[go: up one dir, main page]

WO2008032967A1 - Système de commande d'entraînement à la marche - Google Patents

Système de commande d'entraînement à la marche Download PDF

Info

Publication number
WO2008032967A1
WO2008032967A1 PCT/KR2007/004370 KR2007004370W WO2008032967A1 WO 2008032967 A1 WO2008032967 A1 WO 2008032967A1 KR 2007004370 W KR2007004370 W KR 2007004370W WO 2008032967 A1 WO2008032967 A1 WO 2008032967A1
Authority
WO
WIPO (PCT)
Prior art keywords
gait
unit
patient
gait training
training
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2007/004370
Other languages
English (en)
Inventor
Jeong Soo Choi
Ki Hong Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
P and S Mechanics Co Ltd
Original Assignee
P and S Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by P and S Mechanics Co Ltd filed Critical P and S Mechanics Co Ltd
Publication of WO2008032967A1 publication Critical patent/WO2008032967A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0255Both knee and hip of a patient, e.g. in supine or sitting position, the feet being moved together in a plane substantially parallel to the body-symmetrical plane
    • A61H1/0262Walking movement; Appliances for aiding disabled persons to walk
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/008Appliances for aiding patients or disabled persons to walk about using suspension devices for supporting the body in an upright walking or standing position, e.g. harnesses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0266Foot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0173Means for preventing injuries
    • A61H2201/0176By stopping operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/1215Rotary drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1635Hand or arm, e.g. handle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1657Movement of interface, i.e. force application means
    • A61H2201/1676Pivoting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5007Control means thereof computer controlled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • A61H2201/5038Interfaces to the user freely programmable by the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • A61H2201/5041Interfaces to the user control is restricted to certain individuals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • A61H2201/5043Displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5061Force sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/60Muscle strain, i.e. measured on the user, e.g. Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about

