[go: up one dir, main page]

WO2008031712A2 - Pesticidal active mixtures comprising sulfonamides - Google Patents

Pesticidal active mixtures comprising sulfonamides Download PDF

Info

Publication number
WO2008031712A2
WO2008031712A2 PCT/EP2007/058857 EP2007058857W WO2008031712A2 WO 2008031712 A2 WO2008031712 A2 WO 2008031712A2 EP 2007058857 W EP2007058857 W EP 2007058857W WO 2008031712 A2 WO2008031712 A2 WO 2008031712A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
methyl
pesticidal mixtures
mixtures according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2007/058857
Other languages
French (fr)
Other versions
WO2008031712A3 (en
Inventor
Wolfgang Von Deyn
Jürgen LANGEWALD
Matthias Pohlman
Florian Kaiser
Douglas D. Anspaugh
Henry Van Tuyl Cotter
Nigel Armes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of WO2008031712A2 publication Critical patent/WO2008031712A2/en
Anticipated expiration legal-status Critical
Publication of WO2008031712A3 publication Critical patent/WO2008031712A3/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • A01N41/04Sulfonic acids; Derivatives thereof
    • A01N41/06Sulfonic acid amides

Definitions

  • Pesticidal active mixtures comprising sulfonamides
  • the present invention relates to pesticidal mixtures comprising as active components
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl or propargyl
  • R 3 is chloride, methoxy or difluoromethoxy
  • R 4 is hydrogen or fluoro
  • Acetylcholine esterase inhibitors selected from triazemate or from the class of carbamates consisting of aldicarb, alanycarb, benfuracarb, carbaryl, carbofuran, carbosul- fan, methiocarb, methomyl, oxamyl, primicarb, propoxur and thiodicarb or from the class of organophosphates consisting of acephate, azinphos-ethyl, azinphos-methyl, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, demeton-S-methyl, diazinon, dichlor- vos/DDVP, dicrotophos, dimethoate, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamidaphos, methidathion, mevinphos, monocrotophos, oxymethoate, oxy
  • A.2 GABA-gated chloride channel antagonists selected from the cyclodiene or- ganochlorine endosulfan, from N-Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon or N-Ethyl ⁇ -dichloro-i-methylcyclopropane- carboxamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon or from the class of phenylpyrazoles consisting of acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole, va- niliprole and the phenyl pyrazole compound II.A 2 1 :
  • A.3 Sodium channel modulators selected from the class of pyrethroids consisiting of allethrin, bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fen- propathrin, fenvalerate, flucythrinate, tau-fluvalinate, permethrin, silafluofen and tralomethrin;
  • Nicotinic acteylcholine receptor agonists/antagonists selected from nicotin, cartap hydrochloride or thiocyclam or selected from the class of neonicotinoids consisting of acteamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiameth- oxam and AKD-1022; or selected from the allosteric nicotinic acteylcholine receptor agonist spinosad;
  • A.5 Chloride channel activators selected from abamectin, emamectin benzoate, Ie- pimectin or milbemectin;
  • A.6 Juvenile hormone mimics selected from hydroprene, kinoprene, fenoxycarb or pyriproxyfen;
  • A.7 Compounds affecting the oxidative phosphorylation selected from diafenthiuron, fenbutatin oxide, propargite or chlorfenapyr;
  • A.8 Inhibitors of the chitin biosynthesis selected from buprofezin or from the class of benzylureas consisting of bistrifluron, diflubenzuron, flufenoxuron, hexaflumuron, lufenuron, novaluron or teflubenzuron;
  • A.9 Moulting disruptors selected from cyromazine or from the class of ecdysone agonists consisting of methoxyfenozide, tebufenozide and azadirachtin;
  • A.10 Mitochondrial electron transport inhibitors selected from pyridaben, tolfenpyrad or flufenerim;
  • A.1 Voltage-dependent sodium channel blockers selected from indoxacarb or meta- flumizone;
  • A.12 Inhibitors of the lipid synthesis selected from spirodiclofen, spiromesifen or spiro- tetramat;
  • A.13 A group of various compounds consisting of amidoflumet, amitraz, bifenazate, clofentezine, cyenopyrafen, cyflumetofen, etoxazole, flonicamid, flubendiamine, flu- pyrazophos, hexythiazox, piperonyl butoxide, pymetrozine, pyridalyl, pyrifluquinazon, chlorantraniliprole and the anthranilamid compound II.
  • a 13 1 A group of various compounds consisting of amidoflumet, amitraz, bifenazate, clofentezine, cyenopyrafen, cyflumetofen, etoxazole, flonicamid, flubendiamine, flu- pyrazophos, hexythiazox, piperonyl butoxide, pymetrozine, pyridalyl, pyrifluqui
  • the present invention also provides methods for the control of insects, acarids or nematodes comprising contacting the insect, acarid or nematode or their food supply, habitat, breeding grounds or their locus with a pesticidally effective amount of mixtures of at least one compound I with one or more compounds II.
  • the present invention also relates to a method of protecting plants from at- tack or infestation by insects, acarids or nematodes comprising contacting the plant, or the soil or water in which the plant is growing, with a pesticidally effective amount of a mixture of at least one compound I with one or more compounds II.
  • the invention also provides a method for the protection of seeds from soil insects and of the seedlings' roots and shoots from soil and foliar insects which comprises contacting the seeds before sowing and/or after pregermination with a pesticidally effective amount of a mixture of at least one compound I with one or more compounds II.
  • the invention also relates to the use of a mixture of at least one compound I with one or more compounds Il for combating insects, arachnids or nematodes.
  • One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective pest control.
  • Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of pests.
  • this object is in part or in whole achieved by the combination of active compounds defined at the outset. Moreover, we have found that simultaneous, that is joint or separate, application of at least one compound I and one or more com- pounds Il or successive application of at least one compound I and one or more compounds Il allows enhanced control of pests compared to the control rates that are possible with the individual compounds.
  • R 2 is hydrogen, methyl or ethyl
  • R 3 is methoxy or difluoromethoxy
  • R 4 is hydrogen or fluoro; or the salts thereof.
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl; R 3 is methoxy; and
  • R 4 is hydrogen or fluoro; or the salts thereof.
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl
  • R 3 is difluoromethoxy
  • R 4 is hydrogen; or the salts thereof. Preferred are also pesticidal mixtures, wherein the substituents of the compound of formula I have the following meanings:
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen, methyl, ethyl
  • R 3 is difluoromethoxy
  • R 4 is fluoro; or the salts thereof.
  • the compound selected from group A.1 as defined above is preferably triazemate or primicarb.
  • the compound selected from group A.2 as defined above is preferably endosulfan, N-Ethyl-2,2- dimethylpropionamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon, N-Ethyl-2,2- dichloro-1-methylcyclopropane-carboxamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hy- drazon, acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole or vaniliprole or the phenylpyrazole compound II.A 2 1 .
  • the compound Il is N-Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon, N-Ethyl ⁇ -dichloro-i-methylcyclopropane- carboxamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon, acetoprole or fipronil.
  • the compound Il selected from group A.3 as defined above is preferably allethrin, bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, zeta- cypermethrin, deltamethrin, etofenprox, fenpropathrin, fenvalerate, flucythrinate, tau- fluvalinate, silafluofen or tralomethrin.
  • the compound Il is alpha-cypermethrin or deltamethrin.
  • the compound Il selected from group A.4 as defined above is preferably thiocyclam or from the class of neonicotinoids acteamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thia- cloprid, thiamethoxam and AKD-1022; or the allosteric nicotinic acteylcholine receptor agonist spinosad. More preferably the compound Il is clothianidine, imidacloprid or thiamethoxam.
  • the compound Il selected from group A.5 as defined above is preferably abamectin, emamectin benzo- ate, lepimectin or milbemectin. More preferably the compound Il is abamectin.
  • the compound Il selected from group A.7 as defined above is preferably diafenthiuron.
  • the compound Il selected from group A.8 as defined above is preferably buprofezin.
  • the compound Il selected from group A.10 as defined above is preferably pyridaben or flufenerim.
  • the compound Il selected from group A.1 1 as defined above is preferably indoxacarb or metaflumizone. More preferably the compound Il is metaflumizone.
  • the compound Il selected from group A.12 as defined above is preferably spirodiclofen, spiromesifen or spirotetramat. More preferably the compound Il is spiromesifen or spirotetramat.
  • the compound Il selected from group A.13 as defined above is preferably amitraz, flonicamid, fluben- diamine, pymetrozine, pyridalyl, pyrifluquinazon, chlorantraniliprole or the anthranil compound II.A 13 1 .
  • the compound Il is flonicamid, pymetrozine, pyrifluquinazon, chlorantraniliprole or the anthranil compound II.A 13 1 .
  • pesticidal mixtures containing acetoprole as compound II are especially preferred.
  • pesticidal mixtures containing fipronil as compound II are especially preferred.
  • pesticidal mixtures containing alpha-cypermethrin as compound II are especially preferred.
  • pesticidal mixtures containing clothianidin as compound II are especially preferred.
  • pesticidal mixtures containing imidacloprid as compound II are especially preferred.
  • pesticidal mixtures containing thiamethoxam as compound II are especially preferred.
  • pesticidal mixtures containing pymetrozine as compound II are especially preferred.
  • pesticidal mixtures containing flonicamid as compound II are especially preferred.
  • pesticidal mixtures containing spiromesifen as compound II are especially preferred.
  • pesticidal mixtures containing spirotetramat as compound II are especially preferred.
  • pesticidal mixtures containing pyrifluquinazon as compound II are especially preferred.
  • pesticidal mixtures containing chlorantraniliprole as compound Especially preferred are pesticidal mixtures containing the anthranilamid compound 11.
  • inventive mixtures wherein the compound Il of group A is ace- toprol and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is fipronil and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is N- Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p-tolyl) hydrazon and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is N- Ethyl-2,2-dichloro-1-methylcyclopropane-carboxamide-2-(2,6-dichloro- ⁇ . ⁇ . ⁇ -trifluoro-p- tolyl) hydrazon and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is al- pha-cypermethrin and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is del- tamethrin and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is clothianidin and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is imi- dacloprid and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is thiamethoxam and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is abamectin and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is py- metrozine and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is floni- camid and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is diafenthiuron and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is bu- profezin and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is pyri- daben and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is flufenerim and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is metaflumizone and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is spi- romesifen and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is spi- rotetramat and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is pyrifluquinazon and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is chlorantraniliprole and the compound of formula I is a compound of Table C.
  • inventive mixtures wherein the compound Il of group A is the anthranilamid compound II.A 13 1 and the compound of formula I is a compound of Table C.
  • Table M represents perferred combinations of compounds I as defined in table C and compounds Il of group A in mixtures according to the invention:
  • Another aspect of the present invention is when preparing the mixtures, it is preferred to employ the pure active compounds I and II, to which further active compounds, e.g. against harmful fungi or having herbicidal activity, or growth-regulating agents or fertilizers can be added.
  • Insects from the order of the lepidopterans for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheima- tobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandi- osella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bou- liana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha mo- lest
  • beetles Coldoptera
