パラメータ同定を行うことが可能である。
本発明の力学パラメータの同定には、各関節トルクの計測が不要であるため、関節にトルクセンサが搭載されていないシステムに対しても、本発明の同定法を利用することが可能であるため、既存のシステムに対して広範囲に本技術を利用できる。また、本発明は、完成機(電気系の配線や追加部品が装着されたロボット)を用いた力学パラメータ同定を行うことが可能である。
本発明は、外力計測に基づくため摩擦などの内力に影響されない。床反力計で外部から計測する場合は、接地状態に依存されずに同定できる。また、ベースリンクの運動方程式しか同定に利用しないので、全運動方程式を用いる通常の手法よりも、同定にかかる計算量が少ない。
本発明は、人体の計測にも利用可能である。本手法は、人間が床反力計の上を移動する情報から全身の各部位の力学パラメータを推定することができるので、被験者に対しての負荷が軽く、簡単な運動計測で力学パラメータを同定することが可能である。リハビリなど医療の定期診断やスポーツなどの身体解析において特に利用価値が高い。
被験者の運動計測中に実時間で同定を行い、各身体部位の同定結果を視覚化することで、被験者に同定をする上で適切な運動を直感的に理解させることができ、被験者は同定が不十分な部位を特定して、その部位を十分に動かすことで、全身を同定するのに十分な運動を生成できる。
全力学パラメータの事前情報と、推定された最小力学パラメータと、からより精度の高い全力学パラメータ(体の部位毎と剛体としてモデル化した場合に、1個の剛体につき、質量1、重心位置と質量の積3、慣性テンソル6の10個のパラメータ)を推定することができる。
[A]関節トルクの計測を必要としない運動学パラメータの同定
二足歩行型システム等の脚を備えた移動システムの運動方程式は、式(1)に示すモデルで表現できる。このような移動システムとしては、典型的には、ヒューマノイドや人体が含まれる。式(1)のモデルにおいて、上段は、ベースリンクの自由運動を表し、下段は、全身を構成するN体(N:肢、体幹、頭部等であって、選択されたモデルによって異なる)の連鎖運動を表している。
二足歩行型システム等の脚を備えた移動システムの運動方程式は、式(1)に示すモデルで表現できる。このような移動システムとしては、典型的には、ヒューマノイドや人体が含まれる。式(1)のモデルにおいて、上段は、ベースリンクの自由運動を表し、下段は、全身を構成するN体(N:肢、体幹、頭部等であって、選択されたモデルによって異なる)の連鎖運動を表している。
ベースリンクは基底であり、どのリンクにも設定可能であるが、一般的に体幹リンク(腰関節の近傍)とする。多リンク系の運動方程式は、質量・重心位置と質量の積・慣性テンソルなどの力学パラメータに対して、線形な関係式で表わすことができる。このとき、式(1)は式(2)のように変形できる。
力学パラメータφは、
と表すことができる、
φjは、各リンクBj(j=0からN)の力学パラメータのベクトルであり、
と表すことができる。
ここで、
mjは質量、
Ij,xx,Ij,yy,Ij,zz,Ij,yz,Ij,zx,Ij,xyは、慣性行列Ijの6独立要素、
msj,x,msj,y,msj,zは、ベクトルmsjの各要素であり、重心位置と質量の積、
である。
φjは、各リンクBj(j=0からN)の力学パラメータのベクトルであり、
ここで、
mjは質量、
Ij,xx,Ij,yy,Ij,zz,Ij,yz,Ij,zx,Ij,xyは、慣性行列Ijの6独立要素、
msj,x,msj,y,msj,zは、ベクトルmsjの各要素であり、重心位置と質量の積、
である。
一般的に力学パラメータφは冗長であり、一意に同定できず、動力学モデルの計算に必要最小限なパラメータに定式化する必要がある。この最小力学パラメータを数値的・解析的に計算する手段は確立されており、例えば、非特許文献1乃至3に記載されている。
ここで、式(5)を用いて最小力学パラメータを同定するためには、ベースリンクの位置・姿勢、各関節の座標、接触力、各関節の関節トルクの情報が必要となる。すなわち、通常の力学同定には、すべての関節トルクの計測が必要となるが、一般的には関節トルクの正確な計測は困難である。例えば、多くのヒューマノイドは各関節にトルクセンサを搭載していない。またアクチュエータの入力から出力トルクの推定も可能だが、ギアなどの動力伝達部は複雑であり、正確なトルク計測は困難である。その一方で、足首に6軸力センサを搭載するなど、床反力を計測できるケースは多い。そこで、トルク計測の代わりに、床反力計測を用いた同定を考える。
式(5)の上段のみ、すなわちベースリンクの運動方程式のみに注目した。
式(6)の大きな特徴は、一般化力がゼロという力学的拘束条件である。式(6)中には、関節トルクτは含まれず、また一般化力は常にゼロなので、どちらも計測不要である。よって式(6)を利用した同定に必要な情報は、各接触点kとそこに働く外力Fk、および関節角度θとベースリンクの一般化座標q0となる(図1参照)。
これらの情報は、エンコーダ、6軸力センサ、加速度センサ、ジャイロセンサ、モーションキャプチャシステム等で計測可能であり、多くのヒューマノイドや人体に対してこの同定法が適用できる。
また、式(6)の右辺は、ベースリンク原点にかかる6軸の全外力Fとなり、Fを外部から直接計測できる場合は、片脚支持、両脚支持というような接地条件によらずに同定できる。さらにベースリンクの同定は、式(6)中に個々の関節の摩擦力などを含まないため、これらの影響を受けないという大きな利点もある。
また、式(6)の右辺は、ベースリンク原点にかかる6軸の全外力Fとなり、Fを外部から直接計測できる場合は、片脚支持、両脚支持というような接地条件によらずに同定できる。さらにベースリンクの同定は、式(6)中に個々の関節の摩擦力などを含まないため、これらの影響を受けないという大きな利点もある。
一方、式(6)だけを用いて式(5)の最小力学パラメータφBを同定するためには、φBが式(6)においても最小力学パラメータである必要がある。
ベースリンクの運動方程式における可同定性は、ベースリンクから末端リンクへ向かって最小力学パラメータを編成していく議論である。
図2の左側の鎖線で囲まれたサブリンク系Cj-1は、すでに最小力学パラメータの編成が終了しているとする。次に、図中の右側のように新しくリンクjを追加して、サブリンク系Cjについて最小力学パラメータを編成する。これをリンクn-1まで繰り返すことで、全リンクの最小力学パラメータを導出する。
本願の発明者らは、シミュレーション、実験により、式(6)だけを用いた場合でもφBが同定可能であることを検証した。
また、回転関節又は直動関節で構成される多関節リンク構造において、ベースリンクの運動方程式における最小力学パラメータと、全リンクの運動方程式における最小力学パラメータが一致することを数式で立証した。
詳細については、以下の文献を参照することができる。
鮎澤光,ベンチャー・ジェンチャン,中村仁彦,"ベースリンクの運動方程式を利用したヒューマノイドロボットの力学パラメータの可同定性," 日本機械学会ロボティクス・メカトロニクス講演会'08, pp. 2P1.F09, 2008.
ベースリンクの運動方程式における可同定性は、ベースリンクから末端リンクへ向かって最小力学パラメータを編成していく議論である。
図2の左側の鎖線で囲まれたサブリンク系Cj-1は、すでに最小力学パラメータの編成が終了しているとする。次に、図中の右側のように新しくリンクjを追加して、サブリンク系Cjについて最小力学パラメータを編成する。これをリンクn-1まで繰り返すことで、全リンクの最小力学パラメータを導出する。
本願の発明者らは、シミュレーション、実験により、式(6)だけを用いた場合でもφBが同定可能であることを検証した。
また、回転関節又は直動関節で構成される多関節リンク構造において、ベースリンクの運動方程式における最小力学パラメータと、全リンクの運動方程式における最小力学パラメータが一致することを数式で立証した。
詳細については、以下の文献を参照することができる。
鮎澤光,ベンチャー・ジェンチャン,中村仁彦,"ベースリンクの運動方程式を利用したヒューマノイドロボットの力学パラメータの可同定性," 日本機械学会ロボティクス・メカトロニクス講演会'08, pp. 2P1.F09, 2008.
