[go: up one dir, main page]

WO2009013363A1 - Sistema para la estimación de la volumetría de la lactancia materna - Google Patents

Sistema para la estimación de la volumetría de la lactancia materna Download PDF

Info

Publication number
WO2009013363A1
WO2009013363A1 PCT/ES2007/000453 ES2007000453W WO2009013363A1 WO 2009013363 A1 WO2009013363 A1 WO 2009013363A1 ES 2007000453 W ES2007000453 W ES 2007000453W WO 2009013363 A1 WO2009013363 A1 WO 2009013363A1
Authority
WO
WIPO (PCT)
Prior art keywords
breastfeeding
estimation
volumetry
previous
ultrasound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/ES2007/000453
Other languages
English (en)
French (fr)
Inventor
Vicente Jorge Ribas Ripoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sabirmedical SL
Original Assignee
Sabirmedical SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sabirmedical SL filed Critical Sabirmedical SL
Publication of WO2009013363A1 publication Critical patent/WO2009013363A1/es
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • A61B8/0825Clinical applications for diagnosis of the breast, e.g. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1073Measuring volume, e.g. of limbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4261Evaluating exocrine secretion production
    • A61B5/4288Evaluating exocrine secretion production mammary secretions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/726Details of waveform analysis characterised by using transforms using Wavelet transforms