  • Agrilus sinuatus for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscu- rus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aphthona euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blasto- phagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Ctenicera ssp., Diabro
  • mosquitoes e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, An- astrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gambiae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia anthropophaga, Culicoides furens, Culex pipiens, Culex nigripal
  • thrips (Thysanoptera), e.g. Dichromothrips corbetti, Dichromothrips ssp., Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
  • Isoptera e.g. Calotermes flavicollis, Leucotermes flavipes, Heterotermes aureus, Reticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Re- ticulitermes santonensis, Reticulitermes grassei, Termes natalensis, and Coptotermes formosanus;
  • cockroaches (Blattaria - Blattodea), e.g. Blattella germanica, Blattella asahinae, Periplaneta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuliggi- nosa, Periplaneta australasiae, and Blatta orientalis;
  • Atta cephalotes Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana,
  • Crematogaster spp. Hoplocampa minuta, Hoplocampa testudinea, Lasius niger, Monomorium pharaonis, Solenopsis geminata, Solenopsis invicta, Solenopsis richteri,
  • Paravespula vulgaris Paravespula pennsylvanica
  • Paravespula germanica Paravespula germanica
  • crickets grasshoppers, locusts (Orthoptera), e.g. Acheta domestica, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca americana, Schistocerca gregaria, Dociostaurus maroccanus, Tachycines asynamorus, Oedaleus senegalensis, Zonozerus variegatus, Hieroglyphus daganensis, Kraussaria angulifera, Calliptamus italicus, Chortoicetes terminifera, and Locustana pardalina;
  • Orthoptera e.g. Acheta domestica, Gryllotalpa gryllotalpa, Locusta migratoria
  • arachnoidea such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Ambryomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ixodes scapularis, Ixodes holocyclus, Ixodes pacificus, Ornithodorus moubata, Ornithodorus hermsi, Ornithodorus turicata, Ornithonyssus bacoti, Otobius megnini, Dermanyssus gallina
  • Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and Oligonychus pratensis; Araneida, e.g. Latrodectus mactans, and Loxosceles reclusa;
  • fleas e.g. Ctenocephalides felis, Ctenocephalides canis, Xenopsylla cheopis, Pulex irritans, Tunga penetrans, and Nosopsyllus fasciatus,
  • silverfish, firebrat e.g. Lepisma saccharina and Thermobia domestica
  • centipedes Chilopoda
  • Scutigera coleoptrata millipedes
  • Miplopoda e.g. Narceus spp.
  • Earwigs e.g. forficula auricularia
  • Pediculus humanus capitis e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthirus pubis, Haematopinus eurysternus, Haematopinus suis, Linognathus vituli, Bovi- cola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus.
  • Collembola (springtails), e.g. Onychiurus ssp..
  • Nematodes plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring nematodes, Criconema
  • the mixtures of the present are also useful for controlling arachnids (Arachnoidea), such as acarians (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp.
  • arachnoidea such as acarians (Acarina
  • Tarsonemidae spp. such as Phytonemus pallidus and Polyphagotarsonemus latus; tonemus pallidus and Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis; Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and oligonychus pratensis.
  • insects preferably sucking or piercing insects such as insects from the genera Thysanoptera, Dip- tera and Hemiptera, in particular the following species:
  • Thysanoptera Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirto- thrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
  • Diptera e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gam- biae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chryso- mya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia an- thropophaga, Culicoides furens, Culex pipiens, Culex nigripalpus, Culex
  • Coleoptera for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Am- phimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aphthona euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthor- rhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vesper- tinus, Crioceris asparagi, Ctenicera ssp., Diabrotica longicornis, Diabrotica semipun
  • Hemiptera in particular aphids: Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gos- sypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae,
  • inventive mixtures are especially useful for the control of Lepidoptera, Coleoptera, Diptera, Thysanoptera and Hemiptera.
  • inventive mixtures are useful for the control of Thysanoptera and Hemiptera, especially Hemiptera.
  • the mixtures according to the present invention can be converted into the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the use form depends on the particular intended purpose; in each case, it should ensure a fine and even distribution of the compounds according to the invention.
  • the formulations are prepared in a known manner (see e.g. for review US 3,060,084, EP-A 707 445 (for liquid concentrates), Browning, "Agglomeration”, Chemical Engi- neering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and et seq.
  • auxiliaries suitable for the formulation of agrochemicals such as solvents and/or carriers, if desired emulsifiers, surfactants and dispersants, preservatives, anti- foaming agents, anti-freezing agents, for seed treatment formulation also optionally gelling agents.
  • solvents examples include water, aromatic solvents (for example Solvesso products, xylene), paraffins (for example mineral oil fractions), alcohols (for example methanol, butanol, pentanol, benzyl alcohol), ketones (for example cyclohexanone, gamma-butyrolactone), pyrrolidones (NMP(N-methyl-pyrrolidone), NOP (N-octyl- pyrrolidone)), acetates (glycol diacetate), glycols, fatty acid dimethylamides, fatty acids and fatty acid esters. In principle, solvent mixtures may also be used.
  • aromatic solvents for example Solvesso products, xylene
  • paraffins for example mineral oil fractions
  • alcohols for example methanol, butanol, pentanol, benzyl alcohol
  • ketones for example cyclohexanone, gamma-butyrolactone
  • Suitable emulsifiers are nonionic and anionic emulsifiers (for example polyoxyethylene fatty alcohol ethers, alkylsulfonates and arylsulfonates).
  • dispersants examples include lignin-sulfite waste liquors and methylcellulose.
  • Suitable surfactants used are alkali metal, alkaline earth metal and ammonium salts of lignosulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalene- sulfonic acid, alkylarylsulfonates, alkyl sulfates, alkylsulfonates, fatty alcohol sulfates, fatty acids and sulfated fatty alcohol glycol ethers, furthermore condensates of sulfonated naphthalene and naphthalene derivatives with formaldehyde, condensates of naphthalene or of naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylphenol polyglycol ethers, tributylphenyl
  • Substances which are suitable for the preparation of directly sprayable solutions, emulsions, pastes or oil dispersions are mineral oil fractions of medium to high boiling point, such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, etha- nol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, highly polar solvents, for example dimethyl sulfoxide, N-methylpyrrolidone or water.
  • mineral oil fractions of medium to high boiling point such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example toluene, x
  • anti-freezing agents such as glycerin, ethylene glycol, propylene glycol and bactericides such as can be added to the formulation.
  • Suitable antifoaming agents are for example antifoaming agents based on silicon or magnesium stearate.
  • a suitable preservative is e.g. dichlorophen.
  • gelling agent is carrageen (Satiagel®)
  • Powders, materials for spreading and dustable products can be prepared by mixing or concomitantly grinding the active substances with a solid carrier.
  • Granules for example coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active compounds to solid carriers.
  • solid carriers examples include mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertiliz- ers, such as, for example, ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
  • mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertiliz- ers, such as, for example, ammonium sulfate, ammoni
  • the formulations comprise from 0.01 to 95% by weight, preferably from 0.1 to 90% by weight, of the active compounds.
  • the active compounds are employed in a purity of from 90% to 100% by weight, preferably 95% to 100% by weight (according to NMR spectrum).
  • respective formulations can be diluted 2-10 fold leading to concentrations in the ready to use preparations of 0,01 to 60% by weight active compounds by weight, preferably 0,1 to 40% by weight.
  • the mixtures of the present invention can be used as such, in the form of their formulations or the use forms prepared therefrom, for example in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dustable products, materials for spreading, or granules, by means of spraying, atomizing, dusting, spreading or pouring.
  • the use forms depend entirely on the intended pur- poses; they are intended to ensure in each case the finest possible distribution of the active compounds according to the invention.
  • Aqueous use forms can be prepared from emulsion concentrates, pastes or wettable powders (sprayable powders, oil dispersions) by adding water.
  • emulsions, pastes or oil dispersions the substances, as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetter, tackifier, dispersant or emulsifier.
  • concentrates composed of active substance, wetter, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil and such concentrates are suitable for dilution with water.
  • the active compound concentrations in the ready-to-use preparations can be varied within relatively wide ranges. In general, they are from 0.0001 to 10%, preferably from 0.01 to 1 % per weight.
  • the active compound(s) may also be used successfully in the ultra-low-volume process (ULV), it being possible to apply formulations comprising over 95% by weight of active compound, or even to apply the active compound without additives.
  • UUV ultra-low-volume process
  • Products for dilution with water for foliar applications may be applied to the seed diluted or undiluted.
  • the active compound(s) 10 parts by weight of the active compound(s) are dissolved in 90 parts by weight of water or a water-soluble solvent. As an alternative, wetters or other auxiliaries are added. The active compound(s) dissolve(s) upon dilution with water, whereby a formu- lation with 10 % (w/w) of active compound(s) is obtained.
  • Emulsions EW, EO, ES
  • 25 parts by weight of the active compound(s) are dissolved in 35 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight).
  • This mixture is introduced into 30 parts by weight of water by means of an emulsifier machine (e.g. Ultraturrax) and made into a homogeneous emulsion. Dilution with water gives an emulsion, whereby a formulation with 25% (w/w) of active compound(s) is obtained.
  • an emulsifier machine e.g. Ultraturrax
  • 50 parts by weight of the active compound(s) are ground finely with addition of 50 parts by weight of dispersants and wetters and made as water-dispersible or water-soluble granules by means of technical appliances (for example extrusion, spray tower, fluid- ized bed). Dilution with water gives a stable dispersion or solution of the active compound ⁇ ), whereby a formulation with 50% (w/w) of active compound(s) is obtained.
  • 75 parts by weight of the active compound(s) are ground in a rotor-stator mill with addition of 25 parts by weight of dispersants, wetters and silica gel. Dilution with water gives a stable dispersion or solution of the active compound(s), whereby a formulation with 75% (w/w) of active compound(s) is obtained.
  • 0.5 part by weight of the active compound(s) is ground finely and associated with 95.5 parts by weight of carriers, whereby a formulation with 0.5% (w/w) of active com- pound(s) is obtained.
  • Current methods are extrusion, spray-drying or the fluidized bed. This gives granules to be applied undiluted for foliar use.
  • oils, wetters, adjuvants, herbicides, fungicides, other pesticides, or bactericides may be added to the active ingredients, if appropriate just immediately prior to use (tank mix). These agents usually are admixed with the agents according to the invention in a weight ratio of 1 :10 to 10:1.
  • inventive mixtures are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part) and through tro- phallaxis and transfer.
  • Preferred application methods are into water bodies, via soil, cracks and crevices, pastures, manure piles, sewers, into water, on floor, wall, or by perimeter spray application and bait.
  • the inventive mixtures are prepared into a bait preparation.
  • the bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
  • the bait employed in the composition is a product which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitoes, crickets etc. or cockroaches to eat it.
  • This attractant may be chosen from feeding stimulants or para and / or sex phero- mones readily known in the art.
