WO2008037052A1 - Machine functioning on the principle of exploitation of centrifugal forces - Google Patents
Machine functioning on the principle of exploitation of centrifugal forces Download PDFInfo
- Publication number
- WO2008037052A1 WO2008037052A1 PCT/CA2007/000569 CA2007000569W WO2008037052A1 WO 2008037052 A1 WO2008037052 A1 WO 2008037052A1 CA 2007000569 W CA2007000569 W CA 2007000569W WO 2008037052 A1 WO2008037052 A1 WO 2008037052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- masses
- circuit
- machine
- mass
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/10—Alleged perpetua mobilia
- F03G7/104—Alleged perpetua mobilia continuously converting gravity into usable power
Definitions
- the present invention is concerned with a functioning principle for machines generating mechanical energy from centrifugal forces of masses in a closed mechanical circuit, and that is optionally maintained in a permanent state of dynamic unbalance using the falling of masses under the effect of earth's gravitational field.
- (V) is the velocity attained by the mass (M) after falling from height (h) and (g) is the acceleration of mass (M) due to the earth's gravitational field, namely 9.81 m/s ⁇ 2 (or 32.2 ft/s ⁇ 2).
- the fall of any mass in the earth's gravitational field is considered to be a state of dynamic unbalance (the sum of the external forces acting on the mass (M) during the fall is not null, i.e. not zero), which is different form any today existing machine.
- no machine can continuously generate more mechanical energy (positive gain, energetic efficiency ratio larger than one (1)) than the amount of energy input therein from outside, such as from Man.
- An advantage of the present invention is that the machine functioning on the principle of exploitation of centrifugal forces can be implemented in different ways, with different sizes for different output gains, while exploiting the centrifugal forces over at least one curved section.
- Another advantage of the present invention is that the machine, also functioning on the principle of potential energy gain, to have an energetic efficiency ratio defined by a ratio of the mechanical energy generated by the machine over the sum of all external energy inputs (including from Man) provided into the machine larger than one, is permanently maintained in a state of dynamic unbalance, while having a system for exploiting centrifugal forces.
- Another advantage of the present invention is that the machine functioning on the principle of potential energy gain can be realized in a multitude of different ways, and sizes for different output gains.
- a machine for generating mechanical energy comprising: a closed circuit rotationally driven around at least one rotationally free wheel at least temporarily by an input of external energy, a plurality of masses selectively connecting to the closed circuit to move therealong; a system for guiding the masses along the circuit to allow the masses to travel therealong; and a system for exploiting centrifugal forces of the masses located on at least one curved section of the closed circuit to add to the circuit an energy from the centrifugal forces of the masses and different than said input of external energy.
- the system for exploiting centrifugal forces of the masses allows the masses to move, typically generally freely, in a substantially radial direction when on said at least one curved section.
- the masses selectively connect to the closed circuit between a relatively upper point thereof and a relatively lower point thereof, and provide kinetic energy to the closed circuit due to transformation of potential energy of the masses while falling within the earth's gravitational field from the upper point to the lower point
- the guiding system includes a mass track adapted to allow the masses to travel from the lower point to the upper point while being disconnected from the closed circuit and using at least their own kinetic energy at the lower point
- said machine comprising: a system for disconnecting the masses from the closed circuit at a location adjacent the lower point so as to selectively maintain the closed circuit into a state of permanent dynamic unbalance; a system for connecting the masses to the closed circuit at a location adjacent the upper point so as to selectively maintain the closed circuit into the state of permanent dynamic unbalance; and said at least one curved section of the closed circuit being at least partly located between the upper point and the lower point.
- the mass track includes a substantially circular arc portion thereof extending between the lower point and the upper point.
- the mass track includes a generally semi-circular portion thereof extending between the lower point and the upper point.
- the closed circuit includes a lower portion ending at the lower point
- the mass track includes a lower track portion selectively and movably supporting the masses therealong before reaching the lower point.
- the mass track immediately follows the system for exploiting centrifugal forces of the masses and is substantially tangentially oriented relative to a trajectory of the masses exiting the system for exploiting centrifugal forces.
- the guiding system includes a subsystem for selectively retaining the masses along the closed circuit at least between the upper point and the lower point.
- the guiding system includes a plurality of mass trucks displaceable around the at least one wheel for selectively receiving the masses therein along the closed circuit between the upper point and the lower point, the retaining subsystem maintaining the masses into respective said trucks between the upper point and the lower point.