[B]本発明に係る力学パラメータの同定法のヒューマノイドへの適用
ヒューマノイドのベースリンクの運動方程式のみを利用し、ロボットの胴体の位置と姿勢、関節角度、床反力を計測することで、ヒューマノイドの全身の力学パラメータを同定する手法について述べる。
図3A、表1に示す小型ヒューマノイドロボットUT-μ2(T. Sugihara, K. Yamamoto, and Y. Nakamura. Architectural design of miniature anthropomorphic robots towards high-mobility. In Proc. of the 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1083.1088, Edmonton, August 2005.)を用いて、力学パラメータの同定を行った。
UT-μ2の多関節リンク構造は、全21リンク、全26自由度である。ベースリンクB0(体幹)、リンクB1からB6(右脚)、リンクB7からB12(左脚)、リンクB13からB16(右腕)、リンクB17からB20(左腕)、からなる。
下半身の同定に焦点を絞り、運動中は上半身を動作させない(ブレーキがかかった)状態とする。このときUT-μ2は、各脚の6個の回転関節を持つことから、全13リンク、全18自由度となる。
ヒューマノイドのベースリンクの運動方程式のみを利用し、ロボットの胴体の位置と姿勢、関節角度、床反力を計測することで、ヒューマノイドの全身の力学パラメータを同定する手法について述べる。
図3A、表1に示す小型ヒューマノイドロボットUT-μ2(T. Sugihara, K. Yamamoto, and Y. Nakamura. Architectural design of miniature anthropomorphic robots towards high-mobility. In Proc. of the 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1083.1088, Edmonton, August 2005.)を用いて、力学パラメータの同定を行った。
下半身の同定に焦点を絞り、運動中は上半身を動作させない(ブレーキがかかった)状態とする。このときUT-μ2は、各脚の6個の回転関節を持つことから、全13リンク、全18自由度となる。
各リンクの最小力学パラメータφBは、解析的な手法(非特許文献2)を用いて計算した。φB、及び、それに対応するリグレッサ行列YB1の計算の詳細は後述する。
まず、動力学シミュレーションを行い、そのときの運動データを用いて同定を行った。シミュレーションの目的は、ベースリンクの運動方程式(6)によって、全リンクの運動方程式(5)における最小力学パラメータφBを同定可能かの検証を行い、またφBの精度の良い同定を行える運動の種類を求めることである。
シミュレーションは、動力学計算ソフトウェアライブラリ(K. Yamane and Y. Nakamura. Dynamics computation of structure-varying kinematic chains and its application to human figures. IEEE Trans. on Robotics and Automation, Vol. 16, No. 2, pp. 124. 134, 2000.)を利用した。地面との接触力はバネ・ダンパモデルを利用して計算した。
またシミュレーションで利用した力学パラメータの真値φBには、CADからあらかじめ計算した値φBaprioriを用いた。
シミュレーションは、動力学計算ソフトウェアライブラリ(K. Yamane and Y. Nakamura. Dynamics computation of structure-varying kinematic chains and its application to human figures. IEEE Trans. on Robotics and Automation, Vol. 16, No. 2, pp. 124. 134, 2000.)を利用した。地面との接触力はバネ・ダンパモデルを利用して計算した。
またシミュレーションで利用した力学パラメータの真値φBには、CADからあらかじめ計算した値φBaprioriを用いた。
10歩の前進歩行を行ったシミュレーションデータを用いて、同定したパラメータφ(ハット)Bと、誤差e=φ(ハット)B-φBaprioriを図4に示す。同定した94個の各パラメータの誤差は小さく、本発明に係る力学パラメータの同定法が有効であり、歩行データから下半身の同定が成功したことが分かる。
次に、実験について説明する。各リンクの力学パラメータは、CADから概算できる。しかし、電気系の配線やハードウェアの追加部品、アクチュエータの慣性などを考慮に入れると、実際の力学パラメータとは誤差が生じる。例えば、CAD上でのロボットの全質量は6.7[kg]であるが、実計測した全質量は8.0[kg]となった。両足先に追加パーツを加えていることもあるが、誤差が16.25[%]もあり、ロボット全体の力学パラメータに大きな影響を与え、力学パラメータの同定の重要性が理解できる。
UT-μ2は、現状では加速度・ジャイロセンサによる胴体の一般化座標q0の正確な計測ができないため、実験では光学式モーションキャプチャを利用してq0を計測する。ロボットの胴体に光学マーカをつけて、10個のカメラを用いて、ロボットの運動を計測する。外力計測には、ロボットの足首に搭載した力センサの代わりに、6軸の接触力を計測可能なフォースプレートを利用する。フォースプレートはモーションキャプチャと同期して、約70[g]の分解能で6軸の全接触力Fを計測できる。また、ロボットの関節角度θは、各関節に搭載されているエンコーダで計測する。実験の様子を図3Aに示す。
実験では、次の二種類の運動データを計測した。
●4歩だけ前進歩行する(1歩は0.5[s]で踏み出す)
●体幹をx,y,z軸周りにゆっくり折り曲げる。
まず上記の歩行データのみを利用して、力学パラメータφ(ハット)Bwalkを同定した。次に、φ(ハット)Bwalkを用いて、上記の両方の運動時の外力を再構成し、実際に計測した外力と比較した。
●4歩だけ前進歩行する(1歩は0.5[s]で踏み出す)
●体幹をx,y,z軸周りにゆっくり折り曲げる。
まず上記の歩行データのみを利用して、力学パラメータφ(ハット)Bwalkを同定した。次に、φ(ハット)Bwalkを用いて、上記の両方の運動時の外力を再構成し、実際に計測した外力と比較した。
同定結果を図5A、図5Bに示す。データのサンプリングタイムは共に3[ms]であり、図中の太実線が、計測された外力K1Fと、同定した力学パラメータφ(ハット)Bwalkから計算した外力YB1φ(ハット)Bwalkと、が一致して重なっている状態を示している。細点線が、CADから得られた力学パラメータφBaprioriから計算した外力YB1φBaprioriとなる。
94次元の力学パラメータを同定し、同定したパラメータから求めた外力はよく推定できていることが分かる。また、歩行データから同定したパラメータは、体幹を曲げる動作においても外力パターンを再現できている。一方、同定したパラメータと予めCADから求めたパラメータでは、FZ,NX,NYにおいて明らかに違いがあり、同定したパラメータの方がより正確に外力パターンを再現できている。
一方、同定されたロボットの全質量は7.93[kg]となり、実際の全質量の計測値に対して0.07[kg]の誤差が生じている。また、NY,NZにおいて、0.2[Nm]程度の誤差が生じている。これらは、フォースプレートの分解能0.7[N]の範囲内である。
YB1およびφBの計算について詳細に説明する。
ここでは、n個の回転関節のみをもつヒューマノイドの力学パラメータφB、及びそれに対応するベースリンクのリグレッサ行列YB1を導出する。
ここで用いる変数を以下に示す。
ここでは、n個の回転関節のみをもつヒューマノイドの力学パラメータφB、及びそれに対応するベースリンクのリグレッサ行列YB1を導出する。
ここで用いる変数を以下に示す。
次に、最小力学パラメータφBを求める。
まず、Mi,MSi,Jiを計算する。Mi,MSi,Jiは、リンクiの末端側に属する全リンクの力学パラメータの組み合わせで表わされ、末端リンクから順に計算する。ここでは全関節が回転関節であり、またベースリンクが6自由度を持つため、次のように計算できる。
ただし,i-1ri,Uは次のようにおく。
まず、Mi,MSi,Jiを計算する。Mi,MSi,Jiは、リンクiの末端側に属する全リンクの力学パラメータの組み合わせで表わされ、末端リンクから順に計算する。ここでは全関節が回転関節であり、またベースリンクが6自由度を持つため、次のように計算できる。
次に、UT-μ2の最小力学パラメータについて説明する。UT-μ2は21リンク、26自由度を持つが、本稿では上半身を固定して考え、両脚各6関節、全13リンク、全18自由度とする。ここで、胴体リンクをベースリンクB0、右脚6リンクを胴体側からB1-B6、左脚6リンクを胴体側からB7-B12と表わす。
CADから求めたφを用いて、上記の手法を用いて94次元の最小力学パラメータφBaprioriを計算した。
本発明に係る力学パラメータの同定法のヒューマノイドへの適用について小括する。
各関節のトルクを計測せず、ベースリンクの運動方程式のみから、全外力を計測することで全身の最小力学パラメータを同定する手法について述べた。
上半身を動作させないようにブレーキをかけた状態のUT-μ2を用いて、シミュレーションを行い、10歩の歩行データから、94次元の最小力学パラメータを誤差なく同定できた。
実験を行い、4歩の歩行データのみから力学パラメータを同定した。同定したパラメータを用いて、歩行データと体幹を曲げる動作の二種類に対して、外力パターンを再構成した。同定したパラメータを用いて再構成した外力パターンは、CADから概算したパラメータを用いた場合よりも、実験データをよく再現できており、同定の重要性を示している。
各関節のトルクを計測せず、ベースリンクの運動方程式のみから、全外力を計測することで全身の最小力学パラメータを同定する手法について述べた。
上半身を動作させないようにブレーキをかけた状態のUT-μ2を用いて、シミュレーションを行い、10歩の歩行データから、94次元の最小力学パラメータを誤差なく同定できた。