Definitions

  • the present invention develops a system, including a digital ultrasonic scanning device, for estimating the volume of milk ingested by a newborn during the breastfeeding process, being configured as a handheld ultrasonic ultrasound device. .
  • the system provides the final measurement through the ultrasound information obtained by its operating procedures.
  • the patent WO2006054287 develops a system that integrates various devices integrated in a bra, with openings that allow breast exposure to breastfeed the newborn. Inside said bra are various ultrasound emitting / receiving probes, which use the Doppler Effect to calculate the flow of milk and from it to estimate the volume of milk taken by the newborn.
  • the US5827191 and WO2006003655 patents develop a system for measuring the volume of milk ingested by a newborn based on an elastic nipple covering through which, in order to measure it, the flow of milk taken.
  • Both systems have the disadvantage of establishing a physical barrier between the mother and the baby, disturbing not only the intimacy between the two, but also the breastfeeding process itself, since it hinders both the sucking of the infant and the production of milk derived from the stimulus direct nipple by the child.
  • one of the main objectives of the present invention is to solve the problem derived from the process of breastfeeding of newborns during the first six months of life providing real-time data to new mothers on the volume of milk ingested by their newborn.
  • Another of the objectives and advantages obtained with the ease and portability of the system of the present invention refers to the increase in the quality of life and comfort of new mothers and newborns since minimal contact is required for the realization of the estimation (requires only two pre and post suction scans), being another of the main objectives of the present invention to extend the breastfeeding process beyond the first six months of life.
  • the system for estimating volumetry in breastfeeding uses a contact ultrasonic device using the physical Back-Scatter principle with which a first scan of the breast of the breast is performed.
  • mother providing a first set of parameters which may include, the total volume of the breast, the estimated number of lobes and lobules (functional units of the mammary gland), the number of lactophores-channels, acoustic properties of the tissue, etc.
  • a fractal model is obtained through which the volume of milk stored (total capacity) in the lactophores and in the whole of the mammary gland (especially the lobules). This model also allows an estimation of the milk production rate once the volumetric reserve previously calculated with the model is consumed.
  • a preprocessing of the images is carried out prior to the estimation phase.
  • the system presented in this invention can use the discrete cosine transform (Discrete Cosinus Transform / DCT) or the autocorrelation matrix values of the input images.
  • the preferred implementation of this system performs said preprocessing by means of Wavelet transforms (Discrete Wavelet Transform /
  • the volume of milk ingested by the newborn is estimated through the implementation of a committee of neural networks of the type ⁇ Radial Basis Functions', which calculate a function that returns the volume ingested from Preprocessed images.
  • the neural networks committee is constituted by a set of networks, which is trained from a sampling of the input image, so that by averaging the outputs of said networks the variance of the estimate is compensated and, at the same time, the input of each neural network has a lower dimension.
  • This committee of neural networks can be combined with image processing techniques and, in particular, with the segmentation of preprocessed images to calculate the degree of collapse of the breast tree (ie of all breast tissue) and, as of this degree For compression, estimate the volume of milk ingested (this estimate is direct since the total volume of milk available from the fractal model of the breast is known).
  • Figure 1 shows a representation of the part bottom of the system for estimating breastfeeding where the ultrasonic emitting device is detailed.
  • Figure 2 shows a representation of the profile of the system for the estimation of breastfeeding where it is appreciated that it is a non-invasive handheld device.
  • Figure 3 shows a superior representation of the system for the estimation of breastfeeding where the screen where the data of the readings of the volumetry and the temporal evolution of the same are shown.
  • Figure 4 shows the high level architecture of the global system for ultrasonic capture and the implementation of estimation algorithms.
  • System components include an ultrasonic emitter, a transmission / reception switch, analog / digital converters FPGA or DSP devices and interconnection elements between plates.
  • Figure 5 shows the minimum, medium and maximum volume of milk stored in a breast (BSC) obtained from the application of the fractal model of the present invention.
  • Figure 6 shows the bank of filters that implement the DWT (Discrete Wavelet Transform) of the present invention.
  • the high-pass and low-pass components of the filter bank are detailed as well as the resolution levels for the calculation of the wavelet transformation.
  • Figure 7 shows the block diagram for the estimator based committee of neural networks of the Radial Basis Functions type, which estimate the volumetry of breastfeeding from the samples of preprocessed images (preprocessed ultrasound).
  • Figure 6 shows the block and operation diagram for the estimation of breastfeeding volumetry combining the fractal model defined in the present invention with image segmentation techniques.
  • the present invention consists of a system for estimating the volume of milk ingested by a newborn during breastfeeding whose data is evaluated in real time by means of an ultrasound capture device (1) linked with different digital subsystems (7, 8 , 9) that implement, respectively, a fractal model (7) of the human breast, a committee of classifiers based on neural networks (8) of the RBF type and, finally, another subsystem (9) that calculates the degree of collapse of the breast tree .
  • the preferred implementation of the system uses the digital fractal (7) and neural network (8) subsystems above, the breastfeeding estimator of the present invention can be integrated with the sub-system for measuring the collapse of the breast tree (9) to reduce the variance of the estimates made.
  • the device (1) consists of an ultrasonic transmitter and receiver (2), a transmission card responsible for generating the ultrasound pulses of the conformation of the ultrasound emission beam and the digital / analog conversion of said pulses and of the beam conformation ( ⁇ beaforming ') of the emitter.
  • said sending / receiving device (2) is implemented by a single DSP microcontroller device type FPGA.
  • It also consists of the device (2) of one or several receiving devices (5) (one for each channel according to the previous beam conformation) whose function is the reception of the pulses emitted by the sending card
  • said receiving elements are implemented by a DSP device
  • the number of ultrasound channels may vary between 8 and 64.
  • the device (1) consists of a connection panel between cards, which interconnects the sending card (4) and the receiving cards (5) (8-64 channels) with the controller card (6) which is responsible not only for control the receiving transmitter (2) but also on it the filters and detailed models are implemented then.
  • said controller is implemented by means of an FPGA type DSP device.
  • the invention has the appropriate means of computing and processing information that allow it to apply different procedures according to different subsystems for processing the information received.
  • Subsystem (7) implements a fractal model described below.
  • the channels bifurcate dichotomously, reducing their length and diameter systematically.
  • the breast tree ends in approximately 2 10 lobules.
  • Each of these lobules is divided into 4 generations of alveoli, which constitute the mammary gland.
  • structures can be deduced optimal by minimizing viscosity dissipation ( ⁇ viscous dissipation ') within the volume of the tree.
  • the ratio between the diameter and the length between the p-1 generation and the p generation is h p . If we denote V as the volume of a given channel, the channel reduced by a factor h results in a volume multiplied by a factor h 3 for each generation. For after p generations, the sizes will have been reduced by a factor hixh ⁇ x .. xh p so that the volume of a tree of N + l generations
  • V (n + l) V (n) + V or r n "1
  • r 2h 3 .
  • V V 0 ( 1 ⁇ rN1 ) + -2 N + 1 ⁇ h 3 1-r 3
  • the value of h can be calculated from the ultrasound taken in the subsystem (3) since this value is the relationship between the length of the lactophore channel and its radius.
  • the subsystem (4) is responsible for estimating this factor h and calculating the BSC, using the above equation from h and the number of terminal lactophores.
  • the fractal model presented above not only defines the BSC but also provides the theoretical basis for the subsystem (9) since during a milk intake, the amount of Breast tissue should be kept constant. In other words, this implies that any change within the chest during a milk intake will be due to a pressure drop (ie the structure of the tree of channels and lobules collapses during the 'Emptying of the chest). Therefore, the volume of milk consumed by the newborn can be estimated from the BSC and the degree of breast tissue collapse.
  • Figure 5 shows the minimum, average and maximum BSC for a breast as a function of h.
  • the subsystem inputs (8) consist of two images obtained from the ultrasound of the receiving transmitter (2) made before and after breastfeeding.
  • the present subsystem consists of two distinct phases.
  • the second phase is based on ⁇ Machine Learning 'techniques and computes the total volume from the data obtained from the preprocessed images / ultrasound.
  • the preprocessing phase of the images (10) aims to transform the input image into a vector, which captures the characteristics associated with the problem of estimating the volume of breastfeeding. This vector is invariant in relation to the rotation of the input images, changes in the angle of measurement (or taking of the ultrasound), common characteristics related to the production of milk that are independent of the person, etc.
  • said image preprocessing phase (10) two different techniques are used that can be used independently or in conjunction with the aim of obtaining the data vector described above.
  • the first technique uses the Discrete Cosine Transform (Discrete Cosinus Transform or DCT) and the second uses the Two-Dimensional Wavelet Transform (Discrete Wavelet Transform or DWT).
  • DCT Discrete Cosinus Transform
  • DWT Two-Dimensional Wavelet Transform
  • the DCT transform has been selected because it computes a representation of the image as a combination of horizontal and vertical frequencies. Therefore, with this representation, the details of the image that have certain frequency characteristics will appear along a circle depending on the angle that said characteristic has with respect to the horizontal and vertical axes. Therefore, the representation of the input image in the transformed DCT domain will be invariant with respect to the rotations that can be made on the original image. Moreover, just a part of the image in the transformed domain will be relevant, so that the region of interest of the image in the transformed domain may be selected in order to reduce redundancy while, at the same time, all the information contained in the image is preserved original.
  • the second approach to preprocessing (10) of the input image is based on the DWT.
  • the application of this preprocessing of the input images together with the DCT or independently since scattering properties ⁇ 'of the input ultrasound may be characterized by their spatiotemporal univocally properties is considered. Normally, these properties have been studied by the Discrete Two-Dimensional Fourier Transform (2D-DFT) or by the STFT (Short-Term Fourier Transform). It is a well-known result that both 2D-DFT and STFT cannot simultaneously represent the temporal and frequency properties at the same time, and with different degrees of resolution, of an input image.
  • the DWT presents the ideal framework for the problem of estimating the volume of breastfeeding since it provides a representation of the images in which the relevant information (presence of tubes, layers of tissue, etc.) of information related to the smooth change of the gray scales, artifacts due to the diffraction of the waves, the effect of scaling and rotation of the image because each measurement is performed under slightly different conditions, etc .
  • the DWT coefficients describe the correlation between the selected wavelet (in the preferred implementation of the present invention Haar and Daubechines wavelets have been selected) and the image at various scales / resolutions (ie the degree of similarity between the image and the wavelet for a time-discrete combination and position).
  • the calculated coefficients provide the amplitudes of the wavelet series over a set of scales and translations, which must be added in order to obtain the original image.
  • the DWT analysis can be understood as a search on the image of interest of characteristics that resemble the selected wavelet. This search is done on several scales and several wavelet sizes. For this reason, the Haar Wavelets have been selected to identify the lactophores channels while the Daubechines Wavelets are used both for the detection of lobules and for the elimination of artefacts derived from the absorption and scattering of the initial images.
  • the implementation of this analysis in the preprocessing (10) is carried out by means of a filter bank (figure 6). With this set of filters, the input image is divided into various spectral components ('sub-band coding') in order to obtain the high-pass, low-pass and pass-band components of the input signal. These components are obtained by applying filters h (high-pass) and g (step- low) .
  • filters h high-pass
  • g step- low
  • the RBF neural network is based on the computation of centroids
  • the criterion for evaluating the quality of the estimated function will be the Mean Square Error (MSE) applied to a control or validation sequence on a set of elements of the original Ultrasound Database.
  • MSE Mean Square Error
  • the performance of the RBF learning algorithms can be improved by various techniques. Such techniques include the combination of classifiers and / or training of the classifiers with non-uniform distributions on the data, the coding of the output of the classifiers or the exploitation of the properties of the Kernels due to the high dimensionality of the data. These methods for improving estimator performance are analyzed by the expectation of the input / output data and by the relationship between the dimensionality of the input and the number of samples.
  • the error on the measurement of the module (11) can be decomposed as the sum of the squares of the bias of the estimate and its variance.
  • the estimation error can be controlled by reducing both bias and variance. Therefore, if the set of neural networks is trained so that the output of each network is a random variable, the effect of computing the average of all outputs will result in a reduction of the variance and, therefore, of the error of estimation. This reduction will be a function of the number of Neural networks used in the system. In the preferred implementation of the system, depending on the degree of reliability required, between 1 and 100 neural networks can be used.
  • the neural networks of the present invention are organized in a committee-like structure so that, given a common input, each network uses a sampled version of the common input and calculates the output of each of them in parallel.
  • the effect of sampling the common input is that a different systematic error is introduced into each network. Therefore, when the output of a group of neural networks is added, since each network has a different bias, the estimation error decreases even more because the systematic error is now taken as a mean and the reduction of the variance described previously.
  • the system (8) can be combined with the system (9) (figure 8) where the input images are segmented by image processing techniques, which include opening, smoothing, and overlay ', calculation of the perimeter / segmentation and estimation of the area of the previous perimeter.
  • image processing techniques which include opening, smoothing, and overlay ', calculation of the perimeter / segmentation and estimation of the area of the previous perimeter.
  • the ratio of areas calculated by this subsystem applied to the fractal model (BSC) described above provides a second estimate of the completely incorrect volume with which it has been calculated with the module (11) figure 7 so, if the average between the two is taken estimates, the systematic error decreases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Image Processing (AREA)

