[go: up one dir, main page]

WO2008112594A2 - Système de compression de vapeur - Google Patents

Système de compression de vapeur Download PDF

Info

Publication number
WO2008112594A2
WO2008112594A2 PCT/US2008/056342 US2008056342W WO2008112594A2 WO 2008112594 A2 WO2008112594 A2 WO 2008112594A2 US 2008056342 W US2008056342 W US 2008056342W WO 2008112594 A2 WO2008112594 A2 WO 2008112594A2
Authority
WO
WIPO (PCT)
Prior art keywords
lubricant
refrigerant
valve
compressor
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2008/056342
Other languages
English (en)
Other versions
WO2008112594A3 (fr
Inventor
Alexander Cohr Pachai
Thomas Severin Christensen
Istvan Knoll
John Ritmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Technology Co
Original Assignee
Johnson Controls Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Technology Co filed Critical Johnson Controls Technology Co
Publication of WO2008112594A2 publication Critical patent/WO2008112594A2/fr
Publication of WO2008112594A3 publication Critical patent/WO2008112594A3/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/02Removable elements

Definitions

  • the application generally relates to vapor compression systems.
  • the application relates more specifically to systems and methods of recovering lubricant oil that is entrained in liquid refrigerant and returning the recovered lubricant to a compressor in the vapor compression system.
  • Vapor compression refrigeration is the primary method used to provide mechanical cooling.
  • vapor compression systems consist of four basic components evaporator, compressor, condenser, and an expansion device, which are interconnected in a closed refrigerant loop.
  • the evaporator and condenser are heat exchangers that evaporate and condense the refrigerant while absorbing and rejecting heat.
  • the compressor takes the refrigerant vapors from the evaporator and raises the pressure sufficiently for the vapor to condense in the condenser.
  • the expansion device controls the flow of condensed refrigerant at this higher pressure back into the evaporator.
  • Chillers and refrigeration systems typically employ gas compressors to compress refrigerant gas from a vapor state to a liquid state.
  • a relatively small amount of lubricant used by the system compressor such as for bearing lubrication or cooling or sealing purposes, may become entrained in the compressed refrigerant gas discharged from the compressor.
  • some of the entrained lubricant is separated from the refrigerant gas, a portion of the lubricant may remain entrained in the refrigerant gas and subsequently flow to the system condenser.
  • the lubricant mixes with liquid refrigerant created by the heat exchange process occurring within the condenser.
  • the mixed stream of lubricant and liquid refrigerant exits the condenser and flows through the system's expansion device and into the system evaporator.
  • the present invention relates to a vapor compression system.
  • the vapor compression system includes a compressor, a condenser, an expansion device and an evaporator connected in a closed loop, with refrigerant circulated in the closed loop.
  • a first valve is arranged to control a flow of a mixture of liquid refrigerant and lubricant from the evaporator through a first flow path.
  • a collection vessel is arranged to receive a heated lubricant from the compressor.
  • a pumping device is arranged to circulate the mixture by generation of fluid pressure resulting from thermal expansion, the pumping device disposed in the collection vessel.
  • a second valve is arranged to drain the mixture of evaporated refrigerant and lubricant into the compressor through a second flow path.
  • a controller is arranged to control flow of refrigerant and lubricant into and from the pumping device to regulate a level of the mixture in the pumping device.
  • the present invention also relates to a vapor compression system.
  • the vapor compression system includes a receiver for receiving liquid refrigerant and lubricant from an expansion device. A portion of the liquid refrigerant and the lubricant is received into the receiver collecting in the receiver.
  • a flow path is arranged to receive the liquid refrigerant and lubricant from the receiver.
  • a pump controls the flow of liquid refrigerant and lubricant.
  • a collection vessel is arranged to receive the liquid refrigerant and lubricant from the flow path. The lubricant is separated from the liquid refrigerant in the collection vessel and the lubricant returns to a compressor, and the liquid refrigerant evaporates and flows to a condenser.
  • the present invention further relates to a method of recovering lubricant entrained in a refrigerant of a vapor compression system.
  • the method includes providing a pumping device having a first level sensor and a second level sensor; sensing a first liquid level signal from the first level sensor and a second liquid level signal from a second liquid level sensor; activating the first valve and the second valve to open at approximately the same time in response to sensing the liquid level dropping below the first level sensor; opening the pumping device to a discharge side of the compressor to decrease the pressure in the pumping device; opening an evaporator drain to supply a refrigerant and lubricant to flow into the pumping device; closing the first valve and the second valve in response to receiving the second liquid level signal indicating the refrigerant and lubricant has reached a second level; increasing a temperature inside the pumping device by heat exchange with a reservoir of heated lubricant; opening a pumping device discharge valve in response to sensing the temperature reaching a predetermined temperature; and reinjecting
  • FIGS. 1 and 2 show exemplary embodiments of environments incorporating a refrigeration system.
  • FIG. 3 shows a perspective view of an exemplary embodiment of a refrigeration system.
  • FIG. 4 shows a front view of the refrigeration system shown in FIG. 3.
  • FIG. 5 schematically illustrates an exemplary embodiment of a multistage refrigeration system.
  • FIG. 6 schematically illustrates an exemplary embodiment of an oil return system.
  • FIG. 7 schematically illustrates another exemplary embodiment of an oil return system.
  • FIG. 8 schematically illustrates yet another exemplary embodiment of an oil return system.
  • FIG. 9 schematically illustrates still another exemplary embodiment of an oil return system.
  • FIG. 10 schematically illustrates a further exemplary embodiment of an oil return system
  • FIG. 1 shows a multistage refrigeration system 10 that can provide both refrigeration and freezing capacity for a supermarket 12 in a commercial setting.
  • the second stage system of multistage refrigeration system 10 can have evaporators incorporated into refrigerated cases or displays 14 and freezer cases or displays 16 that are accessible by a person shopping in supermarket 12.
  • refrigerated cases or displays 14 can be used to keep produce or dairy products at a preselected temperature and can be operated at a temperature between about 2 deg C and about 7 deg C
  • freezer cases or displays 16 can be used to keep frozen items at a preselected temperature and can be operated at a temperature between about - 20 deg C and about -30 deg C.
  • the second stage system of multistage refrigeration system 10 can have an evaporator 18 in a freezer storage area 20 of supermarket 12 and can have an evaporator 22 in a refrigerated storage area 24 of supermarket 12.
  • freezer storage area 20 can be used to store items to be subsequently placed in freezer cases or displays 16 at a preselected temperature and can be operated at a temperature between about -20 deg C and about 30 deg C
  • refrigerated storage area 24 can be used to store items to be subsequently placed in refrigerated cases or displays 14 at a preselected temperature and can be operated at a temperature between about 2 deg C and about 7 deg C.
  • FIG. 2 shows the use of a multistage refrigeration system 10 as a plate freezer 28 in a factory or industrial setting 26.
  • Plate freezer 28 may have horizontal or vertical plates 30 to freeze flat products, such as pastries, fish fillets, and beef patties, as well as irregular-shaped vegetables that are packaged in brick-shaped containers, such as asparagus, cauliflower, spinach, and broccoli.
  • the product may be firmly pressed between metal plates 30 that are cooled to subfreezing temperatures by internally circulating refrigerant from the second stage system through thin channels within plates 30.
  • plate freezers 28 may provide cooling temperatures of between about -20 deg C and about -50 deg C or colder and can be used when rapid freezing is desired to retain product flavor and freshness. Once the product is frozen between plates 30, the product may be difficult to remove from plate freezer 28 because the product may be frozen to plates 30.
  • a defrost system that warms plates 30 but does not thaw the product between plates 30 is used to assist in the removal of the product from between plates 30.
  • FIGS. 1 and 2 illustrate exemplary applications only and multistage refrigeration systems are used in many other environments as well,
  • FIGS. 3 through 5 illustrate a multistage refrigeration system (shown schematically in FIG. 5).
  • the multistage refrigeration system can include a first stage system 32 and a second stage system 34 that are interconnected by a heat exchanger 36.
  • Heat exchanger 36 can be a plate heat exchanger, a shell and tube heat exchanger, a plate and shell heat exchanger or any other suitable type of heat exchanger.
  • First stage system 32 can be a vapor compression system that circulates a refrigerant through a compressor 38, a condenser 40, a receiver 42 (optional), an expansion device 44, and an evaporator 46 that is incorporated into heat exchanger 36.
  • fluids that may be used as refrigerants in first stage system 32 are carbon dioxide (CO2; for example, R- 744), nitrous oxide (N2O; for example, R -744A), ammonia (NH3; for example, R-717), hydrofluorocarbon (HFC) based refrigerants (for example, R-410A, R- 407C, R-404A, R- 134a), other low global warming potential (GWP) refrigerants, and any other suitable type of refrigerant,
  • CO2 carbon dioxide
  • N2O nitrous oxide
  • R -744A ammonia
  • NH3 for example, R-717
  • HFC hydrofluorocarbon
  • GWP low global warming potential
  • Second stage system 34 can be a vapor compression system that circulates a refrigerant through a compressor 48, a condenser 50 that is incorporated into heat exchanger 36, a receiver or separator 52, a pump 54, and a first expansion device 56 and a first evaporator 58 that can be in parallel with a second valve 60 and second evaporator 62.
  • second stage system can be operated with only first expansion device 56 and first evaporator 58.
  • second stage system 34 can be operated as a volatile system by removing compressor 48, first expansion device 56 and first evaporator 58.
  • refrigerants that may be used in second stage system 34 are carbon dioxide (CO2; R-744), nitrous oxide (N2O; R-744A), or mixtures of carbon dioxide and nitrous oxide, or hydrocarbon based refrigerants (for example, R- 170).
  • the refrigerant in the second stage can be the same or different than the refrigerant in the first stage.
  • the refrigerant circulating through the system can be replaced with a glycol solution or a brine solution.
  • compressor 38 compresses a refrigerant vapor and delivers the compressed vapor to condenser 40 through a discharge line.
  • Compressor 38 can be a screw compressor, reciprocating compressor, centrifugal compressor, rotary compressor, swing link compressor, scroll compressor, turbine compressor, or any other suitable type of compressor.
  • the compressed vapor transfers heat to a fluid, for example, water from a cooling tower, and as a result condenses from a vapor phase refrigerant to a liquid phase refrigerant.
  • the condensed refrigerant exiting condenser 40 can be stored in receiver 42 before flowing through expansion device 44 to evaporator 46 in heat exchanger 36.
  • the condensed liquid refrigerant enters evaporator 46 and absorbs heat from fluid being circulated in condenser 50 in heat exchanger 36 by second stage system 34.
  • the absorbed heat causes the liquid phase refrigerant to evaporate into a vapor phase refrigerant.
  • First stage system 32 can be operated as a transcritical or supercritical system. During transcritical operation, first stage system 32 can be operated partly below (sub- critical) and partly above (supercritical) the critical pressure of the refrigerant circulated in first stage system 32.
  • the discharge pressure of compressor 38 (or high side pressure) can be greater than the critical pressure of the refrigerant, for example, 73 bar at 31 deg C for carbon dioxide.
  • the refrigerant is maintained as a single phase refrigerant (vapor phase) in the high pressure side of first stage system 32 and is first converted into the liquid phase when it is expanded in expansion device 44.
  • the refrigerant from compressor 38 flows to a gas cooler (which can operate as a condenser in low ambient temperatures permitting the system to operate sub-critical) that cools the refrigerant by heat exchange with another fluid.
  • the cooling of the refrigerant gradually increases the density of the refrigerant.
  • the high side pressure can be modulated to control capacity or to optimize the coefficient of performance by regulating the refrigerant charge and/or by regulating the total internal high side volume of refrigerant.
  • compressor 48 compresses a refrigerant vapor and delivers the compressed vapor to condenser 50 through a discharge line.
  • Compressor 48 can be a screw compressor, reciprocating compressor, centrifugal compressor, rotary compressor, swing link compressor, scroll compressor, turbine compressor, or any other suitable type of compressor.
  • the vapor refrigerant enters condenser 50 and transfers heat to the fluid being circulated in evaporator 46.
  • in heat exchanger 36 enters into a heat exchange relationship with the fluid being circulated in evaporator 46 by first stage system 32, and undergoes a phase change to a refrigerant liquid as a result.
  • the liquid phase refrigerant exits condenser 50 and flows to receiver 52. From receiver 52, the refrigerant is circulated to a first expansion device 56 and first evaporator 58 and then to a valve 60 and a second evaporator 62 by pump 54.
  • first evaporator 58 the liquid refrigerant from first expansion device 56 enters into a heat exchange relationship with a cooling load, for example, a fluid, and undergoes a phase change to a refrigerant vapor as a result.
  • the refrigerant vapor exits first evaporator 58 and returns to compressor 48 to complete the cycle.
  • second evaporator 62 the liquid refrigerant from valve 60 absorbs heat from a cooling load, for example, a fluid, and may undergo a phase change to a refrigerant vapor.
  • the amount of refrigerant liquid provided to second evaporator 62 may exceed the heat exchange capabilities of the cooling load, causing less than all of the liquid refrigerant to undergo a phase change.
  • the refrigerant exiting second evaporator 62 may be a mixture of refrigerant vapor and refrigerant liquid.
  • the refrigerant fluid exiting second evaporator 62 regardless of the phase, returns to receiver 52.
  • Receiver 52 can also have a connection to the discharge line from compressor 48 to provide refrigerant vapor from receiver 52 to the discharge line and subsequently to condenser 50 in heat exchanger 36.
  • Compressor 38 of first stage system 32 and compressor 48 of second stage system 34 can each be driven by a motor or drive mechanism.
  • the motor used with compressor 38 or compressor 48 can be powered by a variable speed drive (VSD) or can be powered directly from an alternating current (AC) or direct current (DC) power source.
  • VSD variable speed drive
  • AC alternating current
  • DC direct current
  • the VSD if used, receives AC power having a particular fixed line voltage and fixed line frequency from the AC power source and provides power having a variable voltage and frequency to the motor.
  • the motor used with compressor 38 or compressor 48 can be any type of electric motor that can be powered by a VSD or directly from an AC or DC power source.
  • the motor used with compressor 38 or compressor 48 can be a switched reluctance motor, an induction motor, an electronically commutated permanent magnet motor, or any other suitable motor type.
  • other drive mechanisms such as steam or gas turbines or engines and associated components can be used to drive the motor used with compressor 38 or compressor 48.
  • FIG. 6 illustrates an exemplary oil return system for recovery of compressor lubricating oil that becomes entrained in liquid refrigerant.
  • the entrained lubricant may be, for example, poly-alpha-olefin (PAO) synthetic petroleum oil entrained in CO2 refrigerant.
  • the system includes evaporator 46 which may contain lubricating lubricant entrained in the liquid phase refrigerant.
  • the entrained lubricant may be poly-alpha-olefin (PAO) synthetic petroleum lubricant entrained in CO2 refrigerant.
  • PAO poly-alpha-olefin
  • thermopump what is meant is a pumping device that can circulate a fluid by generation of fluid pressure resulting from thermal expansion.
  • evaporator includes a low pressure receiver or a pump separator.
  • oil and lubricant may be used interchangeably throughout the specification, and includes synthetic petroleum lubricants.
  • a conduit 71 is connected at one end to evaporator 46 and at the opposite end to a thermopump vessel 74 (See, for example, FIG. 6A), disposed within a collection tank 70.
  • Refrigerant containing entrained lubricant flows through conduit 71 from evaporator 46 to thermopump vessel 74.
  • Conduit 71 is connected to thermopump vessel 74 through a control valve 72, for example, a solenoid operated valve to regulate the flow of refrigerant and lubricant mixture into thermopump vessel 74.
  • Thermopump 74 vessel is connected to a controller 84, to control the flow of the refrigerant and lubricant mixture entering thermopump vessel 74 from receiver 46.
  • Collection tank 70 receives lubricant through an inlet conduit 75.
  • the lubricant received via inlet conduit 75 collects directly in collection tank 70.
  • Inlet conduit 75 is connected to a lubricant separator 76, which provides lubricant at a temperature higher than the refrigerant and lubricant mixture received from evaporator 46.
  • Lubricant separator 76 receives a mixture of lubricant and vapor from compressor 100, shown in FIG. 3, through a discharge conduit 77.
  • Lubricant separator 76 separates a portion of the miscible lubricant from the refrigerant vapor and lubricant mixture discharged by the compressor.
  • baffle plates 76a and 76b may be inserted in the flow path of the vapor and lubricant mixture to separate the lubricant from the vapor.
  • the separated lubricant 78 flows from lubricant separator 76 through inlet line 75 into collection tank 70.
  • the lubricant collects in the bottom of collection tank 70 to a level such that thermopump vessel 74 within collection tank 70 is at least partially submerged in the lubricant received from lubricant separator 76.
  • Thermopump vessel 74 accumulates refrigerant/lubricant mixture 79, . Filling and evacuation of thermopump vessel 74 is controlled by two level sensors 86 and 88. Control panel 84 senses a first liquid level signal from a first level sensor 86 and a second liquid level signal from a second liquid level sensor 88. A control panel 84 controls inlet solenoid valve 72 and chamber outlet solenoid valve 80 so that they open and close at approximately the same time. A thermostat (not shown) in control panel 84 starts thermopump vessel 74 once the compressor discharge gas temperature reaches a predetermined temperature. When the liquid level goes below first level sensor 86, control panel 84 activates inlet solenoid 72 and outlet solenoid 80.
  • Outlet solenoid 80 opens in the conduit connection to the compressor discharge side, decreasing the pressure in the thermopump vessel slightly.
  • inlet solenoid valve 72 opens and liquid refrigerant and lubricant mixture 79 starts flowing into thermopump vessel 74.
  • second level sensor 88 senses that liquid refrigerant and lubricant mixture 79 has reached the second level, inlet solenoid 72 and outlet solenoid 80 are both closed by control panel 84. Pressure within thermopump vessel 74 begins to rise as a consequence of the heat transfer to thermopump vessel 74 from the heated oil in oil collection tank 70.
  • thermopump vessel 74 rises, and upon reaching a predetermined temperature, control panel 84 opens outlet solenoid 80, causing liquid refrigerant and lubricant mixture 79 to flow through conduit 81 into compressor discharge line 77, where liquid refrigerant and lubricant mixture 79 is re-introduced to oil separator 76. In this way refrigerant and lubricant mixture 79 is sent back to compressor discharge line 77 so that the lubricant in refrigerant and lubricant mixture 79 can be separated from the refrigerant in oil separator 76 and subsequently handled by the normal oil return system.
  • the pressurized refrigerant and lubricant mixture 79 may be discharged under pressure directly back into oil collection tank 70 and collected with the separated oil 78, as indicated by broken line 81a.
  • the control panel evacuates the thermopump vessel 74.
  • thermopump vessel 74 provides a reservoir for liquid refrigerant and lubricant mixture.
  • Thermopump vessel 74 is a liquid-tight enclosure, and may optionally include multiple cooling fins 74b on two or more of the vessel walls 74c, 74d. Also, sealed penetrations 88a and 88b are provided for first and second liquid level sensors 86, 88.
  • control cables 84a, 84b, 84c and 84d interconnect controller 84 with the various devices for communication of sensor signals and operating signals.
  • Controller 84 operates the oil collection tank inlet and outlet solenoids 72 and 80 respectively, in response to the liquid level signals from first and second liquid level sensors 86, 88.
  • Controller 84 includes control logic (not shown), for example, using a microprocessor, other digital control logic circuitry, or electromagnetic relays, to open either or both of evaporator exit valve 72 and collection tank drain valve 80; and to close the valve in the collection tank drain flow path when the receiver has a predetermined amount of liquid refrigerant entrained with lubricant.
  • Other signals and sensors may be input to and output by controller 84, for example, compressor discharge pressure, oil collection tank pressure, etc., as required to operate the oil return, which are omitted here for clarity.
  • an alternate exemplary embodiment includes a modified compressor 100 with an integral oil collection tank or reservoir 70a.
  • the operation of the oil return system shown in FIG. 7 is generally the same as described above with respect to FIG. 6, with the primary difference being the incorporation of oil collection tank 70 within the same housing 102 as compressor 100.
  • Conduit 71 is connected to thermopump vessel 74 through a control valve 72, for example, a solenoid operated valve to regulate the flow of refrigerant and lubricant mixture into thermopump vessel 74.
  • Collection tank 70 receives lubricant through an inlet conduit 75.
  • the lubricant received via inlet conduit 75 collects directly in collection tank 70a.
  • Inlet conduit 75 is connected to a lubricant separator 76, which provides lubricant at a temperature higher than refrigerant and lubricant mixture 79 received from evaporator 46.
  • Lubricant separator 76 receives a mixture of lubricant and vapor from compressor 100, shown in FIG. 3, through a discharge conduit 77.
  • Lubricant separator 76 separates a portion of the miscible lubricant from the refrigerant vapor and lubricant mixture discharged by the compressor.
  • baffle plates 76a and 76b may be inserted in the flow path of the vapor and lubricant mixture to separate the lubricant from the vapor.
  • the separated lubricant 78 flows from lubricant separator 76 through inlet line 75 into collection tank 70a.
  • the lubricant collects in the bottom of collection tank 70a to a level such that thermopump vessel 74 within collection tank 70a is at least partially submerged in the lubricant received from lubricant separator 76.
  • thermopump vessel 74 accumulates refrigerant/lubricant mixture 79. Filling and evacuation of thermopump vessel 74 is controlled by two level sensors 86 and 88. Control panel 84 senses a first liquid level signal from a first level sensor 86 and a second liquid level signal from a second liquid level sensor 88. Control panel 84 controls inlet solenoid valve 72 and chamber outlet solenoid valve 80 so that they open and close at approximately the same time, A thermostat (not shown) in control panel 84 starts thermopump vessel 74 once the compressor discharge gas temperature reaches a predetermined temperature. When the liquid level goes below first level sensor 86, control panel 84 activates inlet solenoid 72 and outlet solenoid 80.
  • Outlet solenoid 80 opens in the conduit connection to the compressor discharge side, decreasing the pressure in the thermopump vessel slightly.
  • inlet solenoid valve 72 opens and liquid refrigerant and lubricant mixture 79 starts flowing into thermopump vessel 74.
  • second level sensor 88 senses that liquid refrigerant and lubricant mixture 79 has reached the second level, inlet solenoid 72 and outlet solenoid 80 are both closed by control panel 84. Pressure within thermopump vessel 74 begins to rise as a consequence of the heat transfer to thermopump vessel 74 from the heated oil in oil collection tank 70.
  • thermopump vessel 74 rises, and upon reaching a predetermined temperature, control panel 84 opens outlet solenoid 80, causing liquid refrigerant and lubricant mixture 79 to flow through conduit 81 into compressor discharge line 77, where liquid refrigerant and lubricant mixture 79 is re-introduced to oil separator 76. In this way refrigerant and lubricant mixture 79 is sent back to compressor discharge line 77 so that the lubricant in refrigerant and lubricant mixture 79 can be separated from the refrigerant in oil separator 76 and subsequently handled by the normal oil return system.
  • the pressurized refrigerant and lubricant mixture 79 may be discharged under pressure directly back into oil collection tank 70a and collected with the separated oil 78, as indicated by broken line 81a.
  • the control panel evacuates the thermopump vessel 74.
  • Control cables 84a, 824b, 84c and 84d interconnect controller 84 with the various devices for communication of sensor signals and operating signals. Controller 84 operates the oil collection tank inlet and outlet solenoids 72 and 80 respectively, in response to the liquid level signals from first and second liquid level sensors 86, 88.
  • controller 84 may input to and output by controller 84, for example, compressor discharge pressure, oil collection tank pressure, etc., as required to operate the oil return, which are not shown here for simplicity.
  • controller 84 Similar to the combination of oil collection tank 70 and thermopump vessel 74 of FIG. 6, the arrangement of the tank 70a and thermopump vessel 74 in FIG. 7 provides a thermopump for transferring liquid refrigerant and lubricant mixture 79 back into oil collection tank 70a.
  • FIG. 8 illustrates an alternative to an oil return with a pump.
  • the refrigerant and lubricant mixture provides liquid oil cooling in the screw compressors.
  • Screw compressors 100,100a are lubricated by a lubricant film contained on the surface of the screw profiles.
  • the lubricant prevents the refrigerant from washing or cleaning the lubricant film off the surface of the screw profiles of compressors 100, 100a.
  • liquid refrigerant/lubricant mixture 79 may be optionally delivered to the discharge line 77 of compressors 100, 100a.
  • a pump 69 is used to replace the thermopump arrangement, described above with respect to FIG.
  • the evaporator 46 supplies evaporated from refrigerant and lubricant mixture 79 to the suction lines of a pair of parallel compressors 100, 100a, respectively.
  • the pump 69 delivers liquid refrigerant and lubricant mixture 79 from the evaporator 46 to compressors 100, 100a at an intermediate pressure, through return lines 81 , 81a.
  • the pump discharge line 82 may be connected to compressor discharge line 77, at the inlet to oil separator 76, at a higher pressure.
  • thermopump arrangement is employed to replace the pump 69 in FIG. 7.
  • the thermopump arrangement operates similarly to that described above with respect to FIGS. 6 and 7.
  • Evaporator 46 supplies evaporated refrigerant from refrigerant and lubricant mixture 79 to the suction lines 101, 101a of a pair of parallel compressors 100, 100a, respectively,
  • Thermopump vessel 74 is disposed inside oil collection tank 70.
  • a conduit 71 is connected to a thermopump vessel 74 through a control valve 72, for example, a solenoid operated valve to regulate the flow of refrigerant and lubricant mixture into thermopump vessel 74 from evaporator 46,
  • Thermopump vessel 74 receives the mixture of liquid refrigerant and lubricant from the evaporator 46 via conduit 71 ,
  • Oil collection tank 70 receives oil at a higher temperature via an inlet conduit 75 connected to an oil separator 76 in the compressor discharge conduit 77.
  • Oil separator 76 separates a portion of the miscible oil from the refrigerant vapor and oil mixture discharged by the compressors 100, 100a, for example, by baffle plates 76a, 76b inserted in the flow path of the vapor and oil mixture.
  • the separated oil 78 flows through the inlet line 75 into oil collection tank 70, and collects in the bottom of oil collection tank 70 to a level such that thermopump vessel 74 is at least partially submerged in the higher-temperature oil.
  • thermopump vessel 74 accumulates refrigerant and lubricant mixture 79. Filling and evacuation of thermopump vessel 74 is controlled by two level sensors 86 and 88. Control panel 84 senses a first liquid level signal from a first level sensor 86, and a second liquid level signal from a second liquid level sensor 88. Control panel 84 controls the inlet solenoid valve 72 and the outlet solenoid valve 80 so that they open and close at approximately the same time. A thermostat (not shown) in control panel 84 starts thermopump vessel 74 once the compressor discharge gas temperature reaches a predetermined temperature. When the liquid level goes below first level sensor 86, control panel 84 activates inlet solenoid 72 and outlet solenoid 80.
  • Outlet solenoid 80 opens in the conduit connection to the compressor discharge side, slightly decreasing the pressure in thermopump vessel 74.
  • inlet solenoid valve 72 opens and liquid refrigerant and lubricant mixture 79 starts flowing into thermopump vessel 74.
  • second level sensor 88 senses that liquid refrigerant and lubricant mixture 79 has reached the second level, inlet solenoid 72 and outlet solenoid 80 are both closed by control panel 84. Pressure within thermopump vessel 74 begins to rise as a consequence of the heat transfer to thermopump vessel 74 from the heated oil in oil collection tank 70.
  • thermopump vessel 74 rises, and upon reaching a predetermined temperature, control panel 84 opens outlet solenoid 80, causing liquid refrigerant and lubricant mixture 79 to flow through conduit 81 into compressor discharge line 77, where liquid refrigerant and lubricant mixture 79 is re-introduced to oil separator 76. In this way refrigerant and lubricant mixture 79 is sent back to compressor discharge line 77 so that the lubricant in refrigerant and lubricant mixture 79 can be separated from the refrigerant in oil separator 76 and subsequently handled by the normal oil return system.
  • thermopump vessel 74 the pressurized refrigerant and lubricant mixture 79 may be discharged under pressure directly back into oil collection tank 70 and collected with the separated oil 78.
  • the control panel evacuates thermopump vessel 74.
  • Control cables 84a, 84b, 84c and 84d interconnect controller 84 with the various devices for communication of sensor signals and operating signals.
  • the controller 84 operates the oil collection tank inlet and outlet solenoids 72 and 80 respectively in response to the liquid level signals from first and second liquid level sensors 86, 88.
  • Other signals may be input to and output by controller 84, for example, compressor discharge pressure, oil collection tank pressure, etc., as required to operate the oil return, which are not shown here for simplicity.
  • the arrangement of the tank 70 and thermopump vessel 74 in FIG. 9 provides a thermopump for transferring liquid refrigerant and lubricant mixture 79 back into oil collection tank 70.
  • FIG. 10 an alternate exemplary embodiment of the oil return system for piston or screw compressors is shown.
  • the oil return system of Figure 10 can be used with either miscible or non-miscible oil/carbon dioxide combinations and avoids start-up and liquid stroke problems.
  • a pump 69 transports liquid refrigerant/lubricant mixture 79 from evaporator 46 to a connection placed between the discharge line 77 of compressor 100 and oil separator 76. The separated oil returns to compressor 100 through line 75 to provide lubrication.
  • the embodiment of FIG. 10 includes a modified compressor 100 with an integral oil collection tank or reservoir 70. That is, oil collection tank 70 is located within the same housing 102 as the compressor 100.
  • Evaporator 46 is connected to pump 69 through conduit 71, to permit the flow of refrigerant and lubricant mixture 79 from evaporator 46 to the intake of pump 69.
  • Pump 69 is connected at its output to pump discharge line 81, and discharges refrigerant and lubricant mixture 79 into discharge line 77 of compressor 100 via pump discharge line 81.
  • the refrigerant and lubricant mixture 79 is thus returned to oil separator 76, where oil separator 76 separates a portion of the miscible oil from the refrigerant and lubricant mixture for example, by baffle plates 76a, 76b inserted in the flow path of the vapor and oil mixture.
  • the separated oil 78 flows through the inlet line 75 into oil collection tank 70, and collects in the bottom of oil collection tank 70, for re-use by the compressor lubrication system (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Defrosting Systems (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Lubricants (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Abstract

