[go: up one dir, main page]

WO2008039959A2 - Composite structure with organophosphonate adherent layer and method of preparing - Google Patents

Composite structure with organophosphonate adherent layer and method of preparing Download PDF

Info

Publication number
WO2008039959A2
WO2008039959A2 PCT/US2007/079802 US2007079802W WO2008039959A2 WO 2008039959 A2 WO2008039959 A2 WO 2008039959A2 US 2007079802 W US2007079802 W US 2007079802W WO 2008039959 A2 WO2008039959 A2 WO 2008039959A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymer
article
combination
phosphonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2007/079802
Other languages
French (fr)
Other versions
WO2008039959A3 (en
Inventor
Eric L. Hanson
Gerry Gruber
Eric Bruner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aculon Inc
Original Assignee
Aculon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aculon Inc filed Critical Aculon Inc
Priority to JP2009530615A priority Critical patent/JP2010504874A/en
Publication of WO2008039959A2 publication Critical patent/WO2008039959A2/en
Publication of WO2008039959A3 publication Critical patent/WO2008039959A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • C25D13/16Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to multi-layer articles comprising a substrate, an organophosphonate adherent layer, and a functional layer, and methods of preparing them.
  • Coatings are typically applied to substrates in order to provide thermal and/or electrical conductivity or insulation, protection from corrosion, structural integrity, and aesthetic appeal, among other advantages.
  • the present invention provides an article comprising: a substrate having a surface and comprising electrodeposited copper foil or copper alloy foil; an adherent layer serving to promote adhesion, comprising at least one organophosphonate or salt thereof covalently bound to the surface; and a functional layer, comprising at least one polymer bound to the adherent layer.
  • the present invention further provides devices comprising a heat source or electronic component and the article described above, wherein the heat source is in thermal contact with the substrate and the electronic component is in electrical contact with the substrate.
  • a method of producing the above-described article comprising: a) providing a substrate having a surface and comprising electrodeposited copper foil or copper alloy foil; b) contacting the surface of the substrate with a composition comprising at least one phosphorous acid moiety selected from the group consisting of organophosphonic acid, phosphonic acid, conjugate base thereof, salt thereof, and a combination thereof, to form an adherent layer comprising at least one organophosphonate or salt thereof covalently bound to the surface; c) contacting the adherent layer with at least one polymer, to covalently bind the polymer to the adherent layer and form a functional layer; and optionally d) after contacting the adherent layer with the polymer, one or more steps selected from the group consisting of curing the polymer, drying the polymer, heating the polymer, and a combination thereof.
  • the substrate used to prepare the articles of the present invention have a surface and may, for example, comprise copper foil or copper alloy foil.
  • the copper or copper alloy may be deposited onto a manufacturing surface and then removed to form a free foil.
  • the copper or copper alloy may be deposited onto a core material to form a multi-layer or composite substrate.
  • Suitable substrates to be used as the core are any electrically conductive materials.
  • suitable metals include copper foil, iron-nickel (Fe-Ni) alloys, and combinations thereof.
  • a particularly suitable iron-nickel alloy is Invar, (trademark owned by Imphy S. A., 168 Rue de Rivoli, Paris, France) comprising approximately 64 weight percent iron and 36 weight percent nickel. This alloy has a low coefficient of thermal expansion.
  • a layer of copper metal is typically applied to all surfaces of the electrically conductive core to ensure optimum conductivity.
  • the layer of copper metal may be applied by conventional means, such as electroplating or metal vapor deposition.
  • the layer of copper often has a thickness of from 1 to 8 microns.
  • the surface of the substrate may be substantially planar, curved, uniform, non-uniform, or any combination thereof.
  • the metal substrate may be smooth, for example, atomically smooth, or it may be rough, for example having a roughness on a micron scale, or anywhere in between.
  • the surface of the substrate is chemically or mechanically roughened. Surface roughening may be achieved by several methods.
  • the electrodeposited copper foils can be electroformed with a rough surface. On top of this rough surface further roughening is carried out by applying a high surface area treatment. These treatments may be a copper deposited electrolytically in nodular or powder form, or a copper oxide which grows nodular or dendritic, among others. Often times the rolled copper foil has mechanical roughness imparted to it during rolling or by subsequent abrasion.
  • Rolled foils may also be treated with surface area increasing nodular copper or copper oxide.
  • the surface roughness, Ra may suitably range from 0.01 to 5 ⁇ m. This range includes all values and subranges therebetween, including 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4,
  • the metal substrate may be in any form such as rolled, cast, extruded, forged, profiled, sheet stock, patterned, stamped, strip, wheel, parts for aircraft industry, for apparatuses, for automobile industry, for electronic industry, for beverage and other food containers, for construction or for engineering.
  • the metal substrate may be structural, insulating, semi-insulating, electrically conductive, semi-conductive, thermally conductive, thermally insulating, radiation absorbing, radiation reflecting, or any combination thereof.
  • the metal substrate may have a thickness of 5 mm or less. This range includes all values and subranges therebetween, including 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08,
  • the dimension of the substrate may be suitably selected as appropriate.
  • the substrate can have any dimension, having widths and/or lengths, for example, independently ranging from 1 mm to 1000 mm or larger. This range includes all values and subranges therebetween, including 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 25, 50, 75, 100, 250, 500, 750, 1000 mm, and any combination thereof.
  • the substrate may comprise an alloy of copper, or oxide thereof, and at least one other metal selected from the group including silver, gold, nickel, palladium, platinum, zinc, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, ruthenium, osmium, cobalt, zinc, cadmium, aluminum, tin, lead, magnesium, indium, arsenic, antimony, gallium, germanium, bismuth, selenium, tellurium, rhodium, iridium, thallium, silicon, rhenium, scandium, yttrium, oxide thereof, and combination thereof.
  • at least one other metal selected from the group including silver, gold, nickel, palladium, platinum, zinc, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, ruthenium,
  • the substrate surface may include one or more of copper, oxide thereof, salt thereof, halide thereof, sulfate thereof, phosphate thereof, hydroxide thereof, chalcogenide thereof, alkoxide thereof, nitrate thereof, fluoride thereof, chloride thereof, bromide thereof, iodide thereof, sulfide thereof, or a combination thereof.
  • the substrate surface may include one or more of copper, silver, gold, nickel, palladium, platinum, zinc, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, ruthenium, osmium, cobalt, zinc, cadmium, aluminum, tin, lead, oxide thereof, halide thereof, sulfate thereof, phosphate thereof, hydroxide thereof, chalcogenide thereof, alkoxide thereof, nitrate thereof, fluoride thereof, chloride thereof, bromide thereof, iodide thereof, sulfide thereof, or a combination thereof.
  • the surface may include one or more of NiCr, titanium alkoxide, zirconium alkoxide, ZnO, TiO 2 , Fe 2 O 3 , Al 2 O 3 , SnO 2 , Cr 2 O 3 , or a combination thereof.
  • organophosphonate used in the adherent layer of the articles of the present invention may be derived from an organophosphonic acid moiety having the formula:
  • R is a Ci_ 4 o branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof; wherein R' is hydrogen or a C 1-4O branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof; and wherein R" is hydrogen or a C 1-4O branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof.
  • the organophosphonic acid moiety may be a substituted or unsubstituted, branched or unbranched, saturated or unsaturated organophosphonic acid or salt thereof.
  • Some examples of these include alkylphosphonic acid, perfluoroalkylphosphonic acid, hydroxyalkylphosphonic acid, vinylalkylphosphonic acid, phosphonoalkylphosphonic acid, carboxyalkyphosphonic acid, sulfonoalkylphosphonic acid, aminoalkylphosphonic acid, amidoalkylphosphonic acid, siloxyalkylphosphonic acid, alkoxyalkylphosphonic acid, allylalkyl-aryl phosphonic acid, arylalkylphosphonic acid, aldehydealkylphosphonic acid, trifluoromethylalkylphosphonic acid, thioalkylphosphonic acid, epoxyalkylphosphonic acid, nitroalkylphosphonic acid, branched C 3 _ 4 o phosphonic acid, unbranched C 1-4O phospho
  • organophosphonic acid moiety examples include 11-hydroxyundecylphosphonic acid, 11-acetoxyundecylphosphonic acid, 1-acetoxyundecylphosphonic acid, undec-11- enephosphonic acid, p-aminobenzylphosphonic acid, p-nitrobenzylphosphonic acid, 4- mercaptobutylphosphonic acid, butane- 1,4-bisphosphonic acid, but-2-ene-l,4,-bisphosphonic acid, o- phenolphosphonic acid, m-phenolphosphonic acid, p-phenolphosphonic acid, 2 methoxy-4-prop-2- enylphenol-6-phosphonic acid, 1-phosphonic acid-12-mercaptododecane, 1-phosphonic acid-12-(N- ethylamino)dodecane, 1-phosphonic acid-12-dodecene, p-xylylene diphosphonic acid, 1,10- decanediphosphonic acid, 1,12-dode
  • R is branched or unbranched, substituted or unsubstituted, saturated or unsaturated, aromatic, cyclic, or aliphatic Ci_ 4 o group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof; wherein R" is hydrogen or a Ci_ 4 o branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof; wherein a is a covalent bond to the surface; and wherein b is an electron pair or a bond to at least one of the surface, an organophosphonate, an organophosphonic acid, aphosphonate, aphosphonic acid, a metal, an ion, a neighboring molecule, or a combination thereof.
  • the organophosphonate may be a substituted or unsubstituted, branched or unbranched, saturated or unsaturated organophosphonate or salt thereof.
  • these include alkylphosphonate, perfluoroalkylphosphonate, hydroxyalkylphosphonate, vinylalkylphosphonate, phosphonoalkylphosphonate, carboxyalkyphosphonate, sulfonoalkylphosphonate, aminoalkylphosphonate, amidoalkylphosphonate, siloxyalkylphosphonate, alkoxyalkylphosphonate, allylalkyl-aryl phosphonate, arylalkylphosphonate, aldehydealkylphosphonate, trifluoromethylalkylphosphonate, thioalkylphosphonate, epoxyalkylphosphonate, nitroalkylphosphonate, branched C3_ 4 o phosphonate, unbranched C 1-4 O phosphonate, substitute
  • the adherent layer may also include at least one phosphorous acid moiety such as organophosphonic acid, phosphonic acid, salt thereof, conjugate base thereof, metal oxide thereof, or a combination thereof.
  • the phosphorous acid moiety has the formula: wherein R, R', R" are each independently H or a Ci- 40 branched or unbranched, substituted or unsubstituted, saturated or unsaturated, aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof; or salt thereof, or conjugate base thereof, or metal oxide thereof.
  • conjugate base it is meant the anion that is formed via loss of one or more protons.
  • salt it is meant the compound formed from a conjugate base and one or more non-proton counterions .
  • Some examples of counterions include those of sodium, potassium, calcium, ammonia, triethylammonia, trimethylammonia, EDTA, zirconium, magnesium, and the like. Combinations of counterions are possible.
  • metal oxide it is meant the compound having one or more metal-oxygen bonds.
  • One example includes a phosphonic acid metal ester having a P-O-M bond wherein M is a metal.
  • the aromatic group may be a C 5 - C 40 aromatic group in which one or more carbons may be independently and optionally replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof.
  • This range includes all values and subranges therebetween, including C 5 , C 6 , C 7 , C 8 , C9, Cio, C 11 , C 12 , C 13 , C 14 , Ci5, C 16 , C 17 , C 18 , C19, C 2 o, C 21 , C 22 , C 23 , C 24 , C 25 , C 2 6, C 27 , C 2 8, C29, C 3 o, C 3 i, C 32 , C 33 , C 34 , C 3 5, C 3 6, C 37 , C 3 8, C 3 9, C 4 O- It may be substituted or unsubstituted, branched or unbranched. It may be monocyclic or a plurality of rings.
  • the cyclic group may be a C 3 -C 4O cyclic group in which in which one or more carbons may be independently and optionally replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof.
  • This range includes all values and subranges therebetween, including C 5 , C 6 , C 7 , C 8 , C9, Cio, C 11 , C 12 , Ci 3 , C 14 , Ci5, C 16 , Ci 7 , C 18 , C19, C 2 o, C 21 , C 22 , C 23 , C 24 , C 25 , C 26 , C 27 , C 2 8, C29, C 3 o, C 3 i, C 32 , C 33 , C 34 , C 3 5, C 3 6, C 37 , C 3 8, C 3 9, C 4 O- It may be substituted or unsubstituted, saturated or unsaturated, branched or unbranched. It may be monocyclic or a plurality of cyclic rings
  • the aliphatic group may be a Ci_ 40 aliphatic group in which one or more carbons may be independently and optionally replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof. This range includes all values and subranges therebetween, including C 1 , C 2 ,
  • the C 5 - C 4 o aromatic group, C 3 -C 4O cyclic group, and/or Ci_ 4 o aliphatic group may be independently substituted with one or more substituents such as hydroxyl, halo, bromo, chloro, iodo, fluoro, — OR', — NR R “ , — NR ' COR “ , — CONR ' R " , — CONR , — COOR , — OCOR ,
  • the substituents may be branched or unbranched or saturated or unsaturated as appropriate.
  • the C 5 - C 40 aromatic group, C 3 -C 40 cyclic group and/or C 1-4O aliphatic group and/or their substituents may contain one or more double bonds, triple bonds, sites of conjugation, or combinations thereof.
  • the adherent layer serves to promote adhesion between the substrate and the functional layer, and may be a monolayer, bilayer, or combination thereof. It may be mixed monolayer, mixed bilayer, or combination thereof. By “mixed” is meant that more than one organophosphonate compound is used.