実験を行い、4歩の歩行データのみから力学パラメータを同定した。同定したパラメータを用いて、歩行データと体幹を曲げる動作の二種類に対して、外力パターンを再構成した。同定したパラメータを用いて再構成した外力パターンは、CADから概算したパラメータを用いた場合よりも、実験データをよく再現できており、同定の重要性を示している。
[C]本発明に係る力学パラメータの同定法の人体への適用
本発明に係る力学パラメータの同定法は、人体にも適用することができる。人体は、剛体リンク構造としてモデル化することができる。リンクの数や自由度は、当業者において適宜設定できる。ここでは、15の部分からなり、34自由度のモデルを考える(図6A、表2)。
本発明に係る力学パラメータの同定法は、人体にも適用することができる。人体は、剛体リンク構造としてモデル化することができる。リンクの数や自由度は、当業者において適宜設定できる。ここでは、15の部分からなり、34自由度のモデルを考える(図6A、表2)。
ヒューマノイドの場合と同様に、人体モデルの力学パラメータφから最小力学パラメータφBを計算することができる。
回転関節の場合は、
となる。
球面関節の場合は、
となる。
ここで、
Miは、連鎖における下位のリンクの質量の合計を表すリンクiの力学パラメータ;
miは、リンクi(1~14)の質量;
MSiは、第1慣性モーメントの合計(i:1~14)を表す、リンクiの力学パラメータ;
Jiは、リンクiの慣性を表す力学パラメータ;
である。
回転関節の場合は、
球面関節の場合は、
ここで、
Miは、連鎖における下位のリンクの質量の合計を表すリンクiの力学パラメータ;
miは、リンクi(1~14)の質量;
MSiは、第1慣性モーメントの合計(i:1~14)を表す、リンクiの力学パラメータ;
Jiは、リンクiの慣性を表す力学パラメータ;
である。
最小力学パラメータを同定するためには、ベースリンクの位置・姿勢、各関節の関節角度、環境との接触力が必要となる。これらの情報は、1つの態様では、フォースプレートと同期したモーションキャプチャシステムにより取得される。運動データと床反力を同時計測するシステムは、当業者に知られており、例えば、瀬里、山根、中村:「ビヘイビアキャプチャシステムによる意識行動の同時実時間計測」、日本機会学会ロボティックス・メカトロニクス講演会、'01講演論文集、1P1-H7,2001に記載されている。
フォースプレートは、6軸の接触力を取得する。モーションキャプチャデータによってベースリンクの動きを取得する。適切な数のマーカを被験者に装着することで、人体モデルの逆運動力学計算によって、モーションキャプチャデータから各関節角度を計算することができる。
実験では、35個のマーカ(図6B参照)を所定位置に装着した被験者がフォースプレート上を運動することを撮影することで、モーションデータおよび接触力を取得した。実験での被験者の動きは、歩行、サイドステップ、体幹の折り曲げ、上半身のランダムな動き、である。フォースプレートから取得したK1Fと、同定したφBから再構成したYB1φBを比較したところ、ヒューマノイドの実験の場合と同様に、略一致する結果となった。
フォースプレートは、6軸の接触力を取得する。モーションキャプチャデータによってベースリンクの動きを取得する。適切な数のマーカを被験者に装着することで、人体モデルの逆運動力学計算によって、モーションキャプチャデータから各関節角度を計算することができる。
実験では、35個のマーカ(図6B参照)を所定位置に装着した被験者がフォースプレート上を運動することを撮影することで、モーションデータおよび接触力を取得した。実験での被験者の動きは、歩行、サイドステップ、体幹の折り曲げ、上半身のランダムな動き、である。フォースプレートから取得したK1Fと、同定したφBから再構成したYB1φBを比較したところ、ヒューマノイドの実験の場合と同様に、略一致する結果となった。
[D]人間の全力学パラメータの同定及び実時間同定に基づく視覚化アプリケーション
上記実施形態において、人体の力学パラメータの同定法について提案した。提案手法は、モーションキャプチャと床反力計のみを利用して、全身の運動方程式を構成するのに必要十分な力学パラメータ(最小力学パラメータφB)を同定できる。しかし、ロボットの制御等ではこの最小表現でも実用上は問題ないが、医療などの他分野への応用を考慮すると最小表現のみでは不十分である。
上記実施形態において、人体の力学パラメータの同定法について提案した。提案手法は、モーションキャプチャと床反力計のみを利用して、全身の運動方程式を構成するのに必要十分な力学パラメータ(最小力学パラメータφB)を同定できる。しかし、ロボットの制御等ではこの最小表現でも実用上は問題ないが、医療などの他分野への応用を考慮すると最小表現のみでは不十分である。
また、上述の実施形態では、体操のような全身を動かす運動計測を複数行い、それらを組み合わせることで力学パラメータの同定を行なっているが、力学同定において重要となる同定に適した運動をどのように生成するかという問題についての議論は不十分であった。
本実施形態では、人体寸法の計測値とデータベースから力学パラメータを推定する手法(特開2008-77551号等)を利用して事前に力学パラメータを推定し、事前に推定した値と最小力学パラメータφBの同定結果を組み合わせて、全力学パラメータを推定する手法を提案する。推定値は力学同定の結果を厳密に満たし、事前情報との誤差を最小化する形式で得ることができる。
本実施形態では、さらに、運動計測中に実時間で同定を行い、各身体部位の同定結果を視覚的に表示することで、同定性能を改善させる手法を提案する。被験者は計測中に同定が不十分な部位を特定して、その部位を十分動かすことで、全身のパラメータを同定するのに十分な運動を生成することができる。
[D-1]床反力計測に基づく全力学パラメータの同定法
(1)ヒューマノイドの同定モデル
人体を剛体多リンク系でモデル化すると、nリンク、Nj自由度のヒューマノイドの運動方程式は、式(1)のようになる。なお式(1)の上段は、ベースリンクの運動方程式となる。ベースリンクは基底であり、どのリンクにも設定可能であるが、一般的に体幹リンクとする。
(1)ヒューマノイドの同定モデル
人体を剛体多リンク系でモデル化すると、nリンク、Nj自由度のヒューマノイドの運動方程式は、式(1)のようになる。なお式(1)の上段は、ベースリンクの運動方程式となる。ベースリンクは基底であり、どのリンクにも設定可能であるが、一般的に体幹リンクとする。
力学パラメータφは動力学モデルを記述する上では冗長であり、モデルの表現に必要最小限なパラメータだけ同定が可能であることが知られている。同定可能な最小力学パラメータφB∈RNBは動力学モデルの構造に依存し、運動方程式において冗長なパラメータを削減・再構成して得られる。最小力学パラメータを数値的・解析的に計算する手段は確立されており(非特許文献1、2、3)、式(2)は式(3)のように変形可能である。なお、YB∈RNJ×NBは最小力学パラメータのリグレッサ行列に対応する。
(2)床反力計測を利用した同定法
一般的な同定法は式(3)を利用し、以下の情報の計測を必要とする。
*ベースリンクの一般化座標q0
*関節の一般化座標qcと関節トルクτ
*Nc個の接触点における外力Fext k
しかし、同定対象がロボットと人間のどちらの場合でも、関節トルクの正確な計測は困難である。トルクセンサを全関節に搭載することは、どちらの場合でも運動中には大きな負担となる。またロボットはギア・アクチュエータ、人間は筋腱複合体といった動力伝達部で生じる摩擦等の非線形項のモデル化が問題となる。そこで最小力学パラメータφBを同定するために、式(3)の上段の運動方程式のみ、すなわちベースリンクの運動方程式のみに注目する。
式(4)の特徴は、一般化力が常にゼロという力学的拘束条件であり、式(4)の中には、関節トルクτは含まれないため、τの計測は不要である。
同定に必要な情報は、各接触点kとそこに働く外力Fext k、および関節角度qcとベースリンクの一般化座標q0となる。
これらの情報は、ロボットの場合はエンコーダ、6軸力センサ、加速度センサ、ジャイロセンサ等で計測可能であり、人間の場合はモーションキャプチャと床反力計によって計測できる。
さらに全外力Fextを直接計測可能な場合は、片脚支持や両脚支持など接触状況に依存しないメリットがある。また同定式はベースリンクのみで構成されるので計算量が軽く、後述する実時間同定を行う上で大きな利点となる。同定法の概観については図1を参照することができる。
一般的な同定法は式(3)を利用し、以下の情報の計測を必要とする。
*ベースリンクの一般化座標q0
*関節の一般化座標qcと関節トルクτ
*Nc個の接触点における外力Fext k
しかし、同定対象がロボットと人間のどちらの場合でも、関節トルクの正確な計測は困難である。トルクセンサを全関節に搭載することは、どちらの場合でも運動中には大きな負担となる。またロボットはギア・アクチュエータ、人間は筋腱複合体といった動力伝達部で生じる摩擦等の非線形項のモデル化が問題となる。そこで最小力学パラメータφBを同定するために、式(3)の上段の運動方程式のみ、すなわちベースリンクの運動方程式のみに注目する。
同定に必要な情報は、各接触点kとそこに働く外力Fext k、および関節角度qcとベースリンクの一般化座標q0となる。
これらの情報は、ロボットの場合はエンコーダ、6軸力センサ、加速度センサ、ジャイロセンサ等で計測可能であり、人間の場合はモーションキャプチャと床反力計によって計測できる。
さらに全外力Fextを直接計測可能な場合は、片脚支持や両脚支持など接触状況に依存しないメリットがある。また同定式はベースリンクのみで構成されるので計算量が軽く、後述する実時間同定を行う上で大きな利点となる。同定法の概観については図1を参照することができる。
この同定法を利用するためには、ベースリンクの6個の運動方程式だけに縮小した力学モデルにおいて、原理的に同定可能な最小力学パラメータの数が変化していないことが必須となる。本発明者等は、この等価性の厳密な証明を行い、全身の最小力学パラメータが可同定であることが示されている。
詳細については、以下の文献を参照することができる。
鮎澤光,ベンチャー・ジェンチャン,中村仁彦,"ベースリンクの運動方程式を利用したヒューマノイドロボットの力学パラメータの可同定性," 日本機械学会ロボティクス・メカトロニクス講演会'08, pp. 2P1.F09, 2008.
詳細については、以下の文献を参照することができる。
鮎澤光,ベンチャー・ジェンチャン,中村仁彦,"ベースリンクの運動方程式を利用したヒューマノイドロボットの力学パラメータの可同定性," 日本機械学会ロボティクス・メカトロニクス講演会'08, pp. 2P1.F09, 2008.
