[go: up one dir, main page]

WO2009010415A2 - Agents contenant un principe actif anti-irritant - Google Patents

Agents contenant un principe actif anti-irritant Download PDF

Info

Publication number
WO2009010415A2
WO2009010415A2 PCT/EP2008/058790 EP2008058790W WO2009010415A2 WO 2009010415 A2 WO2009010415 A2 WO 2009010415A2 EP 2008058790 W EP2008058790 W EP 2008058790W WO 2009010415 A2 WO2009010415 A2 WO 2009010415A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
amino
group
color
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2008/058790
Other languages
German (de)
English (en)
Other versions
WO2009010415A3 (fr
Inventor
Astrid Kleen
Janie Terrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to EP08774840A priority Critical patent/EP2167030A2/fr
Publication of WO2009010415A2 publication Critical patent/WO2009010415A2/fr
Publication of WO2009010415A3 publication Critical patent/WO2009010415A3/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9741Pteridophyta [ferns]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9755Gymnosperms [Coniferophyta]
    • A61K8/9761Cupressaceae [Cypress family], e.g. juniper or cypress
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/04Preparations for permanent waving or straightening the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair

Definitions

  • the present application relates to color and / or shape-changing agents for keratinic fibers containing at least one plant extract, at least one vegetable oil, at least one unsaponifiable residue of a vegetable oil and at least one color and / or shape-changing active ingredient.
  • Human hair is today treated in a variety of ways with hair cosmetic preparations. These include, for example, the cleansing of hair with shampoos, the care and regeneration with rinses and cures, and the bleaching, dyeing and shaping of the hair with colorants, tinting agents, waving and styling preparations. In this case, means for changing or nuancing the color of the head hair play a prominent role.
  • Coupler and developer components are also referred to as oxidation dye precursors.
  • hair dyeing and / or whitening agents Prior to their application to human hair, hair dyeing and / or whitening agents are usually mixed in solid or pasty form with a dilute aqueous hydrogen peroxide solution. The resulting mixture is then applied to the hair and rinsed again after a certain exposure time.
  • the duration of exposure to the hair to achieve complete coloration or lightening is between about 30 and 40 minutes. It is obvious that there is a need among users of these hair dyes or bleaching agents to reduce this exposure time.
  • the pH is between 8 and 10.5.
  • Such high pH values are required to ensure an opening of the outer cuticle (cuticle) and thus to allow a penetration of the active species (hydrogen peroxide) into the hair.
  • the permanent deformation of keratin fibers is usually carried out by mechanically deforming the fiber and defining the deformation by suitable means. Before and / or after this deformation, the fiber is treated with the aqueous preparation of a keratin-reducing substance and rinsed after a contact time with water or an aqueous solution. In a second step, the fiber is then treated with the aqueous preparation of an oxidizing agent. After a period of action, this is also rinsed and the fiber of the mechanical deformation aids (winder, Papilloten) freed.
  • the aqueous preparation of the keratin-reducing substance is usually adjusted to be alkaline so that a sufficient proportion of the thiol functions is deprotonated and, on the other hand, the fiber swells and in this way a deep penetration of the keratin-reducing substance into the fiber is made possible.
  • the keratin-reducing substance cleaves some of the disulfide bonds of the keratin to -SH groups, resulting in a loosening of the peptide crosslinking and, due to the tension of the fiber due to the mechanical deformation, to a reorientation of the keratin layer.
  • the active substances which can be used in the context of these methods must meet high requirements, in particular with regard to their stability, since the dyeing creams usually have a high pH and the oxidizing agent preparations have a low pH. Also, these agents must be stable to the reducing conditions of the corrugating agents. Furthermore, incompatibilities of the various active substances with each other and thus a low storage stability should be avoided.
  • color and / or shape-changing agents in addition to the active ingredient, which changes the color and / or permanently the shape of the keratinic fibers, at least one plant extract, at least one vegetable oil and at least one unsaponifiable residue of a vegetable oil contained, are stable, satisfactory in terms of their color and / or shape change and at the same time cause less scalp irritation.
  • the fibers treated with the agents according to the invention have a better care condition.
  • a first subject of the present application is therefore an agent for the color and / or permanent change in shape of keratinous fibers, containing in a cosmetically acceptable carrier at least one active substance which changes the color and / or permanently the shape of the keratinic fibers
  • keratinic fibers are understood to mean furs, wool, feathers and, in particular, human hair.
  • the agents according to the invention contain as the first ingredient essential to the invention at least one plant extract.
  • extracts are produced by extraction of the whole plant. However, in individual cases it may also be preferred to produce the extracts exclusively from flowers, the leaves and / or the other constituents of the plant, such as, for example, the vine.
  • the extracts of Moringa Olifeira, Cardiospermum Halicacabum, green tea, oak bark, nettle, witch hazel, hops, henna, chamomile, burdock root, horsetail, hawthorn, lime blossom, almond, aloe vera, spruce needle, horse chestnut, sandalwood, juniper, coconut , Mango, Apricot, Lime, Wheat, Kiwi, Melon, Orange, Grapefruit, sage, rosemary, birch, mallow, meadowfoam, quenelle, yarrow, thyme, lemon balm, toadstool, coltsfoot, marshmallow, meristem, ginseng and ginger root are preferred.
  • inventive properties have particularly advantageous properties when the plant extract is obtained from a climbing plant.
  • Climbing plants are classified according to their ability to climb themselves (self-climbers) or their need for a climbing frame.
  • Preferred self-toners include ivy, species / varieties of wild wine, Parthenocissus, Cobea scandens.
  • the scaffold climbing plants preferred according to the invention include Cardiospermum halicacabum, clematis, grapevines, wisteria, honeysuckle, blackberry, climbing rose and firethorn.
  • the extracts obtained from creepers such as, for example, Cardiospermum halicacabum, Wisteria and honeysuckle, have proven to be particularly preferred according to the invention.
  • plant extracts which are obtained from the plant Cardiospermum halicacabum; in turn, the extracts are particularly preferred, which are obtained from the flowers, leaves and vines of the plant Cardiospermum halicacabum.
  • alcohols and mixtures thereof can be used as extraction agent for the preparation of said plant extracts water.
  • the alcohols are lower alcohols such as ethanol and isopropanol, but especially polyhydric alcohols such as ethylene glycol and propylene glycol, both as sole extractant and in admixture with water, are preferred.
  • Plant extracts based on water / propylene glycol in a ratio of 1:10 to 10: 1 have proven to be particularly suitable.
  • the plant extracts can be used according to the invention both in pure and in diluted form. If they are used in diluted form, they usually contain about 2 to 80 wt .-% of active substance and as a solvent used in their extraction agent or extractant mixture.
  • color-modifying agents of the invention mixtures of several, in particular two, different plant extracts.
  • compositions according to the invention contain at least one vegetable oil.
  • the vegetable oils have also proved to be particularly preferred, which are obtained from a flowering plant; the class of the three-pollen dicots is particularly preferred.
  • oils are called, which can be obtained, for example, from asters and aster-like; a very particularly preferred source of vegetable oils according to the invention is the adder head (echium).
  • compositions of the invention contain at least one unsaponifiable residue of another vegetable oil.
  • the unsaponifiable residue of a vegetable oil is the proportion which resists a saponification reaction.
  • the unsaponifiable residue contains, among other plant-specific phytosterols and fat-soluble vitamins.
  • all vegetable oils are suitable according to the invention as the source of the unsaponifiable residue.
  • the source of the unsaponifiable residue of the vegetable oil does not coincide with the vegetable oil also required.
  • unsaponifiable residues of a vegetable oil which is obtained from a plant of the basket bloom plants, have shown particularly good effects.
  • a particularly preferred genus of the baskets family is the genus of sunflowers.
  • An example of a particularly preferred active substance, which contains the above combination of active ingredients is the product marketed under the trade name Defensil ® mfd. By Rahn. This product carries the INCI name Octyldodecanol, Cardiospermum Halicacabum Flower / Leaf / Vine Extract, Echium Plantagineum Seed OiI, Helianthus Annuus (Sunflower) Seed OiI Unsaponifiables.
  • the active ingredient combination according to the invention is preferably present in an amount of at least 0.01 to 20 wt .-%.
  • bioactive glasses encompasses glasses which are biologically active and / or biologically active
  • the biological effectiveness of a glass can be demonstrated in its antimicrobial properties, for example, biologically active glass differs from conventional lime-sodium silicate
  • a biologically active glass refers to a glass which forms a firm bond with body tissue, forming a hydroxyl apatite layer.
  • Bioactive glass is also understood to mean a glass which contains antimicrobial and / or inorganic glass The glass powders have a biocidal or biostatic effect against bacteria, fungi and viruses, are skin-friendly in contact with humans, toxicologically safe and, in particular, suitable for human consumption.
  • the invention includes bioactive glass or glass powder or glass ceramic powder or composite materials comprising such a bioactive glass.
  • glass powders are also understood as meaning granules and glass beads. Due to the requirements for the toxicological safety of the glass, the glass powder should preferably be particularly pure.
  • the burden of heavy metals is preferably low.
  • the maximum concentration in the range of cosmetic formulations is preferably for Pb ⁇ 20 ppm, Cd ⁇ 5 ppm, As ⁇ 5 ppm, Sb ⁇ 10 ppm, Hg ⁇ 1 ppm, Ni ⁇ 10 ppm.
  • the unfused starting glass which is directly contained in the compositions according to the invention or is optionally used for the production of a glass ceramic which can be used according to the invention, contains SiO 2 as a network former, preferably between 35-80% by weight. At lower concentrations, the spontaneous tendency to crystallize increases greatly and the chemical resistance decreases sharply. At higher SiO 2 values, the crystallization stability may decrease and the processing temperature is significantly increased, so that the hot-forming properties deteriorate. Na 2 O is used as a flux when melting the glass. At concentrations of less than 5%, the melting behavior is adversely affected.
  • Sodium is a constituent of the phases which form during the ceramization and, if high crystalline phase fractions are to be adjusted by the ceramization, must be present in the glass in correspondingly high concentrations.
  • K 2 O acts as a flux when melting the glass.
  • potassium is released in aqueous systems. If high potassium concentrations are present in the glass, potassium-containing phases such as calcium silicates are also eliminated.
  • the P 2 O 5 content of silicate glasses, glass ceramics or composites can be used to adjust the chemical resistance of the glass and thus the release of ions in aqueous media.
  • P 2 O 5 is network images.
  • the P 2 O 5 content is preferably between 0 and 80 wt .-%.
  • the glass may contain up to 25% by weight of B 2 O 3 .
  • Al 2 O 3 is used to adjust the chemical resistance of the glass.
  • the antibacterial properties of the glass-ceramic antimicrobial acting ions such as Ag, Au, I, Ce, Cu, Zn in concentrations less than 5 wt .-% may be included.
  • Coloring ions such as Mn, Cu, Fe, Cr, Co, V, may be contained individually or in combination, preferably in a total concentration less than 1 wt .-%.
  • the glass or the glass ceramic is used in powder form.
  • the ceramization can be done either with a glass block or Glasribbons or with glass powder. After ceramization, the glass ceramic blocks or ribbons must be ground to powder. If the powder has been ceramified, it may also be necessary to re-mill to remove agglomerates formed during the ceramification step.
  • the Grindings can be carried out both dry and in aqueous or non-aqueous grinding media.
  • the particle sizes are less than 500 microns. As appropriate, particle sizes ⁇ 100 microns or ⁇ 20 microns have been found. Particularly suitable are particle sizes ⁇ 10 microns and less than 5 microns and less than 2 microns, see below.
  • the bioactive glasses or glass powder or glass ceramic powder or composite compositions contained in the compositions according to the invention comprise glasses which preferably comprise the following components: SiO 2 : 35-80% by weight, Na 2 O: 0-35% by weight, P 2 O 5 : 0-80% by weight, MgO: 0-5% by weight, Ag 2 O: 0-0.5% by weight, AgJ: 0-0.5% by weight, NaI: 0-5 wt.%, TiO 2 : 0-5 wt.%, K 2 O: 0-35 wt.%, ZnO: 0-10 wt.%, Al 2 O 3 : 0-25 wt % and B 2 O 3 : 0-25% by weight.
  • the base glass according to the above composition to achieve further effects such as color or UV filtering ions such as Fe, Co, Cr, V, Ce, Cu, Mn, Ni, Bi, Sn, Ag, Au, J individually or in total to be added to 10 wt .-%.
  • color or UV filtering ions such as Fe, Co, Cr, V, Ce, Cu, Mn, Ni, Bi, Sn, Ag, Au, J individually or in total to be added to 10 wt .-%.
  • a further glass composition may be as follows: SiO 2 : 35-80 wt%, Na 2 O: 0-35 wt%, P 2 O 5 : 0-80 wt%, MgO: 0-5 wt %, Ag 2 O: 0-0.5 wt%, AgJ: 0-0.5 wt%, NaJ: 0-5 wt%, TiO 2 : 0-5 wt% , K 2 O: 0-35 wt .-%, ZnO: 0-10 wt .-%, Al 2 O 3 : 0-25 wt .-%, B 2 O 3 : 0- 25 wt .-%, SnO : 0-5 wt%, CeO 2 : 0-3 wt% and Au: 0.001-0.1 wt%.
  • SiO 2 35 to 60% by weight, preferably 40 to 60% by weight
  • P 2 O 5 0 to 10 wt .-%, preferably 2 to 10 wt .-%,
  • MgO 0 to 10% by weight, preferably 0 to 5% by weight
  • CaO 0 to 35% by weight, preferably 5 to 30% by weight
  • Al 2 O 3 0 to 25 wt .-%, preferably 0 to 5 wt .-%,
  • B 2 O 3 0 to 25 wt .-%, preferably 0 to 5 wt .-%,
  • TiO 2 0 to 10 wt .-%, preferably 0.1 to 5 wt .-%.
  • Such glasses have proved to be particularly suitable, which are a mixture of oxides of silicon, calcium, sodium and phosphorus.
  • Such glasses are commercially available under the INCI name Calcium Sodium Phosphosilicate.
  • a mixture of 94-97% by weight of calcium sodium phosphosilicates and 3-6% by weight of mica has been found to be very particularly preferred according to the invention.
  • Such a mixture is sold for example under the name Actysse ® premiere BG by Engelhard.
  • the bioactive glass is preferably used in particulate form.
  • particularly preferred colorants according to the invention are characterized in that the antimicrobial glass has particle sizes ⁇ 10 .mu.m, preferably from 0.5 to 4 .mu.m, particularly preferably from 1 to 2 .mu.m.
  • the bioactive glass is preferably contained in an amount of at least 0.01 to 20% by weight.
  • amounts of the bioactive glass of 0.01 to 10 wt .-%, most preferably amounts of 0.01 to 5 wt .-% based on the total composition used.
  • the colorants contain at least one color-changing active substance.
  • the color-changing active ingredient is a dye precursor.
  • the present invention is not subject to any restrictions.
  • the colorants according to the invention can be used as dye precursors
  • the agents according to the invention contain at least one dye precursor of the developer and / or
  • Phenylendiamine derivative or one of its physiologically acceptable salts are selected from the group consisting of: amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids, amino acids
  • G 1 represents a hydrogen atom, a (Ci to C4) alkyl, a (Ci to C 4) - monohydroxyalkyl radical, a (C 2 to C 4) polyhydroxyalkyl radical, a (Ci-C 4) alkoxy- (C to C 4 ) -alkyl radical, a 4'-aminophenyl radical or a (C 1 to C 4 ) -alkyl radical which is substituted by a nitrogen-containing group, a phenyl or a 4'-aminophenyl radical;
  • G 2 represents a hydrogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) monohydroxyalkyl radical, a (C 2 to C 4 ) -polyhydroxyalkyl radical, a (C 1 to C 4 ) -alkoxy - (C 1 -C 4 ) -alkyl radical or a (C 1 to C 4 ) -alkyl radical which is substituted by a nitrogen-containing group;