L'invention concerne un système de compression de vapeur doté d'un évaporateur avec un récepteur pour recevoir un fluide de réfrigérant liquide et un lubrifiant provenant du dispositif de détente. Au moins un trajet d'écoulement ayant au moins une soupape reçoit le fluide de réfrigérant liquide entraîné avec le lubrifiant provenant du récepteur, la au moins une soupape régulant le flux de liquide. Une cuve de collecte ayant un élément chauffant reçoit le fluide de réfrigérant liquide entraîné avec le lubrifiant provenant du trajet d'écoulement. Un trajet d'écoulement de sortie ayant une soupape régule le flux de fluide de réfrigérant liquide entraîné avec le lubrifiant. Un dispositif de commande commande les soupapes et l'élément chauffant. Lorsque le récepteur a une quantité prédéterminé de fluide de réfrigérant liquide entraîné avec le lubrifiant, le dispositif de commande commande les soupapes et l'élément chauffant pour fournir de la chaleur au fluide de réfrigérant liquide entraîné avec le lubrifiant et le fluide de réfrigérant liquide devient un fluide de réfrigérant gazeux, le lubrifiant sortant de la cuve via un tuyau de drainage vers le compresseur.
PCT/US2008/056342 2007-03-09 2008-03-08 Système de compression de vapeur Ceased WO2008112594A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US89405207P 2007-03-09 2007-03-09
US60/894,052 2007-03-09
US91717507P 2007-05-10 2007-05-10
US60/917,175 2007-05-10