[D-2]全力学パラメータの導出法
一般的に、力学同定とは力学パラメータφを同定するのではなく、最小力学パラメータφBを同定することを意味する。最小力学パラメータφBは、多リンク系の運動方程式を構成する上で必要最小限な情報となり、ロボットの制御に利用する上では、この最小表現であっても実用上の問題はない。しかし、この最小表現ではリンク機構に従って通常の力学パラメータを複雑に再構成するため、直感的には分かりにくい値となる。特に人間のパラメータを計測する場合、日々の計測やリハビリなど他分野への応用を考慮すると、通常の力学パラメータφの形式で求まることが望ましい。
一般的に、力学同定とは力学パラメータφを同定するのではなく、最小力学パラメータφBを同定することを意味する。最小力学パラメータφBは、多リンク系の運動方程式を構成する上で必要最小限な情報となり、ロボットの制御に利用する上では、この最小表現であっても実用上の問題はない。しかし、この最小表現ではリンク機構に従って通常の力学パラメータを複雑に再構成するため、直感的には分かりにくい値となる。特に人間のパラメータを計測する場合、日々の計測やリハビリなど他分野への応用を考慮すると、通常の力学パラメータφの形式で求まることが望ましい。
ここで、文献・データベースなどを利用して、通常の力学パラメータが事前に獲得できる場合を考える。全次元の力学パラメータの情報を得られるが正確ではない。本実施態様では、力学同定によって得られる最小力学パラメータを厳密に満たした上で、上記の事前情報との誤差を最小化する全力学パラメータの導出法について述べる。
編成行列Zは、通常の力学パラメータから最小力学パラメータを編成するために用いられる行列である。すなわち、式(5)に示すように、通常の力学パラメータφと編成行列Zとから、最小力学パラメータφBを求めることができる。
本実施形態では、編成行列Zが全力学パラメータから、最小力学パラメータを射影する線形行列であることを利用し、その逆射影を行うことで全力学パラメータを推定しようとするものである。そして、編成行列Zでは射影できない(最小力学パラメータではない)質量情報については、文献やデータベースの値を用いることで、逆射影を可能とするものである。
編成行列の詳細については、以下の文献を参照することができる。
鮎澤光,ベンチャー・ジェンチャン,中村仁彦,"ベースリンクの運動方程式を利用したヒューマノイドロボットの力学パラメータの可同定性," 日本機械学会ロボティクス・メカトロニクス講演会'08, pp. 2P1.F09, 2008.
本実施形態では、編成行列Zが全力学パラメータから、最小力学パラメータを射影する線形行列であることを利用し、その逆射影を行うことで全力学パラメータを推定しようとするものである。そして、編成行列Zでは射影できない(最小力学パラメータではない)質量情報については、文献やデータベースの値を用いることで、逆射影を可能とするものである。
編成行列の詳細については、以下の文献を参照することができる。
鮎澤光,ベンチャー・ジェンチャン,中村仁彦,"ベースリンクの運動方程式を利用したヒューマノイドロボットの力学パラメータの可同定性," 日本機械学会ロボティクス・メカトロニクス講演会'08, pp. 2P1.F09, 2008.
全力学パラメータの推定法は以下のとおりである。
まず、線形方程式(5)の最小二乗解は以下のようになる。
ただし、z∈R10nは任意のベクトルとし、Eは単位行列とする。力学同定によって得られる最小力学パラメータの推定値φ(ハット)Bを用いる場合、編成行列Zの零空間によって射影されるzをどのように決めるかが課題となる。ここで、文献・データベース等を利用した通常の力学パラメータの事前情報φrefを用いて、z=φrefと選ぶ。
まず、線形方程式(5)の最小二乗解は以下のようになる。
このとき、力学パラメータの推定値φ(ハット)は次のように求まる。
ただし、
とした。
式(7)は式(5)を満たすので、推定値φ(ハット)の最小表現は同定したパラメータφ(ハット)Bと一致することが分かる。また式(7)から、φ(ハット)はφ-φrefのノルムを最小化する解、すなわち事前情報φrefとの誤差ノルムを最小化する解であることが分かる。
式(7)は式(5)を満たすので、推定値φ(ハット)の最小表現は同定したパラメータφ(ハット)Bと一致することが分かる。また式(7)から、φ(ハット)はφ-φrefのノルムを最小化する解、すなわち事前情報φrefとの誤差ノルムを最小化する解であることが分かる。
[D-3]実時間同定と視覚化アプリケーション
(1)アプリケーションの概要
この節では、前節で述べた人間の全力学パラメータの同定手法を用いて、実時間でのオンライン同定と同定結果を視覚化するアプリケーションの概要について説明する。本実施態様では、一般化座標と外力計測には、光学式のマーカ位置計測を利用したモーションキャプチャと床反力計を利用する。キャプチャシステムは、10台のカメラを用いて光学式マーカを5[ms]おきに計測する。また床反力を1[ms]おきに計測可能であり、また両者は同期して計測可能である。
(1)アプリケーションの概要
この節では、前節で述べた人間の全力学パラメータの同定手法を用いて、実時間でのオンライン同定と同定結果を視覚化するアプリケーションの概要について説明する。本実施態様では、一般化座標と外力計測には、光学式のマーカ位置計測を利用したモーションキャプチャと床反力計を利用する。キャプチャシステムは、10台のカメラを用いて光学式マーカを5[ms]おきに計測する。また床反力を1[ms]おきに計測可能であり、また両者は同期して計測可能である。
同定の流れは下記のようになる。概観を図7に載せる。
1.計測されるマーカ位置から幾何モデル(リンクの長さ、向き、太さ(周回りの寸法)等)を決定し、幾何モデルと人体データベースから全力学パラメータを事前に推定する。
2.マーカ位置と床反力から、最小力学パラメータの実時間同定を行い、最小力学パラメータの同定結果と全力学パラメータの事前情報から全力学パラメータを推定する。
3.各リンクごとの最小力学パラメータの同定結果を色表示して、動作が不十分な部位を特定して運動させることで、同定性能を向上させる。
それぞれの項目については、各小節ごとに説明する。
1.計測されるマーカ位置から幾何モデル(リンクの長さ、向き、太さ(周回りの寸法)等)を決定し、幾何モデルと人体データベースから全力学パラメータを事前に推定する。
2.マーカ位置と床反力から、最小力学パラメータの実時間同定を行い、最小力学パラメータの同定結果と全力学パラメータの事前情報から全力学パラメータを推定する。
3.各リンクごとの最小力学パラメータの同定結果を色表示して、動作が不十分な部位を特定して運動させることで、同定性能を向上させる。
それぞれの項目については、各小節ごとに説明する。
(2)幾何モデルの決定と全力学パラメータの事前推定
力学同定を行うためにはシステムのモデリングが必須となる。人間の力学特性の解析をする上で、人間を剛体多リンク系で表現する場合、そのリンク数や関節の選び方は、モデルの解析目的や計測環境によっては異なる。キャプチャされるマーカ数や後述する人体寸法データベースの次元や、歩行などの運動解析に十分な自由度を考慮して、本実施態様では15リンクから構成される計34自由度の人間モデルを利用する。モデル概要は表2のようになる。
力学同定を行うためにはシステムのモデリングが必須となる。人間の力学特性の解析をする上で、人間を剛体多リンク系で表現する場合、そのリンク数や関節の選び方は、モデルの解析目的や計測環境によっては異なる。キャプチャされるマーカ数や後述する人体寸法データベースの次元や、歩行などの運動解析に十分な自由度を考慮して、本実施態様では15リンクから構成される計34自由度の人間モデルを利用する。モデル概要は表2のようになる。
力学同定にはモデルの幾何パラメータ(リンクの長さ、向きに加えて、太さ(周回りの寸法)等も含む)も同様に必要とする。ロボットの場合はCADなどから正確な値が算出可能ではあるが、人間の場合はこれらのパラメータを実際に計測する必要性がある。モーションキャプチャには、図6Bのような全身35個の光学式マーカを利用した。マーカは人体の関節近傍の特徴点に配置されているため、計測されるマーカ位置から関節間の距離を計算することで、各関節の幾何パラメータを容易に計測することができる。
最後に得られた幾何モデルから全力学パラメータを概算する。本実施形態では、人体寸法データベースから、人間の力学パラメータを推定する手法を用いる。利用するデータベースは日本人308人分の特徴的な49箇所の寸法と体重の計50個のパラメータが記録されている。
人体寸法データベースとしては、例えば、産業技術総合研究所デジタルヒューマン研究センター,"人体寸法データベース,"http://unit.aist.go.jp/collab-pro/indusstan/jis/theme/final/finalreports/measure/anthrop.htm.を利用することができる。
人間の力学パラメータを推定する手法としては、例えば、山口能迪, 山根克, and 中村仁彦,"人体筋骨格モデルの筋・腱および質量パラメータの同定," 日本機械学会ロボティクス・メカトロニクス講演会'06 講演論文集, 2A1-D07, 2006.、特開2008-77551号に開示された手法を用いることができる。
人体寸法データベースとしては、例えば、産業技術総合研究所デジタルヒューマン研究センター,"人体寸法データベース,"http://unit.aist.go.jp/collab-pro/indusstan/jis/theme/final/finalreports/measure/anthrop.htm.を利用することができる。
人間の力学パラメータを推定する手法としては、例えば、山口能迪, 山根克, and 中村仁彦,"人体筋骨格モデルの筋・腱および質量パラメータの同定," 日本機械学会ロボティクス・メカトロニクス講演会'06 講演論文集, 2A1-D07, 2006.、特開2008-77551号に開示された手法を用いることができる。
推定手法は次のようになる。
まず50個の中から幾つかパラメータを計測する。残りの未計測なパラメータは最も相関の高い計測パラメータとの回帰直線から推定を行う。次に図8のように人体の各リンクの幾何形状を楕円球や楕円錐台等でモデル化し、人体寸法49箇所から各リンクの体積を計算する。さらに密度を一定と近似することで、全体重から各リンクの質量・重心・慣性テンソルを概算できる。ここでは、マーカから計測可能な幾何パラメータと床反力計から求まる全体重を推定器の入力として、幾何形状と力学パラメータを推定する。なお、全力学パラメータの事前情報は、人間の質量データベースや文献の値を代用しても良く、上記の手法は一例にすぎない。
まず50個の中から幾つかパラメータを計測する。残りの未計測なパラメータは最も相関の高い計測パラメータとの回帰直線から推定を行う。次に図8のように人体の各リンクの幾何形状を楕円球や楕円錐台等でモデル化し、人体寸法49箇所から各リンクの体積を計算する。さらに密度を一定と近似することで、全体重から各リンクの質量・重心・慣性テンソルを概算できる。ここでは、マーカから計測可能な幾何パラメータと床反力計から求まる全体重を推定器の入力として、幾何形状と力学パラメータを推定する。なお、全力学パラメータの事前情報は、人間の質量データベースや文献の値を代用しても良く、上記の手法は一例にすぎない。
(3)力学パラメータの実時間同定
この小節では、運動計測中に力学パラメータを実時間で同定する手法について述べる。
計測されるマーカ位置から逆運動学計算を行い、各リンクの一般化座標を計算し、数値微分から速度・加速度を計算する。また計測される床反力から、ベースリンク原点に射影される全外力を計算する。同定に最終的に必要な情報は全外力であるため、全外力が直接計測できれば各接触点における外力情報は特に必要としない。
この小節では、運動計測中に力学パラメータを実時間で同定する手法について述べる。
計測されるマーカ位置から逆運動学計算を行い、各リンクの一般化座標を計算し、数値微分から速度・加速度を計算する。また計測される床反力から、ベースリンク原点に射影される全外力を計算する。同定に最終的に必要な情報は全外力であるため、全外力が直接計測できれば各接触点における外力情報は特に必要としない。
これらの計測値から式(4)中のリグレッサ行列と全外力が計算できる。式(4)を用いて最小二乗法からφBを同定することができる。実時間で同定を行うためには、逐次的に最小二乗法を解く必要がある。一方、式(4)の右辺の外力項は力とモーメントで物理次元が異なり、各成分の計測精度が異なる。このような場合、推定値と計測値の誤差の分散を重み付けした最小二乗法が利用される場合が多い。また力学パラメータが時間変化する場合は、計測した過去のデータを忘却していく必要がある。人体計測の場合、荷物を持ったり、道具を使用したり、また日々の体型変化などで力学パラメータは変化しうる。
以上の要求から、本実施形態では以下のような忘却機能付き逐次的一般化最小二乗法を利用する。
忘却機能付き逐次的一般化最小二乗法については、例えば、下記の文献を参照することができる。
J.-J.E.Slotione, W.Li, "On the Adaptive Control of Robot Manipulatiors," Int. J. of Robotics Research, vol. 5, no. 2, pp. 49.59, 1987.