  • G 3 represents a hydrogen atom, a halogen atom such as a chlorine, bromine, iodine or fluorine atom, a (C 1 to C 4 ) alkyl radical, a (C 1 to C 4 ) monohydroxyalkyl radical, a (C 2 to C 4 ) - polyhydroxyalkyl radical, a (C 1 to C 4 ) -hydroxyalkoxy radical, a (C 1 to C 4 ) - acetylaminoalkoxy radical, a mesylamino (C 1 -C 4 ) -alkoxy radical or a (C 1 to C 4 ) - carbamoylaminoalkoxy radical;
  • a halogen atom such as a chlorine, bromine, iodine or fluorine atom
  • a (C 1 to C 4 ) alkyl radical such as a chlorine, bromine, iodine or fluorine atom
  • G 4 represents a hydrogen atom, a halogen atom or a (C 1 to C 4 ) -alkyl radical or, when G 3 and G 4 are ortho to each other, they may together form a bridging ⁇ , ⁇ -alkylenedioxo group, such as, for example, an ethylenedioxy group ,
  • Particularly preferred p-phenylenediamines of formula (E1) are selected from one or more compounds of the group formed from p-phenylenediamine, p-toluenediamine, 2-chloro-p-phenylenediamine, 2,3-dimethyl-p-phenylenediamine , 2,6-dimethyl-p-phenylenediamine, 2,6-diethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, N, N-dimethyl-p-phenylenediamine, N, N-diethyl-p-phenylenediamine , N, N-dipropyl-p-phenylenediamine, 4-amino-3-methyl- (N, N-diethyl) -aniline, N, N-bis ( ⁇ -hydroxyethyl) -p-phenylenediamine, 4-N, N Bis ( ⁇ -hydroxyethyl) amino-2-methylaniline,
  • p-phenylenediamine derivatives of the formula (E1) are selected from at least one compound of the group p-phenylenediamine, p-toluenediamine, 2- (ß-hydroxyethyl) -p-phenylenediamine, 2- ( ⁇ , ß-dihydroxyethyl) - p-phenylenediamine, N, N-bis- ( ⁇ -hydroxyethyl) -p-phenylenediamine, N- (4-amino-3-methylphenyl) -N- [3- (1H-imidazol-1-yl) propyl] amine , as well as the physiologically acceptable salts of these compounds.
  • developer component compounds which contain at least two aromatic nuclei which are substituted by amino and / or hydroxyl groups.
  • binuclear developer components which can be used in the dyeing compositions according to the invention, mention may be made in particular of the compounds corresponding to the following formula (E2) and their physiologically tolerated salts:
  • Z 1 and Z 2 independently of one another represent a hydroxyl or NH 2 radical which is optionally substituted by a (C 1 to C 4 ) -alkyl radical, by a (C 1 to C 4 ) -hydroxyalkyl radical and / or by a bridging Y or which is optionally part of a bridging ring system
  • the bridge Y is an alkylene group having 1 to 14 carbon atoms, such as a linear or branched alkylene chain or an alkylene ring, which is one or more nitrogen-containing groups and / or one or more heteroatoms such as oxygen , Sulfur or nitrogen atoms may be interrupted or terminated and may possibly be substituted by one or more hydroxyl or (C 1 to C 8 ) -alkoxy radicals, or a direct bond,
  • G 5 and G 6 independently of one another represent a hydrogen or halogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -monohydroxyalkyl radical, a (C 2 to C 4 ) - Polyhydroxyalkyl radical, a (C 1 to C 4 ) -ninoalkyl radical or a direct compound for bridging Y,
  • G 7 , G 8 , G 9 , G 10 , G 11 and G 12 independently represent a hydrogen atom, a direct bond to the bridge Y or a (C 1 to C 4 ) alkyl radical, with the proviso that the compounds of the Formula (E2) contain only one bridge Y per molecule.
  • Preferred binuclear developer components of the formula (E2) are in particular selected from at least one of the following compounds: N, N'-bis- ( ⁇ -hydroxyethyl) -N, N'-bis- (4'-aminophenyl) -1,3-diamino -propan-2-ol, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) ethylenediamine, N, N'-bis (4'-aminophenyl) - tetramethylenediamine, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) tetramethylenediamine, N, N'-bis (4- (methylamino) phenyl) tetramethylenediamine, N , N'-diethyl-N, N'-bis (4'-amino-3'-methylphenyl) ethylenediamine,
  • Very particularly preferred binuclear developer components of the formula (E2) are selected from N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4-aminophenyl) -1,3-diamino-propan-2-ol , Bis (2-hydroxy-5-aminophenyl) -methane, 1, 3-bis (2,5-diaminophenoxy) -propan-2-ol, N, N'-bis (4-aminophenyl) -1, 4-diazacycloheptane, 1, 10-bis (2,5-diaminophenyl) -1, 4,7,10-tetraoxadecane or one of the physiologically acceptable salts of these compounds.
  • p-aminophenol derivatives of the formula (E3) it may be preferred according to the invention to use as the developer component a p-aminophenol derivative or one of its physiologically tolerable salts. Particular preference is given to p-aminophenol derivatives of the formula (E3)
  • G 13 represents a hydrogen atom, a halogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -monohydroxyalkyl radical, a (C 2 to C 4 ) -polyhydroxyalkyl radical, a (C 1 to C 4 ) alkoxy- (C- ⁇ to C 4 ) -alkyl radical, a (Ci to C 4 ) -Anninoalkylrest, a hydroxy (Ci to C 4 ) -alkylanninorest, a (C 1 to C 4 ) -hydroxyalkoxy, a (C 1 to C 4 ) -hydroxyalkyl - (C 1 -C 4 ) -aminoalkyl or a (di - [(C 1 -C 4 ) -alkyl] amino) - (C 1 -C 4 ) -alkyl, and
  • G 14 represents a hydrogen or halogen atom, a (C 1 to C 4 ) -alkyl radical, a (C 1 to C 4 ) -monohydroxyalkyl radical, a (C 2 to C 4 ) -polyhydroxyalkyl radical, a (C 1 to C 4 ) Alkoxy (C 1 -C 4 ) -alkyl radical, a (C 1 -C 4 ) -aminoalkyl radical or a (C 1 -C 4 ) -cyanoalkyl radical,
  • G 15 is hydrogen, a (C 1 to C 4 ) alkyl radical, a (C 1 to C 4 ) monohydroxyalkyl radical, a (C 2 to C 4 ) polyhydroxyalkyl radical, a phenyl radical or a benzyl radical, and
  • G 16 is hydrogen or a halogen atom.
  • Preferred p-aminophenols of the formula (E3) are, in particular, p-aminophenol, N-methyl-p-aminophenol, 4-amino-3-methylphenol, 4-amino-3-fluorophenol, 2-hydroxymethylamino-4-aminophenol, 4 -Amino-3-hydroxymethylphenol, 4-amino-2- ( ⁇ -hydroxyethoxy) -phenol, 4-amino-2-methylphenol, 4-amino-2-hydroxymethylphenol, 4-amino-2-methoxymethyl-phenol, 4-amino -2-aminomethylphenol, 4-amino-2- ( ⁇ -hydroxyethyl-aminomethyl) phenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxyethyl) phenol, 4-amino-2-fluorophenol, 4-amino-2 -chlorophenol, 4-amino-2,6-dichlorophenol, 4-amino-2- (diethyl-aminomethyl) -phenol and their physiological
  • Very particularly preferred compounds of the formula (E3) are p-aminophenol, 4-amino-3-methylphenol, 4-amino-2-aminomethylphenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxyethyl) -phenol and 4-amino 2- (diethylaminomethyl) -phenol.
  • the developer component may be selected from o-aminophenol and its derivatives such as 2-amino-4-methylphenol, 2-amino-5-methylphenol or 2-amino-4-chlorophenol.
  • the developer component may be selected from heterocyclic developer components, such as pyrimidine derivatives, pyrazole derivatives, pyrazolopyrimidine derivatives or their physiologically acceptable salts.
  • heterocyclic developer components such as pyrimidine derivatives, pyrazole derivatives, pyrazolopyrimidine derivatives or their physiologically acceptable salts.
  • Preferred pyrimidine derivatives are selected according to the invention from compounds of the formula (E4) or their physiologically tolerated salts, wherein
  • G 17 , G 18 and G 19 independently of one another represent a hydrogen atom, a hydroxy group, a (C 1 to C 4 ) -alkoxy group or an amino group and
  • G 20 represents a hydroxy group or a group -NG 21 G 22, wherein G 21 and G 22 are independently a hydrogen atom, a (Ci to C 4) alkyl group, a (C 1 to C 4) -monohydroxyalkyl, with with the proviso that a maximum of two of the groups of G 17 , G 18 , G 19 and G 20 is a hydroxy group and at most two of the radicals G 17 , G 18 and G 19 are a hydrogen atom.
  • Particularly preferred pyrimidine derivatives are in particular the compounds 2,4,5,6-tetra-aminopyrimidine, 4-hydroxy-2,5,6-triaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 2-dimethylamino-4 , 5,6-triaminopyrimidine, 2,4-dihydroxy-5,6-diaminopyrimidine and 2,5,6-triaminopyrimidine.
  • Preferred pyrazole derivatives are selected according to the invention from compounds of the formula (E5),
  • G, G, G are, independently, a hydrogen atom, a (C 1 to C 4) - alkyl group, a (C 1 to C 4) monohydroxyalkyl, a (C 2 to C 4) -polyhydroxyalkyl group, an optionally substituted aryl group or an optionally substituted aryl- (C 1 -C 4 ) -alkyl group, with the proviso that when G 25 is a hydrogen atom, G 26 may additionally be a group -NH 2 in addition to the abovementioned groups,
  • G 26 represents a hydrogen atom, a (C 1 to C 4 ) alkyl group, a (C 1 to C 4 ) monohydroxyalkyl group or a (C 2 to C 4 ) polyhydroxyalkyl group and G 27 represents a hydrogen atom, an optionally substituted aryl group, a (Ci to C 4) alkyl group or a (C 1 to C 4) -monohydroxyalkyl, especially for a hydrogen atom or a methyl group.
  • the radical -NG G binds to the 5 position and the radical G to the 3-position of the pyrazole cycle.
  • Particularly preferred pyrazole derivatives are in particular the compounds which are selected from 4,5-diamino-1-methylpyrazole, 4,5-diamino-1- ( ⁇ -hydroxyethyl) pyrazole, 3,4-diaminopyrazole, 4,5- Diamino-1- (4'-chlorobenzyl) -pyrazole, 4,5-diamino-1,3-dimethylpyrazole, 4,5-diamino-3-methyl-1-phenylpyrazole, 4,5-diamino-1-methyl-3 phenylpyrazole, 4-amino-1,3-dimethyl-5-hydrazinopyrazole, 1-benzyl-4,5-diamino-3-methylpyrazole, 4,5-diamino-3-tert-butyl-1-methylpyrazole, 4 5-diamino-1-tert-butyl-3-methylpyrazole, 4,5-diamino-1- ( ⁇ -hydroxyethy
  • Preferred pyrazolopyrimidine derivatives are, in particular, the derivatives of the pyrazolo [1,5-a] pyrimidine of the following formula (E6) and their tautomeric forms, if a tautomeric equilibrium exists:
  • G 28 , G 29 and G 30 , G 31 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl radical, an aryl radical, a (C 1 to C 4 ) -monohydroxyalkyl radical, a (C 2 to C 4 ) - Polyhydroxyalkylrest a (Ci to C 4 ) -Alkoxy- (Ci to C 4 ) -alkylrest, a (Ci to C 4 ) - Aminoalkylrest, which can be protected if necessary by a Acetyl Ureid or a Sulfonyl remainder, one (C 1 to C 4 ) -alkylamino- (C 1 -C 4 ) -alkyl radical, a di-I (C 1 to C 4 ) -alkyl] - (C 1 -C 4 ) -aminoalkyl radical, where the dialkyl Radicals optionally form a carbon cycle
  • pyrazolo [1, 5-a] pyrimidines of the above formula (E6) can be prepared as described in the literature by cyclization from an aminopyrazole or from hydrazine.
  • Very particularly preferred developer components are selected from at least one compound from the group formed from p-phenylenediamine, p-toluenediamine, 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 2- ( ⁇ , ⁇ -dihydroxyethyl) -p phenylenediamine, N, N-bis ( ⁇ -hydroxyethyl) -p-phenylenediamine, N- (4-amino-3-methylphenyl) -N- [3- (1 H -imidazol-1-yl) propyl] amine, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4-aminophenyl) -1, 3-diamino-propan-2-ol, bis (2-hydroxy-5-aminophenyl) - methane, 1,3-bis- (2,5-diaminophenoxy) -propan-2-ol, N, N'-bis (4-amin
  • Examples of (C 1 to C 4 ) -alkyl radicals are the groups -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH (CH 3 ) 2 , -CH 2 CH 2 CH 2 CH 3 , -CH 2 CH (CH 3 ) 2 , -CH (CH 3 ) CH 2 CH 3 , -C (CH 3 J 3
  • Examples of (C 1 to C 4 ) -alkoxy radicals according to the invention are -OCH 3 , -OCH 2 CH 3 , -OCH 2 CH 2 CH 3 , -OCH (CHs) 2 , -OCH 2 CH 2 CH 2 CH 3 , -OCH 2 CH (CH 3 ) 2 , -OCH (CH 3 ) CH 2 CH 3 , -OC (CH 3 ) 3 , in particular a methoxy or an ethoxy group.
  • a (C 1 to C 4 ) monohydroxyalkyl group examples of a
  • a particularly preferred example of a (C 2 to C 4 ) polyhydroxyalkyl group is 1, 2
  • halogen atoms are F, Cl or Br atoms, Cl atoms are very particularly preferred examples.
  • nitrogen-containing groups are in particular -NH 2 , (C 1 to C 4 ) -
  • Trialkylammonium groups (C 1 to C 4 ) monohydroxyalkylamino groups, imidazolinium and
  • Examples of (C 1 to C 4 ) -monoalkylamino groups are -NHCH 3 , -NHCH 2 CH 3 ,
  • Examples of (C 1 to C 4 ) -dialkylamino groups are -N (CH 3 ) 2 , -N (CH 2 CH 3 ) 2 .
  • Examples of (C 1 to C 4 ) trialkylamino groups are -N + (CH 3 ) 3 , -N + (CH 3 ) 2 (CH 2 CH 3 ),
  • Examples of (C 1 to C 4 ) -hydroxyalkylamino radicals are -NH-CH 2 CH 2 OH, -NH-CH 2 CH 2 OH,
  • Examples of (C 1 to C 4 ) -alkoxy- (C 1 -C 4 ) -alkyl groups are the groups -CH 2 CH 2 -O-CH 3 ,
  • hydroxy (C 1 -C 4 ) -alkoxy radicals are -O-CH 2 OH, -O-CH 2 CH 2 OH, -O-CH 2 CH 2 CH 2 OH,
  • Examples of (C 1 to C 4 ) -acetylaminoalkoxy radicals are -O-CH 2 NHC (O) CH 3 , -O-
  • Examples of (C 1 to C 4 ) -carbamoylanninoalkoxy radicals are -O-CH 2 CH 2 -NH-C (O) -NH 2 ,
  • Examples of (C 1 to C 4 ) -aminoalkyl radicals are -CH 2 NH 2 , -CH 2 CH 2 NH 2 , -CH 2 CH 2 CH 2 NH 2 ,
  • Examples of (C 1 to C 4 ) -cyanoalkyl radicals are -CH 2 CN 1 -CH 2 CH 2 CN 1 -CH 2 CH 2 CH 2 CN.
  • Examples of (C 1 to C 4 ) -hydroxyalkylamino (C 1 to C 4 ) -alkyl radicals are -CH 2 CH 2 NH-CH 2 CH 2 OH 1 -
  • di [(d to C 4 ) hydroxyalkyl] amino (C 1 to C 4 ) alkyl radicals are examples of di [(d to C 4 ) hydroxyalkyl] amino (C 1 to C 4 ) alkyl radicals.
  • aryl groups is the phenyl group.
  • aryl (C 1 to C 4 ) alkyl groups are the benzyl group and the 2-phenylethyl group.
  • Coupler components do not form a significant color within the framework of the oxidative dyeing alone, but always require the presence of developer components. Therefore, it is preferred according to the invention that at least one coupler component is additionally used when using at least one developer component.
  • Coupler components according to the invention allow at least one substitution of a chemical residue of the coupler by the oxidized form of the developer component. This forms a covalent bond between the coupler and the developer component.
  • Couplers are preferably cyclic compounds which carry on cycle at least two groups selected from (i) optionally substituted amino groups and / or (ii) hydroxy groups. When the cyclic compound is a six-membered ring (preferably aromatic), said groups are preferably in ortho position or meta position to each other.
  • Coupler components according to the invention are preferably selected as at least one compound from one of the following classes:
  • o-aminophenol derivatives such as o-aminophenol
  • Naphthalene derivatives having at least one hydroxy group having at least one hydroxy group
  • Pyrazolone derivatives such as 1-phenyl-3-methylpyrazol-5-one,
  • Morpholine derivatives for example 6-hydroxybenzomorpholine or 6-aminobenzomorpholine,
  • m-aminophenols or derivatives thereof which can be used according to the invention are preferably selected from at least one compound of the formula (K1) and / or from at least one physiologically tolerated salt of a compound of the formula (K1),
  • G 1 and G 2 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) -alkenyl group, a (C 1 to C 4 ) monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group, a (C 2 to C 4 ) perfluoroacyl group, an aryl (C 1 to C 6 ) alkyl group, an AmJnO (C 1 to C 6) alkyl group, a (C 1 to C 6) dialkylamino (C 1 to C 6) alkyl or a (C 1 to C 6) alkoxy (C- ⁇ -C 6) - alkyl group, wherein G 1 and G 2 together with the nitrogen atom can form a five-membered, six-membered or seven-membered ring,
  • G 3 and G 4 independently of one another represent a hydrogen atom, a halogen atom, a (C 1 to C 4 ) -alkyl group, a (C 1 to C 4 ) -alkoxy group, a hydroxy group, a (C 1 to C 4 ) - Monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group, a hydroxy (C 1 to C 4 ) alkoxy group, a (C 1 to C 6 ) -alkoxy (C 2 to C 6 ) alkoxy group, an aryl group or a heteroaryl group.
  • Particularly preferred m-aminophenol coupler components are selected from at least one compound selected from the group consisting of m-aminophenol, 5-amino-2-methylphenol, N-cyclopentyl-3-aminophenol, 3-amino-2-chloro-6 -methylphenol, 2-hydroxy-4-aminophenoxyethanol, 2,6-dimethyl-3-aminophenol, 3-trifluoroacetylamino-2-chloro-6-methylphenol, 5-amino-4-chloro-2-methylphenol, 5-amino-4 -methoxy-2-methylphenol, 5- (2'-hydroxyethyl) amino-2-methylphenol, 3- (diethylamino) -phenol, N-cyclopentyl-3-aminophenol, 1, 3-dihydroxy-5- (methylamino) - benzene, 3-ethylamino-4-methylphenol, 2,4-dichloro-3-aminophenol and the physiologically acceptable salts of all the abovementioned compounds.
  • m-diaminobenzenes or derivatives thereof which can be used according to the invention are preferably selected from at least one compound of the formula (K2) and / or from at least one physiologically tolerated salt of a compound of the formula (K2),
  • G 5 , G 6 , G 7 and G 8 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) -alkenyl group , a (Ci to C 4) monohydroxyalkyl, a (C 2 to C 4) -polyhydroxyalkyl group, a (Ci to C 4) - alkoxy (Ci -C 4) alkyl group, an aryl (Ci to C 4) alkyl group, a heteroaryl (Ci to C 4 ) - alkyl group, a (C 2 to C 4 ) perfluoroacyl group, or together with the nitrogen atom form a five-membered or six-membered heterocycle
  • G 9 and G 10 independently of one another represent a hydrogen atom, a halogen atom, a (C 1 to C 4 ) -alkyl group, an ⁇ - (2,4-diaminophenyl) - (d to C 4 ) -alkyl group, an ⁇ - (2,4-Diaminophenyloxy) - (Ci to C 4) alkoxy, (Ci to C 4) alkoxy group, a hydroxy group, a (Ci to C 4) alkoxy (C 2 to C 4) alkoxy, an aryl group, a heteroaryl group, a (C 1 to C 4 ) monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group, a hydroxy (C 1 to C 4 ) alkoxy group.