- each of said trucks includes a fixed part movable along said at least one wheel along the circuit between the upper point and the lower point, and a mobile part radially movable relative to the fixed part between a closed configuration in which the fixed and mobile parts are in proximity to one another and a deployed configuration in which the mobile part is spaced away from the fixed part.
- mobile part of the truck is selectively and freely radially movable from the closed configuration into the deployed configuration when the truck is on said at least one curved section.
- the disconnecting system includes a release mechanism to selectively disconnect the masses from the respective of said trucks adjacent the lower point.
- the closed circuit includes an upper portion starting at the upper point and ending at an upper portion endpoint, and the connecting system connects the masses to the closed circuit at a location between the upper point and the upper portion endpoint.
- the connecting system includes a mass magazine for receiving the disconnected masses from the lower point adjacent the upper point, the mass magazine temporarily containing at least one said disconnected masses therein and connecting one said at least one said disconnected masses to an empty one of said trucks between the upper point and the upper portion endpoint for each one of the disconnected masses reaching the upper point.
- the system for connecting masses recuperates at least part of the kinetic energy of the masses disconnected from the lower point once arrived into said magazine.
- the system for connecting masses allows each said mass to have at least the velocity of said circuit at the time of connection therewith using an input of work external to the circuit.
- the connecting system includes a mass delivery mechanism receiving the disconnected masses from the lower point adjacent the upper point and connecting a received one of said disconnected masses to an empty one of said trucks between the upper point and the upper portion endpoint for each one of the disconnected masses reaching the upper point.
- the release mechanism selectively operates when velocity of the masses at the lower point is equal to or larger than a predetermined value, thereby ensuring the masses have sufficient kinetic energy to reach the upper point.
- the masses are equally spaced apart from one another along the closed circuit.
- the kinetic energy provided to the closed circuit is greater that a resistant work including work consumed by friction forces of the plurality of masses in the relative respective displacement therealong and by the mass connecting system for connection of the respective said masses adjacent the upper point.
- the system for connecting masses accelerates the masses when arrived at the upper point up to a velocity generally equal to the velocity of said circuit using an input of external energy.
- the systems for disconnecting masses, for connecting masses and for exploiting centrifugal forces of masses are only activated once the circuit has reached a predetermined velocity.
- a machine for generating mechanical energy comprising: a closed circuit located around one or a plurality of rotationally free wheels with a plurality of masses being displaced therealong, said closed circuit being movably driven to reached a predetermined velocity equal to or larger than a minimum velocity using an at least temporarily maintained input of external initial energy; a system allowing the masses to be guided along their displacement along the closed circuit; and a system allowing exploitation of centrifugal forces of the masses located on at least one curved section of the closed circuit to add to the circuit an energy from the centrifugal forces of the masses and different than said input of external initial energy.
- the masses provide the closed circuit with kinetic energy due to the transformation of potential energy of the masses while falling within the earth's gravitational field, said machine including: a system allowing the masses to disconnect from the closed circuit at a lower point thereof in order to maintain the closed circuit into a state of permanent dynamic unbalance; a system allowing the masses to connect to the closed circuit at an upper point thereof; and a system allowing the masses, once disconnected from the closed circuit at the lower point, to join the closed circuit at the upper point using kinetic energy from the mass' own velocity at a time of disconnect from said closed circuit.
- the system allowing the masses to connect to the closed circuit allows the masses to reach the velocity of the circuit at the time of connection thereto with an input of external energy.
- the system allowing the masses to connect to the closed circuit includes a system allowing recuperation by the circuit of kinetic energy of the masses once arrived at the upper point.
- the shape of the circuit generates tangential reactions due to centrifugal forces so as to add positive work to its components in motion.
- the shape of the circuit allows the masses to have a quantity of energy due to centrifugal forces when disconnecting form said circuit at the lower point, in addition to the kinetic energy generated by the velocity of said circuit.