Publications (2)

Publication Number Publication Date
WO2008112594A2 true WO2008112594A2 (fr) 2008-09-18
WO2008112594A3 WO2008112594A3 (fr) 2008-11-13

Family

ID=39487818

Family Applications (9)

Application Number Title Priority Date Filing Date
PCT/US2008/056287 Ceased WO2008112572A1 (fr) 2007-03-09 2008-03-07 Système de réfrigération
PCT/US2008/056233 Ceased WO2008112554A1 (fr) 2007-03-09 2008-03-07 Système de réfrigération
PCT/US2008/056222 Ceased WO2008112549A2 (fr) 2007-03-09 2008-03-07 Échangeur de chaleur
PCT/US2008/056275 Ceased WO2008112569A2 (fr) 2007-03-09 2008-03-07 Système de réfrigération
PCT/US2008/056273 Ceased WO2008112568A2 (fr) 2007-03-09 2008-03-07 Compresseur
PCT/US2008/056270 Ceased WO2008112566A2 (fr) 2007-03-09 2008-03-07 Système de réfrigération
PCT/US2008/056340 Ceased WO2008112593A1 (fr) 2007-03-09 2008-03-08 Système de réfrigération
PCT/US2008/056338 Ceased WO2008112591A2 (fr) 2007-03-09 2008-03-08 Système de réfrigération
PCT/US2008/056342 Ceased WO2008112594A2 (fr) 2007-03-09 2008-03-08 Système de compression de vapeur

Family Applications Before (8)

Application Number Title Priority Date Filing Date
PCT/US2008/056287 Ceased WO2008112572A1 (fr) 2007-03-09 2008-03-07 Système de réfrigération
PCT/US2008/056233 Ceased WO2008112554A1 (fr) 2007-03-09 2008-03-07 Système de réfrigération
PCT/US2008/056222 Ceased WO2008112549A2 (fr) 2007-03-09 2008-03-07 Échangeur de chaleur
PCT/US2008/056275 Ceased WO2008112569A2 (fr) 2007-03-09 2008-03-07 Système de réfrigération
PCT/US2008/056273 Ceased WO2008112568A2 (fr) 2007-03-09 2008-03-07 Compresseur
PCT/US2008/056270 Ceased WO2008112566A2 (fr) 2007-03-09 2008-03-07 Système de réfrigération
PCT/US2008/056340 Ceased WO2008112593A1 (fr) 2007-03-09 2008-03-08 Système de réfrigération
PCT/US2008/056338 Ceased WO2008112591A2 (fr) 2007-03-09 2008-03-08 Système de réfrigération

Country Status (1)

Country Link
WO (9) WO2008112572A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299942A (zh) * 2015-11-05 2016-02-03 谭洪德 一种满液式螺杆机速冻冷库机组
CN105299941A (zh) * 2015-11-05 2016-02-03 谭洪德 一种满液式螺杆机冷水机组