  • Particularly preferred m-diaminobenzene coupler components are selected from at least one compound from the group formed from m-phenylenediamine, 2- (2,4-diaminophenoxy) ethanol, 1, 3-bis (2,4-diaminophenoxy) propane, 1-Methoxy-2-amino-4- (2'-hydroxyethylamino) benzene, 1, 3-bis (2,4-diaminophenyl) propane, 2,6-bis (2'-hydroxyethylamino) -1-methylbenzene, 2- ( ⁇ 3 - [(2-hydroxyethyl) amino] -4-methoxy-5-methylphenyl ⁇ amino) ethanol, 2 - ( ⁇ 3 - [(2-hydroxyethyl) amino] -2-methoxy-5-methylphenyl ⁇ amino) ethanol, 2 - ( ⁇ 3 - [(2-hydroxyethyl) amino] -4,5-dimethylphenyl ⁇ amino) ethanol, 2- [3-morpholin-4
  • o-diaminobenzenes or their derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K3) and / or from at least one physiologically tolerated salt of a compound of the formula (K3), wherein
  • G 11 , G 12 , G 13 and G 14 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) -alkenyl group , a (Ci to C 4) monohydroxyalkyl, a (C 2 to C 4) -polyhydroxyalkyl group, a (Ci to C 4) - alkoxy (Ci -C 4) alkyl group, an aryl (Ci to C 4) alkyl group, a heteroaryl (Ci to C 4 ) - alkyl group, a (C 2 to C 4 ) perfluoroacyl group, or together with the nitrogen atom form a five-membered or six-membered heterocycle
  • G 15 and G 16 are independently a hydrogen atom, a halogen atom, a carboxyl group, a (Ci to C 4) alkyl group, a (Ci to C4) alkoxy group, a hydroxy group, a (Ci to C 4) - Monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group, a hydroxy (C 1 to C 4 ) alkoxy group.
  • Particularly preferred o-diaminobenzene coupler components are selected from at least one compound selected from the group consisting of 3,4-diaminobenzoic acid and 2,3-diamino-1-methylbenzene and the physiologically acceptable salts of all of the aforementioned compounds.
  • Preferred di- or trihydroxybenzenes and their derivatives are selected from at least one compound of the group formed from resorcinol, resorcinol monomethyl ether, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol, 2-chlororesorcinol, 4-chlororesorcinol, pyrogallol and 1 , 2,4-trihydroxybenzene.
  • the pyridine derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K4) and / or from at least one physiologically tolerable salt of a compound of the formula (K4),
  • G and G independently of one another represent a hydroxyl group or a group -NG 21 G 22 , in which G 21 and G 22 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) cycloalkyl group, a (C 2 to C 4) alkenyl group, an aryl group, a (Ci to C 4) monohydroxyalkyl, a (C 2 to C 4) - polyhydroxyalkyl group, a (Ci-C 4) alkoxy- (C to C 4 ) -alkyl group, an aryl- (C 1 to C 4 ) -alkyl group, a heteroaryl- (C 1 to C 4 ) -alkyl group,
  • G 19 and G 20 independently of one another represent a hydrogen atom, a halogen atom, a (C 1 to C 4 ) -alkyl group or a (C 1 to C 4 ) -alkoxy group.
  • radicals G 17 and G 18 are in the ortho position or in the meta position relative to one another.
  • Particularly preferred pyridine derivatives are selected from at least one compound of the group formed from 2,6-dihydroxypyridine, 2-amino-3-hydroxypyridine, 2-amino-5-chloro-3-hydroxypyridine, 3-amino-2-methylamino 6-methoxypyridine, 2,6-dihydroxy-3,4-dimethylpyridine, 2,6-dihydroxy-4-methylpyridine, 2,6-diaminopyridine, 2,3-diamino-6-methoxypyridine, 3,5-diamino-2, 6-dimethoxypyridine, 3,4-diaminopyridine, 2- (2-methoxyethyl) amino-3-amino-6-methoxypyridine, 2- (4'-methoxyphenyl) amino-3-aminopyridine, and the physiologically acceptable salts of the aforementioned compounds.
  • Preferred naphthalene derivatives having at least one hydroxy group are selected from at least one compound of the group formed from 1-naphthol, 2-methyl-1-naphthol, 2-hydroxymethyl-1-naphthol, 2-hydroxyethyl-1-naphthol, 1, 3 Dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and 2,3-dihydroxynaphthalene.
  • the indole derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K5) and / or from at least one physiologically tolerated salt of a compound of the formula (K5),
  • - G 23 represents a hydrogen atom, a (C 1 to C 4) alkyl group, a (C 3 -C 6) - cycloalkyl group, a (C 2 to C 4) alkenyl group, a (Ci to C 4) monohydroxyalkyl , a (C 2 to C 4) alkyl polyhydroxyalkyl group, an aryl (Ci to C 4),
  • G 24 represents a hydroxy group or a group -NG 26 G 27 , in which G 26 and G 27 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group , a (C 2 to C 4 ) alkenyl group, a (C 1 to C 4 ) monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group,
  • G 25 is a hydrogen atom, a halogen atom or a (C 1 to C 4 ) alkyl group, with the proviso that G 24 binds in the meta position or ortho position to the structural fragment NG 23 of the formula.
  • Particularly preferred indole derivatives are selected from at least one compound of the group which is formed from 4-hydroxyindole, 6-hydroxyindole and 7-hydroxyindole and the physiologically acceptable salts of the abovementioned compounds.
  • the indoline derivatives which can be used according to the invention are preferably selected from at least one compound of the formula (K6) and / or from at least one physiologically tolerable salt of a compound of the formula (K6),
  • G 28 represents a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group, a (C 2 to C 4 ) -alkenyl group, a (C 1 to C 4 ) - Monohydroxyalkyl group, a (C 2 to C 4 ) -polyhydroxyalkyl group, an aryl- (C 1 -C 4 ) -alkyl group,
  • G 29 represents a hydroxy group or a group -NG 31 G 32 in which G 31 and G 32 independently of one another represent a hydrogen atom, a (C 1 to C 4 ) -alkyl group, a (C 3 to C 6 ) -cycloalkyl group , a (C 2 to C 4 ) alkenyl group, a (C 1 to C 4 ) monohydroxyalkyl group, a (C 2 to C 4 ) polyhydroxyalkyl group,
  • G 30 is a hydrogen atom, a halogen atom or a (C 1 to C 4 ) alkyl group, with the proviso that G 29 binds in the meta position or ortho position to the structural fragment NG 28 of the formula.
  • Particularly preferred indoline derivatives are selected from at least one compound of the group formed from 4-hydroxyindoline, 6-hydroxyindoline and 7-hydroxyindoline and the physiologically acceptable salts of the aforementioned compounds.
  • Preferred pyrimidine derivatives are selected from at least one compound of the group formed from 4,6-diaminopyrimidine, 4-amino-2,6-dihydroxypyrimidine, 2,4-diamino-6-hydroxypyrimidine, 2,4,6-trihydroxypyrimidine, 2 -Amino-4-methylpyrimidine, 2-amino-4-hydroxy-6-methylpyrimidine and 4,6-dihydroxy-2-methylpyrimidine and the physiologically acceptable salts of the aforementioned compounds.
  • coupler components according to the invention are selected from m-aminophenol, 5-amino-2-methylphenol, 3-amino-2-chloro-6-methylphenol, 2-hydroxy-4-aminophenoxyethanol, 5-amino-4-chloro-2-methylphenol , 5- (2'-hydroxyethyl) amino-2-methylphenol, 2,4-dichloro-3-aminophenol, o-aminophenol, m-phenylenediamine, 2- (2,4-diaminophenoxy) ethanol, 1,3-bis (2,4-diaminophenoxy) propane, 1-methoxy-2-amino-4- (2'-hydroxyethylamino) benzene, 1, 3-bis (2,4-diaminophenyl) propane, 2,6-bis (2'-bis) hydroxyethylamino) -1-methylbenzene, 2 - ( ⁇ 3 - [(2-hydroxyethyl) amino] -4-methoxy-5-methylphenyl ⁇
  • the coupler components are preferably used in an amount of 0.005 to 20 wt .-%, preferably 0.1 to 5 wt .-%, each based on the ready-to-use oxidation colorant.
  • developer components and coupler components are generally used in approximately molar amounts to each other.
  • a certain excess of individual oxidation dye precursors is not disadvantageous, so that developer components and coupler components in a molar ratio of 1: 0.5 to 1: 3, in particular 1: 1 to 1: 2 , can stand.
  • the following are examples of the substituents of the compounds of the formulas (K1) to
  • Examples of (C 1 to C 4 ) -alkyl radicals are the groups -CH 3 , -CH 2 CH 3 ,
  • Inventive examples of (C 3 to C 6 ) -cycloalkyl groups are the cyclopropyl, the
  • Examples of (C 1 to C 4 ) -alkoxy radicals according to the invention are -OCH 3 , -OCH 2 CH 3 ,
  • a particularly preferred example of a (C 2 to C 4 ) polyhydroxyalkyl group is 1, 2
  • halogen atoms are F, Cl or Br atoms, Cl atoms are very particularly preferred examples.
  • nitrogen-containing groups are in particular -NH 2 , (C 1 to C 4 ) -
  • Trialkylammonium groups (C 1 to C 4 ) monohydroxyalkylamino groups, imidazolinium and
  • Examples of (C 1 to C 4 ) -monoalkylamino groups are -NHCH 3 , -NHCH 2 CH 3 , -NHCH 2 CH 2 CH 3 , -
  • Examples of (C 1 to C 4 ) -dialkylamino group are -N (CH 3 ) 2 , -N (CH 2 CH 3 ) 2 .
  • Examples of (C 1 to C 4 ) -alkoxy- (C 1 -C 4 ) -alkyl groups are the groups -CH 2 CH 2 -O-CH 3 ,
  • Examples of (C 1 to C 4 ) -alkoxy- (C 1 -C 4 ) -alkoxy groups are the groups -O-CH 2 CH 2 -O-CH 3 , -
  • hydroxy (C 1 -C 4 ) -alkoxy radicals are -O-CH 2 OH, -O-CH 2 CH 2 OH, -O-CH 2 CH 2 CH 2 OH,
  • Examples of (C 1 to C 4 ) -aminoalkyl radicals are -CH 2 NH 2 , -CH 2 CH 2 NH 2 , -CH 2 CH 2 CH 2 NH 2 ,
  • aryl groups is the phenyl group, which may also be substituted.
  • aryl (C 1 to C 4 ) alkyl groups are the benzyl group and the 2-phenylethyl group.
  • the dyestuff precursors of naturally-analogous dyes are preferably indoles and indolines which have at least two groups selected from hydroxy and / or amino groups, preferably as a substituent on the six-membered ring. These groups may carry further substituents, e.g. Example in the form of etherification or esterification of the hydroxy group or alkylation of the amino group.
  • the colorants contain at least one indole and / or indoline derivative.
  • Compositions according to the invention which comprise precursors of naturally-analogous dyes are preferably used as air-oxidative colorants. Consequently, in this embodiment said compositions are not added with an additional oxidizing agent.
  • Particularly suitable precursors of naturally-analogous hair dyes are derivatives of 5,6-dihydroxyindoline of the formula (RN1),
  • R 1 is hydrogen, a C 1 -C 4 -alkyl group or a C 1 -C 4 -hydroxy-alkyl group
  • R 2 is hydrogen or a -COOH group, where the -COOH group may also be present as a salt with a physiologically compatible cation,
  • R 3 is hydrogen or a C 1 -C 4 -alkyl group
  • R 4 is hydrogen, a C 1 -C 4 -alkyl group or a group -CO-R 6 , in which R 6 is a C 1 -C 4 -alkyl group, and
  • R 5 represents one of the groups mentioned for R 4, and physiologically compatible salts of these compounds with an organic or inorganic acid.
  • indoline Particularly preferred derivatives of indoline are 5,6-dihydroxyindoline, N-methyl-5,6-dihydroxyindoline, N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline,
  • N-methyl-5,6-dihydroxyindoline N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6-dihydroxyindoline and especially 5, 6-Dihydroxyindolin.
  • derivatives of the 5,6-dihydroxyindole of the formula (RN2) are also suitable as precursors of naturally-analogous hair dyes.
  • R 1 is hydrogen, a C 1 -C 4 -alkyl group or a C 1 -C 4 -hydroxyalkyl group
  • R 2 is hydrogen or a -COOH group, wherein the -COOH group may also be present as a salt with a physiologically compatible cation,
  • R 3 is hydrogen or a C 1 -C 4 -alkyl group
  • R 4 is hydrogen, a C 1 -C 4 -alkyl group or a group -CO-R 6 , in which R 6 is a C 1 -C 4 -alkyl group, and
  • R 5 represents one of the groups mentioned for R 4, and physiologically compatible salts of these compounds with an organic or inorganic acid.
  • Particularly preferred derivatives of indole are 5,6-dihydroxyindole, N-methyl-5,6-dihydroxyindole, N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6- dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid.
  • N-methyl-5,6-dihydroxyindole N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6-dihydroxyindole, and especially the 5,6 -Dihydroxyindol.
  • the agents may contain at least one substantive dye instead of or in addition to the dye precursors.
  • These are dyes that raise directly on the hair and do not require an oxidative process to form the color.
  • Direct dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones or indophenols.
  • the substantive dyes are each preferably used in an amount of 0.001 to 20% by weight, based on the total application preparation.
  • the total amount of substantive dyes is preferably at most 20% by weight.
  • Direct dyes can be subdivided into anionic, cationic and nonionic substantive dyes.
  • Particularly suitable anionic direct dyes are 6-hydroxy-5 - [(4-sulfophenyl) azo] -2-naphthalenesulfonic acid disodium salt (CI 15.985, Food Yellow No. 3, FD & C Yellow No. 6), 2,4-dinitro-1 -naphthol-7-sulfonic acid disodium salt (Cl.10.316; Acid Yellow 1, Food Yellow No. 1), 2- (indan-1, 3-dion-2-yl) quinoline-x, x-sulfonic acid (mixture of mono and disulfonic acid) (CI 47,005, D & C Yellow No. 10, Food Yellow No.
  • Phenylamino) phenyl] azobenzenesulfonic acid natrium salt CI 13.065, Ki406, Acid Yellow 36), 9- (2-carboxyphenyl) -6-hydroxy-3H-xanthen-3-one (CI 45, 350; Acid Yellow 73; D & C Yellow No 8), 5 - [(2,4-dinitrophenyl) amino] -2-phenylaminobenzenesulfonic acid, sodium salt (Cl.10, 385; Acid Orange 3), 4 - [(2,4-dihydroxyphenyl) azo] -benzenesulfonic acid, sodium salt (Cl Acid Orange 6), 4 - [(2-hydroxynaphth-1-yl) azo] -benzenesulfonic acid, sodium salt (Cl 15.510, Acid Orange 7), 4 - [(2,4-dihydroxy-3 - [( 2,4-dimethylphenyl) azo] -phenyl) azo] -benzen
  • Acid Red 4 4-hydroxy-3 - [(4-sulfonaphth-1-yl) azo] -1-naphthalenesulfonic acid disodium salt (Cl 14.720; Acid Red No.14), 6-hydroxy-5 - [(4-sulfonaphth-1-yl) azo] -2,4-naphthalenedisulfonic acid trisodium salt (Cl 16,255, Ponceau 4R, Acid Red 18), 3-hydroxy-4 - [(4-sulfonaphth-1) yl) azo] -2,7-naphthalene-disulfonic acid trinatri umsalz (Cl.
  • Acid Red 27 8-amino-1-hydroxy-2- (phenylazo) -3,6-naphthalenedisulfonic acid disodium salt (Cl 17,200, Acid Red 33, Red 33), 5- (acetylamino) -4-hydroxy 3 - [(2-methylphenyl) azo] -2,7-naphthalenedisulfonic acid disodium salt (Cl 18.065, Acid Red 35), 2- (3-hydroxy-2,4,5,7-tetraiododibenzopyran- 6-on-9-yl) benzoic acid disodium salt (Cl.45,430; Acid Red 51), N- [6- (diethylamino) -9- (2,4-disulfophenyl) -3H-xanthen-3-ylidene] - N-ethylenecanone chloride, inner salt, sodium salt (CI 45, 100; Acid Red 52), 8 - [(4- (phenylazo) phenyl) azo] -7-nap
  • Acid Red 95 2-hydroxy-3 - ((2-hydroxynaphth-1-yl) azo) -5-nitrobenzenesulfonic acid, sodium salt
  • Acid Red 184 3-hydroxy-4- (3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-ylazo) -naphthalene-1 sulfonic acid sodium salt, chromium complex (Acid Red 195), 3-hydroxy-4 - [(4-methyl-2-sulfonophenyl) azo-naphthalenecarboxylic acid calcium salt (Cl 15.850: 1; Pigment Red 57: 1).
  • Betaine (CI 42,090, Acid Blue 9, FD & C Blue No. 1), 1-amino-4- (phenylamino) -9,10-anthraquinone-2-sulfonic acid (CI 62,055, Acid Blue 25), 1-amino 4- (cyclohexylamino) -9,10-anthraquinone-2-sulfonic acid, sodium salt (CI 62045, Acid Blue 62), 2- (1,3-dihydro-3-oxo-5-sulfo-2H-indole-2-one ylidene) -2,3-dihydro-3-oxo-1H-indole-5-sulfonic acid disodium salt (CI 73.015, Acid Blue 74), 9- (2-carboxyphenyl) -3 - [(2-methylphenyl) amino ] -6 - [(2-methyl-4-sulfophenyl) amino] xanthylium inner salt, sodium salt (CI 45
  • Preferred anionic substantive dyes are those under the international designations or trade names Acid Yellow 1, Yellow 10, Acid Yellow 23, Acid Yellow 36, Acid Orange 7, Acid Red 33, Acid Red 52, Pigment Red 57: 1, Acid Blue 7, Acid Green 50, Acid Violet 43, Acid Black 1 and Acid Black 52 known compounds.
  • Particularly suitable cationic direct dyes are 9- (dimethylamino) benzo [a] phenoxazine-7-ium chloride (Cl 51, 175, Basic Blue 6), di [4- (diethylamino) phenyl] [4- (ethylamino ) naphthyl] carbenium chloride (Cl 42,595, Basic Blue 7), di- (4- (dimethylamino) phenyl) - (4- (methylphenylamino) naphthalen-1-yl) carbenium chloride (CI 42,563; Basic Blue 8), 3.7- Di (dimethylamino) phenothiazine-5-ium chloride (CI 52.015 Basic Blue 9), di [4- (dimethylamino) phenyl] [4- (phenylamino) naphthyl] carbenium chloride (CI 44.045, Basic Blue 26), 2 - [(4- (ethyl (2-hydroxyethyl
  • aromatic systems substituted with a quaternary nitrogen group such as Basic Yellow 57, Basic Red 76, Basic Blue 99, Basic Brown 16 and Basic Brown 17, as well as
  • Preferred cationic substantive dyes of group (c) are in particular the following compounds:
  • the compounds of the formulas (DZ1), (DZ3) and (DZ5) which are also known by the names Basic Yellow 87, Basic Orange 31 and Basic Red 51, are very particularly preferred cationic substantive dyes of group (c).
  • the cationic direct dyes which are sold under the trademark Arianor ®, according to the invention are also very particularly preferred cationic direct dyes.
  • Nonionic substantive dyes are:
  • Suitable nonionic substantive dyes are in particular nonionic nitro and quinone dyes and neutral azo dyes.
  • Suitable blue nitro dyes are in particular:
  • Suitable red nitro dyes are in particular:
  • Suitable yellow nitro dyes are in particular:
  • 1,2-diamino-4-nitrobenzene (CI 76,020), 1 - [(2-hydroxyethyl) amino] -2-nitrobenzene (HC Yellow 2), 1- (2-hydroxyethoxy) -2 - [(2-hydroxyethyl ) amino] -5-nitrobenzene (HC Yellow 4), 1-amino-2 - [(2-hydroxyethyl) amino] -5-nitrobenzene (HC Yellow 5), 4 - [(2,3-dihydroxypropyl) amino] 3-nitro-1-trifluoromethylbenzene (HC Yellow 6), 2- [di (2-hydroxyethyl) amino] -5-nitrophenol, 2 - [(2-hydroxyethyl) amino] -1-methoxy-5-nitrobenzene , 2-amino-3-nitrophenol, 2-amino-4-nitrophenol, 1-amino-2-methyl-6-nitrobenzene, 1- (2-hydroxyethoxy) -3-methylannino-4-nitrobenzene, 2,3- ( Di
  • Suitable quinone dyes are in particular:
  • Suitable neutral azo dyes are in particular:
  • Preferred nonionic substantive dyes are those under the international designations or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, HC Orange 1, Disperse Orange 3, HC Red 1, HC Red 3, HC HC Red 11, HC Red 11, HC Red 11, HC Blue 11, HC Blue 2, HC Blue 11, HC Blue 12, Disperse Blue 3, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9 well-known compounds, as well 1, 4-diamino-2-nitrobenzene, 2-amino-4-nitrophenol, 1,4-bis (2-hydroxyethyl) amino-2-nitrobenzene, 3-nitro-4- (2-hydroxyethyl) aminophenol, 2- (2-hydroxyethyl) amino-4,6-dinitrophenol, 4 - [(2-hydroxyethyl) amino] -3-nitro-1-methylbenzene, 1-amino-4- (2-hydroxyethyl) amino-5- Chloro-2-nitrobenzene, 4-amino-3-nitrophenol,
  • the substantive dyes each represent uniform compounds. Rather, due to the production process for the individual dyes, minor amounts of other components may be included, as far as they do not adversely affect the staining or other reasons, such as toxicological, must be excluded. Furthermore, as direct dyes also naturally occurring dyes may be used, as for example in henna red, henna neutral, henna black, chamomile, sandalwood, black tea, buckthorn bark, sage, bluewood, madder root, Catechu, Sedre and alkano root are included.
  • the agents according to the invention preferably contain the substantive dyes in an amount of from 0.01 to 20% by weight, based on the total application preparation.
  • oxidation dye precursors or the direct dyes it is not necessary for the oxidation dye precursors or the direct dyes to be in each case homogeneous compounds. Rather, in the hair colorants according to the invention, due to the production process for the individual dyes, in minor amounts, further components may be included, as far as they do not adversely affect the dyeing result or for other reasons, e.g. toxicological, must be excluded.
  • the agents as color-changing active ingredient contain at least one peroxo compound. These agents are commonly called bleaching agents.
  • the solid peroxo compounds are generally not addition products of hydrogen peroxide to other components.
  • the selection of this peroxo compound is in principle not restricted; customary peroxo compounds known to the person skilled in the art are, for example, ammonium peroxydisulfate, potassium peroxodisulfate, sodium peroxodisulfate, ammonium persulfate, potassium persulfate, sodium persulfate,
  • Potassium peroxide phosphate percarbonates such as magnesium percarbonate, and peroxides such as barium peroxide.
  • percarbonates such as magnesium percarbonate
  • peroxides such as barium peroxide.
  • the inorganic compounds are preferred according to the invention.
  • Particularly preferred are the peroxydisulfates, in particular ammonium peroxydisulfate.
  • the peroxo compounds are preferably present in the compositions according to the invention in amounts of 5-30% by weight, in particular in amounts of 8-20% by weight.
  • bleaching agents contain an alkalizing agent which serves to adjust the alkaline pH of the use mixture.
  • alkalizing agents such as ammonium, alkali metal and alkaline earth metal hydroxides, carbonates, bicarbonates, hydroxycarbonates, silicates, in particular metasilicates, and also alkali metal phosphates, can be used.
  • the bleaching agents according to the invention contain at least two different alkalizing agents. In this case, mixtures of, for example, a metasilicate and a hydroxycarbonate may be preferred.
  • Bleaching agents contain alkalizing agents preferably in amounts of 5-25 wt .-%, in particular 10-20 wt .-%.
  • Bleaching agents usually contain hydrogen peroxide or a solid addition compound of hydrogen peroxide to inorganic or organic compounds, such as sodium perborate, sodium percarbonate, sodium percarbamide, polyvinylpyrrolidone, urea peroxide and melamine peroxide as another important component.
  • the concentration of this hydrogen peroxide solution is determined on the one hand by the legal requirements and on the other hand by the desired effect; As a rule, 6 to 12 percent solutions in water are used.
  • the proportions of the component containing the peroxo compound to the hydrogen peroxide solution is usually in the range 1: 1 to 1: 2, with an excess of hydrogen peroxide solution is particularly selected when no pronounced Blondier Sign is desired.
  • the agents according to the invention are permanently mold-changing agents. These funds exist usually from two or three preparations, which are successively applied to the fibers. The following terms are used below:
  • the corrugating agents according to the invention necessarily contain at least one keratin-reducing substance, preferably mercaptans.
  • mercaptans are, for example, thioglycolic acid, thiolactic acid, thiomalic acid, mercaptoethanesulfonic acid and its salts and esters, cysteamine, cysteine, Bunte salts and salts of sulfurous acid.
  • thioglycolic acid thiolactic acid, thiomalic acid, mercaptoethanesulfonic acid and its salts and esters, cysteamine, cysteine, Bunte salts and salts of sulfurous acid.
  • alkali metal or ammonium salts of thioglycolic acid and / or thiolactic acid and the free acids are preferably used in the waving agents in concentrations of from 0.5 to 1.0 mol / kg at a pH of from 5 to 12, in particular from 7 to 9.5.
  • the Wellothen invention may contain components that enhance the power, such as
  • heterocyclic compounds such as imidazole, pyrrolidine, piperidine, dioxolane, dioxane, morpholine and piperazine, as well as derivatives of these compounds such as the C-
  • Preferred substituents which may be positioned on both carbon atoms and nitrogen atoms of the heterocyclic ring systems are methyl, ethyl, ⁇ -hydroxyethyl and ⁇ -aminoethyl groups.
  • Preferred derivatives of heterocyclic compounds according to the invention are, for example, 1-methylimidazole, 2-methylimidazole, 4 (5) -methylimidazole, 1, 2-dimethylimidazole, 2-ethylimidazole, 2-isopropylimidazole, N-methylpyrrolidone, 1-methylpiperidine, 4-methylpiperidine, 2 Ethyl piperidine, 4-methylmorpholine, 4- (2-hydroxyethyl) morpholine, 1-ethylpiperazine, 1- (2-hydroxyethyl) piperazine, 1- (2-aminoethyl) piperazine.
  • Further preferred imidazole derivatives according to the invention are biotin, hydantoin and benzimidazole. Most preferably, the imidazole.
  • Amino acids such as in particular arginine, citrulline, histidine, ornithine and lysine.
  • the amino acids can be used both as free amino acid and as salts, eg. As hydrochlorides, be used.
  • oligopeptides of on average 2-3 amino acids, which have a high proportion (> 50%, in particular> 70%) of the amino acids mentioned, have proven to be usable according to the invention.
  • Particularly preferred according to the invention are arginine and its salts and arginine-rich oligopeptides.
  • Diols such as 2-ethyl-1, 3-hexanediol, 1, 3-butanediol, 1, 4-butanediol, 1, 2-propanediol, 1, 3-propanediol, neopentyl glycol and ethylene glycol.
  • 1, 3-diols, especially 2-ethyl-1, 3-hexanediol and 1, 3-butanediol, have been found to be particularly suitable.
  • the wellenverstärverEntnden compounds may be present in the corrugated lotions according to the invention in amounts of 0.5 to 5 wt .-%, based on the total wave lotion. Amounts of 1 to 4 wt .-%, in the case of the diols of 0.5 to 3 wt .-%, have been found to be sufficient, which is why these amounts are particularly preferred.
  • oxidizing agents for. B. sodium bromate, potassium bromate, hydrogen peroxide, and the stabilizers customary for the stabilization of aqueous hydrogen peroxide preparations.
  • the pH of such aqueous H 2 O 2 preparations which usually contain about 0.5 to 15% by weight, usually about 0.5 to 3% by weight, of H 2 O 2 , is preferably included 2 to 6, in particular 2 to 4; it is adjusted by inorganic acids, preferably phosphoric acid.
  • Bromate-based fixatives are usually used in concentrations of from 1 to 10% by weight and the pH of the solutions is adjusted to 4 to 7.
  • suitable are enzymatic-based fixing agents (for example peroxidases) which contain no or only small amounts of oxidizing agents, in particular H 2 O 2 .
  • corrugating agents or fixing agents according to the invention are usually formulated in a single phase, including by this term are systems which have a continuous phase, such as, for example, pure oil-in-water or water-in-oil emulsions.
  • the agents of the present invention contain, in addition to the active ingredient combination according to the invention, a further active ingredient which has nourishing, anti-inflammatory, anti-irritating and / or skin-calming properties.
  • the color-modifying agent according to the invention contains as care substance at least one cationic surfactant.
  • Cationic surfactants of the quaternary ammonium compound type, the esterquats and the amidoamines are preferred according to the invention.
  • Preferred quaternary ammonium compounds are ammonium halides, in particular chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkyl methylammonium chlorides, eg.
  • cetyltrimethylammonium chloride stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride, as well as the imidazolium compounds known under the INCI names Quaternium-27 and Quaternium-83.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are marketed under the trade names Stepantex® ®, ® and Dehyquart® Armocare® ®.
  • alkylamidoamines are usually prepared by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An invention Particularly suitable compound from this group of substances is the commercially available under the name Tegoamid ® S 18 stearamidopropyl-dimethylamine.
  • cationic surfactants which are suitable according to the invention are the substances known under the INCI names Linoleamidopropyl PG-Dimonium Chloride Phosphate, Cocamidopropyl PG-Dimonium Chloride Phosphate and Stearamidopropyl PG-Dimonium Chloride Phosphate. These are sold, for example, by the company Mona under the trade names Phospholipid EFA® , Phospholipid PTC® and Phospholipid SV® .
  • the cationic surfactants are contained in the compositions according to the invention preferably in amounts of 0.05 to 10 wt .-%, based on the total application preparation. Amounts of 0.1 to 5 wt .-% are particularly preferred.
  • the color-modifying agents contain as care substance at least one nourishing polymer.
  • a first group of caring polymers are the cationic polymers.
  • Cationic polymers are polymers according to the invention which have a group in the main and / or side chain which may be “temporary” or “permanent” cationic.
  • “permanently cationic” refers to those polymers which have a cationic group independently of the pH of the agent These are generally polymers which contain a quaternary nitrogen atom, for example in the form of an ammonium group
  • Preferred cationic groups are quaternary ammonium groups . in particular, those polymers in which the quaternary ammonium group via a C-
  • R 1 -H or -CH 3
  • R 2 , R 3 and R 4 are independently selected from C-
  • m 1, 2, 3 or 4
  • n is a natural number
  • R 1 is a methyl group
  • R 2 , R 3 and R 4 are methyl groups m has the value 2.
  • Suitable physiologically acceptable counterions X ' are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions. Preference is given to halide ions, in particular chloride.
  • a particularly suitable homopolymer is, if desired, crosslinked, poly (methacryloyloxyethyltrimethylammoniumchlorid) with the INCI name Polyquaternium- 37.
  • the crosslinking if desired, using poly olefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylenebisacrylamide, diallyl ether, polyallylpolyglycerylether, or allyl ethers of sugars or Sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose.
  • Methylenebisacrylamide is a preferred crosslinking agent.
  • the homopolymer is preferably used in the form of a nonaqueous polymer dispersion which should not have a polymer content of less than 30% by weight.
  • Such polymer dispersions are (under the names Salcare ® SC 95 about 50% polymer content, additional components: mineral oil (INCI name: Mineral Oil) and tridecyl-polyoxypropylene-polyoxyethylene-ether (INCI name: PPG-1 trideceth-6) ) and Salcare ® SC 96 (about 50% polymer content, additional components: mixture of diesters of propylene glycol with a mixture of caprylic and capric acid (INCI name: propylene glycol Dicaprylate / Dicaprate) and tridecyl polyoxypropylene-polyoxyethylene-ether (INCI Designation: PPG-1-trideceth-6)) are commercially available.
  • Copolymers with monomer units of the formula (G1-I) contain, as nonionic monomer units, preferably acrylamide, methacrylamide, acrylic acid C-. 4- alkyl esters and methacrylic acid-C- ⁇ - 4 -alkyl ester. Among these nonionic monomers, the acrylamide is particularly preferred. These copolymers can also be crosslinked, as described above in the case of the homopolymers. A copolymer preferred according to the invention is the crosslinked acrylamide-methacryloyloxyethyltrimethylammonium chloride copolymer. Such copolymers, in where the monomers are present in a weight ratio of about 20:80, strength nonaqueous polymer dispersion under the name Salcare ® SC 92 are commercially available as approximately 50%.
  • cationic polymers are for example quaternised CeIIu lose-derivatives, such as are available under the names of Celquat ® and Polymer JR ® commercially.
  • the compounds Celquat ® H 100, Celquat ® L 200 and Polymer JR ® 400 are preferred quaternized cellulose derivatives, cationic alkyl polyglycosides according to DE-PS 44 13 686, cationized honey, for example the commercial product Honeyquat ® 50, cationic guar derivatives, such as in particular the products sold under the trade names Cosmedia® ® guar and Jaguar ® products,
  • Polysiloxanes having quaternary groups such as the commercially available products Q2-7224 (manufactured by Dow Corning, a stabilized trimethylsilylamodimethicone), Dow Corning® 929 emulsion (containing a hydroxylamino-modified silicone, also referred to as amodimethicones), SM -2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® -Quat 3270 and 3272 (manufacturer: Th Goldschmidt.), di- quaternary polydimethyl siloxanes, Quaternium-80), polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid.
  • Q2-7224 manufactured by Dow Corning, a stabilized trimethylsilylamodimethicone
  • Dow Corning® 929 emulsion containing a hydroxylamino-modified silicone, also
  • Such compounds are sold under the names Gafquat ® 734 and Gafquat ® 755 commercially,
  • Vinylpyrrolidone-vinyl imidazolium copolymers such as those offered under the names Luviquat ® FC 370, FC 550, FC 905 and HM 552, quaternized polyvinyl alcohol, as well as by the names of Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27, having quaternary Nitrogen atoms in the polymer backbone.
  • Can be used as cationic polymers are sold under the names Polyquaternium-24 (commercial product z. B. Quatrisoft ® LM 200), known polymers.
  • copolymers of vinylpyrrolidone such as the commercial products Copolymer 845 (manufactured by ISP), Gaffix ® VC 713 (manufactured by ISP), Gafquat ® ASCP 1011, Gafquat ® HS 110, Luviquat ® 8155 and Luviquat ® MS 370.
  • cationic polymers are the so-called "temporary cationic" polymers. These polymers usually contain an amino group which, at certain pH values, is present as a quaternary ammonium group and thus cationically.
  • temporary cationic polymers usually contain an amino group which, at certain pH values, is present as a quaternary ammonium group and thus cationically.
  • chitosan and its derivatives are preferred as Hydagen CMF ®, Hydagen HCMF ®, Kytamer ® PC and Chitolam ® NB / 101 are freely available commercially, for example under the trade names.
  • preferred cationic polymers are cationic cellulose derivatives and chitosan and its derivatives, in particular the commercial products Polymer ® JR 400, Hydagen ® HCMF and Kytamer ® PC, cationic guar derivatives, cationic honey derivatives, in particular the commercial product Honeyquat ® 50, cationic Alkylpolyglycodside according to DE-PS 44 13 686 and polymers of the type Polyquaternium-37.
  • cationized protein hydrolyzates are to be counted among the cationic polymers, wherein the underlying protein hydrolyzate from the animal, for example from collagen, milk or keratin, from the plant, for example from wheat, corn, rice, potatoes, soy or almonds, marine life forms, for example from fish collagen or algae, or biotechnologically derived protein hydrolysates.
  • the protein hydrolyzates on which the cationic derivatives according to the invention are based can be obtained from the corresponding proteins by chemical, in particular alkaline or acid hydrolysis, by enzymatic hydrolysis and / or a combination of both types of hydrolysis.