- Figure 1 is a schematic elevation view of a machine functioning on the principle of potential energy gain, without any system for exploiting centrifugal forces, in accordance with an embodiment of the present invention showing a basic closed circuit defined by four wheels and having empty trucks;
- Figure 2 is a schematic elevation view showing the circuit of Figure 1 with masses shown in situ within the trucks;
- Figure 3 is a schematic elevation view of Figure 2 with some masses removed from the trucks moving upward (from point G to point A);
- Figure 4 is a schematic elevation view of Figure 3 with an off-circuit by-pass track for the masses moving upward disconnected and away from the trucks;
- Figures 5a to 5d are schematic elevation views of other embodiments of the basic circuit configuration
- Figure 6 is a schematic elevation view of Figure 4 provided with a magazine feed for feeding the upper empty trucks with masses and receiving the masses exiting the mass track, as well as the two systems of external input work WO (at the circuit level) and, in this version, Wmag (at the level of the system for connecting masses to the circuit at its upper point A);
- Figure 7 is a schematic elevation view of Figure 4 provided with an alternate embodiment of mass delivery mechanism
- Figures 8a and 8b are schematic elevation views for explanation of the way centrifugal forces acting on masses are exploited by a system for exploiting centrifugal forces in accordance with an embodiment of the present invention
- Figures 9a and 9b are enlarged schematic elevation views showing an example of the different parts of a truck in a closed configuration and a deployed configuration, respectively;
- Figure 10 is a schematic elevation view of Figure 6 with a system for exploiting centrifugal forces of masses located just after the upper portion endpoint of the circuit;
- Figure 11 is a schematic elevation view of Figure 6 with a system for exploiting centrifugal forces of masses located just before the lower point of the circuit;
- Figure 12 is a schematic elevation view of Figure 6 with a combination the systems for exploiting centrifugal forces of masses of Figures 10 and 11.
- the machine of the present invention can have a vertically oriented component to take advantage of the potential energy of masses, although the machine can also operate in a generally horizontal plane where only the friction forces will be considered.
- the functioning principle consists in maintaining a closed mechanical circuit under motion generated by falling masses (M) due to the earth's gravitational field in a permanent state of dynamic unbalance with the exploitation of centrifugal forces and a selective input of external energy, without contradicting the energy conservation law.
- FIG. 1 to 4 there is shown a machine 10 functioning on the principle of energy gain caused by masses M falling under the influence of gravity in a closed mechanical circuit 12 that is permanently maintained in a state of dynamic unbalance.
- the closed mechanical circuit 12 is driven by an initial external energy WO and potential energy of masses M around at least one, four shown in Figures 1 to 4, rotationally free wheels R1 , R2, R3 and R4 disposed in corners of a substantially rectangular format. Any one of the wheels R1 , R2, R3, R4 could be used to recuperate the gained mechanical energy and to transfer the same to other machines (not shown) in order to transform this mechanical energy into electrical energy for example.
- the circuit 12 includes a mass guiding system that includes a truck guiding subsystem including an inner rail Ri or track on which a plurality of trucks 14 is mobile in an anti-clockwise direction as viewed in the figures.
- each truck having a mass (m), rolls on internal rails Ri, typically with bearings 16, although any other friction reducing mechanism could be considered.
- the trucks 14 are preferably equidistant and connected to one another by a flexible mechanical link 18, such as chains, as shown in Figure 1.
- the circuit 12 shown in Figure 1 is in dynamic balance, and a mass M is added to each truck 14.
- the masses M slide, on their bearings 20 or the like friction reducing mechanism, along external rails Re or tracks that form part of another subsystem of the mass guiding system for selectively retaining the masses M along the closed circuit 12, at least between the upper point A and the lower point F.
- the circuit 12 typically defines a substantially horizontal upper portion 22 extending between a relatively upper point A of the circuit and an upper portion endpoint B, and a similar substantially horizontal lower portion 24 extending between a lower portion start point E and a relatively lower point F of the circuit.
- the circuit 12 also defines a lowering portion 26 between points B and E and a raising portion 28 between points F and A. Although all the portions 22, 24, 26, 28 are shown as being substantially straight, one skilled in the art would understand that any other shape could be considered without deviating from the scope of the present invention.
- a dynamic unbalance is introduced into the circuit 12 according to the following conditions:
- the circuit 12 is turned (operated) around wheels R1 , R2, R3, R4 at an initial velocity VO, using an externally provided input energy WO.
- Mass M is disconnected, detached or released from its corresponding truck 14 (and therefore the circuit 12) adjacent lower point F via a release mechanism (such as the shape of the mass receptacles of the trucks 14 or any other mechanism) of a mass disconnecting system.
- a release mechanism such as the shape of the mass receptacles of the trucks 14 or any other mechanism
- An additional mass M is connected or attached to the circuit 12 (or an empty truck 14) at upper point A via a mass connecting system each time an empty truck 14 is located adjacent the upper point A.
- the mass M is accelerated at the mass connecting system level up to a speed equals to the velocity, or speed, of the circuit Vcir using external energy Wmag (the influence of the additional mass M as well as the provenance of the additional mass M is explained below).