Definitions

  • the present invention relates, in general, to a gait training control system, and, more particularly, to a gait training control system, which allows a doctor or a physical therapist in charge of rehabilitation training of a patient to monitor the training status of the patient undergoing gait training in real time, to determine the status of the patient, and to prescribe a gait pattern suitable for the status of the patient.
  • a gait training control system which allows a doctor or a physical therapist in charge of rehabilitation training of a patient to monitor the training status of the patient undergoing gait training in real time, to determine the status of the patient, and to prescribe a gait pattern suitable for the status of the patient.
  • the conventional gait training systems are problematic in that a doctor or a physical therapist cannot monitor the status of gait training of patients in real time, and thus a lot of time is required to determine the status of the patients and to prescribe gait patterns suitable for the status of the patients.
  • an object of the present invention is to provide a gait training control system, which is operated using a microprocessor, a control program and gait data, and performs mutual data communication with peripherals, such as a computer and an Operator (OP) panel, thus allowing a doctor or a physical therapist in charge of rehabilitation training of a patient to monitor the training status of the patient undergoing gait training in real time, to determine the status of the patient, and to prescribe a gait pattern suitable for the status of the patient to the patient.
  • a microprocessor a control program and gait data
  • peripherals such as a computer and an Operator (OP) panel
  • Another object of the present invention is to provide a gait training control system, which can arrange data about the gait training of a patient in a database, and can record and manage the data in the database, thus enabling the management of the patient to be continuously and efficiently performed.
  • a further object of the present invention is to provide a gait training control system, which stores data about gait training, undergone by a patient, and data about prescriptions, given by a doctor, in an external memory device, so that the external memory device can be easily transferred, thus allowing the patient to undergo previously performed gait training without change even if the patient changes his or her residence.
  • the present invention provides a gait training control system for a gait training machine, comprising a control unit, implemented using a control data collection device having a microprocessor mounted therein, an operator manipulation unit, required to set a gait mode and observe gait status, a walking assistance unit for driving respective joints of an impaired leg, and a detection unit for detecting gait status of a healthy leg, wherein data output from the detection unit, worn on the healthy leg, is detected to determine gait status of a patient, and the walking assistance unit, worn on the impaired leg, is driven in real time on a basis of the detected data.
  • the present invention provides a gait training control system for a gait training machine, comprising a control unit implemented using a control data collection device having a microprocessor mounted therein, an operator manipulation unit required to set a gait mode and observe gait status, and a detection unit for detecting gait status, wherein signals, such as a joint rotation angle, joint muscular strength, and an electromyogram, which are output from the detection unit when a patient walks with the detection unit worn on his or her impaired leg, are received, so that walking ability of the patient is measured/stored, is input to a database, and is utilized as gait training data for the patient.
  • signals such as a joint rotation angle, joint muscular strength, and an electromyogram
  • the present invention provides a gait training control system for a gait training machine, comprising a control unit, implemented using a control data collection device having a microprocessor mounted therein, an operator manipulation unit, required to set a gait mode and observe gait status, and a walking assistance unit for driving respective joints of an impaired leg, wherein rotation angles and rotation speeds of respective joints and a number of gaits suitable for status of the patient are input through the operator manipulation unit with the walking assistance unit worn on the impaired leg of the patient, thus enabling gait training of the patient to be performed.
  • the present invention provides a gait training control system for a gait training machine, comprising a control unit implemented using a control data collection device having a microprocessor mounted therein, an operator manipulation unit required to set a gait mode and observe gait status, and a walking assistance unit for driving respective joints of an impaired leg, wherein the operator manipulation unit is connected to an external memory device, in which data about gait training of a patient and data about gait prescription given by a doctor are stored, thus enabling gait training to be performed on a basis of the gait training data stored in the external memory device.
  • portions of the walking assistance unit corresponding to a hip joint, a knee joint, and an ankle joint may be formed to be separable or combinable, and respective joint portions are controlled by a control unit so that independent driving or combined driving is enabled.
  • the operator manipulation unit may determine whether the patient is ready to undergo gait training, and then assign a driving authority for start, stop and emergency stop of the walking assistance unit to a trainee manipulation unit through the control unit.
  • control unit may automatically shut off power of the gait training machine when an abnormal gait training pattern is sensed during gait training, or when an emergency stop command button of the trainee manipulation unit is pressed.
  • the operator manipulation unit may be manipulated to increase or decrease a gait speed or a rotation angle depending on status of the patient in each gait training session.
  • the gait training control system of the present invention is advantageous in that it is operated on the basis of a microprocessor, a control program, and gait data, and performs mutual data communication with peripherals, such as a computer and an OP panel, thus allowing a doctor or a physical therapist in charge of the rehabilitation training of a patient to monitor the training status of the patient undergoing gait training in real time, to determine the status of the patient and to prescribe a gait pattern suitable for the status of the patient.
  • the present invention is advantageous in that it can arrange data about the gait training of a patient in a database, and can record and manage the data in the database, thus enabling the management of the patient to be continuously and efficiently performed, and more rapidly obtaining the efficacy of rehabilitation.