  • the adherent layer may be a self-assembled layer.
  • the organophosphonate compounds and/or the organophosphonate moiety from which they may be derived form self assembling molecules which organize themselves parallel or substantially parallel one to one another.
  • the molecules in the adherent layer may be perpendicular or substantially perpendicular to the surface, or they may be arranged at some other angle relative to the surface.
  • the molecules may not be so organized in the adherent layer, however.
  • the adherent layer may be uniform or may be a random distribution of islands of molecules. The entire surface or a portion of the surface may be covered by the adherent layer. Omega- functional organophosphonic acids are particularly suitable in the formation of self-assembled layers.
  • the phosphorous acid moiety may be bonded to the surface or not bonded to the surface; i. e., the phosphorous acid functional group may or may not be reacted with the substrate surface.
  • a second functional group such as hydroxyl, amino, thio, carboxyl, mercapto, etc., that is integral to the organophosphonate molecule may be reacted with the substrate surface, leaving the phosphorous acid moiety free to react with the subsequently applied functional layer.
  • the phosphorous acid moiety may be bonded to the surface with a bond such as a covalent bond, ionic bond, coordination, Van der Waals interaction, chemisorption, physisorption, or a combination thereof.
  • the adherent layer may have a thickness ranging from about 0.5 nm to 5000 nm. This range includes all values and subranges therebetween, including 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000 nm, and any combination thereof.
  • the functional layer of the article comprising at least one polymer bound to the adherent layer, serves at least one physical function in the article, for example, thermal conductivity or insulation, electrical conductivity or insulation, and/or corrosion protection.
  • the polymer in the functional layer may be a thermoplastic, thermoset, copolymer thereof, or a combination thereof, for example.
  • polymer examples include elastomer, epoxy (polyepoxide), Bisphenol-A epoxy, polyester, polycarbonate, polyphenol, polymercaptan, polyene, polyolefin, polypropylene, polyethylene, polybutylene, polyamide, polyether, polythiophene, polypyrrole, polyimide, polysulfone, polybenzimidazole, polybenzoxazole, poly(p-phenylene), polyquinoline, polyquinoxaline, polysulfide, poly(p-xylylene), polysiloxane, polyurethane, polyphosphazine, alkyd, acrylic, polyvinyl chloride, polystyrene, polyvinyl acetate, polyvinyl alcohol, copolymer thereof, or a combination thereof.
  • epoxy polyepoxide
  • Bisphenol-A epoxy polyester
  • polycarbonate polyphenol
  • polymercaptan polyene
  • polyolefin polypropylene
  • polyethylene polyethylene
  • the functional layer may suitably include one or more of a dielectric polymer, conducting polymer, semiconducting polymer, thermally conductive polymer, thermally insulating polymer, light emitting polymer, adhesive polymer, minimally adhesive polymer, anticorrosive polymer, antifouling polymer, radiation-reflecting polymer, soluble polymer, photodegradable polymer, photocuring polymer, photoresist polymer, copolymer thereof, a polyepoxide coating, a polymer-impregnated composite, such as an epoxy-impregnated fiberglass, carbon fiber, or silica composite layer, or combination thereof as appropriate.
  • a dielectric polymer such as an epoxy-impregnated fiberglass, carbon fiber, or silica composite layer, or combination thereof as appropriate.
  • One or more polymers of the functional layer may be bound to the adherent layer with a bond such as a covalent bond, ionic bond, coordination, Van der Waals interaction, chemisorption, physisorption, or a combination thereof.
  • the organophosphonates should be chosen to ensure bonding of the functional polymer to the surface through the organophosphonate linker, and for best results it is important to consider the necessary functional groups to ensure bonding.
  • a plurality of polymers is thus bound to the adherent layer.
  • one or more of the functional layer polymers is bound to the organophosphonate.
  • the functional layer may have a thickness ranging from about 10 nm to 5 mm. This range includes all values and subranges therebetween, including 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 nm, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 40, 60, 80, 100, 200, 400, 600, 800 ⁇ m, 1, 2, 3, 4, 5 mm, and any combination thereof.
  • the functional layer contains less than about 0.1 wt% of organophosphonate, organophosphonic acid, phosphonic acid, phosphonate, or a mixture thereof, based on the weight of the functional layer. This range includes all values and subranges therebetween, including less than about 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01 wt. % or less, and any combination thereof.
  • a method for producing an article as described above comprises: a) providing a substrate having a surface and comprising electrodepo sited copper foil or copper alloy foil; b) contacting the surface of the substrate with a composition comprising at least one phosphorous acid moiety selected from the group consisting of organophosphonic acid, phosphonic acid, conjugate base thereof, salt thereof, and a combination thereof, to form an adherent layer comprising at least one organophosphonate or salt thereof covalently bound to the surface; c) contacting the adherent layer with at least one polymer, to covalently bind the polymer to the adherent layer and form a functional layer; and optionally d) after contacting the adherent layer with the polymer, one or more steps selected from the group consisting of curing the polymer, drying the polymer, heating the polymer, and a combination thereof.
  • Multiple-layered articles may be prepared as desired in accordance with the present invention by repeating the contacting steps b) and c) on a second surface of the substrate, and/or by contacting the functional layer with a composition comprising at least one phosphorous acid moiety to form an additional adherent layer for subsequent attachment of additional articles, substrates, or polymeric functional layers.
  • the surface of the substrate may be cleaned and/or degreased prior to applying the adherent layer.
  • Some examples of surface cleaning include contacting the surface with alkaline solution, solvent, acidic solution, or any combination thereof.
  • the surface may be cleaned with H 2 SO 4 solution.
  • the surface may be pickled prior to forming the adherent layer.
  • the substrate surface may be contacted with a coating solution containing the organophosphonic acid moiety by dipping, immersing, roll-coating, squeegeeing, vapor deposition, brushing, spraying, or any combination thereof.
  • the coating solution may contain the phosphorous acid moiety in an amount ranging from
  • the coating solution, and hence the resulting adherent layer formed on the substrate, is essentially free of chromium.
  • the surface may be contacted with the coating solution for a time ranging from 1 second to 1 hour. This range includes all values and subranges therebetween, including 1, 2, 3, 4, 5, 6, 7, 8, 9,
  • the surface may be contacted with the coating solution at a temperature ranging from 5 to 60
  • This range includes all values and subranges therebetween, including 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60 0 C and any combination thereof.
  • the surface may be contacted with one or more coating solutions, in any order, or repeated as desired.
  • the coated surface may be contacted with one or more rinsing compositions containing solvents as appropriate, in any order, or repeated as desired.
  • the coating solution and/or, if desired, the rinsing composition may independently include at least one selected from the group including water, ethanol, methanol, propanol, butanol, isopropanol, isobutanol, acetic acid, tetrahydrofuran, alcohol, acetone, dioxane, tetrahydrofuran, glycol ether, n-propyl glycol ether, 2-(2-ethoxyethoxy)ethanol, 2-butoxyether, monoalkoxy glycol ether, 2-butoxyethanol, DOWANOLTM, fluorinated solvent, aliphatic hydrocarbon, ether, ester, dimethyl sulfonic acid, toluene, solvent, co-solvent, polar solvent, non-polar solvent, surfactant, organic acid, inorganic acid, base, silane, amine, phosphate, phosphonate, defoamer, stabilizer, wetting agent, buffer, corrosion inhibitor, hydrophobic agent
  • the coating solution and/or rinsing composition may include ethanol, 3 : 1 ethanol: toluene mixture, or 9: 1 ethanol: water.
  • the ethanol toluene and/or ethanol water ratio may be varied as appropriate among any range from 10: 1 to 1 : 10, and any value or subrange therebetween, including ratios of 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, and , 1:10.
  • the coated surface may be dried or cured at a temperature ranging from 20 to 120 0 C. This range includes all values and subranges therebetween, including 20, 25, 30, 35, 40, 50, 60, 70, 80,
  • the drying or curing time for the adherent layer may range from 5 seconds to 2 hour or longer. This range includes all values and subranges therebetween, including 5, 6, 7, 8, 9, 10, 20, 30,
  • one or more additional steps may be carried out prior to contacting the adherent layer with the polymer to form the functional layer. Examples of these include heating the adherent layer, removing an excess portion of the coating solution and/or any rinsing compositions from the adherent layer, contacting the adherent layer with an additional rinsing composition, drying the adherent layer, curing the adherent layer, or a combination thereof.
  • the functional layer may be applied to the adherent layer by dip coating, immersion, roll- coating, squeegeeing, spraying, brushing, vapor deposition, electrophoretic deposition (electrodeposition), doctor blade, polymerization from solution, extruding, contact, or any combination thereof.
  • the adherent layer After contacting the adherent layer with the polymer, one or more steps may be carried out such as curing the polymer, drying the polymer, heating the polymer, or a combination thereof.
  • the polymer may be dried or cured at a temperature ranging from 20 to 200 0 C. This range includes all values and subranges therebetween, including 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, and 200 0 C, and any combination thereof .
  • the adherent and/or functional layer may be cured by ramping an oven from room temperature to 170 0 C at 27minute. The article may be held at that temperature for 90 minutes, then cooled slowly to room temperature.
  • the drying or curing time for the functional layer may range from 30 seconds to 48 hours or longer. This range includes all values and subranges therebetween, including 30, 40, 50, 60 seconds, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 90 minutes, 2, 3, 4, 5, 6, 12, 18, 20, 36, 48 hours, and any combination thereof.
  • the article of the present invention may be connected to at least one of a heat source, electronic component, or combination thereof, to form a device.
  • the article may be suitable as a heat sink or in other thermally conductive applications.
  • Other devices of the present invention include, for example, electronic circuitry, semiconductor chips, insulated electrical wires, and the like.
  • the article may be contacted to the heat source or electronic component using the functional layer or organophosphonate adherent layer as an adhesive.
  • a heat source may be in thermal contact with the substrate, while an electronic component may be in electrical contact with the substrate.
  • the surface of a copper foil is cleaned with 5% H 2 SO 4 , rinsed with DI water, then dried.
  • the thus cleaned copper foil may then be dipped into a 0.1 mM solution of a coating composition, which includes 1 l-acetoxyundecylphosphonic acid in 2-butoxyethanol ("CRG 270") for a time of 10 seconds to 1 minute.
  • the foil is removed from the composition and allowed to dry by hanging at room temperature (25 0 C) for about 2-3 minutes.
  • a curing step of heating at 120 0 C for 5 minutes may be performed.
  • a heat treatment of the organophosphonate may be carried out to better ensure that the reaction of the phosphonic acid and the copper surface is complete.
  • An optional rinsing step with an appropriate solvent may be performed, after which the coated foil is allowed to dry.
  • the copper foil having a surface coated with the adherent layer is thus obtained.
  • An epoxy polymer functional layer is then coated onto the adherent layer and allowed to cure.
  • a 1 mM solution of phosphonic acid was prepared in a solution of ethanol (for aniline phosphonic acid, bisphosphonate, olefin terminated phosphonic acid), 3:1 ethanol: toluene mixture
  • the copper surfaces were cleaned and sonicated in ethanol for 30 minutes, dried in an oven for 30 minutes and dipped into and removed from the appropriate solution for a period of two minutes. Once removed, surfaces were heated with direct heat (from 6 inch distance) with a heat gun. The surfaces were then rinsed and sonicated in the same solvent used to deposit the solution.
  • Peaks at 2918 cm “1 and 2845 cm “1 indicated the presence of an alkyl chain that persisted upon continued rinsing and sonication with alcohol, toluene and water.
  • the present invention may be embodied in many different forms, and several embodiments are described herein in detail. It is understood, however, that the embodiments described herein are for illustrative purposes and are not intended to be limiting unless otherwise specified. It is also understood that obvious changes may be made without departing from or exceeding the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention provides an article compπsmg a substrate having a surface and comprising electrodeposited copper foil or copper alloy foil, an adherent layer serving to promote adhesion, comprising at least one organophosphonate or salt thereof covalently bound to the surface, and a functional layer, comprising at least one polymer bound to the adherent layer. The present invention further provides devices compπsing a heat source or electronic component and the article described above, wherein the heat source is in thermal contact with the substrate and the electronic component is in electπcal contact with the substrate. Also provided is a method of producing the above-described article.