- the guiding system, connecting system and disconnecting system are typically mechanical systems although they could easily be at least partially electrical, electronic, etc.
- the periodic distance P which separates two adjacent trucks 14 refers to the period (i), namely the distance traveled by a truck 14 for it to arrive at the position of the truck immediately preceding it.
- RM is the radius of displacement of the center of mass of the mass M
- h is the vertical distance traveled by the masses (and trucks) in which friction does not occur between wheels (R2, R3, and R4, R1 ; i.e. between points C and D (circuit lowering portion 26) and between points G and H (circuit raising portion 28))
- g is the acceleration constant of the earth's gravitational field.
- ⁇ (M+m) 12 is the sum of all the masses being along the circuit 12
- Cf is the coefficient of friction of the bearings (different coefficients of friction could be considered for different locations, but assumed to be all the same in this example).
- This simplified formula (not taking into account integral calculus due to the centrifugal forces, which should be considered for accurate prediction) is provided as an example to show the different parameters (M, m, Cf, P, etc.) that could intervene within the calculation of the resistant work.
- the calculation formula for the resistant work varies from a circuit configuration to another, for example if the closed circuit is supported by inner rails Ri between all points A, B, C, D, E, F, G, H, or only along the portion from point H to point C for example, or if the weight of masses (M+m) is supported by external rails Re between points C, D, E, F, or according to the shape of the closed circuit which depends on the actual values of h and L (see Figure 5).
- the goal of the above- noted resistant work Wres formula is to show that the parameters used therein (M, m, Cf, P, etc.) can be selected to minimize the resistant work.
- This work W(+) may be positive depending on the choice of sizes of M, m, Cf, h, L, r, and RM.
- L is the horizontal distance traveled by the masses (and trucks) between wheels (R1 , R2, and R3, R4; i.e. between points A and B (circuit upper portion 22) and between points E and F (circuit lower portion 24)), and r is the radius of wheels (R1. R2. R3. R4).
- the circuit 12 looses a quantity of energy equals to [(1/2) * M * Vcir(i-1) ⁇ 2] due to the disconnecting of the mass M around lower point F, and with the connecting of mass M to the circuit 12 around upper point A, the circuit provides to the mass, during period (i), a quantity of energy equals to [(1/2)*M * Vcir(i) ⁇ 2].
- Mass M gets to the upper point A with its own kinetic energy (WMA(i): energy of mass M at point A for period (i)) to connect to an empty truck 14. The mass 1 energy WMA(i) will subtracted from the energy to be provided by the circuit 12.
- Mass M disconnects from truck 14 at lower point F, shown in Figure 3, while maintaining the same velocity Vcir as that of the circuit 12.
- Mass M can gain height up to the upper point A of the circuit 12 in function of the velocity of mass M at the departure from lower point F, i.e. in function of the velocity of the circuit Vcir when mass M is disconnected from the truck 14, by taking the mass track 30. It is therefore needed, at the time of disconnect of mass M, that the velocity of the circuit Vcir exceeds the required predetermined value that enables mass M to reach the upper point A with a velocity VMA larger than [SQUARE ROOT(g*R)].
- M*g M*VMA A 2/R
- mass M must arrive at upper point A with a kinetic energy at least equal to [(1/2)*M * g * R] by adding sufficient energy to raise mass M by a height equals to (2*R), namely [2 * M * g * R] as an increase in its potential energy, and to include WfM, the amount of energy required to counter the friction along the curve R of the mass track 30 (friction due to the mass' weight and to centrifugal forces); thus obtaining a departure kinetic energy for mass M of
- the velocity of departure of mass M from lower point F i.e. the velocity VMF of mass M when mass M disconnects from the circuit 12 at lower point F, must be at least equal to:
- WMA(i) [(1/2)*M*Vcir(i-Nh-2) ⁇ 2] - [M*g*2*R] - WfM
- Nh is the number of periodic distances P between points C and D, and also between points G and H
- Vcir(i-Nh-2) is the speed of mass M at the time of disconnection from the circuit at lower point F (VMF).
- Wmag(i) [(1/2)*M*Vcir(i) ⁇ 2] - WMA(i)
- Wcir(i) Wcir(i-1) + WO + W(+)
- the formula for energy balance of the circuit can also write:
- Wcir(i) Wtcir(i-1) + W(+)
- Wcir(i) is the total quantity of energy of the circuit at the end of period (i).