  • Methods to control infectious diseases transmitted by insects with the inventive mixtures and their respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like, lnsecticidal compositions for application to fibers, fabric, knitgoods, non- wovens, netting material or foils and tarpaulins preferably comprise a composition including the inventive mixtures, optionally a repellent and at least one binder.
  • inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).
  • the quantity of active ingredient(s) ranges from 0.0001 to 500 g per 100 m 2 , preferably from 0.001 to 2O g per 100 m 2 .
  • Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound(s) per m 2 treated material, desirably from 0.1 g to 50 g per m 2 .
  • lnsecticidal compositions for use in the impregnation of materials typically contain from 0.001 to 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and / or insecticide.
  • the typical content of active ingredient(s) is from 0.0001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active compound.
  • the composition used may also comprise other additives such as a solvent of the active material, a flavoring agent, a preserving agent, a dye or a bitter agent. Its attractiveness may also be enhanced by a special color, shape or texture.
  • the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
  • the rate of application of the mixture of the active ingredients of this invention may be in the range of 0.1 g to 4000 g per hectare, desirably from 25 g to 600 g per hectare, more desirably from 50 g to 500 g per hectare.
  • the compounds I and the one or more compound(s) Il can be applied simultaneously, that is jointly or separately, or in succession, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.
  • the compounds I and the one or more compound(s) Il are usually applied in a weight ratio of from 500:1 to 1 :100, preferably from 20:1 to 1 :50, in particular from 5:1 to 1 :20.
  • the application rates of the mixtures according to the invention are from 5 g/ha to 2000 g/ha, preferably from 50 to 1500 g/ha, in particular from 50 to 750 g/ha.
  • the mixtures according to the invention are effective through both contact and ingestion.
  • the mixtures according to the present invention are employed via soil application.
  • Soil application is especially favorable for use against ants, termites, crickets, or cockroaches.
  • the mixtures according to the present invention are prepared into a bait preparation.
  • the bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
  • compositions of this invention may further contain other active ingredients than those listed above.
  • active ingredients for example fungicides, herbicides, fertilizers such as ammonium nitrate, urea, potash, and superphosphate, phytotoxicants and plant growth regulators and safeners.
  • additional ingredients may be used sequentially or in combination with the above-described compositions, if appropriate also added only immediately prior to use (tank mix).
  • the plant(s) may be sprayed with a composition of this invention either before or after being treated with other active ingredients.
  • the mixtures according to the invention can be applied to any and all developmental stages, such as egg, larva, pupa, and adult.
  • the pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures.
  • "Locus” means a plant, seed, soil, area, material or environment in which a pest is growing or may grow.
  • pesticidally effective amount means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism.
  • the pesticidally effective amount can vary for the various mixtures / compositions used in the invention.
  • a pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
  • inventive mixtures or compositions of these mixtures can also be employed for protecting plants from attack or infestation by insects, acarids or nematodes comprising contacting a plant, or soil or water in which the plant is growing.
  • the term plant refers to an entire plant, a part of the plant or the propagation material of the plant, that is, the seed or the seedling.
  • Plants which can be treated with the inventive mixtures include all genetically modified plants or transgenic plants, e.g. crops which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods, or plants which have modified characteristics in comparison with existing plants, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures.
  • Some of the inventive mixtures have systemic action and can therefore be used for the protection of the plant shoot against foliar pests as well as for the treatment of the seed and roots against soil pests.
  • the mixtures according to the present invention are therfore suitable for the treatment of seeds in order to protect the seed from insect pest, in particular from soil-living insect pests and the resulting plant's roots and shoots against soil pests and foliar insects.
  • the protection of the resulting plant's roots and shoots is preferred.
  • the present invention therefore comprises a method for the protection of seeds from insects, in particular from soil insects and of the seedlings' roots and shoots from insects, in particular from soil and foliar insects, said method comprising contacting the seeds before sowing and/or after pregermination with mixtures according to the present invention.
  • a method wherein the plant's roots and shoots are protected, more preferably a method, wherein the plants shoots are protected form piercing and sucking insects, most preferably a method, wherein the plants shoots are protected from aphids.
  • seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
  • seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.
  • the present invention also comprises seeds coated with or containing the active compound ⁇ ).
  • coated with and/or containing generally signifies that the active ingredient(s) are for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product are (re)planted, it may absorb the active ingredient.
  • Suitable seeds are seeds of cereals, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugarbeet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
  • mixtures according to the invention may also be used for the treatment seeds from plants, which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods.
  • the active mixtures can be employed in treatment of seeds from plants, which are resistant to herbicides from the group consisting of the sulfonylureas, imida- zolinones, glufosinate-ammonium or glyphosate-isopropylammonium and analogous active substances (see for example, EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A-0257993, U.S. Pat. No.
  • the mixtures according to the present invention can be used also for the treatment of seeds from plants, which have modified characteristics in comparison with existing plants consist, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures).
  • a number of cases have been described of recombinant modifications of crop plants for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/11376, WO 92/14827, WO 91/19806) or of transgenic crop plants having a modified fatty acid composition (WO 91/13972).
  • the seed treatment application of the mixtures is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.
  • the corresponding formulations are applied by treating the seeds with an effective amount of the mixture according to the present invention.
  • the application rates of the active compound(s) are generally from 0,1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 2,5 kg per 100 kg of seed. For specific crops such as lettuce the rate can be higher.
  • compositions which are especially useful for seed treatment are e.g.:
  • a Soluble concentrates (SL, LS)
  • Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pre- germinated the latter
  • a FS formulation is used for seed treatment.
  • a FS formulation may comprise 1-800 g/l of active ingredient(s), 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
  • Preferred FS formulations of compounds of formula I for seed treatment usually com- prise from 0.1 to 80% by weight (1 to 800 g/l) of the active ingredient(s), from 0.1 to 20 % by weight (1 to 200 g/l) of at least one surfactant, e.g. 0.05 to 5 % by weight of a wetter and from 0.5 to 15 % by weight of a dispersing agent, up to 20 % by weight, e.g. from 5 to 20 % of an anti-freeze agent, from 0 to 15 % by weight, e.g. 1 to 15 % by weight of a pigment and/or a dye, from 0 to 40 % by weight, e.g.
  • a binder (sticker /adhesion agent), optionally up to 5 % by weight, e.g. from 0.1 to 5 % by weight of a thickener, optionally from 0.1 to 2 % of an anti-foam agent, and optionally a preservative such as a biocide, antioxidant or the like, e.g. in an amount from 0.01 to 1 % by weight and a filler/vehicle up to 100 % by weight.
  • a binder sticker /adhesion agent
  • a preservative such as a biocide, antioxidant or the like
  • Seed Treatment formulations may additionally also comprise binders and optionally colorants.
  • Binders can be added to improve the adhesion of the active materials on the seeds after treatment.
  • Suitable binders are block copolymers EO/PO surfactants but also po- lyvinylalcoholsl, polyvinylpyrrolidones, polyacrylates, polymethacrylates, polybutenes, polyisobutylenes, polystyrene, polyethyleneamines, polyethyleneamides, polyethyle- neimines (Lupasol®, Polymin®), polyethers, polyurethans, polyvinylacetate, tylose and copolymers derived from these polymers.
  • colorants can be included in the formulation. Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 112, C.I. Solvent Red 1 , pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48:1 , pigment red 57:1 , pigment red 53:1 , pigment orange 43, pig- ment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
  • the invention also relates to seed comprising mixtures according to the present inven- tion.
  • the amount of the compound I or the agriculturally useful salt thereof will in general vary from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed.
  • Synergism can be described as an interaction where the combined effect of two or mo- re compounds is greater than the sum of the individual effects of each of the compounds.
  • the presence of a synergistic effect in terms of percent control, between two mixing partners (X and Y) can be calculated using the Colby equation (Colby, S. R., 1967, Calculating Synergistic and Antagonistic Responses in Herbicide Combinations, Weeds, 15, 20-22):
  • test unit For evaluating control of vetch aphid (Megoura viciae) through contact or systemic means the test unit consisted of 24-well-microtiter plates containing broad bean leaf disks.
  • the compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the leaf disks at 2.5 ⁇ l, using a custom built micro atomizer, at two replica- tions.
  • the leaf disks were air-dried and 5 - 8 adult aphids placed on the leaf disks inside the microtiter plate wells. The aphids were then allowed to suck on the treated leaf disks and incubated at 23 + 1 0 C, 50 + 5 % RH for 5 days. Aphid mortality and fecundity was then visually assessed. For the mixture tested the results are listed in table 1.
  • test unit For evaluating control of green peach aphid (Myzus persicae) through systemic means the test unit consisted of 96-well-microtiter plates containing liquid artificial diet under an artificial membrane.
  • the compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were pipetted into the aphid diet, using a custom built pipetter, at two replications.
  • test unit For evaluating control of boll weevil (Anthonomus grandis) the test unit consisted of 24- well-microtiter plates containing an insect diet and 20-30 A. grandis eggs. The compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the insect diet at 20 ⁇ l, using a custom built micro atomizer, at two replications.
  • microtiter plates were incubated at 23 + 1 0 C, 50 + 5 % RH for 5 days. Egg and larval mortality was then visually assessed. For the mixture tested the results are listed in table 3.
  • the test unit consisted of 96-well-microtiter plates containing an insect diet and 50-80 C. capitata eggs.
  • the compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the insect diet at 5 ⁇ l, using a custom built micro atomizer, at two replications.
  • microtiter plates were incubated at 28 + 1 0 C, 80 + 5 % RH for 5 days. Egg and larval mortality was then visually assessed. For the mixture tested the results are listed in table 3.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to pesticidal mixtures comprising as active components: 1) at least one sulfonamide compound of the formula (I), wherein R1, R2, R3 and R4 are defined as in the description; and 2) one or more compounds II selected from a group A comprising acteylcholine esterase inhibitors, GABA-gated chloride channel antagonists, sodium channel modulators, nicotinic acteylcholine receptor agonists/antagonists, chloride channel activators, juvenile hormone mimics, compounds affecting the oxidative phosphorylation, inhibitors of the chitin biosynthesis, moulting disruptors, inhibitors of the MET, voltage-dependent sodium channel blockers, inhibitors of the lipid synthesis and other compounds as defined in the description, in synergistically effective amounts. The invention relates further to methods and use of these mixtures for combating insects, arachnids or nematodes in and on plants, and for protecting such plants being infested with pests, especially also for protecting seeds.