Abstract

Sistema para la estimación de la volumetría de la lactancia materna entendida como el volumen de leche ingerida por un neonato durante una toma del pecho. Dicho sistema establece un modelo fractal del pecho humano con la finalidad de estimar el volumen total de leche almacenada en el mismo. El sistema de la presente invención, utiliza un sistema emisor y receptor de ultrasonidos para la captación de una imagen antes de la toma del pecho y otra después. Dichas imágenes son preprocesadas tanto con la DCT como con la DWT antes de la estimación. El procedimiento de estimación de la volumetría está basado en un comité de redes neuronales con la finalidad de disminuir el error entre el valor real y el estimado a base de reducir el sesgo (error sistemático) y la variancia del sistema estimador mediante un promedio del las respuestas del comité de redes neuronales. Finalmente, también se presenta otro algoritmo para la reducción de dicho error sistemático basado en técnicas de segmentación de imágenes combinado con el sistema fractal presentado.

Description

Sistema para la estimación de la volumetría de la lactancia materna.
CAMPO DE LA INVENCIÓN
La presente invención desarrolla un sistema, incluyendo un dispositivo digital de escaneado por ultrasonidos, para la estimación de la volumetria de leche ingerida por un recién nacido durante el proceso de la toma del pecho, configurándose como un aparato de mano de toma de ecografias por ultrasonidos. El sistema proporciona la medición final mediante la información de ultrasonidos obtenida por los procedimientos operativos del mismo.
ANTECEDENTES
Los beneficios de la lactancia materna, tanto para las mujeres como para los recién nacidos, son bien conocidos por la comunidad médica y asi lo constatan numerosas publicaciones en el campo de la pediatría. De hecho, tanto la Organización Mundial de la Salud (OMS) como el Fondo para la Infancia de las Naciones Unidas (UNICEF por sus siglas en Inglés) recomiendan que todas las madres amamanten a sus recién nacidos de forma exclusiva durante los seis primeros meses de vida. En las recomendaciones publicadas en el reporte λHealthy People 2010' , el Departamento de Salud de los EEUU plantea el objetivo de alcanzar un 75% de prevalencia de la lactancia materna durante el post-parto junto con una prevalencia del 50% durante los primeros seis meses de vida .
A pesar de que la prevalencia actual durante el post- parto es relativamente alta (alrededor del 70% en los EEUU, 80% en Australia, 90% en Alemania, etc.), menos de la mitad de recién nacidos reciben el pecho a los seis meses de vida. A pesar de que resulta difícil identificar las causas directas de la interrupción precoz de la lactancia materna , los últimos estudios pediátricos publicados apuntan a que existen numerosas dificultades derivadas del proceso de dar el pecho durante las primeras semanas del post-parto, las cuales parece ser que tienen una gran correlación con esta discontinuidad prematura.
Estos problemas durante las 4 primeras semanas de vida son bastante comunes. Un tercio de las madres refieren percibir al menos uno o más problemas relacionados con la lactancia, como son la falta de confianza en su habilidad para dar el pecho, percepción de no tener suficiente leche, problemas de succión por parte del recién nacido, etc. A su vez, se han publicado otros estudios que elevan la tasa de mujeres que sufren dichos problemas hasta el 38%.
La patente WO2006054287, desarrolla un sistema que integra diversos dispositivos integrados en un sujetador, con aperturas que permiten la exposición del pecho para amamantar al recién nacido. En el interior de dicho sujetador se encuentran diversas sondas emisoras/receptoras de ultrasonidos, que utilizan el Efecto Doppler para calcular el flujo de leche y realizar a partir de éste la estimación del volumen de leche que toma el recién nacido.
Sin embargo, dicho sistema no resulta ser un medio adecuado para la estimación de la volumetria de leche tomada por el recién nacido, ya que se trata de un sistema altamente invasivo y perturbador de la intimidad entre la madre y el recién nacido al obligar a amamantar con una prenda verdaderamente incómoda para poder realizar la estimación volumétrica.
Las patentes US5827191 y WO2006003655 desarrollan un sistema para la medición de la volumetria de leche ingerida por un recién nacido basado en un cubre-pezón elástico por el que pasa, con la finalidad de medirlo, el flujo de leche tomada.
Ambos sistemas presentan el inconveniente de establecer una barrera física entre la madre y el bebé perturbando no sólo la intimidad entre ambos, sino también el proceso mismo de amamantar, ya que dificulta tanto la succión del lactante como la producción de leche que se deriva del estimulo directo del pezón por parte del niño.
Persiste sin embargo sin resolver la cuestión de establecer un sistema autónomo para la estimación de la volumetria de la lactancia materna que sea preciso, cómodo, no invasivo, fácil de utilizar y que no deba estar en contacto con la madre o el recién nacido durante todo el proceso de amamantamiento. En concreto, persiste la necesidad de establecer un sistema que ayude a resolver todos los problemas descritos anteriormente.
Es por ello, que uno de los objetivos principales de la presente invención es dar solución a la problemática derivada del proceso de lactancia de los recién nacidos durante los seis primeros meses de vida proporcionando datos en tiempo real a las nuevas madres sobre el volumen de leche ingerida por su recién nacido.
Otro de los objetivos y ventajas que se obtienen con la facilidad y portabilidad del sistema de la presente invención hace referencia al aumento de la calidad de vida y confort de las nuevas madres y recién nacidos puesto que se requiere del mínimo contacto para la realización de la estimación (requiere sólo dos escaneados pre y post succión) , siendo otro de los objetivos principales de la presente invención extender el proceso de lactancia materna más allá de los primeros seis meses de vida.
BREVE EXPLICACIÓN DE LA INVENCIÓN
De acuerdo con los antecedentes de la invención detallados anteriormente, el sistema para la estimación de la volumetria en la lactancia materna usa un dispositivo de ultrasonidos por contacto utilizando el principio físico de Back-Scatter con el que se realiza un primer escaneado del pecho de la madre proveyendo un primer conjunto de parámetros entre los que se puede incluir, el volumen total del pecho, el número estimado de lóbulos y lobulillos (unidades funcionales de la glándula mamaria) , el número de -canales lactóforos, propiedades acústicas del tejido, etc.
Con el conjunto de datos obtenido anteriormente se obtiene un modelo fractal mediante el cual se obtiene el volumen de leche almacenado (capacidad total) en los canales lactóforos y en el conjunto de la glándula mamaria (en especial, los lobulillos). Este modelo permite también realizar una estimación de la tasa de producción de leche una vez consumida la reserva volumétrica calculada anteriormente con el modelo.
Una vez realizadas las medidas anteriores junto con la primera estimación de la volumetria y una vez finalizado el proceso de amamantar al recién nacido con un pecho, se procede a realizar un segundo escaneado por contacto con la mama materna con el sensor de ultrasonidos. Con este segundo escaneado se obtiene el mismo conjunto de datos detallado anteriormente.