- W(+) In the functioning principle (subject of the invention) of the machine 10, W(+) must be positive, and it is possible to keep or change the value of WO for increased gain of energy.
- Wcir(i) Wcir(i-1) + W(+)
- Wmag(i) [(1/2)*M*Vcir(i-1) A 2] - WMA(i)
- Wmag(i) is then equal to the energy lost by circuit 12 with the disconnecting of mass M at the lower point F and which is equal to [(1/2) * M * Vcir(i-1) ⁇ 2] less the kinetic energy WMA(i) that is gained back by the system for connecting masses at the upper point A of the circuit 12, from the mass M reaching the magazine 40 after its disconnection from said circuit at period (i-Nh-2).
- Wmag reaches the value of Wpot once the velocity of the circuit 12 reaches the minimum value required for the mass M to run all the way along the mass track 30 because of its own kinetic energy, from which it is required to have the existing centrifugal forces, the value of which depends on the velocity of the circuit, intervene in such a way that provide to said circuit an addition of energy, which leads to the following.
- Vy(M(X)) (r + delta(x))*Vy(M(a))/r
- G(x) is the acceleration of mass M due to the centrifugal force along rod (o-b), or the axis (o-x) within frame (o-x-y) (see Figure 8b).
- Vx(M(X)) G(x)*delta(t) + Vx(M(a))
- Vx(M(x(1))) G(x)*delta(t)
- Vx(M(Xu))) G(x(j-1 )) * delta(t) + Vx(M(x(j-1 )))
- V(M(b)) Vy(M(b)) + Vx(M(b))
- Figures 9a and 9b are an embodiment (amongst many others possible) of a truck 14 made of two main parts, a fixed part 14f and a mobile part 14m, in closed and deployed configurations, respectively.
- the fixed part 14f is typically provided with bearings 16 allowing it to follow the trajectory of the internal rails Ri
- the mobile part 14m is typically telescopically, or the like, linked to the respective fixed part 14f with a translation generally perpendicular the axis 16a extending through the center of rotation of the bearings 16f of the fixed part 14f of the truck and generally perpendicular to the local trajectory of the internal rails Ri as its only one degree of freedom.
- the mobile part 14m is the part that selectively receives the mass M that connects thereto via a mechanical system or the like (not shown).
- a mechanical connecting system or the like such as the external rails Re (shown as illustrative purposes only in Figures 9a and 9b), on which roll the bearings 16m of the mobile part 14m of the truck and/or the bearings 20 of the mass M (depending on the position of the truck or the mobile unit, truck+mass M, along circuit 12), maintain the two parts 14f, 14m of the truck in proximity relative to each other in the closed configuration and further allow the free radial deployment, along a trajectory predetermined by calculation, of the mass M and/or the mobile part 14m relative to the fixed part 14f in predetermined curved section(s) of the circuit 12.
- each of the different points A, B, C, D, E, F, G and H of the circuit are denoted with ⁇ and 'e' indicia in order to differentiate the corresponding levels of the internal Ri and external Re rails at these respective points (point A includind points Ai and Ae, etc.).
- Figure 10 shows an example of an embodiment of a system for exploiting centrifugal forces in accordance with the present invention mounted on the circuit of Figure 6.
- the system for exploiting centrifugal forces is located into a circular portion that exploits centrifugal forces of the masses M over a curved section of the circuit 12 of a typical angle of 180 degrees ( ⁇ radians) (any other angle could also be possible) that is part of the system.
- the external rails Re are modified to have a shape Be-Ce (the trajectory of which can be calculated point by point) such that the component Rt of the reaction R on the masses M due to the centrifugal force Fc that is tangential to the trajectory is the largest possible.
- the centrifugal force Fc is due to the radially mobile mass unit (Mcm+M) (the mass of the mobile part 14m of the truck 14 plus mass M), to the distance separating that mass from the center of rotation, and to the velocity of the circuit Vcir. It is only required that this trajectory be within the trajectory that could be followed by the mass unit (mobile part 14m plus mass M) while remaining free of any radial (normal) obstruction. This condition ensures the permanent contact with the external rails Re, which generates a reaction R thereform acting on the mass unit.
- This reaction R can be broken down into a normal (radial) force Rn opposing to the deployment of the mobile part 14m of the truck relative to the corresponding fixed part 14f, and another tangential force Rt in a same direction than that of the movement of circuit 12 that will generate work in addition to the work from the weight forces of the masses M along the lowering portion 26 of the circuit 12.