Description

COMPOSITE STRUCTURE WITH ORGANOPHOSPHONATE ADHERENT LAYER AND METHOD OF PREPARING
FIELD OF THE INVENTION
[0001] The present invention relates to multi-layer articles comprising a substrate, an organophosphonate adherent layer, and a functional layer, and methods of preparing them.
BACKGROUND OF THE INVENTION
[0002] The application of polymeric coatings and films to metal substrates has been used in many technologies and products. The automotive, building and electronics industries are just a few representative fields where coatings and films are applied to metals to form composite articles that may be used in the fabrication of commercial products.
[0003] Coatings are typically applied to substrates in order to provide thermal and/or electrical conductivity or insulation, protection from corrosion, structural integrity, and aesthetic appeal, among other advantages.
[0004] Initial and prolonged adhesion of the coating to the substrate can be a concern, depending on the respective natures of the substrate and coating, as well as the conditions to which the final product will be subjected during use. Steel and copper alloy substrates are commonly employed in the automotive and electronics industries respectively, with various polymeric coatings and films applied thereto. In the past, chromium-containing coatings have been used on these substrates for corrosion protection and adhesion promotion. Although chromium-containing coatings provide excellent corrosion protection, they are toxic and present waste disposal problems. Therefore, there is a need for chromium-free treatment solutions for treating metal substrates in conjunction with the subsequent application of a polymeric coating. The treatment solution should provide corrosion resistance and maintain substrate adhesion to the polymer.
[0005] It would be desirable to provide a multi-layer coated article that demonstrates corrosion resistance and adhesion while avoiding the toxicity drawbacks of the prior art.
SUMMARY OF THE INVENTION [0006] The present invention provides an article comprising: a substrate having a surface and comprising electrodeposited copper foil or copper alloy foil; an adherent layer serving to promote adhesion, comprising at least one organophosphonate or salt thereof covalently bound to the surface; and a functional layer, comprising at least one polymer bound to the adherent layer. The present invention further provides devices comprising a heat source or electronic component and the article described above, wherein the heat source is in thermal contact with the substrate and the electronic component is in electrical contact with the substrate. [0007] Also provided is a method of producing the above-described article, comprising: a) providing a substrate having a surface and comprising electrodeposited copper foil or copper alloy foil; b) contacting the surface of the substrate with a composition comprising at least one phosphorous acid moiety selected from the group consisting of organophosphonic acid, phosphonic acid, conjugate base thereof, salt thereof, and a combination thereof, to form an adherent layer comprising at least one organophosphonate or salt thereof covalently bound to the surface; c) contacting the adherent layer with at least one polymer, to covalently bind the polymer to the adherent layer and form a functional layer; and optionally d) after contacting the adherent layer with the polymer, one or more steps selected from the group consisting of curing the polymer, drying the polymer, heating the polymer, and a combination thereof.
DETAILED DESCRIPTION OF THE VARIOUS EMBODIMENTS
[0008] The substrate used to prepare the articles of the present invention have a surface and may, for example, comprise copper foil or copper alloy foil. The copper or copper alloy may be deposited onto a manufacturing surface and then removed to form a free foil. Alternatively, the copper or copper alloy may be deposited onto a core material to form a multi-layer or composite substrate. Suitable substrates to be used as the core are any electrically conductive materials. For example, suitable metals include copper foil, iron-nickel (Fe-Ni) alloys, and combinations thereof. A particularly suitable iron-nickel alloy is Invar, (trademark owned by Imphy S. A., 168 Rue de Rivoli, Paris, France) comprising approximately 64 weight percent iron and 36 weight percent nickel. This alloy has a low coefficient of thermal expansion. When a nickel-iron alloy is used as the electrically conductive core, a layer of copper metal is typically applied to all surfaces of the electrically conductive core to ensure optimum conductivity. The layer of copper metal may be applied by conventional means, such as electroplating or metal vapor deposition. The layer of copper often has a thickness of from 1 to 8 microns.
[0009] The surface of the substrate may be substantially planar, curved, uniform, non-uniform, or any combination thereof.
[0010] The metal substrate may be smooth, for example, atomically smooth, or it may be rough, for example having a roughness on a micron scale, or anywhere in between. In certain embodiments of the present invention, the surface of the substrate is chemically or mechanically roughened. Surface roughening may be achieved by several methods. The electrodeposited copper foils can be electroformed with a rough surface. On top of this rough surface further roughening is carried out by applying a high surface area treatment. These treatments may be a copper deposited electrolytically in nodular or powder form, or a copper oxide which grows nodular or dendritic, among others. Often times the rolled copper foil has mechanical roughness imparted to it during rolling or by subsequent abrasion. Rolled foils may also be treated with surface area increasing nodular copper or copper oxide. The surface roughness, Ra, may suitably range from 0.01 to 5 μm. This range includes all values and subranges therebetween, including 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4,
5 μm, and any combination thereof.
[0011] The metal substrate may be in any form such as rolled, cast, extruded, forged, profiled, sheet stock, patterned, stamped, strip, wheel, parts for aircraft industry, for apparatuses, for automobile industry, for electronic industry, for beverage and other food containers, for construction or for engineering.
[0012] The metal substrate may be structural, insulating, semi-insulating, electrically conductive, semi-conductive, thermally conductive, thermally insulating, radiation absorbing, radiation reflecting, or any combination thereof.
[0013] The metal substrate may have a thickness of 5 mm or less. This range includes all values and subranges therebetween, including 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08,
0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01 mm or less, and any combination thereof. [0014] The dimension of the substrate may be suitably selected as appropriate. The substrate can have any dimension, having widths and/or lengths, for example, independently ranging from 1 mm to 1000 mm or larger. This range includes all values and subranges therebetween, including 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 25, 50, 75, 100, 250, 500, 750, 1000 mm, and any combination thereof. [0015] As noted above, the substrate may comprise an alloy of copper, or oxide thereof, and at least one other metal selected from the group including silver, gold, nickel, palladium, platinum, zinc, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, ruthenium, osmium, cobalt, zinc, cadmium, aluminum, tin, lead, magnesium, indium, arsenic, antimony, gallium, germanium, bismuth, selenium, tellurium, rhodium, iridium, thallium, silicon, rhenium, scandium, yttrium, oxide thereof, and combination thereof.
[0016] The substrate surface may include one or more of copper, oxide thereof, salt thereof, halide thereof, sulfate thereof, phosphate thereof, hydroxide thereof, chalcogenide thereof, alkoxide thereof, nitrate thereof, fluoride thereof, chloride thereof, bromide thereof, iodide thereof, sulfide thereof, or a combination thereof.
[0017] The substrate surface may include one or more of copper, silver, gold, nickel, palladium, platinum, zinc, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, ruthenium, osmium, cobalt, zinc, cadmium, aluminum, tin, lead, oxide thereof, halide thereof, sulfate thereof, phosphate thereof, hydroxide thereof, chalcogenide thereof, alkoxide thereof, nitrate thereof, fluoride thereof, chloride thereof, bromide thereof, iodide thereof, sulfide thereof, or a combination thereof.
[0018] The surface may include one or more of NiCr, titanium alkoxide, zirconium alkoxide, ZnO, TiO2, Fe2O3, Al2O3, SnO2, Cr2O3, or a combination thereof.
[0019] The organophosphonate used in the adherent layer of the articles of the present invention may be derived from an organophosphonic acid moiety having the formula:
Figure imgf000005_0001
or conjugate base thereof, or salt thereof; wherein R is a Ci_4o branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof; wherein R' is hydrogen or a C1-4O branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof; and wherein R" is hydrogen or a C1-4O branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof.
[0020] The organophosphonic acid moiety may be a substituted or unsubstituted, branched or unbranched, saturated or unsaturated organophosphonic acid or salt thereof. Some examples of these include alkylphosphonic acid, perfluoroalkylphosphonic acid, hydroxyalkylphosphonic acid, vinylalkylphosphonic acid, phosphonoalkylphosphonic acid, carboxyalkyphosphonic acid, sulfonoalkylphosphonic acid, aminoalkylphosphonic acid, amidoalkylphosphonic acid, siloxyalkylphosphonic acid, alkoxyalkylphosphonic acid, allylalkyl-aryl phosphonic acid, arylalkylphosphonic acid, aldehydealkylphosphonic acid, trifluoromethylalkylphosphonic acid, thioalkylphosphonic acid, epoxyalkylphosphonic acid, nitroalkylphosphonic acid, branched C3_4o phosphonic acid, unbranched C1-4O phosphonic acid, substituted C1-4O phosphonic acid, unsubstituted Ci_4o phosphonic acid, saturated Ci_4o phosphonic acid, unsaturated C2_4o phosphonic acid, aromatic C5_4o phosphonic acid, aliphatic C1-4O phosphonic acid, cyclic C3_4o phosphonic acid, C2-4o phosphonic acid having one or more carbons substituted by S, C2_4o phosphonic acid having one or more carbons substituted by N, C2_4o phosphonic acid having one or more carbons substituted by O, C2_4o phosphonic acid having one or more carbons substituted by P, Ci_4o phosphonic acid having one or more carbons substituted by a combination of two or more S, N, O, P, salt thereof, or a combination thereof.
[0021] Other examples of the organophosphonic acid moiety include 11-hydroxyundecylphosphonic acid, 11-acetoxyundecylphosphonic acid, 1-acetoxyundecylphosphonic acid, undec-11- enephosphonic acid, p-aminobenzylphosphonic acid, p-nitrobenzylphosphonic acid, 4- mercaptobutylphosphonic acid, butane- 1,4-bisphosphonic acid, but-2-ene-l,4,-bisphosphonic acid, o- phenolphosphonic acid, m-phenolphosphonic acid, p-phenolphosphonic acid, 2 methoxy-4-prop-2- enylphenol-6-phosphonic acid, 1-phosphonic acid-12-mercaptododecane, 1-phosphonic acid-12-(N- ethylamino)dodecane, 1-phosphonic acid-12-dodecene, p-xylylene diphosphonic acid, 1,10- decanediphosphonic acid, 1,12-dodecanediphosphonic acid, 1,14-tetradecanediphosphonic acid, 1- phosphonic acid-12-hydroxydodecane, 1-phosphonic acid-12-(N-ethylamino)dodecane, 1- phosphonic acid-12-dodecene, 1 -phosphonic acid-12-mercaptododecane, 1,10-decanediphosphonic acid, 1,12-dodecanediphosphonic acid, 1,14-tetradecanediphosphonic acid, p,p'- biphenyldiphosphonic acid, 1-phosphonic acid-12-acryloyldodecane, 1,8-octanediphosphonic acid, 1,6-hexanediphosphonic acid, 1,4-butanediphosphonic acid, 1,8-octanediphosphonic acid, 1,6- hexanediphosphonic acid, 1,4-butanediphosphonic acid, aminetrimethyleneposphonic acid, ethylenediaminetetramethylenephosphonic acid, hexamethylenediaminetetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid, 2-phosphonobutane-l,2,4-tricarboxylic acid, or a combination thereof. [0022] The organophosphonate may have one of the following formulas:
Figure imgf000007_0001
Figure imgf000007_0002
or salt thereof; wherein R is branched or unbranched, substituted or unsubstituted, saturated or unsaturated, aromatic, cyclic, or aliphatic Ci_4o group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof; wherein R" is hydrogen or a Ci_4o branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof; wherein a is a covalent bond to the surface; and wherein b is an electron pair or a bond to at least one of the surface, an organophosphonate, an organophosphonic acid, aphosphonate, aphosphonic acid, a metal, an ion, a neighboring molecule, or a combination thereof.
[0023] The organophosphonate may be a substituted or unsubstituted, branched or unbranched, saturated or unsaturated organophosphonate or salt thereof. Examples of these include alkylphosphonate, perfluoroalkylphosphonate, hydroxyalkylphosphonate, vinylalkylphosphonate, phosphonoalkylphosphonate, carboxyalkyphosphonate, sulfonoalkylphosphonate, aminoalkylphosphonate, amidoalkylphosphonate, siloxyalkylphosphonate, alkoxyalkylphosphonate, allylalkyl-aryl phosphonate, arylalkylphosphonate, aldehydealkylphosphonate, trifluoromethylalkylphosphonate, thioalkylphosphonate, epoxyalkylphosphonate, nitroalkylphosphonate, branched C3_4o phosphonate, unbranched C1-4O phosphonate, substituted C1-4O phosphonate, unsubstituted Ci_4o phosphonate, saturated Ci_4o phosphonate, unsaturated C2_4o phosphonate, aromatic Cs_4o phosphonate, aliphatic C1-4O phosphonate, cyclic C3_4o phosphonate, C2-4o phosphonate having one or more carbons substituted by S, C2_4o phosphonate having one or more carbons substituted by N, C2_4o phosphonate having one or more carbons substituted by O, C2_4o phosphonate having one or more carbons substituted by P, Ci_4o phosphonate having one or more carbons substituted by a combination of two or more S, N, O, P, salt thereof, or a combination thereof.
[0024] The adherent layer may also include at least one phosphorous acid moiety such as organophosphonic acid, phosphonic acid, salt thereof, conjugate base thereof, metal oxide thereof, or a combination thereof. [0025] In one embodiment, the phosphorous acid moiety has the formula:
Figure imgf000009_0001
wherein R, R', R" are each independently H or a Ci-40 branched or unbranched, substituted or unsubstituted, saturated or unsaturated, aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof; or salt thereof, or conjugate base thereof, or metal oxide thereof.
[0026] By conjugate base it is meant the anion that is formed via loss of one or more protons. [0027] By salt it is meant the compound formed from a conjugate base and one or more non-proton counterions . Some examples of counterions include those of sodium, potassium, calcium, ammonia, triethylammonia, trimethylammonia, EDTA, zirconium, magnesium, and the like. Combinations of counterions are possible.
[0028] By metal oxide it is meant the compound having one or more metal-oxygen bonds. One example includes a phosphonic acid metal ester having a P-O-M bond wherein M is a metal. [0029] The aromatic group may be a C5- C40 aromatic group in which one or more carbons may be independently and optionally replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof. This range includes all values and subranges therebetween, including C5, C6, C7, C8, C9, Cio, C11, C12, C13, C14, Ci5, C16, C17, C18, C19, C2o, C21, C22, C23, C24, C25, C26, C27, C28, C29, C3o, C3i, C32, C33, C34, C35, C36, C37, C38, C39, C4O- It may be substituted or unsubstituted, branched or unbranched. It may be monocyclic or a plurality of rings.
[0030] The cyclic group may be a C3-C4O cyclic group in which in which one or more carbons may be independently and optionally replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof. This range includes all values and subranges therebetween, including C5, C6, C7, C8, C9, Cio, C11, C12, Ci3, C14, Ci5, C16, Ci7, C18, C19, C2o, C21, C22, C23, C24, C25, C26, C27, C28, C29, C3o, C3i, C32, C33, C34, C35, C36, C37, C38, C39, C4O- It may be substituted or unsubstituted, saturated or unsaturated, branched or unbranched. It may be monocyclic or a plurality of cyclic rings.
[0031] The aliphatic group may be a Ci_40 aliphatic group in which one or more carbons may be independently and optionally replaced with one or more heteroatoms such as S, N, O, P, or a combination thereof. This range includes all values and subranges therebetween, including C1, C2,
C3, C4, C5, C6, C7, C8, C9, Cio, C11, C12, C13, Ci4, C15, Ci6, Ci7, C18, C19, C20, C21, C22, C23, C24, C25,
C26, C27, C28, C29, C30, C3i, C32, C33, C34, C35, C36, C37, C38, C39, C40 aliphatic group. It may be branched or unbranched, substituted or unsubstituted, saturated or unsaturated.
[0032] If substituted, the C5- C4o aromatic group, C3-C4O cyclic group, and/or Ci_4o aliphatic group may be independently substituted with one or more substituents such as hydroxyl, halo, bromo, chloro, iodo, fluoro, — OR', — NR R", — NR'COR", — CONR'R", — CONR , — COOR , — OCOR ,
—COR , -SR , — SO2R , — SO3R , — SO2NR , -SOR , -N3, -CN, -NC, -SH, -NO2, -NH2,
— PR'2, — (O)PR'R', — PO3R R , — OPO3R R", -PO2, (CI-C20) alkyl, phenyl, (C3-C20) cycloalkyl,
(Ci-C20) alkoxy, (C3-C25) heteroaryl, (C3-C25) heterocyclyl, (C2-C20) alkenyl, (C4-C20) cycloalkenyl,
(C2-C20) alkynyl, (C6-C20) cycloalkynyl, (C5-C25) aryl, perhalo (Ci-C20) alkyl, salt thereof, or a combination thereof. The substituents may be branched or unbranched or saturated or unsaturated as appropriate.
[0033] If unsaturated, the C5- C40 aromatic group, C3-C40 cyclic group and/or C1-4O aliphatic group and/or their substituents may contain one or more double bonds, triple bonds, sites of conjugation, or combinations thereof.
[0034] The adherent layer serves to promote adhesion between the substrate and the functional layer, and may be a monolayer, bilayer, or combination thereof. It may be mixed monolayer, mixed bilayer, or combination thereof. By "mixed" is meant that more than one organophosphonate compound is used.
[0035] The adherent layer may be a self-assembled layer. For example, the organophosphonate compounds and/or the organophosphonate moiety from which they may be derived form self assembling molecules which organize themselves parallel or substantially parallel one to one another. The molecules in the adherent layer may be perpendicular or substantially perpendicular to the surface, or they may be arranged at some other angle relative to the surface. The molecules may not be so organized in the adherent layer, however. The adherent layer may be uniform or may be a random distribution of islands of molecules. The entire surface or a portion of the surface may be covered by the adherent layer. Omega- functional organophosphonic acids are particularly suitable in the formation of self-assembled layers.
[0036] The phosphorous acid moiety may be bonded to the surface or not bonded to the surface; i. e., the phosphorous acid functional group may or may not be reacted with the substrate surface. A second functional group such as hydroxyl, amino, thio, carboxyl, mercapto, etc., that is integral to the organophosphonate molecule may be reacted with the substrate surface, leaving the phosphorous acid moiety free to react with the subsequently applied functional layer. If bonded to the substrate surface, the phosphorous acid moiety may be bonded to the surface with a bond such as a covalent bond, ionic bond, coordination, Van der Waals interaction, chemisorption, physisorption, or a combination thereof.
[0037] The adherent layer may have a thickness ranging from about 0.5 nm to 5000 nm. This range includes all values and subranges therebetween, including 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000 nm, and any combination thereof.
[0038] The functional layer of the article, comprising at least one polymer bound to the adherent layer, serves at least one physical function in the article, for example, thermal conductivity or insulation, electrical conductivity or insulation, and/or corrosion protection. The polymer in the functional layer may be a thermoplastic, thermoset, copolymer thereof, or a combination thereof, for example.
[0039] Some examples of the polymer include elastomer, epoxy (polyepoxide), Bisphenol-A epoxy, polyester, polycarbonate, polyphenol, polymercaptan, polyene, polyolefin, polypropylene, polyethylene, polybutylene, polyamide, polyether, polythiophene, polypyrrole, polyimide, polysulfone, polybenzimidazole, polybenzoxazole, poly(p-phenylene), polyquinoline, polyquinoxaline, polysulfide, poly(p-xylylene), polysiloxane, polyurethane, polyphosphazine, alkyd, acrylic, polyvinyl chloride, polystyrene, polyvinyl acetate, polyvinyl alcohol, copolymer thereof, or a combination thereof. [0040] The functional layer may suitably include one or more of a dielectric polymer, conducting polymer, semiconducting polymer, thermally conductive polymer, thermally insulating polymer, light emitting polymer, adhesive polymer, minimally adhesive polymer, anticorrosive polymer, antifouling polymer, radiation-reflecting polymer, soluble polymer, photodegradable polymer, photocuring polymer, photoresist polymer, copolymer thereof, a polyepoxide coating, a polymer-impregnated composite, such as an epoxy-impregnated fiberglass, carbon fiber, or silica composite layer, or combination thereof as appropriate.
[0041] One or more polymers of the functional layer may be bound to the adherent layer with a bond such as a covalent bond, ionic bond, coordination, Van der Waals interaction, chemisorption, physisorption, or a combination thereof. The organophosphonates should be chosen to ensure bonding of the functional polymer to the surface through the organophosphonate linker, and for best results it is important to consider the necessary functional groups to ensure bonding. In one embodiment, a plurality of polymers is thus bound to the adherent layer. In one embodiment, one or more of the functional layer polymers is bound to the organophosphonate.
[0042] The functional layer may have a thickness ranging from about 10 nm to 5 mm. This range includes all values and subranges therebetween, including 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 nm, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 40, 60, 80, 100, 200, 400, 600, 800 μm, 1, 2, 3, 4, 5 mm, and any combination thereof.
[0043] In one embodiment, the functional layer contains less than about 0.1 wt% of organophosphonate, organophosphonic acid, phosphonic acid, phosphonate, or a mixture thereof, based on the weight of the functional layer. This range includes all values and subranges therebetween, including less than about 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01 wt. % or less, and any combination thereof.