Description

Pesticidal active mixtures comprising sulfonamides
The present invention relates to pesticidal mixtures comprising as active components
1 ) at least one sulfonamide compound of formula I:
Figure imgf000002_0001
formula I
wherein
R1 is hydrogen or methyl;
R2 is hydrogen, methyl, ethyl or propargyl;
R3 is chloride, methoxy or difluoromethoxy; and
R4 is hydrogen or fluoro;
or salts thereof,
and
2) one or more compounds Il selected from group A consisting of
A.1 Acetylcholine esterase inhibitors selected from triazemate or from the class of carbamates consisting of aldicarb, alanycarb, benfuracarb, carbaryl, carbofuran, carbosul- fan, methiocarb, methomyl, oxamyl, primicarb, propoxur and thiodicarb or from the class of organophosphates consisting of acephate, azinphos-ethyl, azinphos-methyl, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, demeton-S-methyl, diazinon, dichlor- vos/DDVP, dicrotophos, dimethoate, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamidaphos, methidathion, mevinphos, monocrotophos, oxymethoate, oxydemeton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phosphamidon, pirimiphos-methyl, quinalphos, terbufos, tetra- chlorvinphos, triazophos and trichlorfon;
A.2 GABA-gated chloride channel antagonists selected from the cyclodiene or- ganochlorine endosulfan, from N-Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro- α.α.α-trifluoro-p-tolyl) hydrazon or N-Ethyl^^-dichloro-i-methylcyclopropane- carboxamide-2-(2,6-dichloro-α.α.α-trifluoro-p-tolyl) hydrazon or from the class of phenylpyrazoles consisting of acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole, va- niliprole and the phenyl pyrazole compound II.A2 1:
Figure imgf000003_0001
A.3 Sodium channel modulators selected from the class of pyrethroids consisiting of allethrin, bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fen- propathrin, fenvalerate, flucythrinate, tau-fluvalinate, permethrin, silafluofen and tralomethrin;
A.4 Nicotinic acteylcholine receptor agonists/antagonists selected from nicotin, cartap hydrochloride or thiocyclam or selected from the class of neonicotinoids consisting of acteamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiameth- oxam and AKD-1022; or selected from the allosteric nicotinic acteylcholine receptor agonist spinosad;
A.5 Chloride channel activators selected from abamectin, emamectin benzoate, Ie- pimectin or milbemectin;
A.6 Juvenile hormone mimics selected from hydroprene, kinoprene, fenoxycarb or pyriproxyfen;
A.7 Compounds affecting the oxidative phosphorylation selected from diafenthiuron, fenbutatin oxide, propargite or chlorfenapyr;
A.8 Inhibitors of the chitin biosynthesis selected from buprofezin or from the class of benzylureas consisting of bistrifluron, diflubenzuron, flufenoxuron, hexaflumuron, lufenuron, novaluron or teflubenzuron;
A.9 Moulting disruptors selected from cyromazine or from the class of ecdysone agonists consisting of methoxyfenozide, tebufenozide and azadirachtin; A.10 Mitochondrial electron transport inhibitors selected from pyridaben, tolfenpyrad or flufenerim;
A.1 1 Voltage-dependent sodium channel blockers selected from indoxacarb or meta- flumizone;
A.12 Inhibitors of the lipid synthesis selected from spirodiclofen, spiromesifen or spiro- tetramat;
A.13 A group of various compounds consisting of amidoflumet, amitraz, bifenazate, clofentezine, cyenopyrafen, cyflumetofen, etoxazole, flonicamid, flubendiamine, flu- pyrazophos, hexythiazox, piperonyl butoxide, pymetrozine, pyridalyl, pyrifluquinazon, chlorantraniliprole and the anthranilamid compound II.A13 1:
Figure imgf000004_0001
in synergistically effective amounts.
The present invention also provides methods for the control of insects, acarids or nematodes comprising contacting the insect, acarid or nematode or their food supply, habitat, breeding grounds or their locus with a pesticidally effective amount of mixtures of at least one compound I with one or more compounds II.
Moreover, the present invention also relates to a method of protecting plants from at- tack or infestation by insects, acarids or nematodes comprising contacting the plant, or the soil or water in which the plant is growing, with a pesticidally effective amount of a mixture of at least one compound I with one or more compounds II.
The invention also provides a method for the protection of seeds from soil insects and of the seedlings' roots and shoots from soil and foliar insects which comprises contacting the seeds before sowing and/or after pregermination with a pesticidally effective amount of a mixture of at least one compound I with one or more compounds II.
The invention also relates to the use of a mixture of at least one compound I with one or more compounds Il for combating insects, arachnids or nematodes. One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective pest control.
Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of pests.
There also exists the need for pest control agents that combine know-down activity with prolonged control, that is, fast action with long lasting action.
Another difficulty in relation to the use of pesticides is that the repeated and exclusive application of an individual pesticidal compound leads in many cases to a rapid selection of pests which have developed natural or adapted resistance against the active compound in question. Therefore there is a need for pest control agents that help pre- vent or overcome resistance.
It was therefore an object of the present invention to provide pesticidal mixtures which solves at least one of the discussed problems as reducing the dosage rate, enhancing the spectrum of activity or combining know-down activity with prolonged control or as to resistance management.
We have found that this object is in part or in whole achieved by the combination of active compounds defined at the outset. Moreover, we have found that simultaneous, that is joint or separate, application of at least one compound I and one or more com- pounds Il or successive application of at least one compound I and one or more compounds Il allows enhanced control of pests compared to the control rates that are possible with the individual compounds.
Compounds of the formula I, their preparation and their action against insect and acarid pests have been described generically in WO2005/035486 and in WO 2006/056433.
The prior art does not disclose pesticidal mixtures comprising selective sulfonamide compounds according to the present invention showing unexpected and synergistic effects in combination with other pesticidically active compounds.
The commercially available compounds of the group A may be found in The Pesticide Manual, 13th Edition, British Crop Protection Council (2003) among other publications. Thiamides derivatives in analogy of formula II.A2 1 and their preparation have been described in WO 98/28279. Lepimectin is known from Agro Project, PJB Publications Ltd, November 2004. Methidathion and Paraoxon and their preparation have been described in Farm Chemicals Handbook, Volume 88, Meister Publishing Company, 2001. Acetoprole and its preparation have been described in WO 98/28277. Metaflumizone and its preparation have been described in EP-A1 462 456. Flupyrazofos has been described in Pesticide Science 54, 1988, p.237-243 and in US 4822779. Pyrafluprole and its preparation have been described in JP-A 2002-193709 and in WO 01/00614. Pyriprole and its preparation have been described in WO 98/45274 and in US 6335357. Amidoflumet and its preparation have been described in US 6221890 and in JP-A 21010907. Flufenerim and its preparation have been described in WO 03/007717 and in WO 03/007718. Cyflumetofen and its preparation have been described in WO 04/080180. Preparation methods for neonicotionids similar to AKD-1022 have been desscribed by Zhang, A. et al. in J.Neurochemistry, 75(3), 2000. Anthranilamides de- rivatives in analogy of formula II.A13 1 and their preparation have been described in WO 01/70671 ; WO 02/48137; WO 03/24222, WO 03/15518, WO 04/67528; WO 04/33468 and WO 05/118552.
Preferences
Preferred compounds I of formula I
With regard to their use in the pesticidal mixtures of the present invention, compounds of formula I are preferred wherein R1 is hydrogen or methyl;
R2 is hydrogen, methyl or ethyl;
R3 is methoxy or difluoromethoxy; and
R4 is hydrogen or fluoro; or the salts thereof.
Moreover, with regard to their use in the pesticidal mixtures of the present invention, compounds of formula I are especially preferred wherein
R1 is hydrogen or methyl;
R2 is hydrogen, methyl, ethyl; R3 is methoxy; and
R4 is hydrogen or fluoro; or the salts thereof.
Preferred are also pesticidal mixtures, wherein the substituents of the compound of formula I have the following meanings:
R1 is hydrogen or methyl;
R2 is hydrogen, methyl, ethyl;
R3 is difluoromethoxy; and
R4 is hydrogen; or the salts thereof. Preferred are also pesticidal mixtures, wherein the substituents of the compound of formula I have the following meanings:
R1 is hydrogen or methyl; R2 is hydrogen, methyl, ethyl; R3 is difluoromethoxy; and R4 is fluoro; or the salts thereof.
With respect to their use in the pesticidal mixtures of the present invention, particular preference is given to the compounds C.I compiled in the tables below. Moreover, the groups mentioned for a substituent in the tables are on their own, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituent in question.
Figure imgf000007_0001
Table C:
Figure imgf000007_0002
Figure imgf000008_0001
Preferred compounds Il selected from group A
With respect to their use in the pesticidal mixtures of the present invention, particular preference is given to the compounds CII as listed in the paragraphs below.
With regard to the use in a pesticidal mixture of the present invention, the compound selected from group A.1 as defined above is preferably triazemate or primicarb.
With regard to the use in a pesticidal mixture of the present invention, the compound selected from group A.2 as defined above is preferably endosulfan, N-Ethyl-2,2- dimethylpropionamide-2-(2,6-dichloro-α.α.α-trifluoro-p-tolyl) hydrazon, N-Ethyl-2,2- dichloro-1-methylcyclopropane-carboxamide-2-(2,6-dichloro-α.α.α-trifluoro-p-tolyl) hy- drazon, acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole or vaniliprole or the phenylpyrazole compound II.A2 1.
More preferably the compound Il is N-Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro- α.α.α-trifluoro-p-tolyl) hydrazon, N-Ethyl^^-dichloro-i-methylcyclopropane- carboxamide-2-(2,6-dichloro-α.α.α-trifluoro-p-tolyl) hydrazon, acetoprole or fipronil.
With regard to the use in a pesticidal mixture of the present invention, the compound Il selected from group A.3 as defined above is preferably allethrin, bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, zeta- cypermethrin, deltamethrin, etofenprox, fenpropathrin, fenvalerate, flucythrinate, tau- fluvalinate, silafluofen or tralomethrin.
More preferably the compound Il is alpha-cypermethrin or deltamethrin.
With regard to the use in a pesticidal mixture of the present invention, the compound Il selected from group A.4 as defined above is preferably thiocyclam or from the class of neonicotinoids acteamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thia- cloprid, thiamethoxam and AKD-1022; or the allosteric nicotinic acteylcholine receptor agonist spinosad. More preferably the compound Il is clothianidine, imidacloprid or thiamethoxam.
With regard to the use in a pesticidal mixture of the present invention, the compound Il selected from group A.5 as defined above is preferably abamectin, emamectin benzo- ate, lepimectin or milbemectin. More preferably the compound Il is abamectin.
With regard to the use in a pesticidal mixture of the present invention, the compound Il selected from group A.7 as defined above is preferably diafenthiuron.
With regard to the use in a pesticidal mixture of the present invention, the compound Il selected from group A.8 as defined above is preferably buprofezin.
With regard to the use in a pesticidal mixture of the present invention, the compound Il selected from group A.10 as defined above is preferably pyridaben or flufenerim.
With regard to the use in a pesticidal mixture of the present invention, the compound Il selected from group A.1 1 as defined above is preferably indoxacarb or metaflumizone. More preferably the compound Il is metaflumizone.
With regard to the use in a pesticidal mixture of the present invention, the compound Il selected from group A.12 as defined above is preferably spirodiclofen, spiromesifen or spirotetramat. More preferably the compound Il is spiromesifen or spirotetramat.
With regard to the use in a pesticidal mixture of the present invention, the compound Il selected from group A.13 as defined above is preferably amitraz, flonicamid, fluben- diamine, pymetrozine, pyridalyl, pyrifluquinazon, chlorantraniliprole or the anthranil compound II.A13 1.
More preferably the compound Il is flonicamid, pymetrozine, pyrifluquinazon, chlorantraniliprole or the anthranil compound II.A13 1.
Especially preferred are pesticidal mixtures containing N-Ethyl-2,2- dimethylpropionamide-2-(2,6-dichloro-α.α.α-trifluoro-p-tolyl) hydrazon as compound II.
Especially preferred are pesticidal mixtures containing N-Ethyl-2,2-dichloro-1- methylcyclopropane-carboxamide-2-(2,6-dichloro-α.α.α-trifluoro-p-tolyl) hydrazon as compound II.
Especially preferred are pesticidal mixtures containing acetoprole as compound II.
Especially preferred are pesticidal mixtures containing fipronil as compound II.
Especially preferred are pesticidal mixtures containing alpha-cypermethrin as compound II.
Especially preferred are pesticidal mixtures containing clothianidin as compound II.
Especially preferred are pesticidal mixtures containing imidacloprid as compound II.
Especially preferred are pesticidal mixtures containing thiamethoxam as compound II.
Especially preferred are pesticidal mixtures containing pymetrozine as compound II.
Especially preferred are pesticidal mixtures containing flonicamid as compound II.
Especially preferred are pesticidal mixtures containing spiromesifen as compound II.
Especially preferred are pesticidal mixtures containing spirotetramat as compound II.
Especially preferred are pesticidal mixtures containing pyrifluquinazon as compound II.
Especially preferred are pesticidal mixtures containing chlorantraniliprole as compound Especially preferred are pesticidal mixtures containing the anthranilamid compound 11. A13 1
Figure imgf000011_0001
as compound II.
Preferred mixtures according to the invention
Especially preferred are inventive mixtures wherein the compound Il of group A is ace- toprol and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is fipronil and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is N- Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro-α.α.α-trifluoro-p-tolyl) hydrazon and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is N- Ethyl-2,2-dichloro-1-methylcyclopropane-carboxamide-2-(2,6-dichloro-α.α.α-trifluoro-p- tolyl) hydrazon and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is al- pha-cypermethrin and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is del- tamethrin and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is clothianidin and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is imi- dacloprid and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is thiamethoxam and the compound of formula I is a compound of Table C. Especially preferred are inventive mixtures wherein the compound Il of group A is abamectin and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is py- metrozine and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is floni- camid and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is diafenthiuron and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is bu- profezin and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is pyri- daben and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is flufenerim and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is metaflumizone and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is spi- romesifen and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is spi- rotetramat and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is pyrifluquinazon and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is chlorantraniliprole and the compound of formula I is a compound of Table C.
Especially preferred are inventive mixtures wherein the compound Il of group A is the anthranilamid compound II.A13 1 and the compound of formula I is a compound of Table C. The following table M represents perferred combinations of compounds I as defined in table C and compounds Il of group A in mixtures according to the invention:
Table M:
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
Another aspect of the present invention is when preparing the mixtures, it is preferred to employ the pure active compounds I and II, to which further active compounds, e.g. against harmful fungi or having herbicidal activity, or growth-regulating agents or fertilizers can be added.
Pests
The mixtures of compounds I and II, or the compounds I and Il used simultaneously, that is jointly or separately, exhibit outstanding action against pests from the following orders:
Insects from the order of the lepidopterans (Lepidoptera), for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheima- tobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandi- osella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bou- liana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha mo- lesta, Heliothis armigera, Heliothis virescens, Heliothis zea, HeIIuIa undalis, Hibernia defoliaria, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lycopersicella, Lamb- dina fiscellaria, Laphygma exigua, Leucoptera coffeella, Leucoptera scitella, Lithocol- letis blancardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseu- dotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacionia frus- trana, Scrobipalpula absoluta, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni and Zeiraphera canadensis;
beetles (Coleoptera), for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscu- rus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aphthona euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blasto- phagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Ctenicera ssp., Diabrotica Iongicornis, Diabrotica semipunctata, Diabrotica 12-punctata Diabrotica speciosa, Diabrotica virgifera, Epila- chna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, lps typographus, Lema bilineata, Lema melanopus, Leptinotarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Otiorrhynchus sulcatus, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllobius pyri, Phyllotreta chrysocephala, Phyllophaga sp., Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus and Sito- philus granaria;
flies, mosquitoes (Diptera), e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, An- astrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gambiae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia anthropophaga, Culicoides furens, Culex pipiens, Culex nigripalpus, Culex quinquefasciatus, Culex tarsalis, Culiseta inornata, Culiseta melanura, Dacus cucurbi- tae, Dacus oleae, Dasineura brassicae, Delia antique, Delia coarctata, Delia platura, Delia radicum, Dermatobia hominis, Fannia canicularis, Geomyza Tripunctata, Gaster- ophilus intestinalis, Glossina morsitans, Glossina palpalis, Glossina fuscipes, Glossina tachinoides, Haematobia irritans, Haplodiplosis equestris, Hippelates spp., Hylemyia platura, Hypoderma lineata, Leptoconops torrens, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mansonia titillanus, Mayetiola destructor, Musca autumnalis, Musca domestica, Muscina stabulans, Oestrus ovis, Opomyza florum, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phor- bia brassicae, Phorbia coarctata, Phlebotomus argentipes, Psorophora columbiae, Psila rosae, Psorophora discolor, Prosimulium mixtum, Rhagoletis cerasi, Rhagoletis pomonella, Sarcophaga haemorrhoidalis, Sarcophaga spp., Simulium vittatum, Sto- moxys calcitrans, Tabanus bovinus, Tabanus atratus, Tabanus lineola, and Tabanus similis, Tipula oleracea, and Tipula paludosa;
thrips (Thysanoptera), e.g. Dichromothrips corbetti, Dichromothrips ssp., Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
termites (Isoptera), e.g. Calotermes flavicollis, Leucotermes flavipes, Heterotermes aureus, Reticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Re- ticulitermes santonensis, Reticulitermes grassei, Termes natalensis, and Coptotermes formosanus;
cockroaches (Blattaria - Blattodea), e.g. Blattella germanica, Blattella asahinae, Periplaneta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuliggi- nosa, Periplaneta australasiae, and Blatta orientalis;
bugs, aphids, leafhoppers, whiteflies, scale insects, cicadas (Hemiptera), e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solubea insularis , Thyanta perditor, Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Bemisia argentifolii, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lactucae, Macrosiphum avenae, Macrosiphum euphorbiae, Ma- crosiphon rosae, Megoura viciae, Melanaphis pyrarius, Metopolophium dirhodum, My- zus persicae, Myzus ascalonicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mali, Psylla piri, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Rhopalosi- phum padi, Rhopalosiphum insertum, Sappaphis mala, Sappaphis mali, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Trialeurodes vaporariorum, Toxoptera aurantiiand, Viteus vitifolii, Cimex lectularius, Cimex hemipterus, Reduvius senilis, Triatoma spp., and Arilus critatus; ants, bees, wasps, sawflies (Hymenoptera), e.g. Athalia rosae, Atta cephalotes, Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana,
Crematogaster spp., Hoplocampa minuta, Hoplocampa testudinea, Lasius niger, Monomorium pharaonis, Solenopsis geminata, Solenopsis invicta, Solenopsis richteri,
Solenopsis xyloni, Pogonomyrmex barbatus, Pogonomyrmex californicus, Pheidole megacephala, Dasymutilla occidentalis, Bombus spp., Vespula squamosa,
Paravespula vulgaris, Paravespula pennsylvanica, Paravespula germanica,
Dolichovespula maculata, Vespa crabro, Polistes rubiginosa, Camponotus floridanus, and Linepithema humile;
crickets, grasshoppers, locusts (Orthoptera), e.g. Acheta domestica, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca americana, Schistocerca gregaria, Dociostaurus maroccanus, Tachycines asynamorus, Oedaleus senegalensis, Zonozerus variegatus, Hieroglyphus daganensis, Kraussaria angulifera, Calliptamus italicus, Chortoicetes terminifera, and Locustana pardalina;
arachnoidea, such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Ambryomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ixodes scapularis, Ixodes holocyclus, Ixodes pacificus, Ornithodorus moubata, Ornithodorus hermsi, Ornithodorus turicata, Ornithonyssus bacoti, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus sanguineus, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp. such as Aculus schlechtendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae spp. such as Phytonemus pallidus and Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis; Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and Oligonychus pratensis; Araneida, e.g. Latrodectus mactans, and Loxosceles reclusa;
fleas (Siphonaptera), e.g. Ctenocephalides felis, Ctenocephalides canis, Xenopsylla cheopis, Pulex irritans, Tunga penetrans, and Nosopsyllus fasciatus,
silverfish, firebrat (Thysanura), e.g. Lepisma saccharina and Thermobia domestica,
centipedes (Chilopoda), e.g. Scutigera coleoptrata, millipedes (Diplopoda), e.g. Narceus spp.,
Earwigs (Dermaptera), e.g. forficula auricularia,
lice (Phthiraptera), e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthirus pubis, Haematopinus eurysternus, Haematopinus suis, Linognathus vituli, Bovi- cola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus.
Collembola (springtails), e.g. Onychiurus ssp..
They are also suitable for controlling Nematodes : plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring nematodes, Criconema species, Criconemella species, Criconemoides species, Mesocriconema species; Stem and bulb nematodes, Ditylenchus destructor,
Ditylenchus dipsaci and other Ditylenchus species; AwI nematodes, Dolichodorus species; Spiral nematodes, Heliocotylenchus multicinctus and other Helicotylenchus species; Sheath and sheathoid nematodes, Hemicycliophora species and Hemicriconemoides species; Hirshmanniella species; Lance nematodes, Hoploaimus species; false rootknot nematodes, Nacobbus species; Needle nematodes, Longidorus elongatus and other Longidorus species; Lesion nematodes, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus, Pratylenchus goodeyi and other Pratylenchus species; Burrowing nematodes, Radopholus similis and other Radopholus species; Reniform nematodes, Rotylenchus robustus and other Rotylenchus species; Scutellonema species; Stubby root nematodes, Trichodorus primitivus and other Trichodorus species, Paratrichodorus species; Stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus dubius and other Tylenchorhynchus species; Citrus nematodes, Tylenchulus species; Dagger nematodes, Xiphinema species; and other plant parasitic nematode species. The mixtures of the present are also useful for controlling arachnids (Arachnoidea), such as acarians (Acarina), e.g. of the families Argasidae, Ixodidae and Sarcoptidae, such as Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata, Otobius megnini, Dermanyssus gallinae, Psoroptes ovis, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp. such as Aculus schlechtendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae spp. such as Phytonemus pallidus and Polyphagotarsonemus latus; tonemus pallidus and Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis; Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and oligonychus pratensis.
The mixtures of the present invention are particularly useful for controlling insects, preferably sucking or piercing insects such as insects from the genera Thysanoptera, Dip- tera and Hemiptera, in particular the following species:
Thysanoptera : Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirto- thrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci,
Diptera, e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gam- biae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadrimaculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chryso- mya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia an- thropophaga, Culicoides furens, Culex pipiens, Culex nigripalpus, Culex quinquefascia- tus, Culex tarsalis, Culiseta inornata, Culiseta melanura, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Delia antique, Delia coarctata, Delia platura, Delia radi- cum, Dermatobia hominis, Fannia canicularis, Geomyza Tripunctata, Gasterophilus intestinalis, Glossina morsitans, Glossina palpalis, Glossina fuscipes, Glossina tachin- oides, Haematobia irritans, Haplodiplosis equestris, Hippelates spp., Hylemyia platura, Hypoderma lineata, Leptoconops torrens, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mansonia titillanus, Maye- tiola destructor, Musca autumnalis, Musca domestica, Muscina stabulans, Oestrus ovis, Opomyza florum, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Phlebotomus argentipes, Psorophora columbiae, Psila rosae, Psorophora discolor, Prosimulium mixtum, Rhagoletis cerasi, Rhagoletis pomo- nella, Sarcophaga haemorrhoidalis, Sarcophaga spp., Simulium vittatum, Stomoxys calcitrans, Tabanus bovinus, Tabanus atratus, Tabanus lineola, and Tabanus similis, Tipula oleracea, and Tipula paludosa;
Coleoptera, for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Am- phimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Aphthona euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Cetonia aurata, Ceuthor- rhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vesper- tinus, Crioceris asparagi, Ctenicera ssp., Diabrotica longicornis, Diabrotica semipunc- tata, Diabrotica 12-punctata Diabrotica speciosa, Diabrotica virgifera, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brun- neipennis, Hypera postica, lps typographus, Lema bilineata, Lema melanopus, Leptino- tarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Otiorrhynchus sulcatus, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllo- bius pyri, Phyllotreta chrysocephala, Phyllophaga sp., Phyllopertha horticola, Phyllot- reta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus and Sitophilus granaria;
Hemiptera, in particular aphids: Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gos- sypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lactucae, Macrosi- phum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Melanaphis pyrarius, Metopolophium dirhodum, Myzodes persicae, Myzus ascalonicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mali, Psylla piri, Rho- palomyzus ascalonicus, Rhopalosiphum maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis mala, Sappaphis mali, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Trialeurodes vaporariorum, Toxoptera aurantiiand, and Viteus vitifolii;
Moreover, the inventive mixtures are especially useful for the control of Lepidoptera, Coleoptera, Diptera, Thysanoptera and Hemiptera.
In particular the inventive mixtures are useful for the control of Thysanoptera and Hemiptera, especially Hemiptera.
Formulations
The mixtures according to the present invention can be converted into the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules. The use form depends on the particular intended purpose; in each case, it should ensure a fine and even distribution of the compounds according to the invention.
The formulations are prepared in a known manner (see e.g. for review US 3,060,084, EP-A 707 445 (for liquid concentrates), Browning, "Agglomeration", Chemical Engi- neering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and et seq. WO 91/13546, US 4,172,714, US 4,144,050, US 3,920,442, US 5,180,587, US 5,232,701 , US 5,208,030, GB 2,095,558, US 3,299,566, Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961 , Hance et al., Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989 and Mollet, H., Grubemann, A., Formulation technology, Wiley VCH Verlag GmbH, Weinheim (Germany), 2001 , 2. D. A. Knowles, Chemistry and Technology of Agrochemical Formulations, Kluwer Academic Publishers, Dordrecht, 1998 (ISBN 0-7514-0443-8), for example by extending the active com- pound with auxiliaries suitable for the formulation of agrochemicals, such as solvents and/or carriers, if desired emulsifiers, surfactants and dispersants, preservatives, anti- foaming agents, anti-freezing agents, for seed treatment formulation also optionally gelling agents.