- the external rails Re bring the mass unit back into contact with the fixed part 14f of the truck while absorbing a quantity of energy, due to friction, equals to the mass of the mobile part 14m of the truck plus the mass M times the earth gravitational acceleration constant (g) times the coefficient of friction Cf times the horizontal distance between points Ce and De.
- Figure 11 shows another example of an embodiment of a system for exploiting centrifugal forces in accordance with the present invention mounted on the circuit of Figure 6.
- the system for exploiting centrifugal forces is located into a circular portion that exploits centrifugal forces of the masses M over a curved section of the circuit 12 of a typical angle of 180 degrees ( ⁇ radians) (any other angle could also be possible) that is part of the system, in a way of extending the lower point F up to point G.
- the external rails Re end at point Fe (point F at the level of the external rail Re), in order to release the mass unit that undergoes an acceleration, due to centrifugal forces, moving it away from the center of rotation of wheel R4.
- the mass unit runs through the mass disconnecting system which disconnects the mass M from the mobile part 14m of the truck with no constraint to the displacement of the mass (the mass disconnecting system could be mechanical based or any other).
- mass M Once mass M is disconnected, it is at the beginning of the mass track 30 that has its entrance portion always maintained tangential to the direction of motion of mass M, typically automatically.
- the direction of motion of mass M, once disconnected from the mobile part 14m, is function to the direction of its velocity VMGe' at point Ge', that is the vector sum of the two velocities V'cir and Vc which are always perpendicular to each other.
- VMGe' V'cir + Vc
- Mass M then enters the mass track 30 with a kinetic energy equals to:
- the mobile part 14m is in contact with the external rails Re at point Ge via its bearing 16m (this contact must occur after the disconnection mass M therefrom).
- the external rails Re bring the mobile part 14m back into contact with the corresponding fixed part 14f, and this absorbs, per period (i), an energy due to the friction equals to the mass of the mobile part 14m times the earth gravitational acceleration constant (g) times the coefficient of friction Cf times the horizontal distance between points Ge and He.
- Wcir(i) Wcir(i-1 ) + WO + W(+) + WMA(i)
- W(+) Wpot + W[Fc(Be-Ce)] - Wres
- Wres is the energy dissipated by the friction forces along circuit 12
- W[Fc(Be-Ce)] is the energy generated by the centrifugal forces between points Be and Ce;
- WMA(i) [(1/2)*M*(V'cir(i-Nh-2) A 2 + Vc(i-Nh-2) A 2)] - [M*g*2*R] - WfM
- WfM is the energy dissipated by the friction forces along the mass track 30.
- Step a Using an input of external energy WO, the velocity of circuit 12 is brought up to a predetermined velocity Vpre (in function of the different physical parameters of the machine 10 and of the closed circuit 12) larger than the required minimum velocity Vcir(min) allowing for the value [Wcir(i)-Wcir(i-1)] to become positive.
- Vpre in function of the different physical parameters of the machine 10 and of the closed circuit 12
- Step b
- the mass disconnecting system is activated, typically automatically, and disconnects mass M from its truck 14 at lower point F of said circuit 12, and the disconnecting of the mobile part 14m of the truck from its fixed part 14f occurs only between points Be and Ce.
- the mass disconnecting system is activated, typically automatically, and disconnects mass M from the mobile part 14m of the truck 14 each time a mass unit gets to point Ge' at the beginning of the mass track 30.
- the mass connecting system is activated ans connects, typically automatically, a mass M to each empty truck arriving at upper point A of circuit 12.
- said mass connecting system recuperates the kinetic energy WMA of each mass M reaching its magazine 40 from the lower point F or Ge' (according to the system for exploiting centrifugal forces being present ( Figure 10 or Figure 11 or other)), after running along the mass track 30.
- the mass connecting system provides to the mass M the same velocity reached by the circuit Vcir using an input of external energy Wmag, as long as required.
- Step d As soon as it is possible, it is preferred to stop or modify the input of all external energy.
- Step e There is a selective coupling of the machine 10 to a load machine once the value of work aimed for is reached.
- a plurality of machines 10 can be coupled to a same load machine.
- the closed circuit 12 disclosed hereinabove and shown throughout the figures lies in a generally vertical plane, one skilled in the art would easily understand that any other closed-circuit having only a portion thereof located in a non-horizontal plane could be considered without deviating from the scope of the present invention. Also, it is obvious that many technical solutions can reduce considerably the coefficient of friction, which will in turn reduce the resistant work (Wres). For example, instead of using roller bearings 16, the trucks 14 could be displaced on oil or pressurized air, or be levitating spaced away from the inner rail(s) using permanent magnets or the like.