Con el conjunto de datos disponible, se infiere una función / sistema que, a partir de una entrada de imágenes del pecho, antes y después de amamantar sea capaz de proveer el volumen total de leche consumida. Para ello, se modela dicha estimación con un proceso de clasificación en función de diferentes categorías (datos de entrada) .
Para ello, se realiza un preprocesado de las imágenes previo a la fase de estimación. El sistema presentado en esta invención puede utilizar la transformada discreta del coseno (Discrete Cosinus Transform / DCT) o los valores propios de la matriz de autocorrelación de las imágenes de entrada. La implementación preferida del presente sistema realiza dicho preprocesado mediante las transformadas Wavelet (Discrete Wavelet Transform /
DWT) , ya que captura las especificidades de las ecografías de entrada (i.e. las imágenes de los dos escaneados realizados con el sensor de ultrasonidos) a diferentes niveles de resolución, y la DCT (Discrete Cosinus Transform) .
Una vez realizado el preprocesado de las ecografias de entrada se estima el volumen de leche ingerida por el recién nacido mediante la implementación de un comité de redes neuronales del tipo ^Radial Basis Functions' , que calculan una función que devuelve el volumen ingerido a partir de las imágenes preprocesadas . Con la finalidad de disminuir la variancia de la estimación anterior, el comité de redes neuronales está constituido por un conjunto de redes, que se entrena a partir de un muestreo de la imagen de entrada, de tal manera que al promediar las salidas de dichas redes se compense la variancia de la estimación y, al mismo tiempo, la entrada de cada red neuronal tenga una dimensión mas baja. Este comité de redes neuronales puede combinarse con técnicas de procesado de imagen y, en especial, con la segmentación de las imágenes preprocesadas para calcular el grado de colapso del árbol mamario (i.e. de todo el tejido mamario) y, a partir, de este grado de compresión realizar una estimación del volumen de leche ingerido (esta estimación es directa puesto que se conoce el volumen total de leche disponible a partir del modelo fractal del pecho) .
BREVE EXPLICACIÓN DE LOS DIBUJOS
La figura 1 muestra una representación de la parte inferior del sistema para la estimación de la lactancia materna donde se detalla el dispositivo emisor de ultrasonidos .
La figura 2 muestra una representación del perfil del sistema para la estimación de la lactancia materna donde se aprecia que el mismo es un dispositivo de mano no invasivo .
La figura 3 muestra una representación superior del sistema para la estimación de la lactancia materna donde se aprecia la pantalla donde se presentan los datos de las lecturas de la volumetria y la evolución temporal de las mismas.
La figura 4 muestra la arquitectura de alto nivel del sistema global para la captación de ultrasonidos y la implementación de los algoritmos de estimación. Los componentes del sistema incluyen un emisor de ultrasonidos, un conmutador transmisión / recepción, conversores analógico / digitales dispositivos FPGA o DSP y los elementos de conexión entre placas.
La figura 5 muestra el volumen minimo, medio y máximo de leche almacenada en un pecho (BSC) obtenido de la aplicación del modelo fractal de la presente invención.
La figura 6 muestra el banco de filtros que implementan la DWT (Discrete Wavelet Transform) de la presente invención. Se detallan los componentes paso-alto y paso- bajo del banco de filtros asi como los niveles de resolución para el cálculo de la transformación wavelet. La figura 7 muestra el diagrama de bloques para el estimador basado comité de redes neuronales del tipo Radial Basis Functions, que realizan la estimación de la volumetria de la lactancia materna a partir de las muestras de las imágenes preprocesadas (ecografias preprocesadas) .
La figura 6 muestra el diagrama de bloques y operaciones para la estimación de la volumetria de la lactancia materna combinando el modelo fractal definido en la presente invención con técnicas de segmentación de imágenes .
EXPLICACIÓN DETALLADA DE LA INVENCIÓN
Consiste la presente invención en un sistema para la estimación del volumen de leche ingerida por un recién nacido durante una toma del pecho cuyos datos son evaluados en tiempo real mediante un dispositivo (1) de captación de ecografias enlazado con diferentes subsistemas digitales (7, 8, 9) que implementan, respectivamente, un modelo fractal (7) del pecho humano, un comité de clasificadores basados en redes neuronales (8) del tipo RBF y, finalmente, otro subsistema (9) que calcula el grado de colapso del árbol mamario. Aunque la implementación preferida del sistema utiliza los subsistemas digitales fractal (7) y de red neuronal (8) anteriores, el estimador de lactancia materna de la presente invención puede integrarse con el sub-sistema de medición del colapso del árbol mamario (9) para reducir la variancia de las estimaciones realizadas.
Consta el dispositivo (1) de un emisor y receptor de ultrasonidos (2), de una tarjeta de transmisión encargada de la generación de los pulsos de ultrasonidos de la conformación del haz de emisión de ultrasonidos y de la conversión digital / analógico de dichos pulsos y de la conformación del haz ( λbeaforming' ) del emisor. En la implementación preferida del sistema, dicho dispositivo emisor / receptor (2) es implementado mediante un único dispositivo microcontrolador DSP tipo FPGA.
Consta también el dispositivo (2) de uno o varios dispositivos receptores (5) (uno para cada canal según la conformación de haz anterior) cuya función es la recepción de los pulsos emitidos por la tarjeta emisora
(4), la conversión analógico / digital y la conformación de las ecografias, que se utilizarán como entrada para la estimación del volumen de leche ingerida. En la implementación preferida del sistema, dichos elementos receptores son implementados mediante un dispositivo DSP
/ FPGA para cada canal. Dependiendo del grado de fiabilidad deseado en el sistema final, el número de canales de ultrasonidos puede variar entre 8 y 64.
Finalmente, el dispositivo (1) consta de un panel de conexión entre tarjetas, que interconecta la tarjeta emisora (4) y las receptoras (5) (8-64 canales) con la tarjeta controladora (6) que es la encargada no sólo de controlar el emisor receptor (2) sino que también sobre la misma se implementan los filtros y modelos detallados a continuación. En la implementación preferida del sistema, dicha controladora es implementada mediante un dispositivo DSP tipo FPGA.
Para el cálculo del volumen mamario e interpretación de las imágenes obtenidas por ultrasonidos la invención dispone de los medios adecuados de cómputo y procesado de información que le permiten aplicar diferentes procedimientos según diferentes subsistemas de tratamiento de la información recibida.