  • the present invention is advantageous in that it stores data about gait training, undergone by a patient, and data about prescriptions, given by a doctor, in an external memory device, so that the external memory device can be easily transferred, thus allowing the patient to undergo previously performed gait training without change even if the patient changes his or her residence, and consequently preventing rehabilitation training from being interrupted.
  • FIG. 1 is a schematic perspective view showing the overall construction of a gait training control system according to the present invention
  • FIG. 2 is a side view showing the construction of a detection unit and a walking assistance unit according to the present invention
  • FIG. 3 is a block diagram showing the data flow of a gait training control system according to the present invention.
  • FIG. 4 is a flowchart showing the gait mode selection procedure of an operator manipulation unit according to the present invention.
  • FIG. 5 is a flowchart showing the signal processing procedure of a trainee manipulation unit according to the present invention.
  • FIG. 6 is a block diagram showing a gait training system in a treatment mode according to the present invention.
  • FIG. 7 is a block diagram showing a gait training system in a pattern driving mode according to the present invention.
  • FIG. 8 is a block diagram showing a gait training system in a real-time driving mode according to the present invention.
  • FIG. 9 is a block diagram showing a gait training system in a memory mode according to the present invention.
  • FIG. 10 is a schematic diagram showing the gait cycle of a patient whose right leg is impaired.
  • FIG. 11 is a schematic diagram showing independent or combined driving of respective joints according to the present invention.
  • control unit 111 computer
  • control data collection device 120 operator manipulation unit
  • FIG. 1 is a schematic perspective view showing the overall construction of a gait training control system according to the present invention
  • FIG. 2 is a side view showing the construction of a detection unit and a walking assistance unit according to the present invention.
  • the gait training control system includes a control unit 110, an operator manipulation unit 120, a trainee manipulation unit 130, a walking assistance unit 140, and a detection unit 150.
  • control unit 110 functions to execute a gait program, to control peripherals, to collect data obtained from each gait session, and to arrange data required to treat a patient in a database, and includes a computer 111 for monitoring the status of the gait training of a patient, arranging the gait data thereof into a database, and interfacing with external memory, and a control data collection device 113 for controlling the walking assistance unit 140 and receiving sensor signals output from both the detection unit 150 and the walking assistance unit 140.
  • the operator manipulation unit 120 functions to select a gait mode according to the gait training of a patient, or to set training intensity according to the training status of the patient, and to visually display the gait status of the patient, and includes a mode selection button 121, required to select a gait mode, a joint angle/speed control button 123, required to set training intensity, and a gait status display panel 125 for visually displaying the gait status of the patient.
  • a memory connection terminal which can be connected to the external memory device 127, can be formed.
  • gait modes can be classified into four modes, that is, a treatment mode, a pattern driving mode, a real-time driving mode, and a memory mode, according to the treatment and training for the gait training of a patient, and can be selected through the operator manipulation unit 120.
  • the trainee manipulation unit 130 is assigned driving authority by the operator manipulation unit 120 through the control unit 110 so that a patient can personally execute driving start and end commands after preparation for gait training has been completed.
  • the control unit 110 automatically shuts off the power of a gait training machine when an abnormal gait training pattern is sensed or when an emergency stop command button of the trainee manipulation unit 130 is pressed during gait training.
  • the walking assistance unit 140 allows drive motors 141, 143, and 145 and encoders 142, 144, and 146 to be worn on an impaired leg, thus enabling joints to be moved at the time of gait training.
  • the walking assistance unit 140 is configured such that the drive motors 141, 143, and 143 for respectively moving the hip joint, the knee joint, and the ankle joint of an impaired leg are installed, and corresponding encoders 142, 144, and 146 are attached to the drive motors 141, 143, and 145, thus detecting or controlling the angles of respective joints.
  • the detection unit 150 is configured such that a muscular strength measuring device
  • a joint angle detector 151, 154, or 157 for measuring the rotation angle of a joint a joint angle detector 151, 154, or 157 for measuring the rotation angle of a joint
  • an electromyogram measuring device 153, 156, or 159 for measuring an electromyogram are installed at a location corresponding to each of the hip joint, the knee joint, and the ankle joint.
  • the muscular strength measuring devices 152, 155, and 158 can be manufactured using the force of a Magneto-Rheological (MR) fluid, pneumatics, a spring, etc., and the joint angle detectors 151, 154, and 157 can be implemented using encoders or potentiometers.
  • MR Magneto-Rheological
  • the detection unit 150 is worn on an impaired leg or a healthy leg, and is used.
  • the detection unit 150 is worn on the impaired leg (leg having the impairment) of a patient and is utilized to measure the muscular strength, joint rotation angle and electromyogram thereof.
  • the detection unit 150 is worn on the healthy leg of the patient, and is utilized to detect the gait data of the healthy leg in real time.
  • sensors such as the muscular strength measuring devices 152, 155 and
  • the joint angle detectors 151, 154, and 157, and the electromyogram measuring devices 153, 156, and 159 which are installed at the locations of the detection unit 150 corresponding to respective joints, also function as safety devices for detecting the states of respective joints of the patient for the safety of the patient at the time of gait training, as well as functioning to detect gait data.
  • FIG. 3 is a block diagram showing the data flow of a gait training control system according to the present invention.
  • a walking assistance unit 140 for supplementing muscular strength is worn on the impaired leg
  • a detection unit 150 for detecting the data of joints is worn on the healthy leg.
  • gait data obtained from the detection unit 150 worn on the healthy leg is collected through the control unit 110, and is utilized as data required to drive the joint drive motors 141, 143, and 145 of the walking assistance unit 140 worn on the impaired leg.
  • the gait status obtained from the walking assistance unit 140 is output through the operator manipulation unit 120, and is thus used by a patient or a doctor when changing the gait mode or increasing or decreasing training intensity.