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150289A1 (fr) * 2007-06-04 2008-12-11 Carrier Corporation Système réfrigérant avec circuits en cascade et caractéristiques d'amélioration de performance
WO2010045743A1 (fr) * 2008-10-23 2010-04-29 Dube Serge Système frigorifique par co2
US8789380B2 (en) * 2009-07-20 2014-07-29 Systemes Lmp Inc. Defrost system and method for a subcritical cascade R-744 refrigeration system
CN101655305B (zh) * 2009-08-17 2011-07-06 成都黄金地真空技术开发有限公司 一种以涡旋式压缩机为核心的氦气压缩净化机组
WO2011066214A1 (fr) * 2009-11-25 2011-06-03 Carrier Corporation Protection contre la pression à faible aspiration pour système de compression de vapeur de réfrigérant
US20120227429A1 (en) * 2011-03-10 2012-09-13 Timothy Louvar Cooling system
CN110081627B (zh) 2011-06-13 2022-05-10 阿雷斯科技术有限公司 用于制冷的制冷系统和方法
BR112013032198B1 (pt) 2011-06-13 2021-11-03 Fred Lingelbach Sistema de evaporador e condensador (ces) e método de operação do mesmos
US20130153172A1 (en) * 2011-12-20 2013-06-20 Conocophillips Company Method and apparatus for reducing the impact of motion in a core-in-shell heat exchanger
CA2771113A1 (fr) * 2012-03-08 2012-05-22 Serge Dube Systeme de refrigeration au co2 pour surfaces de sport sur glace
DE102012011328A1 (de) * 2012-06-06 2013-12-12 Linde Aktiengesellschaft Wärmeübertrager
JP2014098106A (ja) * 2012-11-15 2014-05-29 Asahi Glass Co Ltd 二次循環冷却システム用二次冷媒および二次循環冷却システム
DE102013210177A1 (de) * 2013-05-31 2014-12-04 Siemens Aktiengesellschaft Kühlsystem und Kühlprozess für den Einsatz in Hochtemperatur-Umgebungen
CN103453701B (zh) * 2013-08-29 2015-06-24 合肥天鹅制冷科技有限公司 一种具有热管和过冷功能的冷液机
US10533556B2 (en) 2013-10-01 2020-01-14 Trane International Inc. Rotary compressors with variable speed and volume control
EP3267131B1 (fr) * 2013-12-17 2019-03-06 Mayekawa Mfg. Co., Ltd. Appareil de réfrigération et unité de refroidissement avec un système de dégivrage
DE102014100916A1 (de) * 2014-01-27 2015-07-30 Bitzer Kühlmaschinenbau Gmbh Kälteanlage
US9746209B2 (en) 2014-03-14 2017-08-29 Hussman Corporation Modular low charge hydrocarbon refrigeration system and method of operation
US9537686B2 (en) * 2014-04-03 2017-01-03 Redline Communications Inc. Systems and methods for increasing the effectiveness of digital pre-distortion in electronic communications
FR3038037B1 (fr) * 2015-06-29 2018-04-20 Trane International Inc. Conduit d'aspiration et double conduit d'aspiration pour un evaporateur immerge
CN104501461A (zh) * 2015-01-06 2015-04-08 刘雄 热泵设备
US10648702B2 (en) 2015-08-11 2020-05-12 Carrier Corporation Low capacity, low-GWP, HVAC system
CN105387662A (zh) * 2015-10-26 2016-03-09 珠海格力电器股份有限公司 制冷机组和制冷机组的冷媒提纯方法
CN106089720B (zh) * 2016-08-11 2018-06-26 四川行之智汇知识产权运营有限公司 阻性消音器气密性的检查装置
US10443786B2 (en) * 2017-08-03 2019-10-15 Heatcraft Refrigeration Products, Llc Compressor-less cooling system
CN110206731B (zh) * 2019-06-28 2024-07-12 苏州利玛特能源装备有限公司 一种用于喷油螺杆压缩机的分油系统
CN110762586A (zh) * 2019-10-12 2020-02-07 青岛海信日立空调系统有限公司 一种复叠压缩热泵系统
CN111578562A (zh) * 2020-06-19 2020-08-25 孟雷 一种与闪发式经济器配套的供液控制器
GB202110256D0 (en) * 2021-07-16 2021-09-01 B Medical Systems Sarl Medical contact shock freezer
US12203693B2 (en) * 2022-06-20 2025-01-21 Heatcraft Refrigeration Products Llc Hot gas defrost using fluid from high pressure tank
CN116839265B (zh) * 2023-07-19 2023-12-26 北京沃尔达能源科技有限公司 一种氨制冷系统自动排油系统及其控制方法
WO2025090970A1 (fr) * 2023-10-25 2025-05-01 Hussmann Corporation Système de réfrigération à dégivrage par gaz chaud