El subsistema (7) implementa un modelo fractal descrito a continuación. En el árbol mamario, los canales se bifurcan de forma dicotómica reduciendo la longitud y el diámetro de los mismos de forma sistemática. Por otra parte, se estima que el árbol mamario finaliza en, aproximadamente, 210 lobulillos. Cada uno de estos lobulillos se divide en 4 generaciones de alvéolos, que constituyen la glándula mamaria. Considerando la parte baja del árbol mamario (i.e. las generaciones 5 a 10) y asumiendo que la leche fluye en el sistema de canales siguiendo la ley de Poseuille (de hecho es una muy buena aproximación para la zona del árbol considerada) , pueden deducirse estructuras óptimas mediante la minimización de la disipación de viscosidad ( Λviscous dissipation' ) dentro del volumen del árbol. De hecho, el análisis detallado de dicha proposición mediante multiplicadores de Lagrange sugiere que la mejor estructura de árbol es fractal con dimensión 3. En este árbol ideal, los segmentos sucesivos serán homotéticos con una relación tamaño / radio constante (h) . De hecho este resultado, puede considerarse como un caso particular de la ley Hess-Murray, que modela el árbol sanguíneo.
Asumiendo que las ramas que se bifurcan son simétricas
(esta asunción resulta ser bastante razonable para la parte interna del pecho) , la razón entre el diámetro y la longitud entre la generación p-1 y la generación p es hp. Si denotamos V como el volumen de un canal determinado, el canal reducido por un factor h, resulta en un volumen multiplicado por un factor h3 para cada generación. Para después de p generaciones, los tamaños se habrán reducido por un factor hixh∑x .. xhp de manera que el volumen de un árbol de N+l generaciones
(indexadas de 0 a N) puede escribirse de la siguiente manera:
V = V0 + ¿2p(hl X h2 x . . x hp)3V0 p=l
Si asumimos que el factor de reducción es constante entre generaciones, el volumen puede reescribirse como:
V=V0(l+¿(2h3)p) p=l
Reescribiendo la ecuación anterior como una ecuación en diferencias finitas (EDF) , el volumen puede escribirse de la siguiente forma:
V(n+ l) = V(n)+ Vorn"1
El término N-ésimo puede escribirse como:
Figure imgf000012_0001
Donde r=2h3. De todas maneras, hasta este momento sólo se ha calculado el volumen de leche almacenada en el interior del árbol mamario por lo que no se ha considerado todavía la contribución al volumen total derivada de los lobulillos. Como se verá a continuación, dicho volumen es bastante mayor que el calculado anteriormente .
Como ya se ha comentado con anterioridad, existe una relación uno-a-uno entre el número de canales lactóforos en la última iteración (N) y el número de lobulillos. En otras palabras a un árbol mamario de 2N ramas, le corresponden 2N lobulillos. Por lo tanto, asumiendo una forma esférica para los lobulillos con un radio medio h, la capacidad total del pecho (BSC / λBreast Storage Capacity' ) puede escribirse de la siguiente manera:
V = V0(1~rN1) +-2N+1πh3 1-r 3
El valor de h puede calcularse a partir de las ecografias tomadas en el subsistema (3) puesto que este valor es la relación entre la longitud del canal lactóforo y su radio. En conclusión, el subsistema (4) es el encargado de realizar la estimación de este factor h y de calcular la BSC, mediante la ecuación anterior a partir de h y del número de canales lactóforos terminales .
Por otra parte, el modelo fractal presentado anteriormente no sólo define la BSC sino que también provee el fundamento teórico para el subsistema (9) puesto que durante una toma de leche, la cantidad de tejido mamario debe mantenerse constante. En otras palabras, esto implica que cualquier cambio dentro del pecho durante una toma de leche se deberá a una bajada de presión (i.e. la estructura del árbol de canales y lobulillos se colapsa durante el Vaciado' del pecho) . Por lo tanto, a partir de la BSC y del grado de colapso del tejido mamario puede estimarse el volumen de leche consumido por el neonato. La figura 5 muestra la BSC minima, media y máxima para un pecho en función de h.
Una vez realizado el primer escaneado de ultrasonidos
(ecografia) a partir del cual se han obtenido los datos detallados anteriormente (Básicamente BSC, h y número de canales lactóforos) , se realiza un segundo escaneado (ecografia) después de la toma para la estimación automática en tiempo real de la leche tomada por el neonato .
Por su parte, las entradas del subsistema (8) constan de dos imágenes obtenidas de las ecografias del emisor receptor (2) realizadas antes y después de la toma del pecho. Consta el presente subsistema de dos fases diferenciadas. Una define la unidad de preprocesado, que está diseñada con la finalidad de obtener caracteristicas/datos invariantes respecto a translaciones, rotaciones y/o escalado (tanto en frecuencia como en el tiempo) a partir de las imágenes/ecografias. La segunda fase está basada en técnicas del tipo ^Machine Learning' y computa el volumen total a partir de los datos obtenidos a partir de las imágenes/ecografias preprocesadas . La fase de preprocesado de las imágenes (10) tiene como objetivo transformar la imagen de entrada en un vector, que capture las características asociadas al problema de estimación de la volumetria de la lactancia materna. Este vector es invariante en relación a la rotación de las imágenes de entrada, cambios en el ángulo de medida (o toma de la ecografia) , características comunes relacionadas con la producción de leche que sean independientes de la persona, etc..
En la implementación preferida de dicha fase de preprocesado de imágenes (10) se utilizan dos técnicas diferentes que pueden utilizarse de forma independiente o conjunta con el objetivo de obtener el vector de datos descrito anteriormente. La primera técnica utiliza la Transformada Discreta del Coseno (Discrete Cosinus Transform o DCT) y la segunda utiliza la Transformada Wavelet Bidimensional (Discrete Wavelet Transform o DWT) .
En la presente invención se ha seleccionado la transformada DCT porque ésta computa una representación de la imagen como una combinación de frecuencias horizontales y verticales. Por lo tanto, con esta representación, los detalles de la imagen que posean ciertas características de frecuencia, aparecerán a lo largo de un circulo en función del ángulo que dicha característica tenga con respecto a los ejes horizontal y vertical. Por lo tanto, la representación de la imagen de entrada en el dominio transformado DCT será invariante con respecto a las rotaciones que puedan hacerse sobre la imagen original. Por otra parte, sólo una parte de la imagen en el dominio transformado será relevante, por lo que podrá seleccionarse la región de interés de la imagen en el dominio transformado con la finalidad de reducir la redundancia mientras, a la vez, se preserva toda la información contenida en la imagen original .
La segunda aproximación al preprocesado (10) de la imagen de entrada está basada en la DWT. Se considera la aplicación de este preprocesado de las imágenes de entrada conjuntamente con la DCT o de forma independiente puesto que las propiedades de Λ scattering' de las ecografias de entrada pueden ser caracterizadas univocamente mediante sus propiedades espacio- temporales. Normalmente, estas propiedades han sido estudiadas mediante la Transformada Discreta de Fourier Bidimensional (2D-DFT) o mediante la STFT (Short-Term Fourier Transform) . Es un resultado bien conocido que tanto la 2D-DFT como la STFT no pueden representar a la vez las propiedades temporales y frecuenciales a la vez, y con diferentes grados de resolución, de una imagen de entrada.