  • the patient can execute a training termination command or an emergency stop command through the trainee manipulation unit 130.
  • Such gait data of the patient is arranged in a database through the control unit 110, and is stored in an external memory device, so that the external memory device can be connected to a gait training machine at another place and can be used. Accordingly, even if the patient changes his or her residence, he or she can use the previously executed training program without change, thus improving the efficacy of rehabilitation treatment.
  • FIG. 4 is a flowchart showing the gait mode selection procedure of the operator manipulation unit according to the present invention
  • FIG. 5 is a flowchart showing the signal processing procedure of the operator manipulation unit according to the present invention.
  • the operator manipulation unit 120 required to select a gait mode
  • the signal processing procedure of the trainee manipulation unit 130 in charge of a driving start command, a stop command, and an emergency stop command, are shown in brief.
  • a patient selects any one gait mode from among a treatment mode
  • the patient inputs a start command for initiating the walking assistance unit 140 through the trainee manipulator unit 130, and undergoes gait training at steps S520 and S530.
  • the patient selects any one from among a gait training cycle end command S531, a training stop command S532, and an emergency stop command at step S533.
  • FIG. 6 is a block diagram showing a gait training system in a treatment mode according to the present invention. As shown in FIG. 6, a user sets a gait mode to a treatment mode through the operator manipulation unit 120.
  • the detection unit 150 is worn on an impaired leg, and is configured to measure the joint muscular strength, joint rotation angle and elec- tromyogram of the impaired leg, and to transmit measurement results to the control unit 110 to allow the measurement results to be arranged in a database.
  • FIG. 7 is a block diagram showing a gait training system in a pattern driving mode according to the present invention. As shown in the drawing, a user sets a gait mode to a pattern driving mode through the manipulation of the operator manipulation unit 120.
  • the pattern driving mode is a mode in which gait training is executed according to a gait pattern suitable for the status of a patient, determined through the medical examination of a doctor or a physical therapist, and in which the patient can enter the joint motion angles of a hip joint, a knee joint, and an ankle joint and a gait speed through the operator manipulation unit 120, or can increase or decrease the speeds of the joint motors or joint rotation angles of the walking assistance unit 140 at a certain rate on the basis of the normal gait data stored in the control data collection device 113, thus performing gait training.
  • FIG. 8 is a block diagram showing a gait training system in a real-time driving mode according to the present invention. As shown in the drawing, the user sets a gait mode to a real-time driving mode through the operator manipulation unit 120.
  • the real-time driving mode is a mode in which the detection unit 150 is worn on a healthy leg and the walking assistance unit 140 is worn on an impaired leg, so that the walking assistance unit 140 is driven in real time on the basis of the signals output from the detection unit 150 to perform training.
  • data about the joint angular velocities and joint rotation angles of the healthy leg is detected through the detection unit 150 when the patient walks, and the detected data is applied to the walking assistance unit 140 for the impaired leg through the control unit 110, so that the patient undergoes gait training suitable for his or her physical status.
  • FIG. 9 is a block diagram showing a gait training system in a memory mode according to the present invention. As shown in FIG. 9, a user sets a gait mode to a memory mode using the operator manipulation unit 120.
  • the memory mode is a mode in which data about gait training, undergone by the patient, and data about gait training, prescribed by the doctor, are stored in the external memory device 127, thus allowing the status of the patient to be recorded, or allowing gait training to be executed through another gait training machine.
  • the external memory device 127 containing data about the previous gait training of the patient, is connected to the operator manipulation unit 120, so that gait training is executed using the treatment information of the patient stored in the external memory device 127.
  • the patient can undergo the same gait training through another gait training machine using the external memory device 127.
  • FIG. 10 is a schematic diagram showing the gait cycle of a patient whose right leg is impaired.
  • the gait pattern of the healthy leg at the 0% location is coincident with the gait pattern of the impaired leg at the 50% location
  • the gait pattern of the healthy leg at the 20% location is coincident with the gait pattern of the impaired leg at the 70% location
  • the gait pattern of the healthy leg at the 30% location is coincident with the gait pattern of the impaired leg at the 80% location.
  • the gait pattern corresponding to one cycle is implemented in this way in such a way that patterns are alternately repeated.
  • the gait training control system according to the present invention uses such a gait pattern.
  • data about the gait speed and the joint rotation angle of the healthy leg are collected in real time during the gait cycle, and thus the gait pattern of the impaired leg is generated.
  • FIG. 11 is a schematic diagram showing independent driving or combined driving of respective joints according to the present invention, which shows a control system for separating respective joint portions of the walking assistance unit 140 and performing gait training only on a specific joint when a patient is impaired only in the specific joint.
  • portions of the walking assistance unit 140 corresponding to a hip joint, a knee joint, and an ankle joint may be formed to be separable or combinable in hardware or software form, and the driving of respective joints is controlled by the control unit 110 so that independent or combined driving is enabled.
  • the gait mode such as the treatment mode, the pattern driving mode, the real-time driving mode, and the memory mode, can also be applied to the case where the independent driving of a specific joint is performed, as described above.
  • the walking assistance unit 140 can be implemented to increase or decrease the gait speed or the joint rotation angle on the basis of the determination of a doctor or a physical therapist during or before walking.
  • the patient and the doctor can monitor data about the gait of the patient and data about the status of joints of the patient, which are currently being obtained, through the operator manipulation unit 120 while executing respective gait modes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rehabilitation Tools (AREA)