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2028471A (en) * 1936-01-21 Department of commerce
US2897659A (en) * 1954-08-09 1959-08-04 Ckd Stalingrad Narodni Podnik Apparatus for gas and liquid cooling in compressor plants with two- or multistage cooling circuit
CH408979A (fr) * 1962-05-11 1966-03-15 Leclercq Pierre Echangeur thermique pour fluides, comprenant des cylindres concentriques
DE1207945B (de) * 1964-01-08 1965-12-30 Linde Eismasch Ag Vorrichtung zur Abtrennung von im Kaeltemittel einer Kompressionskaeltemaschine angereichertem OEl
FR1399147A (fr) * 1964-06-18 1965-05-14 Brown Fintube Co échangeur de chaleur
US3408826A (en) * 1967-01-27 1968-11-05 Dunham Bush Inc Refrigeration system and systems for cooling and controlling compressors
US3577742A (en) * 1969-06-13 1971-05-04 Vilter Manufacturing Corp Refrigeration system having a screw compressor with an auxiliary high pressure suction inlet
US3777509A (en) * 1972-03-13 1973-12-11 Borg Warner Oil return system for refrigeration apparatus
US3859814A (en) * 1973-10-03 1975-01-14 Vilter Manufacturing Corp Variable capacity rotary screw compressor
SE382663B (sv) * 1974-04-11 1976-02-09 Stal Refrigeration Ab Sett att fora in mellantryckgas i en skruvkylkompressor jemte skruvkompressor for genomforande av settet.
GB2081868B (en) * 1980-08-07 1984-04-26 Applegate G Improvements in or relating to heat exchangers and/or silencers
US4455131A (en) * 1981-11-02 1984-06-19 Svenska Rotor Maskiner Aktiebolag Control device in a helical screw rotor machine for regulating the capacity and the built-in volume ratio of the machine
US4399663A (en) * 1981-11-27 1983-08-23 Carrier Corporation Mechanical control system for preventing compressor lubrication pump cavitation in a refrigeration system
JPS60245960A (ja) * 1984-05-18 1985-12-05 三菱電機株式会社 空気調和機の冷凍サイクル
JPS61262567A (ja) * 1985-05-17 1986-11-20 株式会社荏原製作所 冷凍機用蒸発器
GB8528211D0 (en) * 1985-11-15 1985-12-18 Svenska Rotor Maskiner Ab Screw compressor
US4693736A (en) * 1986-09-12 1987-09-15 Helix Technology Corporation Oil cooled hermetic compressor used for helium service
CH683028A5 (de) * 1990-12-11 1993-12-31 Sulzer Ag Verfahren zum Betreiben einer NH(3)-Kälteanlage oder -Wärmepumpe.
US5211026A (en) * 1991-08-19 1993-05-18 American Standard Inc. Combination lift piston/axial port unloader arrangement for a screw compresser
EP0564123A1 (fr) * 1992-04-02 1993-10-06 Carrier Corporation Système de réfrigération
JP3244296B2 (ja) * 1992-04-10 2002-01-07 三洋電機株式会社 冷媒組成物及びこれを使用した二元冷凍装置
US5265432A (en) * 1992-09-02 1993-11-30 American Standard Inc. Oil purifying device for use with a refrigeration system
US5307643A (en) * 1993-04-21 1994-05-03 Mechanical Ingenuity Corp. Method and apparatus for controlling refrigerant gas in a low pressure refrigeration system
DE4318671A1 (de) * 1993-06-04 1994-12-08 Linde Ag Verfahren zum Betreiben einer (Verbund-)Kälteanlage und (Verbund-)Kälteanlage zum Betreiben dieses Verfahrens
JPH10132400A (ja) * 1996-10-24 1998-05-22 Mitsubishi Heavy Ind Ltd パラレル型冷凍機
DE19826292A1 (de) * 1998-06-12 1999-12-23 Linde Ag Verfahren zum Betreiben einer Pumpe zur Förderung siedender Kältemittel oder Kälteträger
WO2000023752A1 (fr) * 1998-10-19 2000-04-27 Zexel Valeo Climate Control Corporation Cycle frigorifique
EP1134514A1 (fr) * 2000-03-17 2001-09-19 Société des Produits Nestlé S.A. Système frigorifique
DK174257B1 (da) * 2001-02-23 2002-10-21 Teknologisk Inst Anlæg samt fremgangsmåde, hvor CO2 anvendes som kølemiddel og som arbejdsmedie ved afrimning
DE10109236A1 (de) * 2001-02-26 2002-09-05 Joerg Fuhrmann CO¶2¶-Kälteanlage
US6536231B2 (en) * 2001-05-31 2003-03-25 Carrier Corporation Tube and shell heat exchanger for multiple circuit refrigerant system
ATE348301T1 (de) * 2001-06-13 2007-01-15 York Refrigeration Aps Abtauen von kaskadenkühlanlagen mittels co2- heissgas
JP2003090690A (ja) * 2001-09-18 2003-03-28 Hitachi Ltd 積層型熱交換器及び冷凍サイクル
US7582253B2 (en) * 2001-09-19 2009-09-01 Amerifab, Inc. Heat exchanger system used in steel making
JP3953377B2 (ja) * 2002-07-16 2007-08-08 トヨタ自動車株式会社 空調装置
JP2004150746A (ja) * 2002-10-31 2004-05-27 Kobe Steel Ltd スクリュ冷凍装置
JP2004190917A (ja) * 2002-12-10 2004-07-08 Sanyo Electric Co Ltd 冷凍装置
KR100576091B1 (ko) * 2003-07-31 2006-05-03 주식회사 특허뱅크 압축기의 출구 바이패스 구조를 갖는 공기조화기의 냉매사이클 시스템
MXPA06005445A (es) * 2003-11-21 2006-12-15 Maekawa Seisakusho Kk Sistema de refrigeracion con amoniaco/co2, sistema de produccion de salmuera con co2 para su uso ahi. y unidad de enfriamiento de amoniaco que incorpora este sistema de produccion.
EP1630495A1 (fr) * 2004-08-24 2006-03-01 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Procédé et système de refroidissement contenant un réfrigérant comme fluide frigorigène et/ou dégivrant
WO2006070923A1 (fr) * 2004-12-28 2006-07-06 Showa Denko K.K. Echangeur de chaleur
CN100538216C (zh) * 2005-02-15 2009-09-09 开利公司 具有受控润滑剂回收的压缩机系统
US7213407B2 (en) * 2005-04-12 2007-05-08 Lung Tan Hu Wide temperature range heat pump
US8640491B2 (en) * 2005-07-07 2014-02-04 Carrier Corporation De-gassing lubrication reclamation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105299942A (zh) * 2015-11-05 2016-02-03 谭洪德 一种满液式螺杆机速冻冷库机组
CN105299941A (zh) * 2015-11-05 2016-02-03 谭洪德 一种满液式螺杆机冷水机组

Also Published As

Publication number Publication date
WO2008112593A1 (fr) 2008-09-18
WO2008112594A3 (fr) 2008-11-13
WO2008112591A3 (fr) 2008-12-11
WO2008112566A2 (fr) 2008-09-18
WO2008112566A3 (fr) 2009-02-05
WO2008112554A1 (fr) 2008-09-18
WO2008112549A2 (fr) 2008-09-18
WO2008112549A3 (fr) 2008-12-24
WO2008112568A3 (fr) 2008-12-24
WO2008112568A2 (fr) 2008-09-18
WO2008112591A2 (fr) 2008-09-18
WO2008112572A1 (fr) 2008-09-18
WO2008112569A3 (fr) 2008-11-27
WO2008112569A2 (fr) 2008-09-18

Similar Documents

Publication Publication Date Title
WO2008112594A2 (fr) Système de compression de vapeur
US20080223074A1 (en) Refrigeration system
EP2545332B1 (fr) Appareils et procédés de distribution de fluide frigorigène pour un système de transport réfrigéré
EP2019272B1 (fr) Collecteur et échangeur à chaleur combinés pour fluide frigorigène secondaire
EP2245387B1 (fr) Modulation de capacité d'un système de compression de vapeur de fluide frigorigène
US9657977B2 (en) Cascade refrigeration system with modular ammonia chiller units
US20220042722A1 (en) Refrigeration System And Methods For Refrigeration
US20110041523A1 (en) Charge management in refrigerant vapor compression systems
CN103282729B (zh) 制冷系统和用于操作制冷系统的方法
JP2001304704A (ja) 冷却システム
US20100011791A1 (en) R422d heat transfer systems and r22 systems retrofitted with r422d
KR101220583B1 (ko) 냉동장치
KR101220741B1 (ko) 냉동장치
US20100326125A1 (en) Refrigeration system
JP4211847B2 (ja) 冷凍装置
EP3438570A1 (fr) Système de refroidissement sans compresseur
RU2411424C2 (ru) Способ охлаждения воздуха в замкнутой полости бытового холодильника и устройство для реализации указанного способа
RU2369809C2 (ru) Комбинированное устройство охлаждения и создания вакуума
Yadav et al. A Study on Anasysis and Fabrication of an Ice Plant Model
HK1160206A (zh) 製冷劑蒸汽壓縮系統中的充注量管理
HK1151577B (en) Refrigerant vapor compression system with lubricant cooler
HK1151577A1 (en) Refrigerant vapor compression system with lubricant cooler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08731768

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08731768

Country of ref document: EP

Kind code of ref document: A2