[0044] In accordance with the present invention, a method for producing an article as described above comprises: a) providing a substrate having a surface and comprising electrodepo sited copper foil or copper alloy foil; b) contacting the surface of the substrate with a composition comprising at least one phosphorous acid moiety selected from the group consisting of organophosphonic acid, phosphonic acid, conjugate base thereof, salt thereof, and a combination thereof, to form an adherent layer comprising at least one organophosphonate or salt thereof covalently bound to the surface; c) contacting the adherent layer with at least one polymer, to covalently bind the polymer to the adherent layer and form a functional layer; and optionally d) after contacting the adherent layer with the polymer, one or more steps selected from the group consisting of curing the polymer, drying the polymer, heating the polymer, and a combination thereof. Multiple-layered articles may be prepared as desired in accordance with the present invention by repeating the contacting steps b) and c) on a second surface of the substrate, and/or by contacting the functional layer with a composition comprising at least one phosphorous acid moiety to form an additional adherent layer for subsequent attachment of additional articles, substrates, or polymeric functional layers.
[0045] The surface of the substrate may be cleaned and/or degreased prior to applying the adherent layer. Some examples of surface cleaning include contacting the surface with alkaline solution, solvent, acidic solution, or any combination thereof. The surface may be cleaned with H2SO4 solution. The surface may be pickled prior to forming the adherent layer.
[0046] To prepare the adherent layer, the substrate surface may be contacted with a coating solution containing the organophosphonic acid moiety by dipping, immersing, roll-coating, squeegeeing, vapor deposition, brushing, spraying, or any combination thereof.
[0047] The coating solution may contain the phosphorous acid moiety in an amount ranging from
0.01 mmol to 10 mmol. This range includes all values and subranges therebetween, including 0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10 mmol, and any combination thereof. The coating solution, and hence the resulting adherent layer formed on the substrate, is essentially free of chromium.
[0048] The surface may be contacted with the coating solution for a time ranging from 1 second to 1 hour. This range includes all values and subranges therebetween, including 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 20, 30, 40, 50, 60 seconds, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60 minutes, and any combination thereof.
[0049] The surface may be contacted with the coating solution at a temperature ranging from 5 to 60
0C. This range includes all values and subranges therebetween, including 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60 0C and any combination thereof. The surface may be contacted with one or more coating solutions, in any order, or repeated as desired.
[0050] The coated surface may be contacted with one or more rinsing compositions containing solvents as appropriate, in any order, or repeated as desired.
[0051] The coating solution and/or, if desired, the rinsing composition, may independently include at least one selected from the group including water, ethanol, methanol, propanol, butanol, isopropanol, isobutanol, acetic acid, tetrahydrofuran, alcohol, acetone, dioxane, tetrahydrofuran, glycol ether, n-propyl glycol ether, 2-(2-ethoxyethoxy)ethanol, 2-butoxyether, monoalkoxy glycol ether, 2-butoxyethanol, DOWANOL™, fluorinated solvent, aliphatic hydrocarbon, ether, ester, dimethyl sulfonic acid, toluene, solvent, co-solvent, polar solvent, non-polar solvent, surfactant, organic acid, inorganic acid, base, silane, amine, phosphate, phosphonate, defoamer, stabilizer, wetting agent, buffer, corrosion inhibitor, hydrophobic agent, and a combination thereof. If desired, only the phosphorous acid moiety and a solvent may be present in the coating solution.
[0052] In one embodiment, the coating solution and/or rinsing composition may include ethanol, 3 : 1 ethanol: toluene mixture, or 9: 1 ethanol: water. The ethanol toluene and/or ethanol water ratio may be varied as appropriate among any range from 10: 1 to 1 : 10, and any value or subrange therebetween, including ratios of 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, and , 1:10.
[0053] The coated surface may be dried or cured at a temperature ranging from 20 to 1200C. This range includes all values and subranges therebetween, including 20, 25, 30, 35, 40, 50, 60, 70, 80,
90, 100, 110, 120 0C, and any combination thereof.
[0054] The drying or curing time for the adherent layer may range from 5 seconds to 2 hour or longer. This range includes all values and subranges therebetween, including 5, 6, 7, 8, 9, 10, 20, 30,
40, 50, 60 seconds, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 90, and 120 minutes, and any combination thereof.
[0055] Prior to contacting the adherent layer with the polymer to form the functional layer, one or more additional steps may be carried out. Examples of these include heating the adherent layer, removing an excess portion of the coating solution and/or any rinsing compositions from the adherent layer, contacting the adherent layer with an additional rinsing composition, drying the adherent layer, curing the adherent layer, or a combination thereof.
[0056] The functional layer may be applied to the adherent layer by dip coating, immersion, roll- coating, squeegeeing, spraying, brushing, vapor deposition, electrophoretic deposition (electrodeposition), doctor blade, polymerization from solution, extruding, contact, or any combination thereof.
[0057] After contacting the adherent layer with the polymer, one or more steps may be carried out such as curing the polymer, drying the polymer, heating the polymer, or a combination thereof. [0058] If desired, the polymer may be dried or cured at a temperature ranging from 20 to 200 0C. This range includes all values and subranges therebetween, including 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, and 2000C, and any combination thereof . [0059] In one embodiment, the adherent and/or functional layer may be cured by ramping an oven from room temperature to 170 0C at 27minute. The article may be held at that temperature for 90 minutes, then cooled slowly to room temperature.
[0060] The drying or curing time for the functional layer may range from 30 seconds to 48 hours or longer. This range includes all values and subranges therebetween, including 30, 40, 50, 60 seconds, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 90 minutes, 2, 3, 4, 5, 6, 12, 18, 20, 36, 48 hours, and any combination thereof.
[0061] A portion of the polymer, adherent layer, or both may be removed as appropriate. [0062] The article of the present invention may be connected to at least one of a heat source, electronic component, or combination thereof, to form a device. For example, the article may be suitable as a heat sink or in other thermally conductive applications. Other devices of the present invention include, for example, electronic circuitry, semiconductor chips, insulated electrical wires, and the like. The article may be contacted to the heat source or electronic component using the functional layer or organophosphonate adherent layer as an adhesive. A heat source may be in thermal contact with the substrate, while an electronic component may be in electrical contact with the substrate.
[0063] In one embodiment, the surface of a copper foil is cleaned with 5% H2SO4, rinsed with DI water, then dried. The thus cleaned copper foil may then be dipped into a 0.1 mM solution of a coating composition, which includes 1 l-acetoxyundecylphosphonic acid in 2-butoxyethanol ("CRG 270") for a time of 10 seconds to 1 minute. The foil is removed from the composition and allowed to dry by hanging at room temperature (250C) for about 2-3 minutes. A curing step of heating at 120 0C for 5 minutes may be performed. A heat treatment of the organophosphonate may be carried out to better ensure that the reaction of the phosphonic acid and the copper surface is complete. An optional rinsing step with an appropriate solvent may be performed, after which the coated foil is allowed to dry. The copper foil having a surface coated with the adherent layer is thus obtained. An epoxy polymer functional layer is then coated onto the adherent layer and allowed to cure. [0064] The values and subranges cited herein are set out for illustration purposes only, and are not intended to limit the points within the range unless otherwise specified.
EXAMPLES
[0065] The following examples are provided for purposes of illustration only, and are not intended to be limiting.
Surface Preparation:
[0066] A 1 mM solution of phosphonic acid was prepared in a solution of ethanol (for aniline phosphonic acid, bisphosphonate, olefin terminated phosphonic acid), 3:1 ethanol: toluene mixture
(for octadecyl phosphonic acid (ODPA)), 9:1 ethanol:water (for fluorophosphonic acid).
[0067] The copper surfaces were cleaned and sonicated in ethanol for 30 minutes, dried in an oven for 30 minutes and dipped into and removed from the appropriate solution for a period of two minutes. Once removed, surfaces were heated with direct heat (from 6 inch distance) with a heat gun. The surfaces were then rinsed and sonicated in the same solvent used to deposit the solution.
[0068] For surfaces to be adhesion tested, a small square of epoxy was cut and placed between two coated coupons of copper. Once the epoxy was placed and aligned between the coupons in a vise, the samples were then heat cured. The oven ramping temperature was 27minute from room temperature to 170 0C. Samples were held at 170 0C for 90 minutes, then cooled slowly to room temperature.
Interfacial Adhesion of Copper: [0069] Data was conducted by adhering two coated copper surfaces joined together with Cytec Fiberite Epoxy FM 1000. The ASTM Test 1044 was conducted according to the stated protocol within this procedural document, the entire contents of which are hereby incorporated by reference. The table below (Table 1) indicates the results of this test.
Table 1
Substrate Structure/Terminus Chain Strength Length (Mean)
Unmodified metal — 26.4 MPa
Phosphonate 12 48.8 MPa
Phosphonate 4 50.6 MPa (with crosslinked olefin in chain)
Aniline n/a 48.5 MPa
Olefin terminated 10 59.0 MPa
Contact Angle for Copper Surfaces:
[0070] Contact Angle was collected using a Rame Hart Model 100 Contact Angle Goniometer with
Droplmage software.
Copper, untreated 54 degrees
Copper, modified with ODPA 98 degrees
Copper, modified with C-10 chain fluorophosphonic acid 102 degrees
Copper, modified with bisphosphonate 66 degrees
Copper, modified with aniline phosphonic acid 74 degrees
Infrared data collected with Copper Surfaces:
[0071] Data collected on Perkin Elmer RXl Infrared Spectrophotometer, equipped with Diffuse Reflectance Attachment.
[0072] Peaks at 2918 cm"1 and 2845 cm"1 indicated the presence of an alkyl chain that persisted upon continued rinsing and sonication with alcohol, toluene and water. [0073] The present invention may be embodied in many different forms, and several embodiments are described herein in detail. It is understood, however, that the embodiments described herein are for illustrative purposes and are not intended to be limiting unless otherwise specified. It is also understood that obvious changes may be made without departing from or exceeding the scope of the invention.