Abstract

L'invention concerne un système de commande d'entraînement à la marche. Le système de commande d'entraînement à la marche est intégré à une machine d'entraînement à la marche et comprend une unité de commande (110), mise en oeuvre au moyen d'un dispositif de collecte de données de commande, une unité de manipulation opérateur (120) permettant d'établir un mode de marche et d'observer un statut de marche, une unité d'aide à la marche (140) conçue pour entraîner les articulations respectives d'une jambe déséquilibrée et une unité de détection (150) du statut de marche d'une jambe saine. On détecte les données fournies par l'unité de détection (150), situées sur la jambe saine, pour déterminer le statut de marche d'un patient et l'unité d'aide à la marche, située sur la jambe déséquilibrée, est entraînée en temps réel sur une base des données détectées. En conséquence, un médecin ou un physiothérapeute en charge de la rééducation d'un patient peut surveiller le statut de l'entraînement du patient soumis à un entraînement à la marche en temps réel.
PCT/KR2007/004370 2006-09-14 2007-09-10 Système de commande d'entraînement à la marche Ceased WO2008032967A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060089121A KR100854511B1 (ko) 2006-09-14 2006-09-14 보행훈련제어시스템
KR10-2006-0089121 2006-09-14

Publications (1)

Publication Number Publication Date
WO2008032967A1 true WO2008032967A1 (fr) 2008-03-20

Family

ID=39183977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2007/004370 Ceased WO2008032967A1 (fr) 2006-09-14 2007-09-10 Système de commande d'entraînement à la marche

Country Status (2)