Examples of suitable solvents are water, aromatic solvents (for example Solvesso products, xylene), paraffins (for example mineral oil fractions), alcohols (for example methanol, butanol, pentanol, benzyl alcohol), ketones (for example cyclohexanone, gamma-butyrolactone), pyrrolidones (NMP(N-methyl-pyrrolidone), NOP (N-octyl- pyrrolidone)), acetates (glycol diacetate), glycols, fatty acid dimethylamides, fatty acids and fatty acid esters. In principle, solvent mixtures may also be used.
Suitable emulsifiers are nonionic and anionic emulsifiers (for example polyoxyethylene fatty alcohol ethers, alkylsulfonates and arylsulfonates).
Examples of dispersants are lignin-sulfite waste liquors and methylcellulose.
Suitable surfactants used are alkali metal, alkaline earth metal and ammonium salts of lignosulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutylnaphthalene- sulfonic acid, alkylarylsulfonates, alkyl sulfates, alkylsulfonates, fatty alcohol sulfates, fatty acids and sulfated fatty alcohol glycol ethers, furthermore condensates of sulfonated naphthalene and naphthalene derivatives with formaldehyde, condensates of naphthalene or of naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylphenol polyglycol ethers, tributylphenyl polyglycol ether, tristearylphenyl polyglycol ether, alkylaryl polyether alcohols, alcohol and fatty alcohol ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers, ethoxylated polyoxypropyl- ene, lauryl alcohol polyglycol ether acetal, sorbitol esters, lignosulfite waste liquors and methylcellulose.
Substances which are suitable for the preparation of directly sprayable solutions, emulsions, pastes or oil dispersions are mineral oil fractions of medium to high boiling point, such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, etha- nol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, highly polar solvents, for example dimethyl sulfoxide, N-methylpyrrolidone or water.
Also anti-freezing agents such as glycerin, ethylene glycol, propylene glycol and bactericides such as can be added to the formulation.
Suitable antifoaming agents are for example antifoaming agents based on silicon or magnesium stearate.
A suitable preservative is e.g. dichlorophen.
An example of a gelling agent is carrageen (Satiagel®)
Powders, materials for spreading and dustable products can be prepared by mixing or concomitantly grinding the active substances with a solid carrier.
Granules, for example coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active compounds to solid carriers.
Examples of solid carriers are mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertiliz- ers, such as, for example, ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
In general, the formulations comprise from 0.01 to 95% by weight, preferably from 0.1 to 90% by weight, of the active compounds. In this case, the active compounds are employed in a purity of from 90% to 100% by weight, preferably 95% to 100% by weight (according to NMR spectrum).
For seed treatment purposes, respective formulations can be diluted 2-10 fold leading to concentrations in the ready to use preparations of 0,01 to 60% by weight active compounds by weight, preferably 0,1 to 40% by weight.
The mixtures of the present invention can be used as such, in the form of their formulations or the use forms prepared therefrom, for example in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dustable products, materials for spreading, or granules, by means of spraying, atomizing, dusting, spreading or pouring. The use forms depend entirely on the intended pur- poses; they are intended to ensure in each case the finest possible distribution of the active compounds according to the invention.
Aqueous use forms can be prepared from emulsion concentrates, pastes or wettable powders (sprayable powders, oil dispersions) by adding water. To prepare emulsions, pastes or oil dispersions, the substances, as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetter, tackifier, dispersant or emulsifier. However, it is also possible to prepare concentrates composed of active substance, wetter, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and such concentrates are suitable for dilution with water.
The active compound concentrations in the ready-to-use preparations can be varied within relatively wide ranges. In general, they are from 0.0001 to 10%, preferably from 0.01 to 1 % per weight.
The active compound(s) may also be used successfully in the ultra-low-volume process (ULV), it being possible to apply formulations comprising over 95% by weight of active compound, or even to apply the active compound without additives.
The following are examples of formulations:
1. Products for dilution with water for foliar applications. For seed treatment purposes, such products may be applied to the seed diluted or undiluted.
A) Water-soluble concentrates (SL, LS)
10 parts by weight of the active compound(s) are dissolved in 90 parts by weight of water or a water-soluble solvent. As an alternative, wetters or other auxiliaries are added. The active compound(s) dissolve(s) upon dilution with water, whereby a formu- lation with 10 % (w/w) of active compound(s) is obtained.
B) Dispersible concentrates (DC)
20 parts by weight of the active compound(s) are dissolved in 70 parts by weight of cyclohexanone with addition of 10 parts by weight of a dispersant, for example polyvinylpyrrolidone. Dilution with water gives a dispersion, whereby a formulation with 20% (w/w) of active compound(s) is obtained.
C) Emulsifiable concentrates (EC)
15 parts by weight of the active compound(s) are dissolved in 7 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). Dilution with water gives an emulsion, whereby a formulation with 15% (w/w) of active compound(s) is obtained.
D) Emulsions (EW, EO, ES)
25 parts by weight of the active compound(s) are dissolved in 35 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). This mixture is introduced into 30 parts by weight of water by means of an emulsifier machine (e.g. Ultraturrax) and made into a homogeneous emulsion. Dilution with water gives an emulsion, whereby a formulation with 25% (w/w) of active compound(s) is obtained.
E) Suspensions (SC, OD, FS)
In an agitated ball mill, 20 parts by weight of the active compound(s) are comminuted with addition of 10 parts by weight of dispersants, wetters and 70 parts by weight of water or of an organic solvent to give a fine active compound(s) suspension. Dilution with water gives a stable suspension of the active compound(s), whereby a formulation with 20% (w/w) of active compound(s) is obtained.
F) Water-dispersible granules and water-soluble granules (WG, SG)
50 parts by weight of the active compound(s) are ground finely with addition of 50 parts by weight of dispersants and wetters and made as water-dispersible or water-soluble granules by means of technical appliances (for example extrusion, spray tower, fluid- ized bed). Dilution with water gives a stable dispersion or solution of the active compound^), whereby a formulation with 50% (w/w) of active compound(s) is obtained.
G) Water-dispersible powders and water-soluble powders (WP, SP, SS, WS)
75 parts by weight of the active compound(s) are ground in a rotor-stator mill with addition of 25 parts by weight of dispersants, wetters and silica gel. Dilution with water gives a stable dispersion or solution of the active compound(s), whereby a formulation with 75% (w/w) of active compound(s) is obtained.
H) Gel-Formulation (GF)
In an agitated ball mill, 20 parts by weight of the active compound(s) are comminuted with addition of 10 parts by weight of dispersants, 1 part by weight of gelling agent wet- ters and 70 parts by weight of water or of an organic solvent to give a fine active compound^) suspension. Dilution with water gives a stable suspension of the active compound^), whereby a formulation with 20% (w/w) of active compound(s) is obtained. 2. Products to be applied undiluted for foliar applications. For seed treatment purposes, such products may be applied to the seed diluted or undiluted.
I) Dustable powders (DP, DS)
5 parts by weight of the active compound(s) are ground finely and mixed intimately with 95 parts by weight of finely divided kaolin. This gives a dustable product having 5% (w/w) of active compound(s).
J) Granules (GR, FG, GG, MG)
0.5 part by weight of the active compound(s) is ground finely and associated with 95.5 parts by weight of carriers, whereby a formulation with 0.5% (w/w) of active com- pound(s) is obtained. Current methods are extrusion, spray-drying or the fluidized bed. This gives granules to be applied undiluted for foliar use.
K) ULV solutions (UL)
10 parts by weight of the active compound(s) are dissolved in 90 parts by weight of an organic solvent, for example xylene. This gives a product having 10% (w/w) of active compound(s), which is applied undiluted for foliar use.
Various types of oils, wetters, adjuvants, herbicides, fungicides, other pesticides, or bactericides may be added to the active ingredients, if appropriate just immediately prior to use (tank mix). These agents usually are admixed with the agents according to the invention in a weight ratio of 1 :10 to 10:1.
Application methods
The inventive mixtures are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part) and through tro- phallaxis and transfer.
Preferred application methods are into water bodies, via soil, cracks and crevices, pastures, manure piles, sewers, into water, on floor, wall, or by perimeter spray application and bait.
According to another preferred embodiment of the invention, for use against non crop pests such as ants, termites, wasps, flies, mosquitoes, crickets, locusts, or cockroaches the inventive mixtures are prepared into a bait preparation. The bait can be a liquid, a solid or a semisolid preparation (e.g. a gel). The bait employed in the composition is a product which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitoes, crickets etc. or cockroaches to eat it. This attractant may be chosen from feeding stimulants or para and / or sex phero- mones readily known in the art.
Methods to control infectious diseases transmitted by insects (e.g. malaria, dengue and yellow fever, lymphatic filariasis, and leishmaniasis) with the inventive mixtures and their respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like, lnsecticidal compositions for application to fibers, fabric, knitgoods, non- wovens, netting material or foils and tarpaulins preferably comprise a composition including the inventive mixtures, optionally a repellent and at least one binder.
The inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).
In the case of soil treatment or of application to the pests dwelling place or nest, the quantity of active ingredient(s) ranges from 0.0001 to 500 g per 100 m2, preferably from 0.001 to 2O g per 100 m2.
Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound(s) per m2 treated material, desirably from 0.1 g to 50 g per m2.
lnsecticidal compositions for use in the impregnation of materials typically contain from 0.001 to 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and / or insecticide.
For use in bait compositions, the typical content of active ingredient(s) is from 0.0001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active compound. The composition used may also comprise other additives such as a solvent of the active material, a flavoring agent, a preserving agent, a dye or a bitter agent. Its attractiveness may also be enhanced by a special color, shape or texture.
For use in spray compositions, the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %. For use in treating crop plants, the rate of application of the mixture of the active ingredients of this invention may be in the range of 0.1 g to 4000 g per hectare, desirably from 25 g to 600 g per hectare, more desirably from 50 g to 500 g per hectare.
The compounds I and the one or more compound(s) Il can be applied simultaneously, that is jointly or separately, or in succession, the sequence, in the case of separate application, generally not having any effect on the result of the control measures.
The compounds I and the one or more compound(s) Il are usually applied in a weight ratio of from 500:1 to 1 :100, preferably from 20:1 to 1 :50, in particular from 5:1 to 1 :20. Depending on the desired effect, the application rates of the mixtures according to the invention are from 5 g/ha to 2000 g/ha, preferably from 50 to 1500 g/ha, in particular from 50 to 750 g/ha.
The mixtures according to the invention are effective through both contact and ingestion.
According to a preferred embodiment of the invention, the mixtures according to the present invention are employed via soil application. Soil application is especially favorable for use against ants, termites, crickets, or cockroaches.
According to another preferred embodiment of the invention, for use against non crop pests such as ants, termites, wasps, flies, mosquitoes, crickets, locusts, or cockroaches the mixtures according to the present invention are prepared into a bait preparation.
The bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
Compositions of this invention may further contain other active ingredients than those listed above. For example fungicides, herbicides, fertilizers such as ammonium nitrate, urea, potash, and superphosphate, phytotoxicants and plant growth regulators and safeners. These additional ingredients may be used sequentially or in combination with the above-described compositions, if appropriate also added only immediately prior to use (tank mix). For example, the plant(s) may be sprayed with a composition of this invention either before or after being treated with other active ingredients.
The mixtures according to the invention can be applied to any and all developmental stages, such as egg, larva, pupa, and adult. The pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures. "Locus" means a plant, seed, soil, area, material or environment in which a pest is growing or may grow.
In general, "pesticidally effective amount" means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organism. The pesticidally effective amount can vary for the various mixtures / compositions used in the invention. A pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
The inventive mixtures or compositions of these mixtures can also be employed for protecting plants from attack or infestation by insects, acarids or nematodes comprising contacting a plant, or soil or water in which the plant is growing.
In the context of the present invention, the term plant refers to an entire plant, a part of the plant or the propagation material of the plant, that is, the seed or the seedling.
Plants which can be treated with the inventive mixtures include all genetically modified plants or transgenic plants, e.g. crops which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods, or plants which have modified characteristics in comparison with existing plants, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures.