Claims

WHAT IS CLAIMED IS:
1. An article, comprising: a substrate having a surface and comprising electrodeposited copper foil or copper alloy foil; an adherent layer, comprising at least one organophosphonate or salt thereof covalently bound to the surface; and a functional layer, comprising at least one polymer bound to the adherent layer.
2. The article of claim 1, wherein the organophosphonate is derived from an organophosphonic acid moiety having the formula:
Figure imgf000019_0001
or conjugate base thereof, or salt thereof; wherein R is a Ci_4o branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms selected from the group consisting of S, N, O, P, and a combination thereof; wherein R' is hydrogen or a Ci_4o branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms selected from the group consisting of S, N, O, P, and a combination thereof; and wherein R" is hydrogen or a Ci_4o branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms selected from the group consisting of S, N, O, P, and a combination thereof.
3. The article of claim 2, wherein the organophosphonic acid moiety is a substituted or unsubstituted, branched or unbranched, saturated or unsaturated organophosphonic acid or salt thereof, and is selected from the group consisting of alkylphosphonic acid, perfluoroalkylphosphonic acid, hydroxyalkylphosphonic acid, vinylalkylphosphonic acid, phosphonoalkylphosphonic acid, carboxyalkylphosphonic acid, sulfonoalkylphosphonic acid, aminoalkylphosphonic acid, amidoalkylphosphonic acid, siloxyalkylphosphonic acid, alkoxyalkylphosphonic acid, allylalkyl-aryl phosphonic acid, arylalkylphosphonic acid, aldehydealkylphosphonic acid, trifluoromethylalkylphosphonic acid, thioalkylphosphonic acid, epoxyalkylphosphonic acid, nitroalkylphosphonic acid, branched C3_4o phosphonic acid, unbranched Ci_4o phosphonic acid, substituted C1-4O phosphonic acid, unsubstituted C1-4O phosphonic acid, saturated C1-4O phosphonic acid, unsaturated C2_4o phosphonic acid, aromatic C5_4o phosphonic acid, aliphatic Ci_4o phosphonic acid, cyclic C3-4o phosphonic acid, C2-4o phosphonic acid having one or more carbons substituted by S, C2_4o phosphonic acid having one or more carbons substituted by N, C2_4o phosphonic acid having one or more carbons substituted by O, C2_4o phosphonic acid having one or more carbons substituted by P, Ci_4o phosphonic acid having one or more carbons substituted by a combination of two or more S, N, O, P, salt thereof, and a combination thereof.
4. The article of claim 2, wherein the organophosphonic acid moiety is selected from the group consisting of 11-hydroxyundecylphosphonic acid, 11-acetoxyundecylphosphonic acid, 1- acetoxyundecylphosphonic acid, undec- 11-enephosphonic acid, p-aminobenzylphosphonic acid, p- nitrobenzylphosphonic acid, 4-mercaptobutylphosphonic acid, butane- 1,4-bisphosphonic acid, but-2- ene-l,4,-bisphosphonic acid, o-phenolphosphonic acid, m-phenolphosphonic acid, p- phenolphosphonic acid, 2 methoxy-4-prop-2-enylphenol-6-phosphonic acid, 1-phosphonic acid- 12- mercaptododecane, 1-phosphonic acid-12-(N-ethylamino)dodecane, 1-phosphonic acid-12-dodecene, p-xylylene diphosphonic acid, 1,10-decanediphosphonic acid, 1,12-dodecanediphosphonic acid, 1,14-tetradecanediphosphonic acid, 1-phosphonic acid-12-hydroxydodecane, 1-phosphonic acid- 12- (N-ethylamino)dodecane, 1-phosphonic acid-12-dodecene, 1 -phosphonic acid- 12- mercaptododecane, 1,10-decanediphosphonic acid, 1,12-dodecanediphosphonic acid, 1,14- tetradecanediphosphonic acid, p,p'-biphenyldiphosphonic acid, 1-phosphonic acid- 12- acryloyldodecane, 1,8-octanediphosphonic acid, 1,6-hexanediphosphonic acid, 1,4- butanediphosphonic acid, 1,8-octanediphosphonic acid, 1,6-hexanediphosphonic acid, 1,4- butanediphosphonic acid, aminetrimethyleneposphonic acid, ethylenediaminetetramethylenephosphonic acid, hexamethylenediaminetetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid, 2-phosphonobutane-l,2,4-tricarboxylic acid, aniline phosphonic acid, bisphosphonic acid, olefin terminated phosphonic acid, octadecyl phosphonic acid, fluorophosphonic acid, salt thereof, and a combination thereof.
5. The article of claim 1, wherein the organophosphonate has one of the following formulas:
Figure imgf000021_0001
Figure imgf000021_0002
or salt thereof; wherein R is branched or unbranched, substituted or unsubstituted, saturated or unsaturated, aromatic, cyclic, or aliphatic Ci_4o group, optionally having one or more carbons independently replaced with one or more heteroatoms selected from the group consisting of S, N, O, P, and a combination thereof; wherein R" is hydrogen or a C1-4O branched or unbranched, substituted or unsubstituted, saturated or unsaturated aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms selected from the group consisting of S, N, O, P, and a combination thereof; wherein a is a covalent bond to the surface; and wherein b is an electron pair or a bond to at least one selected from the group consisting of the surface, an organophosphonate, an organophosphonic acid, a phosphonate, a phosphonic acid, a metal, an ion, a neighboring molecule, and a combination thereof.
6. The article of claim 5, wherein the organophosphonate is a substituted or unsubstituted, branched or unbranched, saturated or unsaturated organophosphonate or salt thereof, and is selected from the group consisting of alkylphosphonate, perfluoroalkylphosphonate, hydroxyalkylphosphonate, vinylalkylphosphonate, phosphonoalkylphosphonate, carboxyalkyphosphonate, sulfonoalkylphosphonate, aminoalkylphosphonate, amidoalkylphosphonate, siloxyalkylphosphonate, alkoxyalkylphosphonate, allylalkyl-aryl phosphonate, arylalkylphosphonate, aldehydealkylphosphonate, trifluoromethylalkylphosphonate, thioalkylphosphonate, epoxyalkylphosphonate, nitroalkylphosphonate, aniline phosphonate, bisphosphonate, olefin terminated phosphonate, octadecyl phosphonate, fluorophosphonate, branched C3_4o phosphonate, unbranched Ci_4o phosphonate, substituted Ci_4o phosphonate, unsubstituted C1-4O phosphonate, saturated C1-4O phosphonate, unsaturated C2_4o phosphonate, aromatic C5_4o phosphonate, aliphatic Ci_4o phosphonate, cyclic C3_4o phosphonate, C2-4o phosphonate having one or more carbons substituted by S, C2_4o phosphonate having one or more carbons substituted by N, C2_4o phosphonate having one or more carbons substituted by O, C2_4o phosphonate having one or more carbons substituted by P, C1-4O phosphonate having one or more carbons substituted by a combination of two or more S, N, O, P, salt thereof, and a combination thereof.
7. The article of claim 1, wherein the adherent layer further comprises at least one phosphorous acid moiety selected from the group consisting of organophosphonic acid, phosphonic acid, salt thereof, conjugate base thereof, metal oxide thereof, and a combination thereof.
8. The article of claim 7, wherein the phosphorous acid moiety has the formula:
Figure imgf000023_0001
wherein R, R', R" are each independently H or a Ci-40 branched or unbranched, substituted or unsubstituted, saturated or unsaturated, aromatic, cyclic, or aliphatic group, optionally having one or more carbons independently replaced with one or more heteroatoms selected from the group consisting of S, N, O, P, and a combination thereof; or salt thereof, or conjugate base thereof, or metal oxide thereof.
9. The article of claim 7, wherein the phosphorous acid moiety is not bonded to the surface.
10. The article of claim 7, wherein the phosphorous acid moiety is bonded to the surface.
11. The article of claim 1, wherein the substrate comprises an alloy of copper, or oxide thereof, and at least one other metal selected from the group consisting of silver, gold, nickel, palladium, platinum, zinc, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, ruthenium, osmium, cobalt, zinc, cadmium, aluminum, tin, lead, magnesium, indium, arsenic, antimony, gallium, germanium, bismuth, selenium, tellurium, rhodium, iridium, thallium, silicon, rhenium, scandium, yttrium, oxide thereof, and combinations thereof.
12. The article of claim 1 , wherein the copper or copper alloy is electrodeposited onto a core material, wherein the core material comprises an Fe-Ni foil.
13. The article of claim 1, wherein the surface of the substrate has been chemically or mechanically roughened.
14. The article of claim 1, wherein the adherent layer is essentially free of chromium.
15. The article of claim 1 , wherein the substrate surface further comprises one or more of an oxide, salt, halide, sulfate, phosphate, hydroxide, chalcogenide, alkoxide, chloride, bromide, iodide, and/or sulfide of copper.
16. The article of claim 1 , wherein the surface further comprises one or more of an oxide, halide, sulfate, phosphate, hydroxide, chalcogenide, alkoxide, chloride, bromide, iodide, and/or sulfide of copper, silver, gold, nickel, palladium, platinum, zinc, titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, ruthenium, osmium, cobalt, zinc, cadmium, aluminum, tin, and/or lead.
17. The article of claim 1, wherein the adherent layer comprises an omega-functional organophosphonic acid self-assembled monolayer.
18. The article of claim 1 , wherein the polymer in the functional layer is selected from the group consisting of elastomer, epoxy, bisphenol-A epoxy, polyester, polycarbonate, polyphenol, polymercaptan, polyene, polyolefin, polypropylene, polyethylene, polybutylene, polyamide, polyether, polythiophene, polypyrrole, polyimide, polysulfone, polybenzimidazole, polybenzoxazole, poly(p-phenylene), polyquinoline, polyquinoxaline, polysulfide, poly(p-xylylene), polysiloxane, polyurethane, polyphosphazine, alkyd, acrylic, polyvinyl chloride, polystyrene, polyvinyl acetate, polyvinyl alcohol, copolymer thereof, and a combination thereof.
19. The article of claim 1, wherein the functional layer comprises one or more of a dielectric polymer, conducting polymer, semiconducting polymer, thermally conductive polymer, thermally insulating polymer, light emitting polymer, adhesive polymer, minimally adhesive polymer, anticorrosive polymer, antifouling polymer, radiation-reflecting polymer, a polymer- impregnated fiber composite layer, or combination thereof.
20. The article of claim 1, wherein the functional layer contains less than about 0.1 percent by weight of organophosphonate, organophosphonic acid, phosphonic acid, phosphonate, or a mixture thereof, based on the weight of the functional layer.
21. A device, comprising: a heat source, a substrate having a surface and comprising electrodeposited copper foil or copper alloy foil; an adherent layer, comprising at least one organophosphonate or salt thereof covalently bound to the surface; and a functional layer, comprising at least one polymer bound to the adherent layer, wherein the heat source is in thermal contact with the substrate.
22. A device, comprising: an electronic component, a substrate having a surface and comprising electrodeposited copper foil or copper alloy foil; an adherent layer, comprising at least one organophosphonate or salt thereof covalently bound to the surface; and a functional layer, comprising at least one polymer bound to the adherent layer, wherein the electronic component is in electrical contact with the substrate.
23. A method for producing an article, comprising: a) providing a substrate having a surface and comprising electrodeposited copper foil or copper alloy foil; b) contacting the surface of the substrate with a composition comprising at least one phosphorous acid moiety selected from the group consisting of organophosphonic acid, phosphonic acid, conjugate base thereof, salt thereof, and a combination thereof, to form an adherent layer comprising at least one organophosphonate or salt thereof covalently bound to the surface; c) contacting the adherent layer with at least one polymer, to covalently bind the polymer to the adherent layer and form a functional layer; and optionally d) after contacting the adherent layer with the polymer, one or more steps selected from the group consisting of curing the polymer, drying the polymer, heating the polymer, and a combination thereof.
24. The method of claim 23, wherein step c) comprises electrophoretically depositing the polymer onto the adherent layer, wherein the functional layer that is formed comprises a dielectric layer or polyepoxide coating.
25. The method of claim 23, further comprising, prior to contacting the adherent layer with the polymer, at least one step selected from the group consisting of heating the adherent layer, removing an excess portion of the composition from the adherent layer, drying the adherent layer, curing the adherent layer, and a combination thereof.
PCT/US2007/079802 2006-09-28 2007-09-28 Composite structure with organophosphonate adherent layer and method of preparing Ceased WO2008039959A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009530615A JP2010504874A (en) 2006-09-28 2007-09-28 Composite structure with organic phosphonate adhesive layer and preparation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US82736706P 2006-09-28 2006-09-28
US60/827,367 2006-09-28
US11/862,175 2007-09-26
US11/862,175 US20080131709A1 (en) 2006-09-28 2007-09-26 Composite structure with organophosphonate adherent layer and method of preparing