Country Link
KR (1) KR100854511B1 (fr)
WO (1) WO2008032967A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118143A1 (fr) * 2011-03-02 2012-09-07 国立大学法人 筑波大学 Dispositif et système d'entraînement à la marche
EP2548543A4 (fr) * 2010-03-17 2013-10-02 Toyota Motor Co Ltd Dispositif d'assistance pour jambe
US20150134080A1 (en) * 2013-11-14 2015-05-14 Samsung Electronics Co., Ltd. Wearable robot and method for controlling the same
CN108538388A (zh) * 2018-03-06 2018-09-14 上海逸动医学科技有限公司 一种膝关节运动障碍功能评判方法
CN109471263A (zh) * 2018-11-30 2019-03-15 郭志猛 一种步态识别智能眼镜
CN109528203A (zh) * 2019-01-21 2019-03-29 郑州大学 一种基于多源信息融合的交互式脑卒中患者步态训练及评测系统
EP3489961A1 (fr) * 2017-11-24 2019-05-29 Toyota Jidosha Kabushiki Kaisha Appareil d'aide à la réadaptation, procédé de commande et programme de commande
CN110840712A (zh) * 2019-11-21 2020-02-28 合肥工业大学 一种基于人机交互的下肢康复机器人系统
CN110840711A (zh) * 2019-11-21 2020-02-28 合肥工业大学 一种基于六杆机构的单自由度下肢康复机器人
CN111249116A (zh) * 2020-01-20 2020-06-09 深圳市丞辉威世智能科技有限公司 单侧下肢外骨骼康复装置
CN112669964A (zh) * 2019-10-16 2021-04-16 深圳市迈步机器人科技有限公司 动力外骨骼及基于动力外骨骼的康复评价方法
US20230066952A1 (en) * 2020-01-15 2023-03-02 North Carolina State University Systems and methods for reinforcement learning control of a powered prosthesis

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448106B1 (ko) * 2011-02-17 2014-10-08 주식회사 라이프사이언스테크놀로지 무구속 근전도 신호를 이용한 재활상태 분석방법
KR102303450B1 (ko) 2015-01-30 2021-09-23 큐렉소 주식회사 보행 재활 로봇의 보행 패턴 분석 시스템
KR101609505B1 (ko) * 2015-02-04 2016-04-05 현대중공업 주식회사 보행 재활 제어 시스템 및 그 방법
KR102014162B1 (ko) 2017-12-29 2019-08-26 (주)동아금속 하지 재활용 보행 밸런스 모니터링 시스템
KR102176050B1 (ko) * 2019-04-11 2020-11-06 한지훈 보행기를 이용한 어린이 보행훈련 제어 시스템
CN112220650B (zh) * 2020-12-09 2021-04-16 南京伟思医疗科技股份有限公司 一种外骨骼机器人对侧训练用在线步态生成控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006751A (ja) * 2003-06-17 2005-01-13 Yaskawa Electric Corp 歩行訓練装置
JP2005013442A (ja) * 2003-06-26 2005-01-20 Yaskawa Electric Corp 歩行訓練装置及び歩行訓練装置の制御方法
JP2005211086A (ja) * 2004-01-27 2005-08-11 Yaskawa Electric Corp 歩行訓練装置
KR20060001809A (ko) * 2004-12-10 2006-01-06 경북대학교 산학협력단 하지 재활훈련 장치 및 훈련방법.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006751A (ja) * 2003-06-17 2005-01-13 Yaskawa Electric Corp 歩行訓練装置
JP2005013442A (ja) * 2003-06-26 2005-01-20 Yaskawa Electric Corp 歩行訓練装置及び歩行訓練装置の制御方法
JP2005211086A (ja) * 2004-01-27 2005-08-11 Yaskawa Electric Corp 歩行訓練装置
KR20060001809A (ko) * 2004-12-10 2006-01-06 경북대학교 산학협력단 하지 재활훈련 장치 및 훈련방법.