- the masses M could partially disconnect form their respective truck 14 when reaching the start point E of the circuit lower portion 24 and start rolling on a lower portion 32 (see Figures 4, 6 and 7) of the mass track 30.
- the masses M would remain partially connected to their truck 14 with roller bearings (not shown) mounted on the trucks to rollably push the masses M along the track lower portion 32 such that they could completely disconnect from the trucks at the lower point F.
- the mass connecting system for the connection of masses M to the respective trucks 14 adjacent upper point A could be effected in different ways, as described in the following examples, with no intention of any limitation.
- the connecting system includes a mass delivery mechanism 42 equipped with two equidistant arms 44, separated by the distance d + P, typically driven in rotation by an external work Wmag (as in the case of
- the trucks 14, with their mass M attached thereto via a mechanical system could turn around the 4 wheels R1 , R2, R3, R4 by being releasably attached thereto without rolling on the inner rails Ri, which generates considerable friction and centrifugal forces on the wheels and directed towards their axes.
- the effect of friction caused by the centrifugal forces on any outer rail Re gets eliminated and thus reducing everything down to a question of managing a problem of friction forces acting on the axes on which the wheels turn.
- This reduced problem can easily be solved by a film of pressurized oil.
- Such a solution allows the closed circuit to reach high velocities, and therefor high levels of generated power.
- a plurality of similar closed circuits 12 can drive a common output shaft, preferably connected to one or a plurality of load machines, by being positioned in parallel relative to one another, which multiplies the power available at the output shaft by the number of circuits.
- the closed circuit 12 could be located in a generally horizontal plane, while having a system for exploiting centrifugal forces over at least one curved section of the circuit (without any consideration of transformation of potential energy of masses into kinetic energy), without departing from the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Wind Motors (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Toys (AREA)
- Centrifugal Separators (AREA)
Abstract
Description
Claims
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2007800004528A CN101321950B (en) | 2007-04-04 | 2007-04-04 | A machine that operates on the principle of using centrifugal force |
| EP07719499.1A EP2142797A4 (en) | 2007-04-04 | 2007-04-04 | MACHINE OPERATING ON THE PRINCIPLE OF THE EXPLOITATION OF CENTRIFUGAL FORCES |
| JP2010501334A JP2010523868A (en) | 2007-04-04 | 2007-04-04 | A machine that works on the principle of centrifugal force utilization |
| CA002625555A CA2625555A1 (en) | 2007-04-04 | 2007-04-04 | Machine functioning on the principle of exploitation of centrifugal forces |
| PCT/CA2007/000569 WO2008037052A1 (en) | 2007-04-04 | 2007-04-04 | Machine functioning on the principle of exploitation of centrifugal forces |
| TNP2009000402A TN2009000402A1 (en) | 2007-04-04 | 2009-10-02 | Machine functioning on the principle of exploitation of centrifugal forces |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CA2007/000569 WO2008037052A1 (en) | 2007-04-04 | 2007-04-04 | Machine functioning on the principle of exploitation of centrifugal forces |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2008037052A1 true WO2008037052A1 (en) | 2008-04-03 |
Family
ID=39229661
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CA2007/000569 Ceased WO2008037052A1 (en) | 2007-04-04 | 2007-04-04 | Machine functioning on the principle of exploitation of centrifugal forces |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP2142797A4 (en) |
| JP (1) | JP2010523868A (en) |
| CN (1) | CN101321950B (en) |
| CA (1) | CA2625555A1 (en) |
| TN (1) | TN2009000402A1 (en) |
| WO (1) | WO2008037052A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014066960A1 (en) * | 2012-11-05 | 2014-05-08 | Oswaldo Stoppa Junior | Generator of directional thrust for moving vehicles and/or objects in general using centrifugal force |
| WO2015070299A1 (en) * | 2013-11-14 | 2015-05-21 | Raymond Gill Frederick | Propulsion engine moved by terrestrial gravity |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4152224A (en) * | 1976-08-24 | 1979-05-01 | State Of Israel, Ministry Of Industry, Commerce And Tourism, National Physical Laboratory Of Israel | Inorganic additives for zinc-alkaline secondary batteries and alkaline zinc-plating baths |