Publications (2)

Publication Number Publication Date
WO2008039959A2 true WO2008039959A2 (en) 2008-04-03
WO2008039959A3 WO2008039959A3 (en) 2008-11-06

Family

ID=39230998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/079802 Ceased WO2008039959A2 (en) 2006-09-28 2007-09-28 Composite structure with organophosphonate adherent layer and method of preparing

Country Status (3)

Country Link
US (1) US20080131709A1 (en)
JP (1) JP2010504874A (en)
WO (1) WO2008039959A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503097A (en) * 2008-09-23 2012-02-02 シーメンス アクチエンゲゼルシヤフト Anchor group for monolayers of organic compounds on metals and components based on organic electronics produced therewith
JP2013505214A (en) * 2009-09-18 2013-02-14 ロックタイト (アール アンド ディー) リミテッド Phosphonate bonding composition
US9703028B2 (en) 2015-04-03 2017-07-11 Moxtek, Inc. Wire grid polarizer with phosphonate protective coating
CN106985472A (en) * 2017-03-23 2017-07-28 苏州道众机械制造有限公司 A kind of ship part composite metal product
CN107429086A (en) * 2015-04-03 2017-12-01 莫克斯泰克公司 Hydrophobicity phosphonate ester and silane chemistries material
US9995864B2 (en) 2015-04-03 2018-06-12 Moxtek, Inc. Wire grid polarizer with silane protective coating
US10054717B2 (en) 2015-04-03 2018-08-21 Moxtek, Inc. Oxidation and moisture barrier layers for wire grid polarizer
CN111225791A (en) * 2017-10-11 2020-06-02 微仙美国有限公司 Phosphonates and their use
US12286503B2 (en) 2020-10-20 2025-04-29 Merck Patent Gmbh Brush polymer terminated with phosphonate for DSA

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056994A1 (en) * 2007-08-31 2009-03-05 Kuhr Werner G Methods of Treating a Surface to Promote Metal Plating and Devices Formed
CN101842856B (en) * 2007-08-31 2013-10-09 埃托特克德国有限公司 Methods of treating a surface to promote binding of molecule(s) of interest, coatings and devices formed therefrom
CA2923361C (en) 2008-08-11 2018-10-09 Greenhill Antiballistics Corporation Composite material
DE102009037691A1 (en) * 2009-08-17 2011-03-03 Siemens Aktiengesellschaft Dielectric protective layer for a self-assembling monolayer (SAM)
CN103120037B (en) * 2010-07-06 2017-05-10 纳美仕有限公司 Method of treating copper surfaces to enhance adhesion to organic substrates used in printed circuit boards
EP2629973B1 (en) 2010-10-18 2017-08-09 Greenhill AntiBallistics Corporation Gradient nanoparticle-carbon allotrope-polymer composite material
WO2012178193A1 (en) * 2011-06-23 2012-12-27 Rok Protective Systems, Inc. Nano-based self-healing anti-corrosion coating
US10563160B2 (en) 2011-12-07 2020-02-18 The Trustees Of Princeton University Scaffolds for tissues and uses thereof
WO2017062417A1 (en) * 2015-10-05 2017-04-13 The Trustees Of Princetion University Scaffolds for neural tissue and uses thereof
US10675138B2 (en) 2011-12-07 2020-06-09 The Trustees Of Princeton University Scaffolds for soft tissue and uses thereof
US8932933B2 (en) * 2012-05-04 2015-01-13 Micron Technology, Inc. Methods of forming hydrophobic surfaces on semiconductor device structures, methods of forming semiconductor device structures, and semiconductor device structures
US9476754B2 (en) 2013-02-28 2016-10-25 Electrolab, Inc. Method and kit for treatment of components utilized in a crude oil service operation
WO2015195596A1 (en) 2014-06-18 2015-12-23 Services Petroliers Schlumberger Compositions and methods for well cementing
US9994732B1 (en) 2014-09-12 2018-06-12 Steven Martin Johnson Polysilazane and fluoroacrylate coating composition
WO2016118349A1 (en) 2015-01-21 2016-07-28 The Trustees Of Princeton University Patterning of fragile or non-planar surfaces for cell alignment
US10534120B2 (en) 2015-04-03 2020-01-14 Moxtek, Inc. Wire grid polarizer with protected wires
US10562065B1 (en) 2015-11-03 2020-02-18 Newtech Llc Systems and methods for application of polysilazane and fluoroacrylate coating compositions
WO2017137789A1 (en) 2016-02-11 2017-08-17 Services Petroliers Schlumberger Release of expansion agents for well cementing
US20210053874A1 (en) 2016-02-11 2021-02-25 Schlumberger Technology Corporation Delayed-expansion cement and cementing operations
US10584264B1 (en) 2016-02-25 2020-03-10 Newtech Llc Hydrophobic and oleophobic coating compositions
WO2017177040A1 (en) 2016-04-06 2017-10-12 Sanctioned Risk Solutions, Inc. Heat dissipation using nanoscale materials
WO2017174208A1 (en) 2016-04-08 2017-10-12 Schlumberger Technology Corporation Slurry comprising an encapsulated expansion agent for well cementing