  • cationic protein hydrolyzates are to be understood as meaning quaternized amino acids and mixtures thereof.
  • the quaternization of the protein hydrolysates or amino acids is often carried out using quaternary ammonium salts such as N, N-dimethyl-N- (n-alkyl) -N- (2-hydroxy-3-chloro-n-propyl) ammonium halides.
  • the cationic protein hydrolysates may also be further derivatized.
  • typical examples of the cationic protein hydrolysates and derivatives according to the invention those mentioned under the INCI names in the "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17 th Street, NW, Suite 300 .
  • Cocodimonium Hydroxypropyl Hydrolyzed Collagen Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Hydroxypropyl Arginine Lauryl / Myristyl Ether HCl, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed Keratin, Hydroxypropyl
  • amphoteric polymers are those polymers which are composed essentially
  • R 4 and R 5 independently of one another are alkyl groups having 1 to 4 carbon atoms, Z is an NH 4
  • n is an integer from 2 to 5 and A is the anion of an organic or inorganic acid
  • R 6 -CH CR 7 -COOH (IM) in which R 6 and R 7 are independently hydrogen or methyl groups.
  • the color-modifying agents according to the invention contain the cationic polymers preferably in an amount of 0.01 to 5 wt .-%, in particular in an amount of 0.1 to 2 wt .-%, each based on the total application preparation.
  • the color-modifying agents according to the invention comprise at least one UV filter.
  • the UV filters suitable according to the invention are not subject to any general restrictions with regard to their structure and their physical properties. On the contrary, all UV filters which can be used in the cosmetics sector and whose absorption maximum is in the UVA (315-400 nm), in the UVB (280-315 nm) or in the UVC ( ⁇ 280 nm) range are suitable. UV filters with an absorption maximum in the UVB range, in particular in the range from about 280 to about 300 nm, are particularly preferred.
  • the UV filters preferred according to the invention can be selected, for example, from substituted benzophenones, p-aminobenzoic acid esters, diphenylacrylic acid esters, cinnamic acid esters, salicylic acid esters, benzimidazoles and o-aminobenzoic acid esters.
  • UV filters which can be used according to the invention are 4-aminobenzoic acid, N, N, N-trimethyl-4- (2-oxoborn-3-ylidenedimethyl) aniline-n-methylsulfate, SS ⁇ -trinnethylcyclohexylsalicylate (homosalate), 2-hydroxybenzoyl 4-methoxy-benzophenone (benzophenone-3; Uvinul ® M 40, Uvasorb MET ®, ® Neo Heliopan BB, Eusolex ® 4360), 2-phenylbenzimidazole-5-sulfonic acid and potassium, sodium and triethanolamine salts (phenylbenzimidazole sulfonic Acid; Parsol ® HS; Neo Heliopan Hydro ®), 3,3 '- (1, 4-phenylenedimethylene) bis (7,7-dimethyl-2-oxo-bicyclo [2.2.1] hept-1-yl-methane sulfonic acid) and salts thereof,
  • Methoxycinnamic acid isopentyl ester, 4-methoxycinnamic acid 2-ethylhexyl ester, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and its sodium salt, 3- (4'-methylbenzylidene) -D, L-camphor, 3-benzylidene-camphor, 4-Isopropylbenzyl salicylate, 2,4,6-trianilino (p-carbo-2'-ethylhexyl-1'-oxy) -1, 3,5-triazine, 3-imidazol-4-yl-acrylic acid and its ethyl ester, polymers of the N- ⁇ (2 and 4) - [2-oxoborn-3-ylidenemethyl] benzyl ⁇ -acrylamide.
  • 2-hydroxy-4-methoxybenzophenone 2-phenylbenzimidazole-5-sulfonic acid and its potassium, sodium and triethanolamine salts
  • 2-phenylbenzimidazole-5-sulfonic acid and its potassium, sodium and triethanolamine salts 1- (4-tert-butylphenyl) -3- (4-methoxyphenyl) -propane 1, 3-dione, 4-methoxycinnamic acid 2-ethylhexyl ester and 3- (4'-methylbenzylidene) -D, L-camphor.
  • water-insoluble UV filters are those which dissolve in water at not more than 1% by weight, in particular not more than 0.1% by weight, at 20 ° C. Furthermore, these compounds should be soluble in the usual cosmetic oil components at room temperature to at least 0.1, in particular at least 1 wt .-%). The use of water-insoluble UV filters may therefore be preferred according to the invention.
  • UV filters which have a cationic group, in particular a quaternary ammonium group.
  • UV filters have the general structure U - Q.
  • the structural part U stands for a UV-absorbing group.
  • This group can in principle be derived from the known UV filters which can be used in the cosmetics sector, in which a group, generally a hydrogen atom, of the UV filter is replaced by a cationic group Q, in particular having a quaternary amino function ,
  • Compounds from which the structural part U can be derived are, for example, substituted benzophenones, p-aminobenzoic acid esters, diphenylacrylic acid esters, cinnamic acid esters, salicylic acid esters, benzimidazoles and o-aminobenzoic acid esters.
  • Structural parts U which are derived from cinnamic acid amide or from N, N-dimethylaminobenzoic acid amide are preferred according to the invention.
  • the structural parts U can in principle be selected such that the absorption maximum of the UV filters can be in both the UVA (315-400 nm) and in the UVB (280-315 nm) or in the UVC ( ⁇ 280 nm) range. UV filters with an absorption maximum in the UVB range, in particular in the range from about 280 to about 300 nm, are particularly preferred.
  • the structural part U also as a function of structural part Q, is preferably selected so that the molar extinction coefficient of the UV filter at the absorption maximum is above 15,000, in particular above 20,000.
  • the structural part Q preferably contains, as a cationic group, a quaternary ammonium group.
  • This quaternary ammonium group can in principle be connected directly to the structural part U, so that the structural part U represents one of the four substituents of the positively charged nitrogen atom.
  • one of the four substituents on the positively charged nitrogen atom is a group, especially an alkylene group of 2 to 6 carbon atoms, which functions as a compound between the structural portion U and the positively charged nitrogen atom.
  • the group Q has the general structure - (CH 2 ) ⁇ -N + R 1 R 2 R 3 X " , in which x is an integer from 1 to 4, R 1 and R 2 independently of one another represent
  • x preferably represents the number 3
  • Physiologically acceptable anions are, for example, inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions and organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions and organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • UV filters with cationic groups are the commercially available compounds cinnamic acid-trimethylammonium chloride (lncroquat ® UV-283) and dodecyl tosylate (Escalol ® HP 610).
  • the teaching of the invention also includes the use of a combination of several UV filters.
  • the combination of at least one water-insoluble UV filter with at least one UV filter with a cationic group is preferred.
  • the UV filters are contained in the compositions of the invention usually in amounts of 0.01-5 wt .-%, based on the total application preparation. Amounts of 0.1-2.5 wt .-% are preferred.
  • the color-modifying agents according to the invention contain as care substance at least one vitamin, one provitamin, one vitamin precursor and one of their derivatives.
  • vitamins, pro-vitamins and vitamin precursors are preferred, which are usually assigned to groups A, B, C, E, F and H.
  • vitamin A includes retinol (vitamin A 1 ) and 3,4-didehydroretinol (vitamin A 2 ).
  • the ß-carotene is the provitamin of retinol.
  • vitamin A component according to the invention for example, vitamin A acid and its esters, vitamin A aldehyde and vitamin A alcohol and its esters such as the palmitate and the acetate into consideration.
  • the preparations used according to the invention preferably contain the vitamin A component in amounts of 0.05-1% by weight, based on the total application preparation.
  • the vitamin B group or the vitamin B complex include vitamin B 1 (thiamine) vitamin B 2 (riboflavin)
  • Vitamin B 3 the compounds nicotinic acid and nicotinamide (niacinamide) are often performed.
  • Preferred according to the invention is the nicotinic acid amide, which is preferably present in the compositions according to the invention in amounts of from 0.05 to 1% by weight, based on the total application preparation.
  • Vitamin B 5 pantothenic acid, panthenol and pantolactone. Panthenol and / or pantolactone are preferably used in the context of this group.
  • Derivatives of panthenol which can be used according to the invention are, in particular, the esters and ethers of panthenol and also cationically derivatized panthenols. Individual representatives are, for example, the panthenol triacetate, the panthenol monoethyl ether and its monoacetate and also the cationic panthenol derivatives disclosed in WO 92/13829.
  • the compounds of the Vitamin B 5 type are in the inventive compositions preferably in amounts of 0.05 to 10 wt .-%, based on the total application preparation included. Amounts of 0.1-5 wt .-% are particularly preferred.
  • Vitamin B 6 (pyridoxine and pyridoxamine and pyridoxal).
  • the compounds of the vitamin B 6 type mentioned are preferably contained in the agents according to the invention in amounts of 0.01-5% by weight, based on the total application preparation. Levels of 0.05-1 wt% are particularly preferred.
  • Vitamin C (ascorbic acid). Vitamin C is used in the compositions according to the invention preferably in amounts of 0.1 to 3 wt .-%, based on the total application preparation. Use in the form of palmitic acid ester, glucosides or phosphates may be preferred. The use in combination with tocopherols may also be preferred.
  • Vitamin E tocopherols, especially ⁇ -tocopherol.
  • Tocopherol and its derivatives which include in particular the esters such as acetate, nicotinate, phosphate and succinate, are preferably present in the compositions according to the invention in amounts of 0.05-1% by weight, based on the total application preparation.
  • Vitamin F is usually understood as meaning essential fatty acids, in particular linoleic acid, linolenic acid and arachidonic acid.
  • Vitamin H is the compound (3aS, 4S, 6aR) -2-oxohexahydrothienol [3,4-c /] -imidazole-4-valeric acid, for which, however, the trivial name biotin has meanwhile prevailed.
  • Biotin is contained in the agents according to the invention preferably in amounts of 0.0001 to 1, 0 wt .-%, in particular in amounts of 0.001 to 0.01 wt .-%, each based on the total application preparation.
  • the color-changing agents according to the invention preferably contain vitamins, provitamins and vitamin precursors from groups A, B, C, E and H.
  • Panthenol, pantolactone, pyridoxine and its derivatives as well as nicotinic acid amide and biotin are particularly preferred.
  • the color-modifying agents according to the invention contain as care substance at least one carboxylic acid.
  • short-chain carboxylic acids may in particular be advantageous.
  • Short-chain carboxylic acids and their derivatives in the context of the invention are understood to mean carboxylic acids which may be saturated or unsaturated and / or straight-chain or branched or cyclic and / or aromatic and / or heterocyclic and have a molecular weight of less than 750.
  • the short-chain carboxylic acids according to the invention may have one, two, three or more carboxy groups.
  • Preferred within the meaning of the invention are carboxylic acids having a plurality of carboxy groups, in particular di- and tricarboxylic acids.
  • the carboxy groups may be wholly or partly present as esters, acid anhydride, lactone, amide, imidic acid, lactam, lactim, dicarboximide, carbohydrazide, hydrazone, hydroxam, hydroxime, amidine, amidoxime, nitrile, phosphonic or phosphate ester.
  • the carboxylic acids according to the invention may of course be substituted along the carbon chain or the ring skeleton.
  • the substituents of the carboxylic acids according to the invention are, for example, to include C- ⁇ -C 8 alkyl, C 2 -C 8 alkenyl, aryl, aralkyl and aralkenyl, hydroxymethyl, C 2 -C 8 hydroxyalkyl, C 2 -C 8 hydroxyalkenyl, aminomethyl, C 2 -C 8 aminoalkyl, cyano, formyl, oxo, thioxo, hydroxy, mercapto, amino, carboxy or imino groups.
  • Preferred substituents are C 1 -C 8 alkyl, hydroxymethyl, hydroxy, amino and carboxy groups. Particular preference is given to substituents in the ⁇ position.
  • substituents are hydroxy, alkoxy and amino groups, where the amino function may optionally be further substituted by alkyl, aryl, aralkyl and / or alkenyl radicals.
  • preferred carboxylic acid derivatives are the phosphonic and phosphate esters.
  • carboxylic acids examples include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, glyceric acid, glyoxylic acid, adipic acid, pimelic acid, suberic acid, sebacic acid, propiolic acid, crotonic acid, isocrotonic acid , elaidic acid, maleic acid, fumaric acid, muconic acid, citraconic acid, mesaconic acid, camphoric acid, benzoic acid, o, m, p-phthalic acid, naphthoic acid, Toluoylklare, hydratropic acid, atropic acid, cinnamic acid, isonicotinic acid, nicotinic acid, Bicarbaminklad, 4,4 '- dicyano-6, 6
  • n is a number from 4 to 12 and one of the two groups X and Y is a COOH group and the other is hydrogen or a methyl or Ethyl radical
  • dicarboxylic acids of the general formula (NI) which additionally carry 1 to 3 methyl or ethyl substituents on the cyclohexene ring and dicarboxylic acids formed formally from the dicarboxylic acids according to formula (NI) by addition of a molecule of water to the double bond in the cyclohexene ring.
  • Dicarboxylic acids of the formula (N-I) are known in the literature.
  • US Pat. No. 3,753,968 discloses a manufacturing method.
  • the dicarboxylic acids of the formula (N-I) can be prepared, for example, by reacting polyunsaturated dicarboxylic acids with unsaturated monocarboxylic acids in the form of a Diels-Alder cyclization.
  • a polyunsaturated fatty acid as the dicarboxylic acid component.
  • Preferred is the linoleic acid obtainable from natural fats and oils.
  • the monocarboxylic acid component in particular, acrylic acid, but also e.g. Methacrylic acid and crotonic acid are preferred.
  • mixtures of isomers are formed in which one component is present in excess. These isomer mixtures can be used according to the invention as well as the pure compounds.
  • those dicarboxylic acids which differ from the compounds according to formula (NI) by 1 to 3 methyl or ethyl substituents on the cyclohexyl ring or formally from these compounds by addition of one molecule of water are also usable according to the invention be formed on the double formation of the cyclohexene ring.
  • the dicarboxylic acid (mixture) which is obtained by reacting linoleic acid with acrylic acid, has proved to be particularly effective according to the invention. It is a mixture of 5- and 6-carboxy-4-hexyl-2-cyclohexene-1-octanoic acid.
  • Such compounds are commercially available under the designations Westvaco Diacid 1550 Westvaco Diacid ® ® 1595 (manufacturer: Westvaco).
  • salts are the alkali metal salts, alkaline earth metal salts, zinc salts and ammonium salts, which in the context of the present application also include the mono-, di- and trimethyl-, -ethyl- and -hydroxyethyl ammonium salts.
  • neutralized acids can very particularly preferably be used with alkaline-reacting amino acids, such as, for example, arginine, lysine, ornithine and histidine.
  • 2-pyrrolidinone-5-carboxylic acid and derivatives thereof are used as the carboxylic acid.
  • Particularly preferred are the sodium, potassium, calcium, magnesium or ammonium salts in which the ammonium ion in addition to hydrogen carries one to three C 1 - to C 4 alkyl groups.
  • the sodium salt is most preferred.
  • the amounts used in the compositions according to the invention are from 0.05 to 10% by weight, based on the total application preparation, particularly preferably from 0.1 to 5, and in particular from 0.1 to 3,% by weight.
  • hydroxycarboxylic acids and here again in particular the dihydroxy, trihydroxy and polyhydroxycarboxylic acids as well as the dihydroxy, trihydroxy and polyhydroxy di-, tri- and polycarboxylic acids. It has been found that, in addition to the hydroxycarboxylic acids, the hydroxycarboxylic acid esters and the mixtures of hydroxycarboxylic acids and their esters as well as polymeric hydroxycarboxylic acids and their esters can be very particularly preferred.
  • Preferred hydroxycarboxylic acid esters are, for example, full esters of glycolic acid, lactic acid, malic acid, tartaric acid or citric acid.
  • hydroxycarboxylic esters are esters of .beta.-hydroxypropionic acid, tartronic acid, D-gluconic acid, sugar acid, mucic acid or glucuronic acid.
  • Suitable alcohol components of these esters are primary, linear or branched aliphatic alcohols having 8-22 C atoms, ie, for example, fatty alcohols or synthetic fatty alcohols.
  • the esters of C 12 -C 5 fatty alcohols are particularly preferred.
  • Esters of this type are commercially available, eg under the trademark Cosmacol® ® EniChem, Augusta Industriale.
  • Particularly preferred polyhydroxypolycarboxylic acids are polylactic acid and polyuric acid and their esters.