相良節夫,秋月影雄,中溝高好,片山徹, システム同定, 計測自動制御学会, 1994.
忘却機能付き逐次的一般化最小二乗法については、例えば、下記の文献を参照することができる。
J.-J.E.Slotione, W.Li, "On the Adaptive Control of Robot Manipulatiors," Int. J. of Robotics Research, vol. 5, no. 2, pp. 49.59, 1987.
相良節夫,秋月影雄,中溝高好,片山徹, システム同定, 計測自動制御学会, 1994.
t=[1・・・n]の時系列データに対して、時刻t=n-1の推定値φ(ハット)B,n-1から時刻t=nの推定値φ(ハット)B,nは以下のように求まる。
ただし、
時刻nにおける式(4)のリグレッサ行列をYOB,nと外力ベクトルをFnとする。
Kn∈RNB×NBは、下記のようなゲイン行列となる。
Pn∈RNB×NBは式(10)で定義される逆行列となり、その逆行列解は式(11)のように逐次的に計算できる。
Σn∈R6×6は重み行列とする。
λn(0≦λn≦1)は忘却係数で、現時刻以前のデータに毎回掛かる重み係数となり、指数関数的に忘却させる。
Vn∈R6×6は以下のように定義される行列。
時刻nにおける式(4)のリグレッサ行列をYOB,nと外力ベクトルをFnとする。
Kn∈RNB×NBは、下記のようなゲイン行列となる。
λn(0≦λn≦1)は忘却係数で、現時刻以前のデータに毎回掛かる重み係数となり、指数関数的に忘却させる。
Vn∈R6×6は以下のように定義される行列。
重み行列Σnには、出力信号Fの共分散行列を選ぶ。各出力信号は独立であると仮定して、Σnは対角行列とする。各対角要素σ2
ii,n(1≦i≦6)は、時t=nまでにおける外力計測値Fと推定値YOBφBの各6軸成分ごとの誤差の分散とする。
ここで、時刻t=nにおける各6軸力成分ごとの外力の要素、およびリグレッサ行列の部分行ベクトルをそれぞれfi,n∈R、yi,n∈R1×NB(1≦i≦6)とすると、以下のようなAi,n∈RNB×NB、bi,n∈RNB、ci,n∈R、dn∈Rを用いてσii,nを逐次的に計算する。
ここで、時刻t=nにおける各6軸力成分ごとの外力の要素、およびリグレッサ行列の部分行ベクトルをそれぞれfi,n∈R、yi,n∈R1×NB(1≦i≦6)とすると、以下のようなAi,n∈RNB×NB、bi,n∈RNB、ci,n∈R、dn∈Rを用いてσii,nを逐次的に計算する。
以上から、式(8)、式(11)、式(13)~(17)を用いて、毎時刻ごとにWn、Pnおよびφ(ハット)B,nを更新すればよい。
また通常の力学パラメータφ(ハット)nは式(7)を用いることで計算できる。
なお初期条件P0、φ(ハット)0については、既に別の計測データが存在しているならば、それらを初期条件として利用することができる。しかし一般的には、φ(ハット)0=0、P0=γEと定める場合が多い。Ai,0、bi,0、ci,0、di,0も同様に、既に計測データがあれば初期条件とし、そうでなければゼロとする。γ(>0)の値が大きいほど推定値の収束は早くなるが、可同定な運動データをすぐに得られない場合にはPnは急速に発散するという相反性を持つ。また忘却係数λnについては0.995から1の定数値がとられる場合が多い。ここでは人体の同定を対象としているため、荷物を持つ、道具を使うなどのパラメータが運動中に変化する場合は、忘却係数を1未満の値で固定して用いることが望ましい。通常の同定時は基本的にはλ=1とすればよい。日常的なパラメータの変化を追う用途であれば、忘却係数の初回値λ1のみを1未満に設定し、λt(t>1)=1として、初期値P0、φB,0は、前日の最終計測値を用いれば、日毎に計測データを忘却することができる。
また通常の力学パラメータφ(ハット)nは式(7)を用いることで計算できる。
なお初期条件P0、φ(ハット)0については、既に別の計測データが存在しているならば、それらを初期条件として利用することができる。しかし一般的には、φ(ハット)0=0、P0=γEと定める場合が多い。Ai,0、bi,0、ci,0、di,0も同様に、既に計測データがあれば初期条件とし、そうでなければゼロとする。γ(>0)の値が大きいほど推定値の収束は早くなるが、可同定な運動データをすぐに得られない場合にはPnは急速に発散するという相反性を持つ。また忘却係数λnについては0.995から1の定数値がとられる場合が多い。ここでは人体の同定を対象としているため、荷物を持つ、道具を使うなどのパラメータが運動中に変化する場合は、忘却係数を1未満の値で固定して用いることが望ましい。通常の同定時は基本的にはλ=1とすればよい。日常的なパラメータの変化を追う用途であれば、忘却係数の初回値λ1のみを1未満に設定し、λt(t>1)=1として、初期値P0、φB,0は、前日の最終計測値を用いれば、日毎に計測データを忘却することができる。
(4)Persistent Excitation Trajectoryの視覚化
前小節までの手法を用いて、人体の力学パラメータを同定できるが、全ての最小力学パラメータを同定するためには、同定を行うのに適した運動データを計測する必要がある。例えば全く運動せずに静止し続けている場合は、人体モデルは単一剛体と等しくなるため、全パラメータの同定は不可能である。よって全一般化座標が十分に変化する運動データが必要となる。このようなPersistent Excitation Trajectory(PE性をもつ運動)の導出は、力学同定においては特に重要な問題となる。
PE性をもつ運動の導出については、下記文献に言及がある。
M. Gautier and W. Khalil, "Exciting trajectories for inertial parameters identification," Int. J. of Robotics Research, vol. 11(4), pp. 362.375, 1992.
前小節までの手法を用いて、人体の力学パラメータを同定できるが、全ての最小力学パラメータを同定するためには、同定を行うのに適した運動データを計測する必要がある。例えば全く運動せずに静止し続けている場合は、人体モデルは単一剛体と等しくなるため、全パラメータの同定は不可能である。よって全一般化座標が十分に変化する運動データが必要となる。このようなPersistent Excitation Trajectory(PE性をもつ運動)の導出は、力学同定においては特に重要な問題となる。
PE性をもつ運動の導出については、下記文献に言及がある。
M. Gautier and W. Khalil, "Exciting trajectories for inertial parameters identification," Int. J. of Robotics Research, vol. 11(4), pp. 362.375, 1992.
時系列に並べたリグレッサ行列の条件数が1に近い運動を求めれば良く、運動制御の安定性を確保した上で条件数を小さくする運動を模索する必要がある。人体計測の場合は、ロボットのような運動制御の安定性による制約はほとんど存在しないが、大自由度なシステムであり設置状況の時変性から、PE性を十分に持つ最適な運動計画は容易ではない。さらに、計画した最適な運動をロボットのように正確に再現するのも困難である。
本実施形態では実時間同定の特長を活かして、運動計測中に各リンクの同定状況を視覚的に表示させることで、被験者が運動が不十分な部位を特定して動作へフィードバックさせて、同定性能を高める仕組みを提案する。必ずしも最適な運動計画ではないが、同定に適した運動を直感的に理解して即時に反映させてPE性を向上できることが期待できる。
各リンクの同定状況は、各リンクにおける同定した各最小パラメータの推定値の相対標準偏差を指標とする。
相対標準偏差を用いてパラメータの同定の評価を行なうことについては、下記文献を参照することができる。
M. Gautier and W. Khalil, "Exciting trajectories for inertial parameters identification," Int. J. of Robotics Research, vol. 11(4), pp. 362.375, 1992.
G. Venture, P.J. Ripert, W. Khalil, M. Gautier, and P. Bodson, "Modeling and identification of passenger car dynamics using robotics formalism," IEEE Trans. on Intelligent Transportation Systems, vol. 7, no. 3, pp. 349.359, September 2006.
最小力学パラメータの推定値と真値との誤差の分散を計算する時に、最小力学パラメータの推定値から外力の推定値を計算して、この外力の推定値と実際の外力の計測値との誤差を求める。求めた外力の推定値と外力の計測値との誤差と、運動データを行列表現したリグレッサ行列Yから、間接的に推定された最小力学パラメータの誤差の分散を計算することができる。
下記の数35において、右辺の第2項は、リグレッサ行列YOBに推定値φ(ハット)Bを掛けて計算される外力推定値F(ハット)であり、ρは外力の誤差である。このときに、逐次一般化最小二乗法(数29から数34)を解く。
時刻nの時の外力の誤差ρnは、数29の右辺のFn-YOB,nφ(ハット)B,n-1の項となる。このとき数29から数34までの過程で、行列Pn(数31)が求まる。この行列Pnが、時刻nのときの最小力学パラメータの誤差の共分散行列Cnと一致する。
Cnの行列の各対角成分から最小力学パラメータの誤差の分散(相対標準偏差)を求めることができる。
以下に繰り返し説明する。
式(4)で表される線形モデルにおいて、YOBが確定的で、推定誤差ρ
が平均ゼロの正規分布と仮定した場合、逐次一般化最小二乗法によって得られる推定値φ(ハット)B,nを用いると、共分散行列Cn∈RNB×NBは下記のように計算できる。
相対標準偏差を用いてパラメータの同定の評価を行なうことについては、下記文献を参照することができる。
M. Gautier and W. Khalil, "Exciting trajectories for inertial parameters identification," Int. J. of Robotics Research, vol. 11(4), pp. 362.375, 1992.
G. Venture, P.J. Ripert, W. Khalil, M. Gautier, and P. Bodson, "Modeling and identification of passenger car dynamics using robotics formalism," IEEE Trans. on Intelligent Transportation Systems, vol. 7, no. 3, pp. 349.359, September 2006.
最小力学パラメータの推定値と真値との誤差の分散を計算する時に、最小力学パラメータの推定値から外力の推定値を計算して、この外力の推定値と実際の外力の計測値との誤差を求める。求めた外力の推定値と外力の計測値との誤差と、運動データを行列表現したリグレッサ行列Yから、間接的に推定された最小力学パラメータの誤差の分散を計算することができる。
下記の数35において、右辺の第2項は、リグレッサ行列YOBに推定値φ(ハット)Bを掛けて計算される外力推定値F(ハット)であり、ρは外力の誤差である。このときに、逐次一般化最小二乗法(数29から数34)を解く。
時刻nの時の外力の誤差ρnは、数29の右辺のFn-YOB,nφ(ハット)B,n-1の項となる。このとき数29から数34までの過程で、行列Pn(数31)が求まる。この行列Pnが、時刻nのときの最小力学パラメータの誤差の共分散行列Cnと一致する。
Cnの行列の各対角成分から最小力学パラメータの誤差の分散(相対標準偏差)を求めることができる。
以下に繰り返し説明する。
式(4)で表される線形モデルにおいて、YOBが確定的で、推定誤差ρ
逐次一般化最小二乗法による更新式となる式(8)、式(9)、式(11)は、システム雑音が加わっていない場合のカルマンフィルタに相当し、Pnは時刻t=nまでの観測に基づく推定値の誤差の共分散行列Cnと一致する。
以上の相対標準偏差σφj%を用いることで、現在計測中の運動データが各々の最小力学パラメータを同定し易いか否かを判断することができる。σφj%が、同定対象によっては異なるがある閾値を下回れば、その最小力学パラメータは良く同定できていると判断する場合が多い。ただし、微小パラメータについては相対値が大きくなるため判断が困難となるおそれもある。
視覚的表示方法として、ここでは実時間でキャプチャされた被験者のヒューマンフィギュア(人体のリンク機構モデル)を画面上に提示し、ヒューマンフィギュアの各リンクを、次のような規則で色を変更して被験者に提示する。
リンクjの全最小力学パラメータ数nBjのうち、σφj%が15[%]を下回ったパラメータ数nBj,G、σφj%が15[%]を上回るが推定値が微小(<0.02)なパラメータ数nBj,B、どちらでもないパラメータ数をnBj,R=nBj-nBj,G-nBj,Bとして、それぞれの比率を用いてRGB色を決定した。
1つの態様では、各画素値PR,PG,PBは以下のように決める。
PR=nBj,R/nBj×100;
PG=nBj,G/nBj×100:
PB=nBj,B/nBj×100;
ただし、ここでの画素値は最大値を1、最小値を0として正規化した値である。
したがって、ここでの態様では、同定が進むにしたがって、リンクの色が赤から緑へと変化していく。
リンクjの全最小力学パラメータ数nBjのうち、σφj%が15[%]を下回ったパラメータ数nBj,G、σφj%が15[%]を上回るが推定値が微小(<0.02)なパラメータ数nBj,B、どちらでもないパラメータ数をnBj,R=nBj-nBj,G-nBj,Bとして、それぞれの比率を用いてRGB色を決定した。
1つの態様では、各画素値PR,PG,PBは以下のように決める。
PR=nBj,R/nBj×100;
PG=nBj,G/nBj×100:
PB=nBj,B/nBj×100;
ただし、ここでの画素値は最大値を1、最小値を0として正規化した値である。
したがって、ここでの態様では、同定が進むにしたがって、リンクの色が赤から緑へと変化していく。
[D-4]実験結果
視覚化アプリケーションを用いて、計測を3回行って同定を行った。ただし、λn=1.0、γ=0.001、他の初期条件はゼロとした。ここでは得られた計測データをオフライン処理して同定した結果について述べる。視覚化アプリケーションによる実時間同定を行う主な目的は、計測中に同定に適した運動生成を行うことである。実時間同定によって同定結果をすぐに確認することも有意義ではあるが、より精度の高い同定結果を求める場合には、オフライン処理による同定が望ましい。
オンラインで同定した際に視覚化アプリケーションが提示する画像のスナップショットを図9に載せる。同定が進むにつれて、前節のルールに基づいて身体のパーツを表すリンクが赤色(図では濃色)から緑色(図では淡色)へ変化していく。図には、床反力計から計測した外力、同定したパラメータから求めた外力を、それぞれベクトルとして矢印で示す。図9Aの最初のフレームでは2本の矢印が表示されているが、その他のフレームでは2本の矢印は略一致している。また、濃色の球は全重心を表す。図9は、実際にオンライン同定を行った結果を示しており、計測が進むにつれて、リンクの色が変化していき、パラメータが同定されていくことが分かる。
視覚化アプリケーションを用いて、計測を3回行って同定を行った。ただし、λn=1.0、γ=0.001、他の初期条件はゼロとした。ここでは得られた計測データをオフライン処理して同定した結果について述べる。視覚化アプリケーションによる実時間同定を行う主な目的は、計測中に同定に適した運動生成を行うことである。実時間同定によって同定結果をすぐに確認することも有意義ではあるが、より精度の高い同定結果を求める場合には、オフライン処理による同定が望ましい。
オンラインで同定した際に視覚化アプリケーションが提示する画像のスナップショットを図9に載せる。同定が進むにつれて、前節のルールに基づいて身体のパーツを表すリンクが赤色(図では濃色)から緑色(図では淡色)へ変化していく。図には、床反力計から計測した外力、同定したパラメータから求めた外力を、それぞれベクトルとして矢印で示す。図9Aの最初のフレームでは2本の矢印が表示されているが、その他のフレームでは2本の矢印は略一致している。また、濃色の球は全重心を表す。図9は、実際にオンライン同定を行った結果を示しており、計測が進むにつれて、リンクの色が変化していき、パラメータが同定されていくことが分かる。
同定には50[ms]おきのリグレッサ行列と外力のデータを利用し、得られた3つの計測データとそれら全てを組み合わせた場合の条件数cond(YOB)と利用したサンプル数を表3に載せる。また全128個のパラメータのうち、σφj,n%が15%未満で、微小でないパラメータ(>0.02)の総数も載せる。どの計測値の条件数も30前後となっていることが分かる。既述の実施形態での計測方法では、1回の計測データの条件数は500前後となる場合が多く、体操のような全身運動の計測データを複数組み合わせることで、50前後の条件数を実現していた。このことから、視覚化アプリケーションを用いることで、PE性を大きく向上できていることが理解できる。
次に式(7)を用いて計算した、通常の力学パラメータの推定結果φ(ハット)について述べる。質量M[kg]、重心Ci[kg-m2]、関節原点回りの慣性テンソルJij[kg-m2]の順に、下腹部(L1)、胴体部(L2)、右足先(L3)、右手先(L4)、頭部(L5)、右腿部(L6)の推定結果φ(ハット)を表4に載せる。ここでは全計測データを組み合わせた同定結果を利用した。また参考として、データベースからの事前推定値φrefを表5に載せる。
質量分布については事前推定値と近い値となっている。胴体部の各値、右足先、足先の慣性テンソルも事前推定値と比較的似た傾向を示している。しかし下腹部の重心や、頭部の重心、慣性テンソル、右腿部の慣性テンソルなどは、重心が各リンク形状の凸包の外に位置したり、負の慣性主成分を持ち、推定に失敗していることが分かる。
推定の失敗の原因としては、幾つか考えられる。先ず、十分なExcitationが得られていない場合が考えられる。今回の計測では単純に3つの計測データを組み合わせただけなので、多くの運動を計測して条件数の低い部分を切り出して組み合わせることで、PE性は改善することはできる。
次に、事前推定値の精度が低い場合が考えられる。通常の力学同定では分からない、すなわち最小力学パラメータには含まれない残りのパラメータは、データベースから求めた通常の力学パラメータを基にして推定している。よって、この残りのパラメータはデータベースから求めた事前値が持つ精度に依存する。また最小力学パラメータは重心と質量を掛けた値であるため、重心の推定値は質量の推定精度にも依存している。改善策としては、事前情報導出の精度向上、重心や慣性テンソルの力学的拘束条件を考慮するなどの手段が取り得ることが当業者に理解される。
推定の失敗の原因としては、幾つか考えられる。先ず、十分なExcitationが得られていない場合が考えられる。今回の計測では単純に3つの計測データを組み合わせただけなので、多くの運動を計測して条件数の低い部分を切り出して組み合わせることで、PE性は改善することはできる。
次に、事前推定値の精度が低い場合が考えられる。通常の力学同定では分からない、すなわち最小力学パラメータには含まれない残りのパラメータは、データベースから求めた通常の力学パラメータを基にして推定している。よって、この残りのパラメータはデータベースから求めた事前値が持つ精度に依存する。また最小力学パラメータは重心と質量を掛けた値であるため、重心の推定値は質量の推定精度にも依存している。改善策としては、事前情報導出の精度向上、重心や慣性テンソルの力学的拘束条件を考慮するなどの手段が取り得ることが当業者に理解される。
人間の全力学パラメータの同定及び実時間同定に基づく視覚化アプリケーションについて小括する。
モーションキャプチャによる人体寸法の計測値と人体寸法データベースから力学パラメータを推定して、力学同定の結果を厳密に満たし、事前情報との誤差を最小化する形式で全力学パラメータを推定する手法を提案した。