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013904A (en) * 1959-04-13 1961-12-19 Du Pont Substrate having an organic polymer containing pentavalent phosphorus bonded thereto
BE606888A (en) * 1960-08-05 1900-01-01
DE1546786C3 (en) * 1965-06-03 1973-12-13 Kalle Ag, 6202 Wiesbaden-Biebrich Method and material for the manufacture of planographic printing plates
US3634146A (en) * 1969-09-04 1972-01-11 American Cyanamid Co Chemical treatment of metal
US3677828A (en) * 1970-07-30 1972-07-18 Olin Corp Tarnish resistant copper and copper alloys
US3770514A (en) * 1972-06-08 1973-11-06 American Cyanamid Co Chemical treatment of metal
DE2344197A1 (en) * 1973-09-01 1975-03-27 Dynamit Nobel Ag FUNCTIONAL ORGANOPHOSPHONIC ACID ESTERS AS PRESERVATIVE ADHESIONS OR COATINGS FOR METALS
US4110364A (en) * 1974-03-19 1978-08-29 Mitsubishi Gas Chemical Company, Inc. Curable resin compositions of cyanate esters
US4209487A (en) * 1975-06-02 1980-06-24 Monsanto Company Method for corrosion inhibition
US4264379A (en) * 1980-01-11 1981-04-28 Olin Corporation Process for coating copper and copper alloy
US4452650A (en) * 1980-01-11 1984-06-05 Olin Corporation Copper and copper alloy coating
US4399021A (en) * 1980-09-26 1983-08-16 American Hoechst Corporation Novel electrolytes for electrochemically treated metal plates
US4769419A (en) * 1986-12-01 1988-09-06 Dawdy Terrance H Modified structural adhesives
US5010233A (en) * 1988-11-29 1991-04-23 Amp Incorporated Self regulating temperature heater as an integral part of a printed circuit board
US5132181A (en) * 1989-08-23 1992-07-21 Aluminum Company Of America Phosphonic/phosphinic acid bonded to aluminum hydroxide layer
US5126210A (en) * 1989-08-23 1992-06-30 Aluminum Company Of America Anodic phosphonic/phosphinic acid duplex coating on valve metal surface
US5059258A (en) * 1989-08-23 1991-10-22 Aluminum Company Of America Phosphonic/phosphinic acid bonded to aluminum hydroxide layer
US5622782A (en) * 1993-04-27 1997-04-22 Gould Inc. Foil with adhesion promoting layer derived from silane mixture
EP0656958B1 (en) * 1993-06-25 1999-04-07 Zipperling Kessler & Co (GmbH & Co) Method of manufacturing metal components protected against corrosion
US6387625B1 (en) * 1995-06-27 2002-05-14 The University Of North Carolina At Chapel Hill Monolayer and electrode for detecting a label-bearing target and method of use thereof
US6127127A (en) * 1995-06-27 2000-10-03 The University Of North Carolina At Chapel Hill Monolayer and electrode for detecting a label-bearing target and method of use thereof
US6645644B1 (en) * 1996-10-17 2003-11-11 The Trustees Of Princeton University Enhanced bonding of phosphoric and phosphoric acids to oxidized substrates
US7507483B2 (en) * 1997-02-04 2009-03-24 Jeffrey Schwartz Enhanced bonding layers on native oxide surfaces
US7396594B2 (en) * 2002-06-24 2008-07-08 The Trustees Of Princeton University Carrier applied coating layers
US7569285B2 (en) * 1996-10-17 2009-08-04 The Trustees Of Princeton University Enhanced bonding layers on titanium materials
US6146767A (en) * 1996-10-17 2000-11-14 The Trustees Of Princeton University Self-assembled organic monolayers
DE19654642C2 (en) * 1996-12-28 2003-01-16 Chemetall Gmbh Process for treating metallic surfaces with an aqueous solution
US6299983B1 (en) * 1997-06-27 2001-10-09 E. I. Du Pont De Nemours And Company Derivatized metallic surfaces, composites of functionalized polymers with such metallic surfaces and processes for formation thereof
AU8395898A (en) * 1997-07-11 1999-02-08 University Of Southern California Charge generators in heterolamellar multilayer thin films
JPH11354684A (en) * 1998-06-09 1999-12-24 Nitto Denko Corp Low thermal expansion wiring board and multilayer wiring board
US6528603B1 (en) * 1999-01-13 2003-03-04 Board Of Trustees Operating Michigan State University Phosphonate copolymer and methods of use
US20040265571A1 (en) * 2003-02-11 2004-12-30 Princeton University Surface-bonded, organic acid-based mono-layers
DE10022074A1 (en) * 2000-05-06 2001-11-08 Henkel Kgaa Protective or priming layer for sheet metal, comprises inorganic compound of different metal with low phosphate ion content, electrodeposited from solution
US6632872B1 (en) * 2000-09-19 2003-10-14 3M Innovative Properties Company Adhesive compositions including self-assembling molecules, adhesives, articles, and methods
US6488990B1 (en) * 2000-10-06 2002-12-03 Chemetall Gmbh Process for providing coatings on a metallic surface
US6632508B1 (en) * 2000-10-27 2003-10-14 3M Innovative Properties Company Optical elements comprising a polyfluoropolyether surface treatment
US6660805B1 (en) * 2002-05-16 2003-12-09 Lord Corporation Two-part adhesive: part A-monomer, toughener(s), optional adhesion promotor and reducing agent; part B-epoxy resin
US6933046B1 (en) * 2002-06-12 2005-08-23 Tda Research, Inc. Releasable corrosion inhibitor compositions
US6871776B2 (en) * 2003-03-10 2005-03-29 Trucco Horacio Andres Manufacture of solid-solder-deposit PCB utilizing electrically heated wire mesh
US7005237B2 (en) * 2003-05-27 2006-02-28 North Carolina State University Method of making information storage devices by molecular photolithography
US20050112369A1 (en) * 2003-09-29 2005-05-26 Rohm And Haas Electronic Materials, L.L.C. Printed circuit board manufacture

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503097A (en) * 2008-09-23 2012-02-02 シーメンス アクチエンゲゼルシヤフト Anchor group for monolayers of organic compounds on metals and components based on organic electronics produced therewith
JP2013505214A (en) * 2009-09-18 2013-02-14 ロックタイト (アール アンド ディー) リミテッド Phosphonate bonding composition
US11513272B2 (en) 2015-04-03 2022-11-29 Moxtek, Inc. Wire grid polarizer with silane protective coating
US10761252B2 (en) 2015-04-03 2020-09-01 Moxtek, Inc. Wire grid polarizer with protective coating
CN107429086A (en) * 2015-04-03 2017-12-01 莫克斯泰克公司 Hydrophobicity phosphonate ester and silane chemistries material
US9995864B2 (en) 2015-04-03 2018-06-12 Moxtek, Inc. Wire grid polarizer with silane protective coating
US10025015B2 (en) 2015-04-03 2018-07-17 Moxtek, Inc. Wire grid polarizer with phosphonate protective coating
US10054717B2 (en) 2015-04-03 2018-08-21 Moxtek, Inc. Oxidation and moisture barrier layers for wire grid polarizer
US9703028B2 (en) 2015-04-03 2017-07-11 Moxtek, Inc. Wire grid polarizer with phosphonate protective coating
CN106985472A (en) * 2017-03-23 2017-07-28 苏州道众机械制造有限公司 A kind of ship part composite metal product
EP3694707A4 (en) * 2017-10-11 2021-06-02 Microvention, Inc. PHOSPHONATES AND THEIR USES
CN111225791B (en) * 2017-10-11 2022-04-12 微仙美国有限公司 Phosphonates and their uses
CN111225791A (en) * 2017-10-11 2020-06-02 微仙美国有限公司 Phosphonates and their use
US11674050B2 (en) 2017-10-11 2023-06-13 Microvention, Inc. Phosphonates and uses thereof
EP4375326A3 (en) * 2017-10-11 2024-07-10 Microvention, Inc. Phosphonates and uses thereof
US12227665B2 (en) 2017-10-11 2025-02-18 Microvention, Inc. Phosphonates and uses thereof
US12286503B2 (en) 2020-10-20 2025-04-29 Merck Patent Gmbh Brush polymer terminated with phosphonate for DSA

Also Published As

Publication number Publication date
WO2008039959A3 (en) 2008-11-06
JP2010504874A (en) 2010-02-18
US20080131709A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2008039959A2 (en) Composite structure with organophosphonate adherent layer and method of preparing
TWI397472B (en) The surface-treated copper foil, surface-treated copper foil with extremely thin base resin layer and method for producing the surface-treated copper foil and method for producing surface-treated copper foil with extremely thin base resin layer
KR101185997B1 (en) Chemical conversion treatment solution for steel material and chemical conversion treatment method
KR101000342B1 (en) Method for producing surface-treated copper foil and surface-treated copper foil, and surface-treated copper foil with ultra-thin primer resin layer
PT2292808T (en) Metallising pre-treatment of zinc surfaces
KR101599167B1 (en) Surface-treatment solution for zinc or zinc alloy coated steel sheet, and zinc or zinc alloy coated steel sheet and method for manufacturing the same
US20030178139A1 (en) Protective coatings for improved tarnish resistance in metal foils
TWI500814B (en) Composition for metal surface treatment, metal surface treatment method and coating method of metal material
KR20110028298A (en) Chemical treatment solution for metal structures and surface treatment method
US10550478B2 (en) Chromium-free conversion coating
JP5809351B2 (en) Surface treatment agent for autodeposition type copper and method for producing copper-containing substrate with resin film
EP2729592A1 (en) Coated steel substrate and method for making the same
Qiu et al. Modification copper surface by micron thickness film via thiol-based click reaction
Balaji et al. Recent studies on sol–gel based corrosion protection of Cu—A review
EP1133584B1 (en) Derivatized metallic surfaces, composites of functionalized polymers with such metallic surfaces and processes for formation thereof
US6299983B1 (en) Derivatized metallic surfaces, composites of functionalized polymers with such metallic surfaces and processes for formation thereof
CA2819340A1 (en) Chromium-free conversion coating
JP7455321B2 (en) Surface-treated steel sheet having a film containing reduced graphene and its manufacturing method
EP2703522B1 (en) Chromium-free conversion coating
JP3016118B2 (en) High corrosion resistant surface treated steel sheet and its manufacturing method
JPH05320931A (en) Surface-treated steel material excellent in corrosion resistance and coating property and its production
JP2025102561A (en) Surface treatment agent for copper materials
KR20110075092A (en) A metal surface treatment method using a self-assembled molecular film, a steel sheet surface-treated by the above method, and a metal surface treatment solution
JPS62267497A (en) Pustproof steel sheet for painting by cationic electrodeposition and its manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07843423

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2009530615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07843423

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)