  • the color-changing agents according to the invention contain as care substance at least one protein hydrolyzate and one of its derivatives.
  • Protein hydrolysates are product mixtures obtained by acid, alkaline or enzymatically catalyzed degradation of proteins (proteins).
  • the term protein hydrolyzates also means total hydrolyzates as well as individual amino acids and their derivatives as well as mixtures of different amino acids.
  • polymers made up of amino acids and amino acid derivatives are understood by the term protein hydrolyzates. The latter include, for example, polyalanine, polyasparagine, polyserine, etc.
  • Further examples of compounds which can be used according to the invention are L-alanyl-L-proline, polyglycine, glycyl-L-glutamine or D / L-methionine-S-methylsulfonium chloride.
  • ⁇ -amino acids and their derivatives such as ⁇ -alanine, anthranilic acid or hippuric acid can also be used.
  • the molecular weight of the protein hydrolysates which can be used according to the invention is between 75, the molecular weight for glycine, and 200,000, preferably the molecular weight is 75 to 50,000 and very particularly preferably 75 to 20,000 daltons.
  • protein hydrolysates of both vegetable and animal or marine or synthetic origin can be used.
  • Animal protein hydrolysates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolysates, which may also be present in the form of salts.
  • Such products are, for example, under the trademarks Dehylan ® (Cognis), Promois® ® (Interorgana) Collapuron ® (Cognis), Nutrilan® ® (Cognis), Gelita-Sol ® (German Gelatinefabriken Stoess & Co), Lexein ® (Inolex) sericin (Pentapharm) and kerasol tm ® (Croda) sold.
  • Preferred according to the invention is the use of protein hydrolysates of plant origin, eg. Soybean, almond, pea, potato and wheat protein hydrolysates.
  • Such products are, for example, under the trademarks Gluadin ® (Cognis), diamine ® (Diamalt) ® (Inolex), Hydrosoy ® (Croda), hydro Lupine ® (Croda), hydro Sesame ® (Croda), Hydro tritium ® (Croda) and Crotein ® (Croda) available.
  • Gluadin ® Cognis
  • diamine ® Diamalt
  • Hydrosoy ® Croda
  • hydro Lupine ® Croda
  • hydro Sesame ® Hydro tritium ®
  • Crotein ® Crotein ®
  • the protein hydrolysates are present in the color-modifying agents according to the invention in concentrations of from 0.01% by weight to 20% by weight, preferably from 0.05% by weight to 15% by weight and most preferably in amounts of 0.05% by weight. % up to 5% by weight, in each case based on the total application preparation.
  • the formulations according to the invention contain as care substance ectoin or ectoine derivatives, allantoin, taurine and bisabolol.
  • ectoine and ectoine derivatives means compounds of the formula (IV)
  • R 10 represents a hydrogen atom, a branched or unbranched C 1 -C 4 -alkyl radical or a C 2 -C 4 -hydroxyalkyl radical,
  • R 11 represents a hydrogen atom, a grouping -COOR 14 or a grouping -
  • R 14 may be a hydrogen atom, a C 1 -C 4 -alkyl radical, an amino acid radical, a dipeptide or a tripeptide radical,
  • R 12 and R 13 independently of one another represent a hydrogen atom, a C 1 -C 4 -alkyl radical or one of the two radicals represents a hydroxy group and n represents an integer from 1 to 3.
  • Suitable physiologically tolerated salts of the general compounds of the formula (IVa) or (IVb) are, for example, the alkali metal, alkaline earth metal, ammonium, triethylamine or tris (2-hydroxyethyl) amine salts and those which result from the reaction of compounds according to the formula (IVa) or (IVb) with inorganic and organic acids such as hydrochloric acid, phosphoric acid, sulfuric acid, branched or unbranched, substituted or unsubstituted (for example by one or more hydroxy groups) C 1 - C 4 - mono- or dicarboxylic acids, aromatic carboxylic acids and sulfonic acids such as acetic acid, citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid and p-toluenesulfonic acid.
  • inorganic and organic acids such as hydrochloric acid, phosphoric acid, sulfuric acid, branched or unbranched, substituted or unsubstit
  • physiologically acceptable salts are the Na, K, Mg and Ca and ammonium salts of the compounds of the formula (IVa) or (IVb), and the salts which are obtained by reacting compounds of the formula (IVa ) or (IVb) with hydrochloric acid, acetic acid, citric acid and benzoic acid.
  • Isomeric or stereoisomeric forms of the compounds of the formula (IVa) or (IVb) are understood according to the invention to mean all occurring optical isomers, diastereomers, racemates, zwitterions, cations or mixtures thereof.
  • amino acid is understood to mean the stereoisomeric forms, for example D and L forms, of the following compounds:
  • arginine Aspartic acid, glutamine, glutamic acid, ⁇ -alanine, ⁇ -aminobutyrate, N ⁇ -acetyllysine, N 8 -acetylornitin, N ⁇ -acetyldiaminobutyrate, N ⁇ -acetyldiaminobutyrate, histidine, isoleucine, leucine, methionine, phenylalanine, serine, Threonine and tyrosine.
  • L-amino acids are preferred.
  • Amino acid residues are derived from the corresponding amino acids. The following amino acid residues are preferred:
  • the short notation of the amino acids was carried out according to the usual notation.
  • the di- or tripeptide radicals are acid amides in their chemical nature and decompose on hydrolysis in 2 or 3 amino acids.
  • the amino acids in the di- or tripeptide moiety are linked together by amide bonds.
  • C 1 -C 4 -alkyl groups in the compounds according to the invention are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and tert-butyl.
  • Preferred alkyl groups are methyl and ethyl, methyl is a particularly preferred alkyl group.
  • Preferred C 2 -C 4 -hydroxyalkyl groups are the groups 2-hydroxyethyl, 3-hydroxypropyl or 4-hydroxybutyl; 2-hydroxyethyl is a particularly preferred hydroxyalkyl group.
  • the color-modifying agents of the invention contain these active ingredients preferably in amounts of from 0.001 to 2, in particular from 0.01 to 0.5 wt .-%, each based on the total application preparation.
  • the color-changing agents according to the invention contain as care substance at least one monosaccharide or oligosaccharide.
  • Both monosaccharides and oligosaccharides can be used.
  • the use of monosaccharides is preferred according to the invention.
  • those compounds which contain 5 or 6 carbon atoms are preferred.
  • Suitable pentoses and hexoses are, for example, ribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose, gulose, idose, galactose, talose, fucose and fructose.
  • Arabinose, glucose, galactose and fructose are preferably used carbohydrates; Very particular preference is given to using glucose which is suitable both in the D - (+) or L - (-) configuration or as a racemate.
  • sugars are gluconic acid, glucuronic acid, sugar acid, mannose and mucic acid.
  • Preferred sugar alcohols are sorbitol, mannitol and dulcitol.
  • Preferred glycosides are the methylglucosides.
  • the monosaccharides or oligosaccharides used are usually obtained from natural raw materials such as starch, they usually have the configurations corresponding to these raw materials (for example D-glucose, D-fructose and D-galactose).
  • the mono- or oligosaccharides are contained in the hair treatment compositions according to the invention preferably in an amount of 0.1 to 8 wt .-%, in particular 1 to 5 wt .-%, based on the total application preparation.
  • the preparation (B) according to the invention contains as care substance at least one silicone oil and / or one silicone gum.
  • suitable silicones or silicone gums are in particular dialkyl and alkylaryl siloxanes such as dimethylpolysiloxane and methylphenyl-polysiloxane, and their alkoxylated, quaternized or anionic derivatives.
  • silicones examples are:
  • Oligomeric polydimethylcyclosiloxanes (INCI name: Cyclomethicone), in particular the tetrameric and pentameric compounds sold as commercial products DC 344 and DC 345, respectively, by Dow Corning,
  • Hexamethyl disiloxane (INCI name: Hexamethyldisiloxane), z. B. the product sold under the name Abil ® K 520,
  • Polydimethylsiloxane polymers (INCI name: Dimethicone), z.
  • DC 200 Polyphenylmethylsiloxanes
  • phenyl trimethicone Polyphenylmethylsiloxanes
  • Silicone glycol copolymers (INCI name: Dimethicone Copolyol), z.
  • esters and partial esters of silicone glycol copolymers such as, for example, by the company Fanning under the trade name LIM Fancorsil ® (INCI name: dimethicone copolyol Meadowfoamate) are distributed,
  • Hydroxy-terminated dimethylsiloxanes e.g. Dow Corning's commercial products DC 1401 and Q2-1403, aminofunctional polydimethylsiloxanes and hydroxylamino modified silicones (INCI name: Amodimethicone and Quaternium-80, among others), such as the commercial products XF42-B1989 (manufactured by GE Toshiba Silicones) Q2-7224 (manufacturer: Dow Corning; a stabilized trimethylsilylamodimethicone), Dow Corning® 939 emulsion (containing a hydroxylamino-modified silicone, also referred to as amodimethicone), SM-2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker), and abif-Quat 3270 and 3272 (manufacturer: Th. Goldschmidt), anionic silicone oils, such as the product Dow Corning ® 1784 amino-modified organ
  • the preparations according to the invention contain a combination of a volatile and a nonvolatile silicone.
  • Volatile in the context of the invention are those silicones which have a volatility which is equal to or greater than the volatility of the cyclic, pentameric dimethylsiloxane.
  • Such combinations are also available as commercial products (eg, Dow Corning® 1401, Dow Corning® 1403, and Dow Corning® 1501, each containing mixtures of a cyclomethicone and a dimethiconol).
  • component (A) used is a dialkylpolysiloxane or one of its derivatives.
  • the alkyl groups are preferably methyl, ethyl, i-propyl and n-propyl.
  • Dimethylpolysiloxane or one of its derivatives is particularly preferably used.
  • Preferred are the derivatives of dimethylsiloxane which are amino functional.
  • a most preferred derivative is commercially available under the INCI name amodimethicones.
  • the preparations according to the invention preferably contain the silicones in amounts of from 0.01 to 10% by weight, in particular from 0.1 to 5% by weight, based on the total application preparation.
  • the color-modifying agents according to the invention contain at least one lipid as a care substance.
  • Lipids suitable according to the invention are phospholipids, for example soya lecithin, egg lecithin and cephalins, and also the substances known under the INCI names linoleic amidopropyl PG-dimonium chlorides phosphates, cocamidopropyl PG-dimonium chlorides phosphates and stearamidopropyl PG-dimonium chlorides phosphates. These are sold, for example, by the company Mona under the trade names Phospholipid EFA® , Phospholipid PTC® and Phospholipid SV® .
  • the preparations according to the invention preferably contain the lipids in amounts of 0.01-10% by weight, in particular 0.1-5% by weight, based on the total application preparation.
  • the color-modifying agents according to the invention contain at least one further oil body as a care substance.
  • the other natural and synthetic cosmetic oil bodies include, for example: liquid paraffin oils, isoparaffin oils and synthetic hydrocarbons and di-n-alkyl ethers having a total of from 12 to 36 carbon atoms, in particular 12 to 24 carbon atoms, such as di-n octyl ether, di-n-decyl ether, di-n-nonyl ether, di-n-undecyl ether, di-n-dodecyl ether, n-hexyl n-octyl ether, n-octyl n-decyl ether, n-decyl n-undecyl ether, n-undecyln-dodecyl ether and n-hexyl-n-undecyl ether and di-tert-butyl ether, di-iso-pentyl ether, di-3-ethyldecyl ether, ter
  • Ester oils are to be understood as meaning the esters of C 6 - C 30 fatty acids with C 2 - C 30 fatty alcohols. The monoesters of the fatty acids with alcohols having 2 to 24 carbon atoms are preferred.
  • fatty acid components used in the esters are caproic, caprylic, 2-ethylhexanoic, capric, lauric, isotridecanoic, myristic, palmitic, palmitoleic, stearic, isostearic, oleic, elaidic, petroselic, linoleic, linolenic Behenic acid and erucic acid and their technical mixtures which are obtained, for example, in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from Roelen's oxo synthesis or the dimerization of unsaturated fatty acids.
  • fatty alcohol components in the ester oils are isopropyl alcohol, caproic alcohol, capryl alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myrotic alcohol, ristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures, for example in the high pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from Roelen's oxosynthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols incurred.
  • isopropyl myristate IPM Rilanit ®
  • isononanoic acid C16-18 alkyl ester Cetiol ® SN
  • 2-ethylhexyl palmitate Cegesoft ® 24
  • stearic acid-2-ethylhexyl ester Cetiol ® 868
  • cetyl oleate glycerol tricaprylate, Kokosfettalkohol- caprate / caprylate (Cetiol ® LC)
  • n-butyl stearate oleyl erucate
  • isopropyl palmitate IPP Rilanit ®
  • oleyl Oleate Cetiol ®
  • hexyl laurate Cetiol ® A
  • di-n-butyl adipate Cetiol ® B
  • myrist IPM Rilanit ®
  • Dicarboxylic acid esters such as di-n-butyl adipate, di- (2-ethylhexyl) adipate, di- (2-ethylhexyl) succinate and di-isotridecyl acelate
  • diol esters such as ethylene glycol dioleate, ethylene glycol diisotridecanoate, propylene glycol di (2- ethylhexanoate), propylene glycol diisostearate,
  • Fatty acid partial glycerides ie monoglycerides, diglycerides and their technical mixtures. With the use of technical products production reasons may still contain small amounts of triglycerides.
  • the partial glycerides preferably follow the formula (D4-I),
  • R 3 in the R 1 , R 2 and R 3 is independently of one another hydrogen or a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22, preferably 12 to 18, Carbon atoms are provided with the proviso that at least one of these groups is an acyl radical and at least one of these groups is hydrogen.
  • the sum (m + n + q) is 0 or numbers from 1 to 100, preferably 0 or 5 to 25.
  • R 1 is an acyl radical and R 2 and R 3 are hydrogen and the sum (m + n + q) is 0.
  • Typical examples are mono- and / or diglycerides based on caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, Gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • oleic acid monoglycerides are used.
  • the amount used of the natural and synthetic cosmetic oil bodies in the color-changing agents according to the invention is usually 0.1-30% by weight, based on the total application preparation, preferably 0.1-20% by weight, and in particular 0.1-15 wt .-%.
  • the preparations according to the invention contain an enzyme as a care substance.
  • enzymes according to the invention are selected from a group which is formed from proteases, lipases, transglutaminase, oxidases and peroxidases.
  • Particularly preferred care agents in the context of the present invention are, in particular, ubiquinones, panthenol and its derivatives, ectoin, chamomile extract, bisabolol, olive oil, royal jelly, mung bean extract and Moringa Olifeira extract.
  • the color-modifying agents according to the invention may furthermore contain all active ingredients, additives and auxiliaries known for such preparations.
  • the color-modifying agents contain at least one surfactant, with both anionic and zwitterionic, ampholytic, nonionic and cationic surfactants being suitable in principle. In many cases, however, it has proved to be advantageous to select the surfactants from anionic, zwitterionic or nonionic surfactants. With regard to the cationic surfactants, reference should be made at this point to the above statements.
  • Suitable anionic surfactants in preparations according to the invention are all anionic surfactants suitable for use on the human body. These are characterized by a water-solubilizing, anionic group such.
  • Example a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 10 to 22 C-men men.
  • glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups may be present in the molecule.
  • suitable anionic surfactants are, in each case in the form of the sodium, potassium and ammonium as well as mono-, di- and trialkanol ammonium salts with 2 or 3 C atoms in the alkanol group, linear fatty acids having 10 to 22 C atoms (Soap),
  • Esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and / or propylene oxide with fatty alcohols having 8 to 22 carbon atoms.
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids having 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule and in particular salts of saturated and in particular unsaturated C 8 -C 22 carboxylic acids, such as oleic acid, stearic acid, isostearic acid and palmitic acid , Nonionic surfactants contain as hydrophilic group z.
  • Such compounds are, for example
  • Alkylphenols having 8 to 15 C atoms in the alkyl group having 8 to 15 C atoms in the alkyl group
  • Preferred nonionic surfactants are alkyl polyglycosides of the general formula R 1 O- (Z) x . These connections are identified by the following parameters.