La DWT presenta el marco idóneo para el problema de la estimación del volumen de la lactancia materna puesto que proporciona una representación de las imágenes en las que se separa la información relevante (presencia de tubos, capas de tejido, etc.) de información relacionada con el cambio suave de las escalas de gris, artefactos debido a la difracción de las ondas, el efecto de escalado y rotación de la imagen debido a que cada medida se realiza en condiciones ligeramente diferentes, etc .
Los coeficientes de la DWT describen la correlación entre el wavelet seleccionado (en la implementación preferida de la presente invención se han seleccionado wavelets de Haar y Daubechines) y la imagen a varias escalas / resoluciones (i.e. se mide el grado de similitud entre la imagen y la wavelet para una combinación tiempo-discreto y posición) . En otras palabras, los coeficientes calculados proveen las amplitudes de la serie de wavelets sobre un conjunto de escalas y traslaciones, que deben sumarse con la finalidad de obtener la imagen original. Desde esta perspectiva, el análisis DWT puede entenderse como una búsqueda sobre la imagen de interés de características que se asemejen al wavelet seleccionado. Esta búsqueda se realiza sobre varias escalas y varios tamaños de wavelet. Por este motivo, se han seleccionado los Wavelets de Haar para identificar los canales lactóforos mientras que los Wavelets de Daubechines se utilizan tanto para la detección de lobulillos como para la eliminación de los artefactos derivados de la absorción y scattering de las imágenes iniciales.
La implementación de este análisis en el preprocesado (10) se realiza mediante un banco de filtros (figura 6). Con este conjunto de filtros, se divide la imagen de entrada en diversos componentes espectrales ( 'codificación sub-banda' ) con la finalidad de obtener las componentes paso-alto, paso-bajo y paso-banda de la señal de entrada. Estas componentes se obtienen mediante la aplicación de los filtros h (paso-alto) y g (paso- bajo) . La aplicación del filtro h es análoga a la aplicación del wavelet seleccionado a la imagen de entrada mientras que la aplicación del filtro g es análoga a la aplicación de un escalado o de una función de smoothing a la señal de entrada.
El subsistema (8), a parte de la fase de preprocesado
(10) descrita anteriormente, también engloba un módulo
(11) cuyo objetivo es inferir una función general a partir de un conjunto de ejemplos disponibles
(ecografias almacenadas en una Base de Datos) . A partir de dicha función general y de las dos imágenes preprocesadas se puede realizar la estimación del volumen de leche ingerida.
Puesto que la estimación de la dependencia entre el volumen y las dos ecografias disponibles antes y después de la toma del pecho es bastante complicado, que la dimensionalidad de las entradas es realmente alta y el número de ejemplos disponibles bajo, se propone el uso de una red neuronal del tipo Radial Basis Function (RBF) para solucionar la problemática descrita más arriba. La red neuronal RBF está basada en el cómputo de centroides
(la función más intuitiva que puede computarse es una interpolación entre valores mediante una λlookup table' ) . Dicho cómputo de centroides e interpolación asume que la función subyacente que debe estimarse es suave (baja variabilidad) de manera que el efecto del ruido en los datos de entrada (ecografias) se traduce en una incertidumbre en el volumen estimado, que estará alrededor del centroide, pero dicho efecto será limitado puesto que dicho volumen de incertidumbre no es demasiado elevado en el sistema presentado.
Por otra parte, el criterio para evaluar la calidad de la función estimada será el Error Cuadrático Medio (MSE) aplicado a una secuencia de control o de validación sobre un conjunto de elementos de la Base de Datos de ecografias original. El rendimiento de los algoritmos de aprendizaje de la RBF, que infieren la función del volumen a partir de los ejemplos y entradas disponibles, puede mejorarse mediante diversas técnicas. Dichas técnicas incluyen la combinación de clasificadores y/o entrenamiento de los clasificadores con distribuciones no-uniformes sobre los datos, la codificación de la salida de los clasificadores o la explotación de las propiedades de los Kernels debido a la alta dimensionalidad de los datos. Estos métodos para la mejora del rendimiento del estimador se analizan mediante la esperanza de los datos de entrada / salida y mediante la relación entre la dimensionalidad de la entrada y el número de muestras.
El error sobre la medición del módulo (11) puede descomponerse como la suma de los cuadrados del sesgo de la estimación y la variancia de la misma. Mediante la agregación de redes neuronales, puede controlarse el error de estimación mediante la disminución tanto del sesgo como de la variancia. Por lo tanto, si se entrena el conjunto de redes neuronales de manera que la salida de cada red sea una variable aleatoria, el efecto de computar la media de todas las salidas resultará en una reducción de la variancia y, por lo tanto, del error de estimación. Dicha reducción será función del número de redes neuronales que se utilicen en el sistema. En la implementación preferida del sistema, según el grado de fiabilidad requerido, se pueden utilizar entre 1 y 100 redes neuronales.
Las redes neuronales de la presente invención se organizan en una estructura tipo comité de manera que, dada una entrada común, cada red utiliza una versión muestreada de la entrada común y se calcula la salida de cada una de ellas en paralelo. El efecto del muestreo de la entrada común es que se introduce un error sistemático diferente en cada red. Por lo tanto, cuando se agrega la salida de un grupo de redes neuronales, puesto que cada red tiene un sesgo diferente, el error de estimación disminuye aún más debido a que ahora se toma la media el error sistemático y a la reducción de la variancia descrita anteriormente.
En la implementación preferida de la presente invención, se propone entrenar un comité de redes neuronales RBF con imágenes de entrada muestreadas (o imágenes segmentadas) de manera que cada red neuronal tenga como entrada una imagen diferente de manera que cuando se agregue todas las salidas de las redes neuronales mediante el cálculo de la media de todas las salidas de las redes neuronales, el error sistemático será menor que el que se obtendría con RBF entrenadas con toda la imagen y no con versiones muestreadas (o segmentos de imagen) de la misma. La figura 7 muestra el diagrama de bloques de este sistema.
Finalmente, con la finalidad de reducir aún más el error sistemático de la estimación de la volumetria, el sistema (8) puede combinarse con el sistema (9) (figura 8) donde las imágenes de entrada son segmentadas mediante técnicas de procesado de imagen, que incluyen la apertura, suavizado, y overlay' , cálculo del perimetro / segmentación y estimación del área del perimetro anterior. La relación de áreas calculada mediante este subsistema aplicada al modelo fractal (BSC) descrito anteriormente provee una segunda estimación del volumen completamente incorrelada con la que se ha calculado con el módulo (11) figura 7 por lo que, si se toma la media entre ambas estimaciones, el error sistemático decrece.
Se sobreentiende que en el presente caso pueden ser variables cuantas alteraciones de acabado o forma no modifiquen la esencia de la invención.

Claims

REIVINDICACIONES
1.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA CARACTERIZADO por - incorporar un dispositivo de mano (1) no invasivo para dicha estimación del volumen de leche ingerido por un neonato utilizar un emisor receptor de ultrasonidos (2) integrado en dicho dispositivo de mano (1) para la captación de una ecografia antes de la toma del pecho y otra después de la misma
- disponer dicho dispositivo (1) de medios de cómputo, almacenamiento de datos y procesado de los mismos, adecuados para el tratamiento de las imágenes obtenidas - disponer de procedimientos operativos destinados a realizar la estimación del volumen de leche ingerido por el neonato en tiempo real en medidas de centímetros cúbicos, mililitros, onzas, etc.
- presentar la lectura de la volumetría estimada en una pantalla (3) de dicho dispositivo (1) .
2.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según la reivindicación anterior, CARACTERIZADO porque dichos procedimientos operativos pueden establecer simultáneamente diferentes subsistemas que realizan estimaciones independientes del volumen total de leche almacenada en el pecho (BSC / Breast Storage Capacity) , dicha combinación de subsistemas destinada a reducir el error sistemático en las mediciones de dicho volumen total de leche consumida y aumentar su grado de precisión.
3.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque dicho dispositivo (1) utiliza un sensor de ultrasonidos por contacto para la captura de ecografias antes y después de la toma del pecho.
4.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque dicha captura de ecografias se realiza mediante una tarjeta emisora (4) y una tarjeta receptora (5) de ultrasonidos.
5.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque el sistema para la captación de ultrasonidos es implementado en dicho dispositivo de mano (1) mediante dispositivos DSP, y/o microcontroladores, por ejemplo realizados mediante chips FPGA.
6.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque el sistema para la captación de ultrasonidos (2) puede implementarse con aproximadamente de 1 a 10 dispositivos FPGA según el número de canales de recepción que se deseen (por ejemplo, en un margen de 8 a 64)
1.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque el sistema para la captación de ultrasonidos (2) dispone de una tarjeta coordinadora (6) para la conformación de las imágenes (ecografias) capturadas mediante las tarjetas de emisión (4) y recepción (5) de ultrasonidos.
8.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque las tarjetas de emisión (4) y recepción (5) se encuentran conectadas con la tarjeta coordinadora (6) mediante un panel de conexión serie .
9.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA L ACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque dichos subsistemas para la estimación de la volumetria se encuentran almacenados en dicha tarjeta coordinadora (6).
10.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque la tarjeta coordinadora está implementada con un dispositivo DSP, y/o microcontroladores, a su vez realizados por ejemplo mediante chips FPGA.
11.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque las imágenes obtenidas son preprocesadas antes de la estimación mediante la transformada DCT (Discrete Cosinus Transform) .
12.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque las imágenes obtenidas también pueden ser preprocesadas antes de la estimación mediante la transformada DWT (Discrete Wavelet Transform) .
13.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según la reivindicaciones anteriores, CARACTERIZADO porque las wavelets seleccionadas para el preprocesado son las wavelets de Haar y Daubechines.
14.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque el procedimiento para la estimación del volumen de leche ingerida se realiza a partir de dos imágenes preprocesadas (antes y después de la toma del pecho) .
15.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque dicha estimación del volumen de leche ingerida se realiza por un subsistema con un modelo fractal (7) del pecho humano.
16.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque dicha estimación del volumen de leche ingerida se realiza mediante redes neuronales .
17.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según la reivindicación anterior, CARACTERIZADO porque las redes neuronales anteriores se encuentran configuradas aproximadamente como un comité de 1 a 100 clasificadores.
18.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones 16 y 17, CARACTERIZADO porque para reducir el error sistemático del sistema, cada elemento del comité de clasificadores tiene como entrada una versión muestreada de las imágenes preprocesadas .
19.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque para reducir el error sistemático del sistema pueden utilizarse técnicas de segmentación de imágenes para estimar el grado de colapso del árbol mamario.
20.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según la reivindicación anterior, CARACTERIZADO porque el volumen de leche ingerido puede estimarse mediante un subsistema (9) a partir de la BSC y del grado de compresión del árbol mamario.
21.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque dicho dispositivo (1) funciona con baterías (12).
22.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque el sistema genera una alarma el caso de que se produzca un error (baterías (12) , captura de ecografia, etc) .
23.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según las reivindicaciones anteriores, CARACTERIZADO porque el sistema puede disponer de los registros de memoria adecuados y configurarse para almacenar los datos de diversas lecturas y dar una evolución sobre las tomas a lo largo del tiempo.
24.- SISTEMA PARA LA ESTIMACIÓN DE LA VOLUMETRÍA DE LA LACTANCIA MATERNA, según la reivindicaciones anteriores, CARACTERIZADO porque el sistema puede disponer de los medios de comunicación adecuados y configurarse para volcar las lecturas a un ordenador para su análisis.
PCT/ES2007/000453 2007-07-20 2007-07-25 Sistema para la estimación de la volumetría de la lactancia materna Ceased WO2009013363A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200702029A ES2311413B1 (es) 2007-07-20 2007-07-20 Sistema para la estimacion de la volumetria en la lactancia materna.
ESP200702029 2007-07-20