| US4333548A (en) * | 1980-05-02 | 1982-06-08 | Jones Sterling W | Weight driven rotary power generating apparatus |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4155224A (en) * | 1977-11-23 | 1979-05-22 | Markley D. Fell | Turbine-wheel power device |
| CN1053476A (en) * | 1990-01-16 | 1991-07-31 | 苏飞 | Centrifugal driving device |
| CN1101699A (en) * | 1993-09-01 | 1995-04-19 | 王寅生 | Centrifugal power equipment |
| CN1605751A (en) * | 2003-10-10 | 2005-04-13 | 赵聿东 | Centrifugal engine |
-
2007
- 2007-04-04 EP EP07719499.1A patent/EP2142797A4/en not_active Withdrawn
- 2007-04-04 WO PCT/CA2007/000569 patent/WO2008037052A1/en not_active Ceased
- 2007-04-04 CA CA002625555A patent/CA2625555A1/en not_active Abandoned
- 2007-04-04 JP JP2010501334A patent/JP2010523868A/en active Pending
- 2007-04-04 CN CN2007800004528A patent/CN101321950B/en not_active Expired - Fee Related
-
2009
- 2009-10-02 TN TNP2009000402A patent/TN2009000402A1/en unknown
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4152224A (en) * | 1976-08-24 | 1979-05-01 | State Of Israel, Ministry Of Industry, Commerce And Tourism, National Physical Laboratory Of Israel | Inorganic additives for zinc-alkaline secondary batteries and alkaline zinc-plating baths |
| US4333548A (en) * | 1980-05-02 | 1982-06-08 | Jones Sterling W | Weight driven rotary power generating apparatus |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP2142797A4 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014066960A1 (en) * | 2012-11-05 | 2014-05-08 | Oswaldo Stoppa Junior | Generator of directional thrust for moving vehicles and/or objects in general using centrifugal force |
| WO2015070299A1 (en) * | 2013-11-14 | 2015-05-21 | Raymond Gill Frederick | Propulsion engine moved by terrestrial gravity |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2625555A1 (en) | 2008-04-03 |
| CN101321950A (en) | 2008-12-10 |
| TN2009000402A1 (en) | 2011-03-31 |
| EP2142797A1 (en) | 2010-01-13 |
| EP2142797A4 (en) | 2015-01-07 |
| CN101321950B (en) | 2013-04-10 |
| JP2010523868A (en) | 2010-07-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2296954B1 (en) | Carriage traction vehicle | |
| US20220163018A1 (en) | Gravitational Energy Storage Device | |
| CN101426698A (en) | Roller with free-wheel and brake | |
| WO2008037052A1 (en) | Machine functioning on the principle of exploitation of centrifugal forces | |
| US7530431B2 (en) | Machine functioning on the principle of exploitation of centrifugal forces | |
| US20180297486A1 (en) | Roller coaster with passenger compartment motion powered through stored onboard energy | |
| CN101555912B (en) | Rotary-type self-latching safety braking device and working method thereof | |
| US20160281686A1 (en) | Wind powered battery charging system for electric vehicles | |
| US20070090648A1 (en) | Energy Generation Device | |
| WO2013140672A1 (en) | Power supply system | |
| CN102491178A (en) | Method and system for controlling rotation of crane | |
| CN106379432B (en) | A kind of mechanism that leaps on one leg based on the driving of Fourier's non-circular gear | |
| SE514453C2 (en) | Method and apparatus for loading artillery pieces by casting | |
| CN101290000A (en) | Centrifugal force propelling device | |
| CN104925459B (en) | Conveying mechanism | |
| CN104179375B (en) | Swing type friction wheel driving mechanism and the three-dimensional parking device equipped with this drive mechanism | |
| KR101214112B1 (en) | Continuously variable transmission of bicycle with regenerative braking | |
| CN207293268U (en) | A kind of round belt conveyer | |
| CN207861347U (en) | carrier driving device | |
| KR100788504B1 (en) | Conveyor Roller Automatic Decelerator | |
| KR200420798Y1 (en) | Conveyor Roller Automatic Decelerator | |
| CN202828774U (en) | Spiral conveying device | |
| JP4163868B2 (en) | Power generation system | |
| CN121152937A (en) | Pipeline moving device and its operating method | |
| CN107444363A (en) | A kind of brake gear for being stored with clockwork spring and utilizing vehicle energy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200780000452.8 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2625555 Country of ref document: CA |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07719499 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
| ENP | Entry into the national phase |
Ref document number: 2010501334 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| REEP | Request for entry into the european phase |
Ref document number: 2007719499 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2007719499 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 6979/DELNP/2009 Country of ref document: IN |