Some of the inventive mixtures have systemic action and can therefore be used for the protection of the plant shoot against foliar pests as well as for the treatment of the seed and roots against soil pests.
The mixtures according to the present invention are therfore suitable for the treatment of seeds in order to protect the seed from insect pest, in particular from soil-living insect pests and the resulting plant's roots and shoots against soil pests and foliar insects. The protection of the resulting plant's roots and shoots is preferred.
More preferred is the protection of resulting plant's shoots from piercing and sucking insects, wherein the protection from aphids is most preferred.
Seed treatment The present invention therefore comprises a method for the protection of seeds from insects, in particular from soil insects and of the seedlings' roots and shoots from insects, in particular from soil and foliar insects, said method comprising contacting the seeds before sowing and/or after pregermination with mixtures according to the present invention. Particularly preferred is a method, wherein the plant's roots and shoots are protected, more preferably a method, wherein the plants shoots are protected form piercing and sucking insects, most preferably a method, wherein the plants shoots are protected from aphids.
The term seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
The term seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.
The present invention also comprises seeds coated with or containing the active compound^). The term "coated with and/or containing" generally signifies that the active ingredient(s) are for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product are (re)planted, it may absorb the active ingredient.
Suitable seeds are seeds of cereals, root crops, oil crops, vegetables, spices, ornamentals, for example seed of durum and other wheat, barley, oats, rye, maize (fodder maize and sugar maize / sweet and field corn), soybeans, oil crops, crucifers, cotton, sunflowers, bananas, rice, oilseed rape, turnip rape, sugarbeet, fodder beet, eggplants, potatoes, grass, lawn, turf, fodder grass, tomatoes, leeks, pumpkin/squash, cabbage, iceberg lettuce, pepper, cucumbers, melons, Brassica species, melons, beans, peas, garlic, onions, carrots, tuberous plants such as potatoes, sugar cane, tobacco, grapes, petunias, geranium/pelargoniums, pansies and impatiens.
In addition, the mixtures according to the invention may also be used for the treatment seeds from plants, which tolerate the action of herbicides or fungicides or insecticides owing to breeding, including genetic engineering methods.
For example, the active mixtures can be employed in treatment of seeds from plants, which are resistant to herbicides from the group consisting of the sulfonylureas, imida- zolinones, glufosinate-ammonium or glyphosate-isopropylammonium and analogous active substances (see for example, EP-A-0242236, EP-A-242246) (WO 92/00377) (EP-A-0257993, U.S. Pat. No. 5,013,659) or in transgenic crop plants, for example cot- ton, with the capability of producing Bacillus thuringiensis toxins (Bt toxins) which make the plants resistant to certain pests (E P-A-0142924, E P-A-0193259),
Furthermore, the mixtures according to the present invention can be used also for the treatment of seeds from plants, which have modified characteristics in comparison with existing plants consist, which can be generated for example by traditional breeding methods and/or the generation of mutants, or by recombinant procedures). For example, a number of cases have been described of recombinant modifications of crop plants for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/11376, WO 92/14827, WO 91/19806) or of transgenic crop plants having a modified fatty acid composition (WO 91/13972).
The seed treatment application of the mixtures is carried out by spraying or by dusting the seeds before sowing of the plants and before emergence of the plants.
In the treatment of seeds the corresponding formulations are applied by treating the seeds with an effective amount of the mixture according to the present invention. Herein, the application rates of the active compound(s) are generally from 0,1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 2,5 kg per 100 kg of seed. For specific crops such as lettuce the rate can be higher.
Compositions, which are especially useful for seed treatment are e.g.:
A Soluble concentrates (SL, LS)
D Emulsions (EW, EO, ES)
E Suspensions (SC, OD, FS)
F Water-dispersible granules and water-soluble granules (WG, SG)
G Water-dispersible powders and water-soluble powders (WP, SP, WS) H Gel-Formulations (GF)
I Dustable powders (DP, DS)
Conventional seed treatment formulations include for example flowable concentrates FS, solutions LS, powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds or after having pre- germinated the latter
In a preferred embodiment a FS formulation is used for seed treatment. Typcially, a FS formulation may comprise 1-800 g/l of active ingredient(s), 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
Preferred FS formulations of compounds of formula I for seed treatment usually com- prise from 0.1 to 80% by weight (1 to 800 g/l) of the active ingredient(s), from 0.1 to 20 % by weight (1 to 200 g/l) of at least one surfactant, e.g. 0.05 to 5 % by weight of a wetter and from 0.5 to 15 % by weight of a dispersing agent, up to 20 % by weight, e.g. from 5 to 20 % of an anti-freeze agent, from 0 to 15 % by weight, e.g. 1 to 15 % by weight of a pigment and/or a dye, from 0 to 40 % by weight, e.g. 1 to 40 % by weight of a binder (sticker /adhesion agent), optionally up to 5 % by weight, e.g. from 0.1 to 5 % by weight of a thickener, optionally from 0.1 to 2 % of an anti-foam agent, and optionally a preservative such as a biocide, antioxidant or the like, e.g. in an amount from 0.01 to 1 % by weight and a filler/vehicle up to 100 % by weight.
Seed Treatment formulations may additionally also comprise binders and optionally colorants.
Binders can be added to improve the adhesion of the active materials on the seeds after treatment. Suitable binders are block copolymers EO/PO surfactants but also po- lyvinylalcoholsl, polyvinylpyrrolidones, polyacrylates, polymethacrylates, polybutenes, polyisobutylenes, polystyrene, polyethyleneamines, polyethyleneamides, polyethyle- neimines (Lupasol®, Polymin®), polyethers, polyurethans, polyvinylacetate, tylose and copolymers derived from these polymers.
Optionally, also colorants can be included in the formulation. Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 112, C.I. Solvent Red 1 , pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48:1 , pigment red 57:1 , pigment red 53:1 , pigment orange 43, pig- ment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
The invention also relates to seed comprising mixtures according to the present inven- tion. The amount of the compound I or the agriculturally useful salt thereof will in general vary from 0.1 g to 10 kg per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 1000 g per 100 kg of seed.
Synthesis example of compounds of formula S.1 Synthesis of N-Ethyl-2-cyano- 4-fluoro-3-methoxy-benzenesulfonamide (Compound C.1.13 of table)
Step 1 : Synthesis of 3,6-Difluoro-2-methoxy-benzonitrile
100 g (0.64 mol) of 2,3,6-trifluoro-benzonitrile were dissolved in 500 ml of methanol and then cooled to 0 to 5°C. 120 g of 30 % by weight of sodium methoxide solution in methanol have been added dropwise within this temperature range of 0 to 5°C, and the reaction mixture was stirred at room temperature overnight. The solvent was partially distilled, the remaining reaction mixture was added to 500 ml of ice water and extracted three times with 500 ml of methyl tert. -butyl ether. The solid was dried in vacuum at 500C.
Yield: 104.2g (92% of theory) of a white solid with a purity of >95% according to GC. 1H NMR (in DMSO-d6): δ = 4.2 ppm (s, 3H, 0-CH3), 7.2 ppm (m, 1 H, arom. H), 7.7 ppm (m, 1 H, arom. H).
Step 2: Synthesis of 3-Fluoro-2-methoxy-6-propylsulfanyl-benzonitrile
104g (0.59 mol) 3,6-Difluoro-2-methoxy-benzonitrile (95% purity) was introduced into 400 ml of dimethylformamide at room temperature. 62.5 g (0.82 mol) of propanethiol was added dropwise. After cooling to 00C, 54 g (0.82 mol) of potassium hydroxide pellets, which were dissolved in 150 ml of water, were added dropwise at 0°C. The mixture was stirred for one hour and then warmed to room temperature and stirred two additional days. The reaction mixture was poured into 1 I of ice-water and extracted three times with 400 ml of methyl tert. -butyl ether. The combined organic phases were washed twice with 500 ml water and dried over sodium sulfate. The solvent was distilled in vacuum. The oil obtained was distilled in vacuum (boiling point: 105-108°C/0.25 mbar). Yield: 77g (58% of theory).
1H NMR (in DMSO-d6): δ = 1.1 ppm (t, 3H, CH3), 1.7 ppm (m, 2H, CHbCH3), 3.1 ppm (t, 2H, SCH2), 4.1 ppm (s, 3H, 0-CH3), 7.2 ppm (m, 1 H, arom. H), 7.6 ppm (m, 1 H, arom. H).
Step 3: Synthesis of 2-Cyano-4-fluoro-3-methoxy-benzenesulfonyl chloride
3-Fluoro-2-methoxy-6-propylsulfanyl-benzonitrile was dissolved in a mixture of 30 ml of chlorobenzene and 2 ml of water and cooled down to -100C. Chlorine gas was passed through the solution for 4 hours until the conversion was completed. The mixture was dried over sodium sulfate and evaporated. The oily residue (3.6 g) was used without further purification for the next step. 1H NMR (in CDCI3): δ [ppm] = 4.3 ppm (s, 3H, 0-CH3), 7.5 ppm (m, 1 H, arom. H), 7.7 ppm (m, 1 H, arom. H). Step 4: N-Ethyl-2-cyano- 4-fluoro-3-methoxy-benzenesulfonamide
A solution containing 104 mg (1.62 mmol) of ethylamine and 340 mg of sodium carbonate in 8 ml of water was added at room temperature to the solution of 1.2 g (1.62 mmol) of 2-Cyano-4-fluoro-3-methoxy-benzenesulfonyl chloride (purity 34%) in 15 ml of tetrahydrofuran. The reaction mixture was stirred at room temperature for 24 hours before water was added. The aqueous phase was acidified to pH = 1 using hydrochloric acid (10% by weight, aqueous solution). The aqueous phase was extracted three times with dichloromethane. The combined organic extracts were dried over sodium sulfate and filtered. The filtrate was concentrated in vacuum and purified by column chromatography, using toluene and acetone as eluents.
Yield: 0.07 g (17% of theory) of the title compound, 1H NMR (in CDCI3): δ [ppm] = 1.2 ppm (t, 3H, CH3), 3.1 ppm (q, 2H, CH2), 4.1 ppm (s, 3H, 0-CH3), 5.1 ppm (t, 1 H, NH), 7.4 ppm (m, 1 H, arom. H), 7.8 ppm (m, 1 H, arom. H).
Biology
Synergism can be described as an interaction where the combined effect of two or mo- re compounds is greater than the sum of the individual effects of each of the compounds. The presence of a synergistic effect in terms of percent control, between two mixing partners (X and Y) can be calculated using the Colby equation (Colby, S. R., 1967, Calculating Synergistic and Antagonistic Responses in Herbicide Combinations, Weeds, 15, 20-22):
100
When the observed combined control effect is greater than the expected combined control effect (E), then the combined effect is synergistic.
The following tests demonstrate the control efficacy of compounds, mixtures or compositions of this invention on specific pests. However, the pest control protection afforded by the compounds, mixtures or compositions is not limited to these species. In certain instances, combinations of a compound of this invention with other invertebrate pest control compounds or agents are found to exhibit synergistic effects against certain important invertebrate pests.
The analysis of synergism or antagonism between the mixtures or compositions was determined using Colby's equation.
Biological examples of the Invention Test B.1
For evaluating control of vetch aphid (Megoura viciae) through contact or systemic means the test unit consisted of 24-well-microtiter plates containing broad bean leaf disks.
The compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the leaf disks at 2.5μl, using a custom built micro atomizer, at two replica- tions.
For experimental mixtures in these tests identical volumes of both mixing partners at the desired concentrations respectively, were mixed together.
After application, the leaf disks were air-dried and 5 - 8 adult aphids placed on the leaf disks inside the microtiter plate wells. The aphids were then allowed to suck on the treated leaf disks and incubated at 23 + 10C, 50 + 5 % RH for 5 days. Aphid mortality and fecundity was then visually assessed. For the mixture tested the results are listed in table 1.
Table B.1
Figure imgf000036_0001
Figure imgf000037_0001
*synergistic control effect according to Colby's equation
Test B.2
For evaluating control of green peach aphid (Myzus persicae) through systemic means the test unit consisted of 96-well-microtiter plates containing liquid artificial diet under an artificial membrane.
The compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were pipetted into the aphid diet, using a custom built pipetter, at two replications.
For experimental mixtures in these tests identical volumes of both mixing partners at the desired concentrations respectively, were mixed together.
After application, 5 - 8 adult aphids were placed on the artificial membrane inside the microtiter plate wells. The aphids were then allowed to suck on the treated aphid diet and incubated at 23 +_ 10C, 50 + 5 % RH for 3 days. Aphid mortality and fecundity was then visually assessed. For the mixture tested the results are listed in table 2.
Table B.2
Figure imgf000037_0002
*synergistic control effect according to Colby's equation
Test B.3
For evaluating control of boll weevil (Anthonomus grandis) the test unit consisted of 24- well-microtiter plates containing an insect diet and 20-30 A. grandis eggs. The compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the insect diet at 20μl, using a custom built micro atomizer, at two replications.
For experimental mixtures in these tests identical volumes of both mixing partners at the desired concentrations respectively, were mixed together.
After application, microtiter plates were incubated at 23 + 10C, 50 + 5 % RH for 5 days. Egg and larval mortality was then visually assessed. For the mixture tested the results are listed in table 3.
Table B.3
Figure imgf000038_0001
*synergistic control effect according to Colby's equation
Test B.4
For evaluating control of Mediterranean fruitfly (Ceratitis capitata) the test unit consisted of 96-well-microtiter plates containing an insect diet and 50-80 C. capitata eggs. The compounds or mixtures were formulated using a solution containing 75% water and 25% DMSO. Different concentrations of formulated compounds or mixtures were sprayed onto the insect diet at 5μl, using a custom built micro atomizer, at two replications.
For experimental mixtures in these tests identical volumes of both mixing partners at the desired concentrations respectively, were mixed together.
After application, microtiter plates were incubated at 28 + 10C, 80 + 5 % RH for 5 days. Egg and larval mortality was then visually assessed. For the mixture tested the results are listed in table 3.
Table B.4
Figure imgf000038_0002
*synergistic control effect according to Colby's equation