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2548543A4 (fr) * 2010-03-17 2013-10-02 Toyota Motor Co Ltd Dispositif d'assistance pour jambe
WO2012118143A1 (fr) * 2011-03-02 2012-09-07 国立大学法人 筑波大学 Dispositif et système d'entraînement à la marche
US20140058299A1 (en) * 2011-03-02 2014-02-27 Yoshiyuki Sankai Gait training device and gait training system
JPWO2012118143A1 (ja) * 2011-03-02 2014-07-07 国立大学法人 筑波大学 歩行訓練装置及び歩行訓練システム
US20150134080A1 (en) * 2013-11-14 2015-05-14 Samsung Electronics Co., Ltd. Wearable robot and method for controlling the same
US10556335B2 (en) * 2013-11-14 2020-02-11 Samsung Electronics Co., Ltd. Wearable robot and method for controlling the same
EP3489961A1 (fr) * 2017-11-24 2019-05-29 Toyota Jidosha Kabushiki Kaisha Appareil d'aide à la réadaptation, procédé de commande et programme de commande
CN109846677A (zh) * 2017-11-24 2019-06-07 丰田自动车株式会社 康复支持装置、康复支持系统、控制方法和控制程序
CN108538388A (zh) * 2018-03-06 2018-09-14 上海逸动医学科技有限公司 一种膝关节运动障碍功能评判方法
CN108538388B (zh) * 2018-03-06 2022-09-06 上海逸动医学科技有限公司 一种膝关节运动障碍功能评判方法
CN109471263A (zh) * 2018-11-30 2019-03-15 郭志猛 一种步态识别智能眼镜
CN109528203A (zh) * 2019-01-21 2019-03-29 郑州大学 一种基于多源信息融合的交互式脑卒中患者步态训练及评测系统
CN112669964A (zh) * 2019-10-16 2021-04-16 深圳市迈步机器人科技有限公司 动力外骨骼及基于动力外骨骼的康复评价方法
CN110840712A (zh) * 2019-11-21 2020-02-28 合肥工业大学 一种基于人机交互的下肢康复机器人系统
CN110840711A (zh) * 2019-11-21 2020-02-28 合肥工业大学 一种基于六杆机构的单自由度下肢康复机器人
US20230066952A1 (en) * 2020-01-15 2023-03-02 North Carolina State University Systems and methods for reinforcement learning control of a powered prosthesis
CN111249116A (zh) * 2020-01-20 2020-06-09 深圳市丞辉威世智能科技有限公司 单侧下肢外骨骼康复装置

Also Published As

Publication number Publication date
KR100854511B1 (ko) 2008-08-26
KR20080024695A (ko) 2008-03-19

Similar Documents

Publication Publication Date Title
WO2008032967A1 (fr) Système de commande d'entraînement à la marche
CN101677866B (zh) 装戴式动作辅助装置的动作辅助系统、装戴式动作辅助装置以及装戴式动作辅助装置的动作辅助方法
KR101609505B1 (ko) 보행 재활 제어 시스템 및 그 방법
US10342461B2 (en) Method of gait evaluation and training with differential pressure system
JP6242899B2 (ja) リハビリシステム及びその制御方法
EP3943005A1 (fr) Appareil pour l'évaluation de la démarche
KR101694402B1 (ko) 투사 영상을 이용한 보행 재활 치료 보조 시스템 및 방법
CN110522457B (zh) 一种基于电机电流、传感器反馈的实时步态分析方法
Li et al. A survey on biofeedback and actuation in wireless body area networks (WBANs)
WO2014153201A1 (fr) Procédé d'évaluation et d'entraînement à la marche avec système de pression différentielle
WO2015041618A2 (fr) Robot d'exercice thérapeutique des membres supérieurs
CN108577854A (zh) 步态识别方法和步态辅助设备
KR20190112988A (ko) 모션 인식 밴드를 이용한 재활치료환자의 신체 운동능력 측정 장치 및 방법
JP2002345994A (ja) 歩行訓練装置
Van der Eerden et al. CAREN-computer assisted rehabilitation environment
KR100661112B1 (ko) 재활치료가 필요한 대상의 평형기능 측정, 진단 및 훈련시스템
KR20240065560A (ko) 재활 치료용 착용 로봇 성능 평가 시스템 및 이의 제어 방법
TWI409055B (zh) 膝關節外骨骼步行復健設備
Alwan et al. Passive derivation of basic walker-assisted gait characteristics from measured forces and moments
KR20100048052A (ko) 인체 균형기능 진단 시스템 및 진단 방법
KR101675510B1 (ko) 능동형 운동치료장치
JP2005185557A (ja) 運動能力評価システム
CN110478100A (zh) 脑瘫儿童智能踝足矫正训练器
Zhang et al. A wireless human motion monitoring system based on joint angle sensors and smart shoes
Alves et al. Development of a Cable-Driven Robot with a Compensation Measurement System for Bimanual and Cognitive Rehabilitation of Stroke

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07808162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07808162

Country of ref document: EP

Kind code of ref document: A1