  • the alkyl radical R 1 contains 6 to 22 carbon atoms and may be both linear and branched. Preference is given to primary linear and methyl-branched in the 2-position aliphatic radicals.
  • Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. Particularly preferred are 1-octyl, 1-decyl, 1-lauryl, 1-myristyl.
  • oxo-alcohols compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • the alkyl polyglycosides which can be used according to the invention can contain, for example, only one particular alkyl radical R 1 .
  • these compounds are prepared starting from natural fats and oils or mineral oils.
  • the alkyl radicals R are mixtures corresponding to the starting compounds or corresponding to the particular work-up of these compounds.
  • alkyl polyglycosides are those in which R 1 consists essentially of C 8 - and C 10 alkyl groups, mainly of C 2 - 4 alkyl groups and d, consisting essentially of C 8 - to d 6 alkyl groups or substantially of C 2 - to Ci 6 alkyl groups.
  • sugar building block Z it is possible to use any desired mono- or oligosaccharides.
  • sugars with 5 or 6 carbon atoms and the corresponding oligosaccharides are used.
  • Such sugars are, for example, glucose, fructose, galactose, Arabinose, ribose, xylose, lyxose, allose, altrose, mannose, gulose, idose, talose and sucrose.
  • Preferred sugar building blocks are glucose, fructose, galactose, arabinose and sucrose; Glucose is particularly preferred.
  • alkyl polyglycosides which can be used according to the invention contain on average from 1.1 to 5 sugar units. Alkyl polyglycosides having x values of 1.1 to 1.6 are preferred. Very particular preference is given to alkyl glycosides in which x is 1: 1 to 1, 4.
  • the alkyl glycosides can also serve to improve the fixation of fragrance components on the hair.
  • this substance class as a further constituent of the preparations according to the invention in the event that an effect of the perfume oil on the hair which exceeds the duration of the hair treatment is desired.
  • alkoxylated homologs of said alkyl polyglycosides can also be used according to the invention. These homologs may contain on average up to 10 ethylene oxide and / or propylene oxide units per alkyl glycoside unit.
  • zwitterionic surfactants can be used, in particular as cosurfactants.
  • Zwitterionic surfactants are surface-active compounds which carry at least one quaternary ammonium group and at least one -COO () or -SO 3 ' " ' group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as N-alkyl-N , N-dimethylammonium glycinates, for example the cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinates, for example the cocoacylaminopropyl-dimethylammonium glycinate, and 2-alkyl-3-carboxylmethyl-3-hydroxyethyl imidazolines having in each case 8 to 18 carbon atoms in the alkyl or acyl group and the coco acylaminoethylhydroxyethylcarboxymethylglycinate
  • a preferred zwitterionic surfactant is the fatty acid amide derivative known by the INCI name Cocamidopropyl Betaine.
  • ampholytic surfactants are understood as meaning those surface-active compounds which contain, in addition to a C 8 -C -alkyl or acyl group in the molecule, at least one free amino group and at least one -COOH or -SO 3 H group and for the formation of internal salts are capable.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 18 C atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethyl aminopropionate and C 12 - 18 - sarcosine.
  • the compounds used as surfactant with alkyl groups may each be uniform substances. However, it is generally preferred to use native vegetable or animal raw materials in the production of these substances, so that substance mixtures having different alkyl chain lengths depending on the respective raw material are obtained.
  • both products with a "normal” homolog distribution and those with a narrow homolog distribution can be used.
  • "normal” homolog distribution are meant mixtures of homologs obtained in the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates as catalysts. Narrowed homolog distributions are obtained when, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alkoxides are used as catalysts. The use of products with narrow homolog distribution may be preferred.
  • color-modifying agents according to the invention can be further active, auxiliary and
  • Additives such as nonionic polymers such as vinylpyrrolidone / vinyl acrylate copolymers, polyvinylpyrrolidone and vinylpyrrolidone / vinyl acetate copolymers and polysiloxanes, zwitterionic and amphoteric polymers such as acrylamidopropyltrimethylammonium chloride / acrylate copolymers and octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate ⁇ Hydroxypropyl methacrylate copolymers, anionic polymers such as polyacrylic acids, crosslinked polyacrylic acids, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers,
  • bentonite or fully synthetic hydrocolloids such as polyvinyl alcohol, Structural agents such as maleic acid and lactic acid, hair conditioning compounds such as phospholipids, for example soya lecithin, egg lecithin and cephalins,
  • Protein hydrolysates in particular elastin, collagen, keratin, milk protein, soy protein and wheat protein hydrolysates, their condensation products with fatty acids and quaternized protein hydrolysates,
  • Solvents and mediators such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerol and diethylene glycol, fiber structure-improving agents, in particular mono-, di- and oligosaccharides such as glucose, galactose, fructose, fructose and lactose, quaternized amines such as methyl-1-alkylamidoethyl 2-alkylimidazolinium methosulfate defoamers such as silicones, dyes for staining the agent,
  • Antidandruff active ingredients such as Piroctone Olamine, zinc Omadine and Climbazole, light stabilizers, in particular derivatized benzophenones, cinnamic acid derivatives and triazines,
  • Substances for adjusting the pH such as, for example, customary acids, in particular edible acids and bases,
  • Active ingredients such as allantoin, pyrrolidonecarboxylic acids and their salts as well as bisabolol, cholesterol,
  • Bodying agents such as sugar esters, polyol esters or polyol alkyl ethers, fats and waxes such as spermaceti, beeswax, montan wax and paraffins, fatty acid alkanolamides,
  • Complexing agents such as EDTA, NTA, ⁇ -alaninediacetic acid and phosphonic acids, swelling and penetrating agents such as glycerol, propylene glycol monoethyl ether, carbonates, bicarbonates, guanidines, ureas and primary, secondary and tertiary phosphates, opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers Pearlescing agents such as ethylene glycol mono- and distearate and PEG-3-distearate, preservatives,
  • Stabilizers for hydrogen peroxide and other oxidizing agents propellants such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air, antioxidants.
  • the color-modifying agents preferably comprise the components essential to the invention in a suitable aqueous, alcoholic or aqueous-alcoholic carrier.
  • a suitable aqueous, alcoholic or aqueous-alcoholic carrier for the purpose of hair coloring such carriers are, for example, creams, emulsions, gels or surfactant-containing foaming solutions, such as shampoos, foam aerosols or other preparations which are suitable for use on the hair.
  • aqueous-alcoholic solutions are to be understood as meaning aqueous solutions containing from 3 to 70% by weight of a C 1 -C 4 -alkoHoI, in particular ethanol or isopropanol.
  • the compositions according to the invention may additionally contain further organic solvents, for example methoxybutanol, benzyl alcohol, ethyl diglycol or 1,2-propylene glycol. Preference is given to all water-soluble organic solvents.
  • the color-changing agents of the invention may contain a reducing agent.
  • reducing agents which are preferred according to the invention are sodium sulfite, ascorbic acid, thioglycolic acid and derivatives thereof, sodium thionite, alkali metal citrate salts and N-acetyl-L-cysteine.
  • Very particularly preferred reducing agents are alkali metal citrate salts, especially sodium citrate, and N-acetyl-L-cysteine.
  • N-acetyl-L-cysteine is a particularly preferred reducing agent.
  • the agents according to the invention may contain alkalizing agents, usually alkali metal or alkaline earth metal hydroxides, ammonia or organic amines.
  • alkalizing agents are monoethanolamine, monoisopropanolamine, 2-amino-2-methyl-propanol, 2-amino-2-methyl-1, 3-propanediol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2 -methylbutanol and triethanolamine and alkali and alkaline earth metal hydroxides.
  • monoethanolamine, triethanolamine and 2-amino-2-methyl-propanol and 2-amino-2-methyl-1, 3-propanediol are preferred within the scope of this group.
  • ⁇ -amino acids such as ⁇ -aminocaproic acid as an alkalizing agent is also possible.
  • pearlescent pigments are used in colorants.
  • Pearlescent pigments which are preferred according to the invention are natural pearlescent pigments, such as, for example, fish-silver (guanine / hypoxanthine mixed crystals from fish scale) or mother-of-pearl (from ground mussel shells), monocrystalline pearlescent pigments, such as bismuth oxychloride, and pearlescent pigments based on mica or mica / metal oxide.
  • the latter pearlescent pigments are provided with a metal oxide coating.
  • the use of pearlescent pigments luster and optionally additionally achieved color effects in the inventive compositions.
  • the coloring by the pearlescent pigments used in the agents does not affect the color result of the dyeing of the keratin fibers.
  • Mica-based and mica / metal oxide-based pearlescent pigments are likewise preferred according to the invention.
  • Mica belongs to the layer silicates. The most important representatives of these silicates are muscovite, phlogopite, paragonite, biotite, lepidolite and margarite.
  • the mica predominantly muscovite or phlogopite, is coated with a metal oxide. Suitable metal oxides include TiO 2 , Cr 2 O 3 and Fe 2 O 3 .
  • interference pigments and color luster pigments are obtained as pearlescent pigments according to the invention. In addition to a glittering optical effect, these pearlescent pigment types also have color effects.
  • the pearlescent pigments which can be used according to the invention can furthermore contain a color pigment which does not derive from a metal oxide.
  • the grain size of the pearlescent pigments preferably used is preferably between 1.0 and 100 .mu.m, particularly preferably between 5.0 and 60.0 .mu.m.
  • Particularly preferred pearlescent pigments are marketed by Merck under the trade names Colorona ®, wherein the pigments wt Colorona ® red-brown (47-57.% Muscovite mica (KH 2 (AISi0 4) 3), 43-50 wt .% Fe 2 O 3 (INCI: Iran oxide Cl 77491), ⁇ 3 weight% TiO 2 (INCI: Titanium Dioxide CI 77891)., Colorona ® Blue Black Star (39-47% by weight of muscovite mica (KH 2 (AISi0. 4 ) 3), 53-61 wt% of Fe 3 O 4 (INCI:.
  • pearlescent pigments which can be used in the compositions according to the invention
  • customary oxidizing agents such as, in particular, hydrogen peroxide or its addition products of urea, melamine or sodium borate can be used.
  • oxidation with atmospheric oxygen as the sole oxidant may be preferred.
  • a chemical oxidizing agent is used, especially if, in addition to the coloring, a lightening effect on human hair is desired.
  • Suitable oxidizing agents are persulfates, chlorites and in particular hydrogen peroxide or its addition products of urea, melamine and sodium borate.
  • the oxidation dye can also be applied to the hair together with a catalyst which activates the oxidation of the dye precursors, for example by atmospheric oxygen.
  • catalysts are, for example, metal ions, iodides, quinones or certain enzymes.
  • Suitable metal ions are, for example, Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Mn 4+ , Li + , Mg 2+ , Ca 2+ and Al 3+ . Particularly suitable are Zn 2+ , Cu 2+ and Mn 2+ .
  • the metal ions can in principle be used in the form of any physiologically acceptable salt or in the form of a complex compound.
  • Preferred salts are the acetates, sulfates, halides, lactates and tartrates.
  • Suitable enzymes are e.g. Peroxidases that can significantly increase the effect of small amounts of hydrogen peroxide. Furthermore, such enzymes are suitable according to the invention which directly oxidize the oxidation dye precursors with the aid of atmospheric oxygen, such as, for example, the laccases, or generate small amounts of hydrogen peroxide in situ and thus biocatalytically activate the oxidation of the dye precursors. Particularly suitable catalysts for the oxidation of the dye precursors are the so-called 2-electron oxidoreductases in combination with the specific substrates, e.g.
  • Lactate oxidase and lactic acid and their salts Lactate oxidase and lactic acid and their salts
  • the actual oxidative coloring agent is advantageously prepared immediately before use by mixing the preparation of the oxidizing agent with the preparation containing the dye precursors.
  • the resulting ready-to-use hair dye preparation should preferably have a pH in the range from 5 to 14, in particular from 7 to 12. Particularly preferred is the use of the hair dye in a weakly alkaline medium.
  • the application temperatures can be in a range between 15 and 40 0 C. After a contact time of 5 to 45 minutes, the hair dye is removed by rinsing of the hair to be dyed. The re-washing with a shampoo is omitted if a strong surfactant-containing carrier, such as a dyeing shampoo was used.
  • the preparation with the dye precursors can also be applied to the hair without prior mixing with the oxidation component.
  • the oxidation component is then applied, if appropriate after an intermediate rinse.
  • the corresponding agent is adjusted to a pH of about 4 to 7.
  • an air oxidation is initially desired, wherein the applied agent preferably has a pH of 7 to 10.
  • the use of acidified peroxydisulfate solutions may be preferred as the oxidizing agent.
  • a second subject of the present invention is a process for the color change of keratinic fibers, in which a composition according to the invention is mixed with an oxidizing agent preparation, the application preparation is applied to the fibers and rinsed off again after a contact time.
  • a third object of the present invention is a process for color-changing keratinous fibers in which, in a first step, an agent containing at least at least one plant extract, at least one vegetable oil and at least one unsaponifiable residue of a vegetable oil is applied to the fibers Contact time, a second agent containing at least one color-changing agent is applied to the fibers and in a third step, the agents are rinsed after another exposure time. It has proven to be particularly advantageous if the first exposure time of 1 to 60 minutes, preferably 1 to 15 minutes, in particular 1 to 5 minutes and the second exposure time of 1 to 60 minutes, preferably 30 to 45 minutes.
  • a fourth subject of the present invention is a process for the color change of keratinous fibers in which, in a first step, an agent containing at least one color-altering agent is applied to the fibers, after a contact time a second agent containing at least one color-modifying agent on the fibers is applied, after a contact time, a second agent containing at least one plant extract, at least one vegetable oil and at least one unsaponifiable residue of a vegetable oil, is applied to the fibers and in a third step, the agents are rinsed after another exposure time.
  • the first exposure time of 1 to 60 minutes preferably 1 to 15 minutes, in particular 1 to 5 minutes
  • the second exposure time of 1 to 60 minutes preferably 30 up to 45 minutes.
  • a fifth object of the present invention is the use of an active ingredient combination of at least one plant extract, at least one vegetable oil and at least one unsaponifiable residue of a vegetable oil to prevent scalp irritations associated with oxidative staining of keratinous fibers.
  • a sixth object of the present invention is the use of an active ingredient combination of at least one plant extract, at least one vegetable oil and at least one unsaponifiable residue of a vegetable oil to improve the care state in connection with oxidative dyeings of keratinous fibers.
  • the following hair dye was prepared.
  • the above-described 1: 1 or 1: 2 color cream was mixed with one of the above-described oxidizer solutions (depending on the degree of lightening desired) and the resulting application formulation after 30-60 minutes exposure time at room temperature rinsed out again.
  • the hair treated in this way felt smooth and supple, and was characterized by a pleasant grip
  • Cutina ® AGS Ethylene glycol distearate (INCI name: Glycol Distearate) (Cognis) Cutina ® GMS-SE INCI name: Glyceryl Stearate SE (Cognis) Defensil ® INCI name: Octyldodecanol and Cardiospermum Halicacabum Flower / Leaf / Vine Extract and Echium Plantagineum Seed OiI and Helianthus Annuus (Sunflower) Seed OiI Unsaponifiables; (Rahn)
  • Eumulgin ® B2 Cetylstearylalkohol with about 20 EO units (INCI name: Ceteareth-20) (Cognis)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Cosmetics (AREA)