Claims

Claims
1. Pesticidal mixtures comprising as active components
1 ) at least one sulfonamide compound of formula I
Figure imgf000039_0001
wherein
R1 is hydrogen or methyl;
R2 is hydrogen, methyl, ethyl or propargyl;
R3 is chloride, methoxy or difluoromethoxy; and
R4 is hydrogen or fluoro;
or salts thereof,
and
2) one or more compounds Il selected from group A consisting of
A.1 Acetylcholine esterase inhibitors selected from triazemate or from the class of carbamates consisting of aldicarb, alanycarb, benfuracarb, carbaryl, carbofu- ran, carbosulfan, methiocarb, methomyl, oxamyl, primicarb, propoxur and thiodi- carb, or from the class of organophosphates consisting of acephate, azinphos- ethyl, azinphos-methyl, chlorfenvinphos, chlorpyrifos, chlorpyrifos-methyl, deme- ton-S-methyl, diazinon, dichlorvos/DDVP, dicrotophos, dimethoate, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamidaphos, methi- dathion, mevinphos, monocrotophos, oxymethoate, oxydemeton-methyl, para- thion, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phosphami- don, pirimiphos-methyl, quinalphos, terbufos, tetrachlorvinphos, triazophos and trichlorfon;
A.2 GABA-gated chloride channel antagonists selected from the cyclodiene or- ganochlorine endosulfan, N-Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro- α.α.α-trifluoro-p-tolyl) hydrazon, N-Ethyl^^-dichloro-i-methylcyclopropane- carboxamide-2-(2,6-dichloro-α.α.α-trifluoro-p-tolyl) hydrazon or from the class of phenylpyrazoles consisting of acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole, vaniliprole and the phenyl pyrazole compound II.A2 1:
1)
Figure imgf000040_0001
A.3 Sodium channel modulators selected from the class of pyrethroids consisting of allethrin, bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, alpha- cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, tau-fluvalinate, permethrin, silafluofen and tralomethrin;
A.4 Nicotinic acteylcholine receptor agonists/antagonists selected from nicotin, cartap hydrochloride, thiocyclam, or from the class of neonicotinoids consisting of acteamiprid, chlothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam and AKD-1022, or the allosteric nicotinic acteylcholine receptor agonist spinosad;
A.5 Chloride channel activators selected from abamectin, emamectin benzoate, lepimectin or milbemectin;
A.6 Juvenile hormone mimics selected from hydroprene, kinoprene, fenoxycarb or pyriproxyfen;
A.7 Compounds affecting the oxidative phosphorylation selected from diafenthi- uron, fenbutatin oxide, propargite or chlorfenapyr;
A.8 Inhibitors of the chitin biosynthesis selected from buprofezin or from the class of benzylureas consisting of bistrifluron, diflubenzuron, flufenoxuron, hexaflu- muron, lufenuron, novaluron and teflubenzuron;
A.9 Moulting disruptors selected from cyromazine or from the class of ecdysone agonists consisting of methoxyfenozide, tebufenozide and azadirachtin; A.10 Mitochondrial electron transport inhibitors selected from pyridaben, tolfen- pyrad or flufenerim;
A.1 1 Voltage-dependent sodium channel blockers selected from indoxacarb or metaflumizone;
A.12 Inhibitors of the lipid synthesis selected from spirodiclofen, spiromesifen or spirotetramat;
A.13 group of various compounds consisting of amidoflumet, amitraz, bifenazate, clofentezine, cyenopyrafen, cyflumetofen, etoxazole, flonicamid, flubendiamine, flupyrazophos, hexythiazox, piperonyl butoxide, pymetrozine, pyridalyl, pyriflu- quinazon, chlorantraniliprole and the anthranilamid compound II.A13 1:
Figure imgf000041_0001
in synergistically effective amounts.
2. Pesticidal mixtures according to claim 1 , wherein the substituents of the com- pound of formula (I) have the following meanings:
R1 is hydrogen or methyl; R2 is hydrogen, methyl, ethyl; R3 is methoxy or difluoromethoxy; and R4 is hydrogen or fluoro;
or salts thereof.
3. Pesticidal mixtures according to claim 1 , wherein the substituents of the com- pound of formula (I) have the following meanings:
R1 is hydrogen or methyl; R2 is hydrogen, methyl, ethyl; R3 is methoxy; and R4 is hydrogen or fluoro;
or salts thereof.
4. Pesticidal mixtures according to claim 1 , wherein the substituents of the compound of formula (I) have the following meanings:
R1 is hydrogen or methyl;
R2 is hydrogen, methyl, ethyl; R3 is difluoromethoxy; and R4 is hydrogen;
or salts thereof.
5. Pesticidal mixtures according to claim 1 , wherein the substituents of the compound of formula (I) have the following meanings:
R1 is hydrogen or methyl;
R2 is hydrogen, methyl, ethyl; R3 is difluoromethoxy; and R4 is fluoro;
or salts thereof.
6. Pesticidal mixtures according to claim 1 or 2, wherein one or more compounds Il are selected
within group A.1 from triazemate or primicarb;
within group A.2 from endosulfan, N-Ethyl-2,2-dimethylpropionamide-2-(2,6- dichloro-α.α.α-trifluoro-p-tolyl) hydrazon, N-Ethyl-2,2-dichloro-1 - methylcyclopropane-carboxamide-2-(2,6-dichloro-α.α.α-trifluoro-p-tolyl) hydra- zon, acetoprole, ethiprole, fipronil, pyrafluprole, pyriprole or vaniliprole or the phenylpyrazole compound II.A2 1;
within group A.3 from allethrin, bifenthrin, cyfluthrin, lambda-cyhalothrin, cyper- methrin, alpha-cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltame- thrin, etofenprox, fenpropathrin, fenvalerate, flucythrinate, tau-fluvalinate, si- lafluofen or tralomethrin;
within group A.4 from thiocyclam, acteamiprid, chlothianidin, dinotefuran, imida- cloprid, nitenpyram, thiacloprid, thiamethoxam, AKD-1022 or spinosad;
within group A.5 from abamectin, emamectin benzoate, lepimectin or milbemec- tin; within group A.7 from diafenthiuron;
within group A.8 from buprofezin;
within group A.10 from pyridaben or flufenerim;
within group A.1 1 from indoxacarb or metaflumizone;
within group A.12 from spirodiclofen, spiromesifen or spirotetramat;
within group A.13 from amitraz, flonicamid, flubendiamine, pymetrozine, pyridalyl, pyrifluquinazon, chlorantraniliprol or the anthranil compound II.A13 1.
7. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.2 is N-Ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro-α.α.α- trifluoro-p-tolyl) hydrazon, N-Ethyl-2,2-dichloro-1 -methylcyclopropane- carboxamide-2-(2,6-dichloro-α.α.α-trifluoro-p-tolyl) hydrazon, acetoprole or fipronil;
8. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.3 is alpha-cypermethrin or deltamethrin;
9. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.4 is clothianidin, imidacloprid or thiamethoxam;
10. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.5 is abamectin;
1 1. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.7 is diafenthiuron;
12. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.8 is buprofezin;
13. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.10 is pyridaben or flufenerim;
14. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.11 is metaflumizone;
15. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.12 is spiromesifen or spirotetramat;
16. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.13 is flonicamid
17. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.13 is pymetrozine or pyrifluquinazon
18. Pesticidal mixtures according to claim 1 or 2, wherein compound Il selected from group A.13 is chlorantraniliprole or the anthranil compound II.A13 1.
19. Pesticidal mixtures according to claim 1 to 2, comprising at least one compound of the formula I and one or more compounds Il in a weight ratio of from 500:1 to 1 :100.
20. Use of a mixture according to any of claims 1 to 19 for combating insects, arachnids or nematodes.
21. A method for protecting plants from attack or infestation by insects, acarids or nematodes comprising contacting the plant, or the soil or water in which the plant is growing, with a mixture according to any of claims 1 to 19 in pesticidally effective amounts.
22. A method for controlling insects, arachnids or nematodes comprising contacting an insect, acarid or nematode or their food supply, habitat, breeding grounds or their locus with a mixture according to any of claims 1 to 19 in pesticidally effective amounts.
23. A method as claimed in claims 21 or 22, wherein the mixture according to any of claims 1 to 19 is applied in an amount of from 5 g/ha to 2000 g/ha.
24. A method for protection of seed comprising contacting the seeds with a mixture as defined in any of claims 1 to 19 in pesticidally effective amounts.
25. A method according to claim 24 wherein the mixture as claimed in claims 1 to 19 is applied in an amount of from 0,1 g to 10 kg per 100 kg of seeds.
26. Seed, comprising the mixture according to any of claims 1 to 19 in an amount of from 0,1 g to 10 kg per 100 kg of seeds.
27. A method as claimed in claims 21 to 25 wherein the compounds of formula I and compounds Il as defined in any of claims 1 to 19 are applied simultaneously, that is jointly or separately, or in succession.
28. A pesticidal or parasiticidal composition, comprising a liquid or solid carrier and a mixture according to any of claims 1 to 19.
PCT/EP2007/058857 2006-09-11 2007-08-27 Pesticidal active mixtures comprising sulfonamides Ceased WO2008031712A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84360606P 2006-09-11 2006-09-11
US60/843,606 2006-09-11

Publications (2)

Publication Number Publication Date
WO2008031712A2 true WO2008031712A2 (en) 2008-03-20
WO2008031712A3 WO2008031712A3 (en) 2009-04-09

Family

ID=39038349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/058857 Ceased WO2008031712A2 (en) 2006-09-11 2007-08-27 Pesticidal active mixtures comprising sulfonamides

Country Status (2)

Country Link
CL (1) CL2007002623A1 (en)
WO (1) WO2008031712A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102630691A (en) * 2012-03-31 2012-08-15 陕西韦尔奇作物保护有限公司 Pesticide composition containing cyflumetofen
EP2534952A1 (en) 2007-05-25 2012-12-19 Bayer CropScience AG Insecticide compositions of 2-cyanobenzolsulfonamides and their isomeric forms with improved properties
CN102845443A (en) * 2011-06-27 2013-01-02 绩溪农华生物科技有限公司 Water emulsion containing avermectin and carbosulfan and its preparation method
CN103891741A (en) * 2012-12-31 2014-07-02 青岛锦涟鑫商贸有限公司 Cartap compound pesticide
CN104255735A (en) * 2014-09-19 2015-01-07 青岛瀚生生物科技股份有限公司 Pyridalyl and tetra-chlorantraniliprole compounded insecticidal composition
CN105794811A (en) * 2014-12-30 2016-07-27 江苏龙灯化学有限公司 Insecticidal composition and agricultural insect control method
CN114391542A (en) * 2012-11-06 2022-04-26 安道麦马克西姆有限公司 Pest control mixture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3162624D1 (en) * 1980-01-23 1984-07-12 Duphar Int Res New sulphonyl compounds, method of preparing the new compounds, as well as aphicidal compositions on the basis of the new compounds
UA79404C2 (en) * 2003-10-02 2007-06-11 Basf Ag 2-cyanobenzenesulfonamide for controlling pests
MX2007005447A (en) * 2004-11-26 2007-05-21 Basf Ag Novel 2-cyano-3-(halo)alkoxy-benzenesulfonamide compounds for combating animal pests.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2534952A1 (en) 2007-05-25 2012-12-19 Bayer CropScience AG Insecticide compositions of 2-cyanobenzolsulfonamides and their isomeric forms with improved properties
US8604068B2 (en) 2007-05-25 2013-12-10 Bayer Cropscience Ag Insecticidal compositions of 2-cyanobenzene sulfonamide compounds and isomeric forms thereof having improved effect
CN102845443A (en) * 2011-06-27 2013-01-02 绩溪农华生物科技有限公司 Water emulsion containing avermectin and carbosulfan and its preparation method
CN102630691A (en) * 2012-03-31 2012-08-15 陕西韦尔奇作物保护有限公司 Pesticide composition containing cyflumetofen
CN114391542A (en) * 2012-11-06 2022-04-26 安道麦马克西姆有限公司 Pest control mixture
CN103891741A (en) * 2012-12-31 2014-07-02 青岛锦涟鑫商贸有限公司 Cartap compound pesticide
CN104255735A (en) * 2014-09-19 2015-01-07 青岛瀚生生物科技股份有限公司 Pyridalyl and tetra-chlorantraniliprole compounded insecticidal composition
CN105794811A (en) * 2014-12-30 2016-07-27 江苏龙灯化学有限公司 Insecticidal composition and agricultural insect control method
CN105794811B (en) * 2014-12-30 2019-01-29 江苏龙灯化学有限公司 A kind of Pesticidal combination and its method for controlling agricultural pests

Also Published As

Publication number Publication date
CL2007002623A1 (en) 2008-04-11
WO2008031712A3 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
US9125416B2 (en) Pesticidal mixtures
EP2083629B1 (en) Crystalline modification of fipronil
WO2007082841A2 (en) Pesticidal mixtures
AU2007316639B2 (en) Crystalline modification of fipronil
US20090305886A1 (en) Pesticidal Mixtures
EP1890536A1 (en) Pesticidal mixture
AU2007316640B2 (en) Crystalline modification of fipronil
WO2008031712A2 (en) Pesticidal active mixtures comprising sulfonamides
US20100137134A1 (en) Pesticidal Mixtures
WO2008092851A2 (en) Pesticidal compositions comprising 3 -acetyl-i- phenylpyrazole compounds
EP2750503A1 (en) Insecticidal active mixtures comprising arylquinazolinone compounds
AU2014227476B2 (en) Pesticidal mixtures
US20080249182A1 (en) Crystalline Modification of N-Ethyl-2,2-Dichloro-1-Methylcyclopropane-Carboxamide-2-(2,6-Dichloro-Alpha, Alpha, Alpha-Trifluoro-P-Tolyl)Hydrazone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07802897

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07802897

Country of ref document: EP

Kind code of ref document: A2