Publications (1)

Publication Number Publication Date
WO2009013363A1 true WO2009013363A1 (es) 2009-01-29

Family

ID=40260995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000453 Ceased WO2009013363A1 (es) 2007-07-20 2007-07-25 Sistema para la estimación de la volumetría de la lactancia materna

Country Status (2)

Country Link
ES (1) ES2311413B1 (es)
WO (1) WO2009013363A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992445B2 (en) 2011-02-27 2015-03-31 Milkotech Systems Ltd Apparatus and method for real-time measurement of changes in volume of breast and other organs
KR20210145442A (ko) * 2020-05-25 2021-12-02 건국대학교 글로컬산학협력단 초음파를 이용한 모유량 측정시스템
CN114765945A (zh) * 2019-11-26 2022-07-19 皇家飞利浦有限公司 用于在母乳喂养或挤奶期间监测乳流量的监测系统和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2398384A4 (en) * 2009-02-17 2014-10-15 Innovia Medical Ltd DEVICE FOR MEASURING THE MILK CONSUMPTION WHILE STILLING

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827191A (en) * 1995-09-28 1998-10-27 Rosenfeld; Haim Method and a device for monitoring milk volume during breast feeding
WO2006003655A1 (en) * 2004-07-01 2006-01-12 Tulsa (N.Y.M.) Engineering Solutions Ltd Breast-feeding device
WO2006054287A1 (en) * 2004-11-18 2006-05-26 Mamsense Ltd. Breast milk flow meter apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827191A (en) * 1995-09-28 1998-10-27 Rosenfeld; Haim Method and a device for monitoring milk volume during breast feeding
WO2006003655A1 (en) * 2004-07-01 2006-01-12 Tulsa (N.Y.M.) Engineering Solutions Ltd Breast-feeding device
WO2006054287A1 (en) * 2004-11-18 2006-05-26 Mamsense Ltd. Breast milk flow meter apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAMSAY D.T. ET AL.: "Anatomy of the lactating human breast redefined with ultrasound imaging", JOURNAL OF ANATOMY, vol. 206, no. 6, June 2005 (2005-06-01), pages 525 - 534, XP055063447, DOI: doi:10.1111/j.1469-7580.2005.00417.x *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992445B2 (en) 2011-02-27 2015-03-31 Milkotech Systems Ltd Apparatus and method for real-time measurement of changes in volume of breast and other organs
CN114765945A (zh) * 2019-11-26 2022-07-19 皇家飞利浦有限公司 用于在母乳喂养或挤奶期间监测乳流量的监测系统和方法
KR20210145442A (ko) * 2020-05-25 2021-12-02 건국대학교 글로컬산학협력단 초음파를 이용한 모유량 측정시스템
KR102375225B1 (ko) 2020-05-25 2022-03-16 건국대학교 글로컬산학협력단 초음파를 이용한 모유량 측정시스템

Also Published As

Publication number Publication date
ES2311413B1 (es) 2009-12-17
ES2311413A1 (es) 2009-02-01

Similar Documents

Publication Publication Date Title
US7041059B2 (en) 3D ultrasound-based instrument for non-invasive measurement of amniotic fluid volume
JP4430532B2 (ja) 膀胱壁の厚さを測定するシステム及び方法
EP2701607B1 (en) Bone surface image reconstruction using ultrasound
US7744534B2 (en) 3D ultrasound-based instrument for non-invasive measurement of amniotic fluid volume
US9414763B2 (en) Wearable/man-portable electromagnetic tomographic imaging
US20050251039A1 (en) 3D ultrasound-based instrument for non-invasive measurement of amniotic fluid volume
US12220220B2 (en) Body surface optical imaging for respiratory monitoring
ES2311413B1 (es) Sistema para la estimacion de la volumetria en la lactancia materna.
CN101951839A (zh) 利用超声造影剂的呼吸门控治疗评估
Arbeille et al. Jugular and portal vein volume, middle cerebral vein velocity, and intracranial pressure in dry immersion
AU2009326864B2 (en) Medical diagnostic method and apparatus
US10939894B2 (en) Acoustic streaming for fluid pool detection and identification
Bonnet et al. Automatic estimate of back anatomical landmarks and 3D spine curve from a Kinect sensor
US20140288415A1 (en) Imaging Method and Device for the Cardiovascular System
Molinaro et al. Reliability analysis of an innovative technology for the assessment of spinal abnormalities
US20190216366A1 (en) Health Monitoring System Including Camera for Measuring Body Proportions
US20040127797A1 (en) System and method for measuring bladder wall thickness and presenting a bladder virtual image
CN119559339B (zh) 基于深度学习的膀胱eit三维形貌实时重建和容量测定方法
EP4378394A1 (en) Hemodynamic parameter estimation
Butterworth et al. Quantifying Consistency of Microwave Breast Imaging: Laser Scanning for Assessing Breast Volume and Shape
Mária et al. The new processing of the results of examinations made with Zebris WIN-SPINE spine-measuring method and its validation
Padmapriya et al. An intensive review on the noninvasive methods to measure the urinary bladder volume using ultrasound images
TW588158B (en) Systems and methods for providing information concerning chromophores in physiological media
EP4444187B1 (en) Hemodynamic parameter estimation
ES2989645T3 (es) Método para la monitorización de un paciente recostado para obtener información sobre la posición corporal del paciente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07803640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07/05/2010)

122 Ep: pct application non-entry in european phase

Ref document number: 07803640

Country of ref document: EP

Kind code of ref document: A1