運動計測中に実時間で同定を行い、各身体部位の同定結果を視覚的に表示することで、同定に適した運動生成を促し、同定性能を向上させる手法を提案した。
上記の手法を用いて実際に同定を行った結果、運動データが持つ同定性能(リグレッサ行列の条件数)を大きく向上させた。
モーションキャプチャによる人体寸法の計測値と人体寸法データベースから力学パラメータを推定して、力学同定の結果を厳密に満たし、事前情報との誤差を最小化する形式で全力学パラメータを推定する手法を提案した。
運動計測中に実時間で同定を行い、各身体部位の同定結果を視覚的に表示することで、同定に適した運動生成を促し、同定性能を向上させる手法を提案した。
上記の手法を用いて実際に同定を行った結果、運動データが持つ同定性能(リグレッサ行列の条件数)を大きく向上させた。
本発明の同定法は、ロボットの関節にトルクセンサが搭載されていないシステムに対して利用することができるので、既存のシステムに対して広範囲に本発明を適用することが可能である。特に、ヒューマノイドは、労働力や介護など人間社会の進出が期待されている。ヒューマノイドは荷物を持つなど、運動中に自分自身の質量・重心などのパラメータが変化するため、高度な運動制御を安全に実現するためには同定技術は重要である。
本発明の同定法は、人体の計測にも利用可能である。本発明の同定法は、被験者に対しての負荷が軽く、簡単な運動計測で同定することが可能である。リハビリなど医療の定期診断やスポーツなどの身体解析において特に利用価値が高いと考えられる。
本発明の同定法は、人体の計測にも利用可能である。本発明の同定法は、被験者に対しての負荷が軽く、簡単な運動計測で同定することが可能である。リハビリなど医療の定期診断やスポーツなどの身体解析において特に利用価値が高いと考えられる。
Claims (24)
- 環境に固定されていない多関節リンク機構で表現される被験体の運動を、任意に選択されたベースリンクの空間運動とリンク系の関節運動で表し、
ベースリンクの一般化座標、各関節角度及びこれらの速度、加速度、ならびに環境との接触点に働く外力、の各計測値と、
数1に示す多関節リンク機構のベースリンクに関する運動方程式と、
を用いて、多関節リンク構造の最小力学パラメータφBを同定する方法。
ここで、
YB1は、ベースリンクの一般化座標、各関節角度及びこれらの速度、加速度、から求められる観測行列、
Fkは、接触点kに働く外力、
Kk1は、接触点kにおける外力を一般化力へ変換する行列、
Ncは、多関節リンク構造と環境との接触点の総数、
である。 - 前記被験体は、ヒューマノイドである、請求項1に記載の最小力学パラメータの同定法。
- 前記被験体は、人体である、請求項1に記載の最小力学パラメータの同定法。
- 前記外力は床反力である、請求項1乃至3いずれかに記載の最小力学パラメータの同定法。
- 前記床反力は、床面に敷設した力センサ、あるいは、被験体の脚部に装着した力センサ、によって計測される、請求項4に記載の最小力学パラメータの同定法。
- 前記各関節角度は、各関節に搭載されているエンコーダによって計測される、請求項1乃至5いずれかに記載の最小力学パラメータの同定法。
- 前記各関節角度は、被験体の各リンクの位置を、モーションキャプチャによって計測した時系列データから逆運動学計算することによって取得される、請求項1乃至5いずれかに記載の最小力学パラメータの同定法。
- ベースリンクの一般化座標は、ベースリンクに搭載されたジャイロ加速度センサによって計測される、請求項1乃至7いずれかに記載の最小力学パラメータの同定法。
- ベースリンクの一般化座標は、被験体のベースリンクにマーカを配置し、モーションキャプチャによって取得されたマーカ位置の時系列データからベースリンクの位置・姿勢を計算することで取得される、請求項1乃至7いずれかに記載の最小力学パラメータの同定法。
- 床面に敷設した床反力計測用のフォースプレート上で運動する被験体を、床反力の計測と同期するモーションキャプチャシステムのカメラで撮影し、
前記床反力は、前記フォースプレートにより計測され、
前記ベースリンクの一般化座標、前記各関節角度、は、モーションキャプチャによって取得されたマーカ位置の時系列データから計算される、
請求項4に記載の最小力学パラメータの同定法。 - ベースリンクの一般化座標、各関節角度及びこれらの速度、加速度、ならびに環境との接触点に働く外力、の計測時に、前記最小力学パラメータを実時間で計算することを特徴とする、請求項1乃至10いずれかに記載の最小力学パラメータの同定法。
- 前記被験体は人体であり、被験者の運動時に前記最小力学パラメータを実時間で計算することを特徴とする、請求項11に記載の最小力学パラメータの同定法。
- 前記被験体のリンク機構モデルを表示部に表示し、各リンクの最小力学パラメータの同定の程度を、表示されたリンク機構モデルにおいてリンク毎に同定の程度に応じて視覚的に表示する、
請求項12に記載の最小力学パラメータの同定法。 - 前記最小力学パラメータの同定の程度に応じてリンクの色を変化させて表示する、請求項13に記載の最小力学パラメータの同定法。
- 前記最小力学パラメータの同定が不十分なリンクを被験者に視覚的に認識させることで、当該リンクに対応する身体部位の運動を促す、請求項13、14いずれかに記載の最小力学パラメータの同定法。
- 各リンク毎に、各最小力学パラメータの同定の程度を求め、求めた複数の最小力学パラメータの同定の程度を用いて、各リンクとしての最小力学パラメータの同定の程度を算出する、
請求項13乃至15いずれかに記載の最小力学パラメータの同定法。 - 各リンクにおいて、各最小力学パラメータを、求めた同定の程度に応じて3つのグループに分類して各グループに3原色の各色を割り当て、各グループに属する最小力学パラメータの数の割合に基づいて表示部に表示された当該リンクの画素における各色の濃度値を決定する、
請求項16に記載の最小力学パラメータの同定法。 - 各最小力学パラメータの同定の程度の指標は、各最小力学パラメータの推定値の時系列データの各推定値と当該最小力学パラメータの目標値との誤差の分散である、請求項13乃至16いずれかに記載の最小力学パラメータの同定法。
- 前記誤差の分散を、前記最小力学パラメータの推定値を用いて外力の推定値の時系列データを算出し、外力の推定値の時系列データと外力の計測値の時系列データとの誤差から取得する、請求項18に記載の最小力学パラメータの同定法。
- 前記指標としての誤差の分散は、相対標準偏差である、請求項18、19いずれかに記載の最小力学パラメータの同定法。
- 各最小力学パラメータの同定の程度の指標は、各最小力学パラメータの推定値と当該最小力学パラメータの目標値との差である、請求項13乃至16いずれかに記載の最小力学パラメータの同定法。
- 各最小力学パラメータの同定の程度の指標は、各最小力学パラメータの推定値から計算された外力の推定値と外力の計測値との差である、請求項13乃至16いずれかに記載の最小力学パラメータの同定法。
- 前記被験体のリンク機構モデルの各リンクの全力学パラメータの事前情報を用意し、
請求項1乃至20いずれかに記載の方法によって同定された最小力学パラメータφBを満たすように前記事前情報を補正することで、前記事前情報と前記同定された最小力学パラメータφBとから全力学パラメータφを推定する、
全力学パラメータの同定法。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010515790A JP5288418B2 (ja) | 2008-06-04 | 2009-02-19 | 力学パラメータの同定法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008-146524 | 2008-06-04 | ||
| JP2008146524 | 2008-06-04 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2009147875A1 true WO2009147875A1 (ja) | 2009-12-10 |
Family
ID=41397954
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2009/052885 Ceased WO2009147875A1 (ja) | 2008-06-04 | 2009-02-19 | 力学パラメータの同定法 |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP5288418B2 (ja) |
| WO (1) | WO2009147875A1 (ja) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010193977A (ja) * | 2009-02-23 | 2010-09-09 | Kochi Univ Of Technology | 人体の部位別の質量および重心の測定方法 |
| JP2011255474A (ja) * | 2010-06-10 | 2011-12-22 | Univ Of Tokyo | 逆運動学を用いた動作・姿勢生成方法及び装置 |
| JP2012176465A (ja) * | 2011-02-28 | 2012-09-13 | Univ Of Tokyo | トルクセンサ校正装置、校正方法、及びプログラム |
| JP2015089585A (ja) * | 2013-11-05 | 2015-05-11 | トヨタ自動車株式会社 | リグレッサ行列の算出方法、力学パラメータの同定方法 |
| WO2015199086A1 (ja) * | 2014-06-23 | 2015-12-30 | Cyberdyne株式会社 | 動作再現システム及び動作再現装置 |
| WO2017141573A1 (ja) * | 2016-02-15 | 2017-08-24 | オムロン株式会社 | 演算装置、演算方法及び演算プログラム |
| JP2018511378A (ja) * | 2015-03-11 | 2018-04-26 | プレコルディール オサケユイチア | 心不全を示す情報を生成するための方法及び装置 |
| CN108333971A (zh) * | 2018-02-28 | 2018-07-27 | 清华大学 | 仿人机器人的结构与运动的协同优化方法 |
| JP2020139784A (ja) * | 2019-02-27 | 2020-09-03 | 国立大学法人東京工業大学 | 多体系の最小力学パラメータ同定装置、方法及びプログラム |
| CN113172621A (zh) * | 2021-04-13 | 2021-07-27 | 哈尔滨工业大学(威海) | 一种面向scara机械臂的动力学参数辨识方法 |
| CN114271815A (zh) * | 2021-12-27 | 2022-04-05 | 江西边际科技有限公司 | 一种无规律分布式位姿数据收集及处理装置 |
| CN120134311A (zh) * | 2025-04-15 | 2025-06-13 | 临沂大学 | 一种基于条件数指标的机器人运动学标定方法 |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107703762B (zh) * | 2017-11-14 | 2020-12-29 | 沈阳工业大学 | 康复步行训练机器人的人机互作用力辨识及控制方法 |
| CN113189865B (zh) * | 2021-01-27 | 2024-03-26 | 上海际知医疗科技有限公司 | 基于动力学参数辨识的康复机器人控制系统 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005122900A1 (ja) * | 2004-06-16 | 2005-12-29 | The University Of Tokyo | 筋骨格モデルに基づく筋力取得方法及び装置 |
| JP2008077551A (ja) * | 2006-09-25 | 2008-04-03 | Univ Of Tokyo | リンクの質量パラメータの推定法 |
-
2009
- 2009-02-19 WO PCT/JP2009/052885 patent/WO2009147875A1/ja not_active Ceased
- 2009-02-19 JP JP2010515790A patent/JP5288418B2/ja not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005122900A1 (ja) * | 2004-06-16 | 2005-12-29 | The University Of Tokyo | 筋骨格モデルに基づく筋力取得方法及び装置 |
| JP2008077551A (ja) * | 2006-09-25 | 2008-04-03 | Univ Of Tokyo | リンクの質量パラメータの推定法 |
Non-Patent Citations (2)
| Title |
|---|
| "Robotics Symposia Yokoshu", 16 March 2008, article KO AYUSAWA ET AL.: "Yuka Hanryoku Keisoku ni Motozuku Humanoid no Zenshin Rikigaku Parameter no Dotei", pages: 259 - 264 * |
| HARUNISA KAWASAKI ET AL.: "Tree Kozo Robot no Saisho Doryokugaku Parameter", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 28, no. 12, 31 December 1992 (1992-12-31), pages 1444 - 1450 * |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010193977A (ja) * | 2009-02-23 | 2010-09-09 | Kochi Univ Of Technology | 人体の部位別の質量および重心の測定方法 |
| JP2011255474A (ja) * | 2010-06-10 | 2011-12-22 | Univ Of Tokyo | 逆運動学を用いた動作・姿勢生成方法及び装置 |
| JP2012176465A (ja) * | 2011-02-28 | 2012-09-13 | Univ Of Tokyo | トルクセンサ校正装置、校正方法、及びプログラム |
| JP2015089585A (ja) * | 2013-11-05 | 2015-05-11 | トヨタ自動車株式会社 | リグレッサ行列の算出方法、力学パラメータの同定方法 |
| US10441444B2 (en) | 2014-06-23 | 2019-10-15 | Cyberdyne Inc. | Motion reproducing system and motion reproducing apparatus |
| WO2015199086A1 (ja) * | 2014-06-23 | 2015-12-30 | Cyberdyne株式会社 | 動作再現システム及び動作再現装置 |
| JPWO2015199086A1 (ja) * | 2014-06-23 | 2017-06-22 | Cyberdyne株式会社 | 動作再現システム及び動作再現装置 |
| JP2018511378A (ja) * | 2015-03-11 | 2018-04-26 | プレコルディール オサケユイチア | 心不全を示す情報を生成するための方法及び装置 |
| WO2017141573A1 (ja) * | 2016-02-15 | 2017-08-24 | オムロン株式会社 | 演算装置、演算方法及び演算プログラム |
| CN108333971A (zh) * | 2018-02-28 | 2018-07-27 | 清华大学 | 仿人机器人的结构与运动的协同优化方法 |
| JP2020139784A (ja) * | 2019-02-27 | 2020-09-03 | 国立大学法人東京工業大学 | 多体系の最小力学パラメータ同定装置、方法及びプログラム |
| JP7202567B2 (ja) | 2019-02-27 | 2023-01-12 | 国立大学法人東京工業大学 | 多体系の最小力学パラメータ同定装置、方法及びプログラム |
| CN113172621A (zh) * | 2021-04-13 | 2021-07-27 | 哈尔滨工业大学(威海) | 一种面向scara机械臂的动力学参数辨识方法 |
| CN113172621B (zh) * | 2021-04-13 | 2023-05-09 | 哈尔滨工业大学(威海) | 一种面向scara机械臂的动力学参数辨识方法 |
| CN114271815A (zh) * | 2021-12-27 | 2022-04-05 | 江西边际科技有限公司 | 一种无规律分布式位姿数据收集及处理装置 |
| CN114271815B (zh) * | 2021-12-27 | 2023-04-25 | 江西边际科技有限公司 | 一种无规律分布式位姿数据收集及处理装置 |
| CN120134311A (zh) * | 2025-04-15 | 2025-06-13 | 临沂大学 | 一种基于条件数指标的机器人运动学标定方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP5288418B2 (ja) | 2013-09-11 |
| JPWO2009147875A1 (ja) | 2011-10-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5288418B2 (ja) | 力学パラメータの同定法 | |
| EP3751434B1 (en) | Information processing device, information processing method, and storage medium | |
| US6131436A (en) | Method and system for wear testing a seat by simulating human seating activity and robotic human body simulator for use therein | |
| Mustafa et al. | Self-calibration of a biologically inspired 7 DOF cable-driven robotic arm | |
| Stepanova et al. | Robot self-calibration using multiple kinematic chains—a simulation study on the icub humanoid robot | |
| Collins et al. | Benchmarking simulated robotic manipulation through a real world dataset | |
| Maurice | Virtual ergonomics for the design of collaborative robots | |
| CN114224325A (zh) | 利用惯性传感器计算关节力矩和角度的步态分析系统及方法 | |
| SaLoutos et al. | Design of a multimodal fingertip sensor for dynamic manipulation | |
| Zhou et al. | T-td3: A reinforcement learning framework for stable grasping of deformable objects using tactile prior | |
| Liarokapis et al. | Learning the post-contact reconfiguration of the hand object system for adaptive grasping mechanisms | |
| KR100915606B1 (ko) | 인간동작분석을 위한 인체모델 생성방법 | |
| Callejas-Cuervo et al. | Capture and analysis of biomechanical signals with inertial and magnetic sensors as support in physical rehabilitation processes | |
| Nguyen et al. | FIGAROH: a Python toolbox for dynamic identification and geometric calibration of robots and humans | |
| Joukov et al. | Closed-chain pose estimation from wearable sensors | |
| Zimmermann et al. | Digital Guinea Pig: merits and methods of human-in-the-loop simulation for upper-limb exoskeletons | |
| Zhang et al. | Robotic dynamic sculpture: Architecture, modeling, and implementation of dynamic sculpture | |
| Souza et al. | Towards data-driven predictive control of active upper-body exoskeletons for load carrying | |
| Dash et al. | A inverse kinematic solution of a 6-dof industrial robot using ANN | |
| Li et al. | Target ball localization for industrial robots based on binocular stereo vision | |
| Xiu et al. | Experimental study of a momentum-based method for identifying the inertia barycentric parameters of a human body | |
| Padua et al. | A Framework for Casualty Manipulation with Biomechanical Joint-Level Reaction Analysis | |
| Wieser et al. | Accelerometer based robotic joint orientation estimation | |
| Ayusawa et al. | Evaluation of assistive devices using humanoid robot with mechanical parameters identification | |
| Bortolami et al. | Dynamics model for analyzing reaching movements during active and passive torso rotation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09758142 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010515790 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 09758142 Country of ref document: EP Kind code of ref document: A1 |