Abstract

L'invention concerne des agents pour modifier la couleur et/ou durablement la forme de fibres kératiniques. Ces agents comprennent, dans un véhicule cosmétiquement acceptable, au moins un principe actif qui modifie la couleur et/ou durablement la forme des fibres kératiniques et au moins un extrait végétal, au moins une huile végétale, au moins un résidu non saponifiable d'une autre huile végétale. Les produits selon l'invention sont stables, satisfaisants en termes de modification de couleur et/ou de forme et engendrent peu d'irritations du cuir chevelu. De plus, les fibres traitées avec les produits selon l'invention présentent un meilleur état.
PCT/EP2008/058790 2007-07-13 2008-07-07 Agents contenant un principe actif anti-irritant Ceased WO2009010415A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08774840A EP2167030A2 (fr) 2007-07-13 2008-07-07 Agents contenant un principe actif anti-irritant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007033093A DE102007033093A1 (de) 2007-07-13 2007-07-13 Mittel mit anti-irritierendem Wirkstoff
DE102007033093.8 2007-07-13

Publications (2)

Publication Number Publication Date
WO2009010415A2 true WO2009010415A2 (fr) 2009-01-22
WO2009010415A3 WO2009010415A3 (fr) 2009-06-11

Family

ID=40121554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/058790 Ceased WO2009010415A2 (fr) 2007-07-13 2008-07-07 Agents contenant un principe actif anti-irritant

Country Status (3)

Country Link
EP (1) EP2167030A2 (fr)
DE (1) DE102007033093A1 (fr)
WO (1) WO2009010415A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025132662A1 (fr) 2023-12-22 2025-06-26 Kao Corporation Compositions de décoloration comprenant des phosphosilicates

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011003362U1 (de) * 2011-03-01 2011-06-01 Dr. Theiss Naturwaren GmbH, 66424 Zusammensetzung, insbesondere dermatologische Salbe
EP2609907A1 (fr) * 2011-12-27 2013-07-03 KPSS-Kao Professional Salon Services GmbH Composition de coloration capillaire comprenant de l'huile de graine sclerocarya birrea
DE102022131545A1 (de) * 2022-11-29 2024-05-29 Schott Ag Färbemittel

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2817369A1 (de) 1977-04-21 1978-10-26 Oreal Neue copolymerisate, verfahren zu deren herstellung und diese enthaltende kosmetische mittel
EP0047714A2 (fr) 1980-09-05 1982-03-17 Ciba-Geigy Ag Mélanges de sels d'ammonium quaternaires, polymères, haut-moléculaires acryliques et de détergents, leur préparation et utilisation en formulations cosmétiques
GB2104091A (en) 1981-07-17 1983-03-02 Kao Corp Detergent composition
EP0217274A2 (fr) 1985-09-30 1987-04-08 Kao Corporation Composition cosmétique pour les cheveux
EP0283817A2 (fr) 1987-03-16 1988-09-28 Henkel Kommanditgesellschaft auf Aktien Polymères zwittérioniques et leur utilisation dans des compositions de traitement de la chevelure
DE3723354A1 (de) 1987-07-15 1989-01-26 Henkel Kgaa Sulfatierte hydroxy-mischether, verfahren zu ihrer herstellung und ihre verwendung
DE3725030A1 (de) 1987-07-29 1989-02-09 Henkel Kgaa Oberflaechenaktive hydroxysulfonate
DE3926344A1 (de) 1989-08-09 1991-02-28 Henkel Kgaa Verfahren zur herstellung von hellfarbigen oelsaeuresulfonaten
DE3929973A1 (de) 1989-09-08 1991-03-14 Henkel Kgaa Haarpflegemittel
WO1992013829A1 (fr) 1991-02-06 1992-08-20 Smith Ronald J Composes quaternaires de panthenol et utilisation desdits composes
EP0363057B1 (fr) 1988-10-04 1994-04-06 L'oreal, S.A. Solution pour onduler les cheveux
EP0671161A1 (fr) 1993-12-14 1995-09-13 Marbert GmbH Ectoine et dérivés de l'ectoine comme agents hydratants dans des compositions cosmétiques
DE4413686A1 (de) 1994-04-20 1995-10-26 Henkel Kgaa Kationische Zuckertenside
DE4436065A1 (de) 1994-10-10 1996-04-11 Henkel Kgaa Mittel und Verfahren zur dauerhaften Verformung von Keratinfasern
DE19756454C1 (de) 1997-12-18 1999-06-17 Henkel Kgaa Verwendung von Glycerincarbonat
EP0998908A2 (fr) 1998-11-04 2000-05-10 L'oreal Composition tinctoriale contenant un colorant direct cationique et une pyrazolo-(1,5-a)-pyrimidine à titre de base d'oxydation, et procédés de teinture

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753968A (en) 1971-07-01 1973-08-21 Westvaco Corp Selective reaction of fatty acids and their separation
DE4410162C2 (de) * 1994-03-24 1998-04-09 Goldwell Gmbh Verfahren zum Färben von menschlichen Haaren
DE19534723C1 (de) * 1995-09-19 1997-01-02 Goldwell Gmbh Mittel zur dauerhaften Verformung von menschlichen Haaren
DE19544655A1 (de) * 1995-11-30 1997-06-05 Goldwell Gmbh Oxidations-Haarfärbemittel
DE102004017376A1 (de) * 2004-04-08 2005-11-10 Braun Gmbh Vorbehandlungsmittel für eine Epilation
DE102005057593A1 (de) * 2005-07-08 2007-01-11 Schwan-Stabilo Cosmetics Gmbh & Co. Kg Zubereitung, insbesondere kosmetische Zubereitung, sowie ihre Herstellung und Verwendung
DE102005062360A1 (de) * 2005-12-23 2007-06-28 Henkel Kgaa Haarfärbeverfahren

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2817369A1 (de) 1977-04-21 1978-10-26 Oreal Neue copolymerisate, verfahren zu deren herstellung und diese enthaltende kosmetische mittel
EP0047714A2 (fr) 1980-09-05 1982-03-17 Ciba-Geigy Ag Mélanges de sels d'ammonium quaternaires, polymères, haut-moléculaires acryliques et de détergents, leur préparation et utilisation en formulations cosmétiques
GB2104091A (en) 1981-07-17 1983-03-02 Kao Corp Detergent composition
EP0217274A2 (fr) 1985-09-30 1987-04-08 Kao Corporation Composition cosmétique pour les cheveux
EP0283817A2 (fr) 1987-03-16 1988-09-28 Henkel Kommanditgesellschaft auf Aktien Polymères zwittérioniques et leur utilisation dans des compositions de traitement de la chevelure
DE3723354A1 (de) 1987-07-15 1989-01-26 Henkel Kgaa Sulfatierte hydroxy-mischether, verfahren zu ihrer herstellung und ihre verwendung
DE3725030A1 (de) 1987-07-29 1989-02-09 Henkel Kgaa Oberflaechenaktive hydroxysulfonate
EP0363057B1 (fr) 1988-10-04 1994-04-06 L'oreal, S.A. Solution pour onduler les cheveux
DE3926344A1 (de) 1989-08-09 1991-02-28 Henkel Kgaa Verfahren zur herstellung von hellfarbigen oelsaeuresulfonaten
DE3929973A1 (de) 1989-09-08 1991-03-14 Henkel Kgaa Haarpflegemittel
WO1992013829A1 (fr) 1991-02-06 1992-08-20 Smith Ronald J Composes quaternaires de panthenol et utilisation desdits composes
EP0671161A1 (fr) 1993-12-14 1995-09-13 Marbert GmbH Ectoine et dérivés de l'ectoine comme agents hydratants dans des compositions cosmétiques
DE4413686A1 (de) 1994-04-20 1995-10-26 Henkel Kgaa Kationische Zuckertenside
DE4436065A1 (de) 1994-10-10 1996-04-11 Henkel Kgaa Mittel und Verfahren zur dauerhaften Verformung von Keratinfasern
DE19756454C1 (de) 1997-12-18 1999-06-17 Henkel Kgaa Verwendung von Glycerincarbonat
EP0998908A2 (fr) 1998-11-04 2000-05-10 L'oreal Composition tinctoriale contenant un colorant direct cationique et une pyrazolo-(1,5-a)-pyrimidine à titre de base d'oxydation, et procédés de teinture

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Dermatology", 1986, VERLAG MARCEL DEKKER INC.
"Kosmetik", vol. 2, 1995, GEORG THIEME VERLAG
KH. SCHRADER: "Grundlagen und Rezepturen der Kosmetika", vol. 2, 1989, DR. ALFRED HÜTHIG VERLAG
MONOGRAPHIE CH. ZVIAK: "The Science of Hair Care", pages: 248 - 250

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025132662A1 (fr) 2023-12-22 2025-06-26 Kao Corporation Compositions de décoloration comprenant des phosphosilicates

Also Published As

Publication number Publication date
DE102007033093A1 (de) 2009-01-15
WO2009010415A3 (fr) 2009-06-11
EP2167030A2 (fr) 2010-03-31

Similar Documents

Publication Publication Date Title
EP1531853B2 (fr) Combinaison synergique de proteines de soie
DE102008046433A1 (de) Aufhellmittel mit 2-Acylpyridinium-Derivaten
EP2182915A2 (fr) Produit de coloration à base de colorants naturels et de 1,3-dihydroxyacétone
DE102008032208A1 (de) Oxidationsfärbemittel mit basischer Aminosäure, Ammoniumsulfat und Alkanolaminen
DE102008036535A1 (de) Coloration mit kationisierbaren Polymer
DE10359539A1 (de) Pflegendes Oxidationsmittel in Tube
EP2054021A2 (fr) Colorant capillaire avec huile et hydrolysat de protéines
DE102008046883A1 (de) Haarbehandlungsmittel mit Spirulina-Extrakt
DE102008046882A1 (de) Haarbehandlungsmittel mit Chitosan Succinamid
EP1789140B1 (fr) Agents modificateurs de couleur contenant de l'extrait de moringa
EP2167030A2 (fr) Agents contenant un principe actif anti-irritant
WO2009019048A2 (fr) Teinture pour cheveux
DE102004061468A1 (de) Abgabesystem für farbverändernde Mittel
DE102007053950A1 (de) Mittel mit Bioflavonoid
WO2009027112A1 (fr) Produits de traitement capillaire
EP1707242B2 (fr) Colorants d'oxydation caplillaires comprenant 1,5- et /ou 2,7-dihydroxy naphthalène et au moins un autre coupleur
WO2009010367A2 (fr) Agents contenant un principe actif anti-irritant
DE102008038138A1 (de) Farbige Haarbehandlungsmittel
DE102004050561A1 (de) Farb- oder formverändernde Faserbehandlungsmittel mit Wirkstoffen zur Stimulierung der Beta-Endorphinausschüttung in Keratinozyten
EP2190402A1 (fr) Biotine et acide silicique contre le vieillissement capillaire
DE102007046628A1 (de) Haarfärbeverfahren mit oxidativer Vorbehandlung
DE102007053952A1 (de) Mittel enthaltend Esterverbindung mit Wachsalkoholkomponente
DE102004046027A1 (de) Neue direktziehende Farbstoffe
EP1972323A2 (fr) Colorant pour cheveux
DE202004014826U1 (de) Mittel zur Tönung keratinischer Fasern, insbesondere menschlicher Haare

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008774840

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE