[go: up one dir, main page]

WO2008006820A1 - Colorant pour cheveux - Google Patents

Colorant pour cheveux Download PDF

Info

Publication number
WO2008006820A1
WO2008006820A1 PCT/EP2007/057015 EP2007057015W WO2008006820A1 WO 2008006820 A1 WO2008006820 A1 WO 2008006820A1 EP 2007057015 W EP2007057015 W EP 2007057015W WO 2008006820 A1 WO2008006820 A1 WO 2008006820A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
amino
acid
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2007/057015
Other languages
German (de)
English (en)
Inventor
Thomas Döring
Jürgen SCHÖPGENS
Anja Reichert
Kristin Pauli
Britta Bossmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to EP07787290A priority Critical patent/EP2037870A1/fr
Publication of WO2008006820A1 publication Critical patent/WO2008006820A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • A61Q5/065Preparations for temporary colouring the hair, e.g. direct dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/466Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfonic acid derivatives; Salts

Definitions

  • the present invention relates to the improvement of the intensity of dyeings on keratin fibers, the enhancement of the fastness properties of these dyeings, as well as scalp feel by using at least one active ingredient selected from at least one N-acylsarcosine derivative or at least one N-acyl taurine derivative, or a mixture from the aforementioned active ingredients.
  • Human hair is today treated in a variety of ways with hair cosmetic preparations. These include, for example, the cleansing of hair with shampoos, the care and regeneration with rinses and cures and the bleaching, dyeing and shaping of the hair with dyes, tinting agents, waving agents and styling preparations. In this case, means for changing or nuancing the color of the head hair play a prominent role. Apart from the bleaching agents that cause an oxidative lightening of the hair by degradation of the natural hair dyes, so in the field of hair coloring essentially four types of hair dyes of importance:
  • oxidation colorants For permanent, intensive colorations with corresponding fastness properties, so-called oxidation colorants are used.
  • Such hair dyes usually contain oxidation dye precursors, so-called developer components and coupler components.
  • the developer components form the actual dyes under the influence of oxidizing agents or of atmospheric oxygen with one another or with coupling with one or more coupler components.
  • the oxidation dyes are characterized by excellent, long-lasting dyeing results. For naturally acting dyeings but usually a mixture of a larger number of oxidation dye precursors must be used; In many cases, direct dyes are still used for shading.
  • developer components are usually primary aromatic amines with another, located in the para or ortho position, free or substituted hydroxy or amino group, Diaminopyridinderivate, heterocyclic hydrazones, 4-aminopyrazolone and 2,4,5,6-tetraaminopyrimidine and its derivatives used .
  • Specific representatives are, for example, p-phenylenediamine, p-toluenediamine, 2,4,5,6-tetraaminopyrimidine, p-aminophenol, N, N-bis (2-hydroxyethyl) -p-phenylenediamine, 2- (2,5-) Diaminophenyl) ethanol, 2- (2,5-diaminophenoxy) ethanol, 1-phenyl-3-carboxyamido -amino-pyrazolone-5, 4-amino-3-methylphenol, 2-aminomethyl-4-aminophenol, 2- Hydroxy-4,5,6-triaminopyrimidine, 2,4-dihydroxy
  • coupler components m-phenylenediamine derivatives, naphthols, resorcinol and resorcinol derivatives, pyrazolones and m-aminophenols are generally used.
  • Suitable coupler substances are, in particular, 1-naphthol, 1,5-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and 1,7-dihydroxynaphthalene, 5-amino-2-methylphenol, m-aminophenol, resorcinol, resorcinol monoethyl ether, m-phenylenediamine, 1 -Phenyl-3-methyl-pyrazolone-5, 2,4-dichloro-3-aminophenol, 1,3-bis (2,4-diaminophenoxy) -propane, 2-chlororesorcinol, 4-chlororesorcinol, 2-chloro-6 -methyl-3-aminophenol, 2-methylresorcinol, 5-methylre
  • dyeing or tinting agents which contain so-called direct drawers as a coloring component. These are dye molecules that grow directly on the hair and do not require an oxidative process to form the color. These dyes include, for example, the henna already known from antiquity for coloring body and hair. These dyeings are generally much more sensitive to shampooing than the oxidative dyeings, so that a much more undesirable nuance shift or even a visible "discoloration" occurs much more quickly.
  • component B compounds selected from (a) CH-acidic compounds and (b) compounds having primary or secondary amino group or hydroxy group selected from primary or secondary aromatic amines, nitrogen-containing heterocyclic compounds and aromatic hydroxy compounds
  • the corresponding dyeing method (referred to below as oxo dyeing) is described, for example, in the publications WO-A1-99 / 18916, WO-A1 -00 / 38638, WO-A1-01/34106 and WO-A1-01 / 47483.
  • the resulting dyeings have partially color fastness on the keratin-containing fiber, which are comparable to those of the oxidation dyeing.
  • the Nuancenspektrum achievable with the gentle oxo staining is very broad and the color obtained often has an acceptable brilliance and color depth.
  • the aforementioned components A and B hereinafter referred to as Oxofarbstoffvor area, are generally not themselves dyes, and are therefore each alone taken not for coloring keratin-containing fibers. In combination, they form dyes in a non-oxidative process.
  • the oxo staining method can be readily combined with the oxidative staining system.
  • ammonia To adjust the pH or to improve the paint lift, the skilled person usually uses ammonia. However, the use of ammonia leads to an undesirable odor during use. Furthermore, the presence of ammonia adversely affects the hair structure. Thus, the skilled artisan has for some time begun to provide low-ammonia color-changing agents.
  • low-ammonia color change agents do not have the aforementioned disadvantages, they lose their tinting strength and color fastness. Therefore, it is a general endeavor to perform the achievable with the known methods dyeings as possible without ammonia and intensify in your color result.
  • a high tinting strength contributes to the profitability of Dyes at.
  • the dyeings obtained should have a high degree of color fastness, for example against sweat, washing, light or friction and must be compatible with other hair treatment products, in particular in the context of hair care.
  • a first subject of the invention is therefore the use of at least one compound of the active ingredients
  • R 1 is a (C7 to C30) alkyl group, (C7 to C30) alkenyl group or a
  • R 2 is a (C 1 to C 4 ) alkyl group or a (C 1 to C 4 ) hydroxyalkyl group
  • M represents a hydrogen atom or one equivalent of a monovalent or polyvalent cation, and / or (b) N-acyltaurine derivatives of the formula (II)
  • R 3 is a hydrogen atom, a (C 1 to C 4 ) -alkyl group or a (C 1 to C 4 ) -
  • R 4 is a (C 7 to C 3 o) alkyl group, (C 7 to C 3 o) alkenyl group or a
  • M ' represents a hydrogen atom or one equivalent of a mono- or polyvalent cation
  • color-change agents (i) for intensifying the coloration are provided.
  • the intensification of the coloration is reflected in particular on gray hair.
  • the expert speaks in this context of an improved gray coverage.
  • low ammonia in the context of the invention means which contain not more than 0.5 wt .-%, in particular not more than 0.25 wt .-%, of ammonia.
  • the compounds of the formula (I) and / or (II) used according to the invention are preferably used in low-ammonia color-change agents, in particular in ammonia-free color change agents.
  • the active compounds (a) of the formula (I) and (b) of the formula (II) according to the invention are preferably used in combination, i. at least one compound according to formula (I) together with at least one compound according to formula (II) used.
  • the compounds of the formula (I) and the compounds of the formula (II), when used together, are more preferably in a weight ratio range of 1: 3 to 3: 1, more preferably 1.5: 1 to 1: 1.5 preferably from 1 to 1, used.
  • Examples of (C 1 to C 4 ) -alkyl groups according to the invention are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl.
  • Examples of (C 2 to C 4 ) -hydroxyalkyl groups according to the invention are 2-hydroxyethyl, 3
  • Examples of (C 7 to C 3 o) -alkenyl groups are heptadec-8-enyl, heptadeca-8,1 1 -dienyl,
  • the (C 7 to C 30 ) -alkyl groups according to the invention can be linear or branched.
  • the radicals R 1 of the formula (I) and R 4 of the formula (II) are preferably, independently of one another, a (C 9 to C 23 ) -alkyl group, (C 9 to C 23 ) -alkenyl group or a (C 9 to C 23 ) Hydroxyalkyl group, particularly preferably independently of one another, a radical selected from the list which is formed from nonyl, undecyl, tridecyl, pentadecyl, heptadecyl, nonadecyl, henicosanyl, 15-methylhexadecyl, heptadec-8-enyl, heptadeca-8, 1 1 -dienyl, nonadeca-4,7,10,13-tetraenyl, heptadeca-8,1 1, 14-trienyl and 1 1-hydroxyheptadecyl.
  • the radical R 2 according to formula (I) preferably represents a radical selected from the group formed from methyl, ethyl, isopropyl, n-propyl and 2-hydroxyethyl. Particularly preferably, said radical R 2 is a methyl group.
  • the radical R 3 according to formula (II) preferably represents a radical selected from the group consisting of hydrogen atom, methyl, ethyl, isopropyl, n-propyl and 2-hydroxyethyl.
  • R 2 of the formula (I) particularly preferably represents a hydrogen atom or a methyl group.
  • R 2 of the formula (I) and R 3 of the formula (II) both together represent a (C 1 to C 4 ) -alkyl group, in particular a methyl group.
  • the radical M or the radical M ' is a hydrogen atom.
  • M or M ' represents one equivalent of a monovalent or polyvalent cation.
  • the monovalent or polyvalent cation M z + or M ' y + each having a charge number z or y of one or higher is used solely for reasons of electroneutrality to compensate for the single negative charge of the present at salt carboxylate fragment -COO * ' 'of the formula (I ) or the sulfonate fragment -SO 3 ⁇ of the formula (II).
  • the equivalent of the corresponding cation to be used is 1 / z or 1 / y.
  • the fragment -COOM of the formula (I) or the fragment -SO 3 M of the formula (II) is in the case of salt formation for the group: -COO * " '1 / z (M z + ) or -SO 3 H 1 / y (M' y + )
  • physiologically compatible cations are suitable as mono- or polyvalent cations M z + or M ' y + .
  • these are metal cations of the physiologically acceptable metals from groups Ia, Ib, IIa, IIb, IIIb, VIa or VIII of the Periodic Table of the Elements, ammonium ions, as well as cationic organic compounds with quaternized nitrogen atom.
  • the latter are formed for example by protonation of primary, secondary or tertiary organic amines with an acid, such as with compounds of formula (I) or formula (II) in their acid form, or by permanent quaternization of said organic amines.
  • these cationic organic ammonium compounds are 2-ammonioethanol and 2-trimethylammonioethanol.
  • M or M 'in the formulas (I) and (II) is preferably a hydrogen atom, an ammonium ion, an alkali metal ion, half an equivalent of an alkaline earth metal ion or half an equivalent of a zinc ion, particularly preferably a hydrogen atom, an ammonium ion, a sodium ion, a potassium ion,! 4 calcium ion, ⁇ A magnesium ion or ⁇ A zinc ion.
  • the compounds of formula (I) are preferably selected from at least one member of the group formed from N-lauroyl sarcosine, N-myristoyl sarcosine, N-palmitoyl sarcosine, N-oleyl sarcosine, N-cocoyl sarcosine (here being a group of compounds and cocoyl corresponds to the composition of the fatty acid cut of coconut oil) and N-palm kernel sarcosine (here being a group of compounds and palm kernel corresponds to the fatty acid cut composition of palm kernel oil), as well as the salts of the aforementioned N-acyl sarcosine derivatives.
  • the compounds of formula (II) are preferably selected from at least one member of the group formed from N-dodecanoyl-N-methyltaurine, N-octadecanoyl-N-methyltaurine, N-hexadecanoyl-N-methyltaurine, N-tetradecanoyl N-methyltaurine, N-oleyl-N-methyltaurine, N-cocoyl-N-methyltaurine (wherein here is a group of compounds and cocoyl corresponds to the composition of the fatty acid cut of coconut oil), N-palm kernel N-methyltaurine (here Group of compounds is present and palm kernel corresponds to the composition of the fatty acid cut of palm kernel oil), as well as from the salts of the aforementioned N-Acyltaurinderivate.
  • the triglycerides of coconut oil have the following fatty acid composition:
  • the triglycerides of palm kernel oil have the following fatty acid composition:
  • the agent used in particular low in ammonia, additionally contains from 0 to 0.5% by weight, in particular from 0 to 0.3% by weight, of at least one anionic surfactant selected from linear or branched C 4 to C 40 -alkyl sulfates, linear or branched alkylsulfates branched C 8 to C 4 o-alkyl ether sulfates having at least one ethylene oxide
  • Said compounds of the formula (I) and / or (II) are particularly suitable for use according to the invention on keratin-containing fibers, in particular human hair.
  • Keratin fibers are wool, furs, feathers and especially human hair to understand.
  • the combination of the invention may in principle but also on other natural fibers such.
  • As polyamide, polyacrylonitrile, polyurethane and polyester fibers are used.
  • a second subject of the invention is an agent, in particular low in ammonia, for coloring keratin-containing fibers, in particular human hair, containing in a carrier at least one coloring component and additionally at least one compound selected from the group formed
  • R 1 is a (C 7 to C 30 ) alkyl group, (C 7 to C 30 ) alkenyl group or a
  • R 2 is a hydrogen atom, a (C 1 to C 4 ) -alkyl group or a (C 1 to C 4 ) -
  • M represents a hydrogen atom or one equivalent of a monovalent or polyvalent cation
  • R 3 is a hydrogen atom, a (C 1 to C 4 ) -alkyl group or a (C 1 to C 4 ) -
  • R 4 is a (C 7 to C 30 ) alkyl group, (C 7 to C 30 ) alkenyl group or a
  • the agent preferably contains a combination of at least one compound according to the abovementioned formula (I) with at least one compound according to the abovementioned formula (II).
  • the agents according to the invention preferably contain the compounds of the formula (I) and / or of the formula (II) in an amount of from 0.1 to 15% by weight, particularly preferably from 0.5 to 10% by weight, very particularly preferably from 0.5 to each based on the weight of the color changing agent.
  • the coloring component is preferably selected
  • At least one oxidation dye precursor of the type of developer components and optionally additionally at least one coupler component and / or
  • developer components according to the invention from the group formed from p-phenylenediamine derivatives, binuclear developer components, p-aminophenol and its derivatives, pyrimidine derivatives, pyrazole derivatives and pyrazolopyrimidine derivatives and the physiologically acceptable salts of these compounds.
  • preferred developer components are mentioned according to the invention.
  • G 1 represents a hydrogen atom, a Ci to C4 alkyl group, a Cr to C 4 - monohydroxyalkyl radical, a C 2 - to C 4 polyhydroxyalkyl radical, a (C 1 - to C 4) alkoxy (C r to C 4 ) -alkyl radical, a 4'-aminophenyl radical or a C 1 - to C 4 -alkyl radical which is substituted by a nitrogen-containing group, a phenyl or a 4'-aminophenyl radical;
  • G 2 represents a hydrogen atom, a C 1 - to C 4 alkyl, C 1 - to C 4 - monohydroxyalkyl radical, a C 2 - to C 4 polyhydroxyalkyl radical, a (C 1 - to C 4) alkoxy ( C r alkyl to C 4) or a C 1 - to C 4 -alkyl, which is substituted with a nitrogenous group;
  • G 3 represents a hydrogen atom, a halogen atom such as a chlorine, bromine, iodine or fluorine atom, a C 1 - to C 4 -alkyl radical, a C 1 - to C 4 -monohydroxyalkyl radical, a C 2 - to C 4 - Polyhydroxyalkylrest, a C 1 - to C 4 -hydroxyalkoxy, a C 1 - to C 4 - acetylaminoalkoxy, a C 1 - to C 4 - Mesylaminoalkoxyrest or a C 1 - to C 4 - carbamoylaminoalkoxy;
  • a halogen atom such as a chlorine, bromine, iodine or fluorine atom
  • a C 1 - to C 4 -alkyl radical such as a chlorine, bromine, iodine or fluorine atom
  • a C 1 - to C 4 -alkyl radical
  • G 4 represents a hydrogen atom, a halogen atom or a C 1 - to C 4 -alkyl radical or when G 3 and G 4 are ortho to each other, they may together form a bridging ⁇ , ⁇ -alkylenedioxy group, such as, for example, an ethylenedioxy group.
  • C 1 - to C 4 -alkyl radicals mentioned as substituents in the compounds according to the invention are the groups methyl, ethyl, propyl, isopropyl and butyl. Ethyl and methyl are preferred alkyl radicals.
  • C 1 -C 4 -alkoxy radicals which are preferred according to the invention are, for example, a methoxy or an ethoxy group.
  • a C 1 - to C 4 -hydroxyalkyl group a hydroxymethyl, a 2-hydroxyethyl, a 3-hydroxypropyl or a 4-hydroxybutyl group may be mentioned.
  • a 2-hydroxyethyl group is particularly preferred.
  • a particularly preferred C 2 to C 4 polyhydroxyalkyl group is the 1, 2-dihydroxy ethyl group.
  • halogen atoms are according to the invention F, Cl or Br atoms, Cl atoms are very particularly preferred.
  • the other terms used are derived according to the invention from the definitions given here.
  • nitrogen-containing groups of the formula (E1) are, in particular, the amino groups, C 1 - to C 4 -monoalkylamino groups, C 1 - to C 4 - Dialkylamino, C 1 - to C ⁇ Trialkylammonium phenomenon, C 1 - to C 4 -Monohydroxy- alkylamino groups, imidazolinium and ammonium.
  • Particularly preferred p-phenylenediamines of the formula (E1) are selected from p-phenylenediamine, p-toluenediamine, 2-chloro-p-phenylenediamine, 2,3-dimethyl-p-phenylenediamine, 2,6-dimethyl-p-phenylenediamine, 2 , 6-diethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, N, N-dimethyl-p-phenylenediamine, N, N-diethyl-p-phenylenediamine, N, N-dipropyl-p-phenylenediamine, 4 -Amino-3-methyl- (N, N-diethyl) -aniline, N, N-bis- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 4-N, N-bis- ( ⁇ -hydroxyethyl) -amino-2 -methylaniline
  • Very particular preferred p-phenylenediamine derivatives of the formula (E1) according to the invention are p-phenylenediamine, p-toluenediamine, 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 2- ( ⁇ , ⁇ -dihydroxyethyl) -p-phenylenediamine and N, N bis (.beta.-hydroxyethyl) -p-phenylenediamine.
  • developer component compounds which contain at least two aromatic nuclei which are substituted by amino and / or hydroxyl groups.
  • binuclear developer components which can be used in the dyeing compositions according to the invention, mention may be made in particular of the compounds corresponding to the following formula (E2) and their physiologically tolerated salts:
  • Z 1 and Z 2 independently of one another, are a hydroxyl or NH 2 radical, which is optionally substituted by a Ci r to C 4 alkyl, by a C to C 4 -hydroxyalkyl radical and / or substituted by a Verbr ⁇ ckung Y is or where appropriate, is part of a bridging ring system, the bond Y is an alkylene group having 1 to 14 carbon atoms, such as a linear or branched alkylene chain or an alkylene ring, one or more nitrogen-containing groups and / or one or more heteroatoms such as oxygen, sulfur or nitrogen atoms may be interrupted or terminated and may optionally be substituted by one or more hydroxyl or C 1 -C 8 -alkoxy radicals, or a direct bond,
  • G 5 and G 6 independently of one another represent a hydrogen or halogen atom, a C 1 - to C 4 -alkyl radical, a C 1 - to C 4 -monohydroxyalkyl radical, a C 2 - to C 4 -hydroxyalkyl radical, a C 1 - to C 4 -aminoalkyl radical or a direct compound for bridging Y,
  • G 7 , G 8 , G 9 , G 10 , G 11 and G 12 independently of one another represent a hydrogen atom, a direct bond to the bond Y or a C 1 - to C 4 -alkyl radical, with the proviso that the compounds of the formula (E2) contain only one bond Y per molecule.
  • Preferred binuclear developer components of the formula (E2) are in particular: N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) -1,3-diamino-propan-2-ol, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) ethylenediamine, N, N'-bis (4-aminophenyl) tetramethylenediamine, N, N'-bis - (.beta.-hydroxyethyl) -N, N'-bis (4-aminophenyl) -tetramethylenediamine, N, N'-bis (4-methyl-aminophenyl) - tetramethylenediamine, N, N'-diethyl-N, N'-bis (4'-amino-3'-methylphenyl) ethylenediamine, bis (2-hydroxy-5-aminophen
  • Very particularly preferred binuclear developer components of the formula (E2) are N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4-aminophenyl) -1,3-diamino-propan-2-ol, bis - (2-hydroxy-5-amino-phenyl) -methane, 1, 3-bis (2,5-diaminophenoxy) -propan-2-ol, N, N'-bis (4-aminophenyl) -1, 4-diazacycloheptane and 1, 10-bis (2,5-diaminophenyl) -1,4,7,10-tetraoxadecane or one of its physiologically acceptable salts.
  • p-aminophenol or a p-aminophenol derivative or one of the physiologically tolerated salts of the abovementioned compounds Particular preference is given to p-aminophenol derivatives of the formula (E3)
  • G 13 represents a hydrogen atom, a halogen atom, a C 1 - to C 4 -alkyl radical, a C 1 - to C 4 -monohydroxyalkyl radical, a C 2 - to C 4 -polyhydroxyalkyl radical, a (C 1 - to C 4 ) - alkoxy (C r C4) alkyl, alkylamino a Ci to C4 aminoalkyl radical, a hydroxy (Ci to C4), a C 1 - to C 4 -Hydroxyalkoxyrest, a C 1 - to C 4 hydroxyalkyl - (C r to C 4 ) -aminoalkyl or a (di-C 1 - to C 4 -A ⁇ yIaImJnO) - (C 1 - to C 4 ) -alkyl radical, and
  • G 14 represents a hydrogen or halogen atom, a C 1 to C 4 alkyl radical, a C 1 to C 4 monohydroxyalkyl radical, a C 2 to C 4 polyhydroxyalkyl radical, a (C 1 to C 4 ) alkoxy (ci- to C 4 ) -alkyl radical, a C 1 - to C 4 -aminoalkyl radical or a C 1 - to C 4 -cyanoalkyl radical,
  • G 15 is hydrogen, C 1 - to C 4 alkyl, C 1 - to C 4 - monohydroxyalkyl radical, a C 2 - to C 4 polyhydroxyalkyl radical, a phenyl radical or a benzyl radical, and
  • G 16 is hydrogen or a halogen atom.
  • the substituents used in formula (E3) are defined according to the invention analogously to the above statements.
  • Preferred p-aminophenols of the formula (E3) are, in particular, p-aminophenol, N-methyl-p-aminophenol, 4-amino-3-methylphenol, 4-amino-3-fluorophenol, 2-hydroxymethylamino-4-aminophenol, 4 -Amino-3-hydroxymethylphenol, 4-amino-2- ( ⁇ -hydroxyethoxy) -phenol, 4-amino-2-methylphenol, 4-amino-2-hydroxymethylphenol, 4-amino-2-methoxymethyl-phenol, 4-Ami no-2-aminomethylphenol, 4-amino-2- ( ⁇ -hydroxyethyl-aminomethyl) phenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxyethyl) phenol, 4-amino-2-fluorophenol, 4-amino 2-chlorophenol, 4-amino-2,6-dichlorophenol, 4-amino-2- (diethylaminomethyl) -phenol and their physiologically acceptable salts.
  • Very particularly preferred compounds of the formula (E3) are p-aminophenol, 4-amino-3-methylphenol, 4-amino-2-aminomethylphenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxyethyl) -phenol and 4-amino 2- (diethylaminomethyl) -phenol.
  • the developer component may be selected from o-aminophenol and its derivatives such as 2-amino-1-methylphenol, 2-amino-5-methylphenol or 2-amino-4-chlorophenol.
  • the developer component may be selected from heterocyclic developer components such as the pyridine, pyrimidine, pyrazole, pyrazolopyrimidine derivatives and their physiologically acceptable salts.
  • Preferred pyridine derivatives are, in particular, the compounds described in the patents GB 1 026 978 and GB 1 153 196, such as 2,5-diamino-pyridine, 2- (4-methoxyphenyl) -amino-3-amino-pyridine, 2,3-diamino-6-methoxy-pyridine, 2- ( ⁇ -methoxyethyl) -amino-3-amino-6-methoxy-pyridine and 3,4-diamino-pyridine.
  • Preferred pyrimidine derivatives are selected according to the invention from compounds of the formula (E4), wherein
  • G 17 , G 18 and G 19 independently represent a hydrogen atom, a hydroxy group, a (C r C 6 ) alkoxy group or an amino group and
  • G is a hydroxy group or a group -NG G, in which G and G are each independently hydrogen, a (C 1 -C 6 ) -alkyl group, a (C 1 -C 6 ) -hydroxyalkyl group, with the proviso that at most two the groups G 17 , G 18 , G 19 and G 20 represent a hydroxy group and at most two of the radicals G, G and G represent a hydrogen atom.
  • Particularly preferred pyrimidine derivatives are, in particular, the compounds described in German Patent DE 2 359 399, Japanese Laid-Open Patent Publication JP 02019576 A2 or in Laid-Open Publication WO 96/15765, such as 2,4,5,6-tetraaminopyrimidine, 4-hydroxy -2,5,6-triaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 2-dimethylamino-4,5,6-triaminopyrimidine, 2,4-dihydroxy-5,6-diaminopyrimidine and 2,5,6 -Triaminopyrimidin.
  • Preferred pyrazole derivatives are selected according to the invention from compounds of the formula (E5),
  • G 23, G 24, G 25 are each independently a hydrogen atom, a Ci to C 6 - alkyl group, a C 2 to Ce-monohydroxyalkyl group, a C 2 to C 6 - polyhydroxyalkyl group, an optionally substituted aryl group or an optionally substituted aryl C, to C 6 alkyl group and
  • G 26 represents a hydrogen atom, a C 1 to C 6 alkyl group, a C 2 to C 6 -
  • pyrazole derivatives are, in particular, the compounds described in patents DE 3 843 892, DE 4 133 957 and patent applications WO 94/08969, WO 94/08970, EP-740 931 and DE 195 43 988, such as 4, 5-diamino-1-methylpyrazole, 4,5-diamino-1- ( ⁇ -hydroxyethyl) pyrazole, 3,4-diaminopyrazole, 4,5-diamino-1- (4'-chlorobenzyl) -pyrazole, 4.5 Diamino-1, 3-dimethylpyrazole, 4,5-diamino-3-methyl-1-phenylpyrazole, 4,5-diamino-1-methyl-3-phenylpyrazole, 4-amino-1,3-dimethyl-5-hydrazinopyrazole , 1-Benzyl-4,5-diamino
  • Preferred pyrazolopyrimidine derivatives are, in particular, the derivatives of the pyrazolo [1,5-a] pyrimidine of the following formula (E6) and its tautomeric forms, provided that a tautomeric equilibrium exists:
  • G 27 , G 28 , G 29 and G 30 independently of one another represent a hydrogen atom, a C 1 - to C 4 -alkyl radical, an aryl radical, a C r to C 4 -hydroxyalkyl radical, a C 2 - to C 4 - Polyhydroxyalkyl radical is a (C 1 to C 4 ) -alkoxy (C 1 to C 4 ) -alkyl radical, a C 1 to C 4 -aminoalkyl radical which may optionally be protected by an acetyl-ureide or a sulfonyl radical, a C 1 - to C 4 ) -alkylamino- (C 1 - to C 4 ) -alkyl radical, a DK (C 1 - to C 4 ) -alkyl] - (C 1 - to C 4 ) -aminoalkyl radical, where the dialkyl Radicals optionally form a carbon cycle or a heterocycle with 5
  • pyrazolo [1, 5-a] pyrimidines of the above formula (E6) can be prepared as described in the literature by cyclization from an aminopyrazole or from hydrazine.
  • m-phenylenediamine derivatives naphthols, resorcinol and resorcinol derivatives, pyrazolones and m-aminophenol derivatives and heterocyclic compounds are generally used.
  • Preferred coupler components according to the invention are m-aminophenol and its derivatives, such as, for example, 5-amino-2-methylphenol, N-cyclopentyl-3-aminophenol, 3-amino-2-chloro-6-methylphenol, 2-hydroxy-4-aminophenoxyethanol, 2 6-Dimethyl-3-aminophenol, 3-trifluoroacetylamino-2-chloro-6-methylphenol, 5-amino-4-chloro-2-methylphenol, 5-amino-4-methoxy-2-methylphenol, 5- (2'- Hydroxyethyl) amino-2-methylphenol, 3- (diethylamino) -phenol, N-cyclopentyl-3-aminophenol, 1,3-dihydroxy-5- (methylamino) -benzene, 3-ethylamino-4-methylphenol and 2,4 Dichloro-3-aminophenol, o-aminophenol and its derivatives, m-diaminobenzene and its derivatives such as
  • Di- or trihydroxybenzene derivatives such as resorcinol, resorcinol monomethyl ether, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol, 2-chlororesorcinol, 4-chlororesorcinol, pyrogallol and 1,2,4-trihydroxybenzene, pyridine derivatives such as 2,6-dihydroxypyridine , 2-amino-3-hydroxypyridine, 2-amino-5-chloro-3-hydroxypyridine, 3-amino-2-methylamino-6-methoxypyridine, 2,6-dihydroxy-3,4-dimethylpyridine, 2,6-dihydroxy 4-methylpyridine, 2,6-diaminopyridine, 2,3-diamino-6-methoxypyridine and 3,5-diamino-2,6-dimethoxypyridine,
  • Naphthalene derivatives such as 1-naphthol, 2-methyl-1-naphthol, 2-hydroxymethyl-1-naphthol, 2-hydroxyethyl-1-naphthol, 1, 5-dihydroxynaphthalene, 1, 6-dihydroxynaphthalene, 1, 7-dihydroxynaphthalene, 1 , 8-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and 2,3-dihydroxynaphthalene,
  • Morpholine derivatives such as 6-hydroxybenzomorpholine and 6-aminobenzomorpholine,
  • Quinoxaline derivatives such as 6-methyl-1,2,3,4-tetrahydroquinoxaline, pyrazole derivatives such as 1-phenyl-3-methylpyrazol-5-one, indole derivatives such as 4-hydroxyindole, 6-hydroxyindole and 7-hydroxyindole, pyrimidine derivatives such as For example, 4,6-diaminopyrimidine, 4-amino-2,6-dihydroxypyrimidine, 2,4-diamino-6-hydroxypyrimidine, 2,4,6-trihydroxypyrimidine, 2-amino-4-methylpyrimidine, 2-amino-4-hydroxy 6-methylpyrimidine and 4,6-dihydroxy-2-methylpyrimidine, or methylenedioxybenzene derivatives such as, for example, 1-hydroxy-3,4-methylenedioxybenzene, 1-amino-3,4-methylenedioxybenzene and 1- (2'-hydroxyethyl) -amino 3,4-methylenedioxybenzene and their physiologically
  • coupler components according to the invention are 1-naphthol, 1, 5, 2,7- and 1, 7-dihydroxynaphthalene, 3-aminophenol, 5-amino-2-methylphenol, 2-amino-3-hydroxypyridine, resorcinol, 4-chlororesorcinol , 2-chloro-6-methyl-3-aminophenol, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol and 2,6-dihydroxy-3,4-dimethylpyridine and the physiologically acceptable salts of the aforementioned compounds.
  • the agents according to the invention preferably contain the developer components in an amount of from 0.005 to 10% by weight, preferably from 0.1 to 5% by weight, in each case based on the total agent.
  • the agents of the invention preferably contain the coupler components in an amount of 0.005 to 10 wt .-%, preferably from 0.1 to 5 wt .-%, each based on the total agent.
  • composition according to the invention can be used as a coloring component in the form of the oxo dye precursors at least one combination of at least one compound of the component
  • Compounds according to the invention having a reactive carbonyl group have at least one carbonyl group as reactive group which reacts with the compounds of component 2 to form a chemical bond linking both components. Further, according to the invention, those compounds are also included as component 1 in which the reactive carbonyl group is derivatized or masked in such a way that the reactivity of the carbon atom of the derivatized or masked carbonyl group with respect to the component 2 is always present.
  • These derivatives are preferably condensation compounds of reactive carbonyl compounds with a) amines and their derivatives to form imines or oximes as a condensation compound b) alcohols to form acetals or ketals as a condensation compound c) water to form hydrates as a condensation compound of aldehydes.
  • Component 1 is preferably selected from the group formed from acetophenone, propiophenone, 2-hydroxyacetophenone, 3-hydroxyacetophenone, 4-hydroxy acetophenone, 2-hydroxypropiophenone, 3-hydroxypropiophenone, 4-hydroxypropiophenone, 2-hydroxybutyrophenone, 3-hydroxybutyrophenone, 4-hydroxybutyrophenone, 2,4-dihydroxyacetophenone, 2,5-dihydroxyacetophenone, 2,6-dihydroxyacetophenone, 2,3, 4-trihydroxyacetophenone, 3,4,5-trihydroxyacetophenone, 2,4,6-trihydroxyacetophenone, 2,4,6-trimethoxyacetophenone, 3,4,5-trimethoxyacetophenone, 3,4,5-trimethoxyacetophenone diethyl ketal, A-hydroxy-3-methoxy-acetophenone, 3,5-dimethoxy-4-hydroxyacetophenone, 4-aminoacetophenone, 4-dimethylaminoacetophenone, 4-morpholin
  • Benzylideneacetone 4-hydroxybenzylideneacetone, 2-hydroxybenzylideneacetone, 4-methoxybenzylideneacetone, 4-hydroxy-3-methoxybenzylideneacetone, 4-dimethylaminobenzylideneacetone, 3,4-methylenedioxybenzylideneacetone, 4-pyrrolidinobenzylideneacetone, 4-piperidinobenzylideneacetone, 4-morpholinobenzylideneacetone, 4- Diethylaminobenzylideneacetone, 3-benzylidene-2,4-pentanedione, 3- (4'-hydroxybenzylidene) -2,4-pentanedione, 3- (4'-dimethylaminobenzylidene) -2,4-pentanedione, 2-benzylidene cyclohexanone, 2- 4'-hydroxybenzylidene) cyclohexanone, 2- (4'-dimethylaminobenz
  • CH-acidic compounds are generally considered to carry a bound to an aliphatic carbon atom hydrogen atom, wherein due to electron-withdrawing substituents activation of the corresponding carbon-hydrogen bond is effected.
  • CH-acidic compounds also include enamines which are formed by alkaline treatment of quaternized N-heterocycles with a CH-acidic alkyl group in conjugation with the quaternary nitrogen.
  • the CH-acidic compounds of component 2 are preferably selected from the group consisting of 1, 2,3,3-tetramethyl-3H-indolium iodide, 1, 2,3,3-tetramethyl-3H-indolium p-toluenesulfonate, 1, 2,3,3-tetramethyl-3H-indolium methanesulfonate, 1,3,3-trimethyl-2-methylenindoline (Fischer's base), 2,3-dimethylbenzothiazolium iodide, 2,3-dimethylbenzothiazolium p-toluenesulfonate, 2,3-dimethyl-naphtho [1,2-d] thiazolium p-toluenesulfonate, 3-ethyl-2-methylnaphtho [1,2-d] thiazolium p-toluenesulfonate, rhodanine, rhodanine-3-acetic acid
  • Preferred primary or secondary aromatic amines of component B are selected from N, N-dimethyl-p-phenylenediamine, N, N-diethyl-p-phenylenediamine, N- (2-hydroxyethyl) -N-ethyl-p-phenylenediamine, N, N-bis (2-hydroxyethyl) -p-phenylenediamine, N- (2-methoxyethyl) -p-phenylenediamine, 2,3-dichloro-p-phenylenediamine, 2,4-dichloro-p-phenylenediamine, 2.5- Dichloro-p-phenylenediamine, 2-chloro-p-phenylenediamine, 2,5-dihydroxy-4-morpholinoaniline, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-aminomethyl-4-aminophenol, 2-hydroxymethyl-4- aminophenol, o-phenylenediamine, m-phen
  • R 7 represents a hydroxy or an amino group substituted with Ci-4 alkyl, Ci- 4 hydroxyalkyl, C1-4 alkoxy or Ci -4 alkoxy-Ci- 4 alkyl groups may be substituted; .
  • R 8, R 9, R 10, R 11 and R 12 independently represent a hydrogen atom, a hydroxy or an amino group represented by C r C 4 alkyl, C r C 4 hydroxyalkyl, C 1 -C 4 -Aikoxy, C 1 -C 4 - aminoalkyl or C 1 -C 4 alkoxy-C 1 -C 4 alkyl groups may be substituted, and
  • P is a direct bond, a saturated or unsaturated, optionally substituted by hydroxy groups carbon chain having 1 to 4 carbon atoms, a carbonyl, sulfoxy, sulfonyl or imino group, an oxygen or sulfur atom, or a group having the formula IV
  • Q signifies a direct bond, a CH 2 or CHOH group
  • Q 'and Q "independently of one another represent an oxygen atom, an NR 13 group, in which R 13 is a hydrogen atom, a C 1-6 -alkyl or a hydroxy-C 1-3 -alkyl group, where both groups together with the remaining molecule have a 5-, 6- or 7-R ⁇ ng form, the group O- (CH 2 ) p -NH or NH- (CH 2 ) p -O, wherein p and p 'are 2 or 3, stand and
  • O is a number from 1 to 4,
  • the abovementioned compounds can be used both in free form and in the form of their physiologically acceptable salts, in particular as salts of inorganic acids, such as hydrochloric or sulfuric acid.
  • Suitable nitrogen-containing heterocyclic compounds are, for. B. 2-Am ⁇ nopy ⁇ d ⁇ n, 3-Aminopy ⁇ din, 4-Am ⁇ nopy ⁇ d ⁇ n, 2-Am ⁇ no-3-hydroxy-py ⁇ d ⁇ n, 2,6-D ⁇ am ⁇ no-py ⁇ d ⁇ n, 2,5-D ⁇ am ⁇ no- py ⁇ din, 2- (Am ⁇ noethylam ⁇ no) -5-am ⁇ nopy ⁇ d ⁇ n, 2,3-diamino-pyridine, 2-dimethylamino-5-amino pyridine, 2-methylamino-3-amino-6-methoxy-pyridine, 2,3-diamino-6-methoxy-pyridine, 2,6-dimethoxy-3,5-diamino-pyridine, 2,4,5-triamino pyridine, 2,6-dihydroxy-3,4-dimethylpyridine, N- [2- (2,4-diaminophenyl)
  • heterocyclic compounds the hydroxypyrimidines disclosed in DE-U1-299 08 573 can be used according to the invention.
  • the aforementioned compounds can be used both in free form and in the form of their physiologically acceptable salts, for. B. as salts of inorganic acids, such as hydrochloric or sulfuric acid, are used.
  • Suitable aromatic hydroxy compounds are, for. 2-methylresorcinol, 4-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol, resorcinol, 3-methoxyphenol, pyrocatechol, hydroquinone, pyrogallol, phloroglucinol, hydroxyhydroquinone, 2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, 3 Dimethylaminophenol, 2- (2-hydroxyethyl) phenol, 3,4-methylenedioxyphenol, 2,4-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 2,4-dihydroxy-phenylacetic acid, 3,4-dihydroxyphenylacetic acid, gallic acid, 2,4 , 6-trihydroxybenzoic acid, 2,4,6-trihydroxyace- tophenone, 2-chlororesorcinol, 4-chlororesorcinol, 1-naphthol, 1, 5-dihydroxynaphthalene, 2,3-
  • the compounds of component A and the compounds of component B are preferably used in the shading agents according to the invention in each case in an amount of 0.03 to 65 mmol, in particular from 1 to 40 mmol, based on 100 g of the total Nuancierstoffs used.
  • the molar ratio of the compound of component A and the compound of component B may range from 0.5 to 2.0, preferably equimolar amounts be used.
  • the actual Nuancierstoff is prepared with separate storage of components A and B immediately before use by mixing.
  • indoles and indolines which have at least one hydroxy or amino group, preferably as a substituent on the six-membered ring.
  • these groups may carry further substituents, e.g. Example in the form of etherification or esterification of the hydroxy group or alkylation of the amino group.
  • the colorants contain at least one indole and / or indoline derivative.
  • Particularly suitable precursors of naturally-analogous hair dyes are derivatives of 5,6-dihydroxyindoline of the formula (Va),
  • R 1 is hydrogen, a C 1 -C 4 -alkyl group or a C 1 -C 4 -hydroxy-alkyl group
  • R 2 is hydrogen or a -COOH group, wherein the -COOH group may also be present as a salt with a physiologically compatible cation,
  • R 3 is hydrogen or a C 1 -C 4 -alkyl group
  • R 4 is hydrogen, a C 1 -C 4 -alkyl group or a group -CO-R 6 , in which R 6 is a C 1 -C 4 -alkyl group, and
  • R 5 is one of the groups mentioned under R 4 , as well as physiologically acceptable salts of these compounds with an organic or inorganic acid.
  • indoline Particularly preferred derivatives of indoline are 5,6-dihydroxyindoline, N-methyl-5,6-dihydroxyindoline, N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline,
  • Particularly noteworthy within this group are N-methyl-5,6-dihydroxyindoline, N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6-dihydroxyindoline and especially 5, 6-Dihydroxyindolin.
  • R 1 represents hydrogen, C
  • R 2 is hydrogen or a -COOH group, wherein the -COOH group may also be present as a salt with a physiologically compatible cation,
  • R 3 is hydrogen or a C 1 -C 4 -alkyl group
  • R 4 is hydrogen, a C 1 -C 4 alkyl group or a group -CO-R 6 in which R 6 represents a Ci-C 4 alkyl group, and
  • R 5 is one of the groups mentioned under R 4 , as well as physiologically acceptable salts of these compounds with an organic or inorganic acid.
  • Particularly preferred derivatives of indole are 5,6-dihydroxyindole, N-methyl-5,6-dihydroxyindole, N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6- dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid, 6-hydroxyindole, 6-aminoindole and 4-aminoindole.
  • N-methyl-5,6-dihydroxyindole N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6-dihydroxyindole, and especially the 5,6 -Dihydroxyindol.
  • Preferred substantive dyes which are used in the compositions according to the invention as a coloring component are nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones or indophenols.
  • Preferred substantive dyes are those of the HC Yellow 2, HC Yellow 4, HC Yellow 6, HC Yellow 12, Acid Yellow 1, Acid Yellow 10, Acid Yellow 23, Acid Yellow 36, HC Orange 1, Disperse Orange 3, Acid HC Red 1, HC Red 1, HC Red 1, HC Red 1, HC Red 13, Acid Red 33, Acid Red 52, HC Red BN, Pigment Red 57: 1, HC Blue 2, HC Blue 12, Disperse Blue 3, Acid Blue 7, Acid Green 50, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Acid Violet 43, Disperse Black 9, Acid Black 1, and Acid Black 52 known compounds as well as 1, 4-Diamino-2 -nitrobenzene, 2-amino-4-nitrophenol, 1, 4-bis ( ⁇ -hydroxyethyl) amino-2-nitrobenzene, 3-nitro-4- ( ⁇ -hydroxy
  • agents according to the invention may contain a cationic substantive dye. Particularly preferred are
  • aromatic systems substituted with a quaternary nitrogen group such as Basic Yellow 57, Basic Red 76, Basic Blue 99, Basic Brown 16 and Basic Brown 17, as well as
  • Preferred cationic substantive dyes of group (c) are in particular the following compounds:
  • the compounds of the formulas (DZ1), (DZ3) and (DZ5) which are also known by the names Basic Yellow 87, Basic Orange 31 and Basic Red 51, are very particularly preferred cationic substantive dyes of group (c).
  • the cationic substantive dyes sold under the trademark Arianor® are also very particularly preferred cationic substantive dyes according to the invention.
  • the agents according to the invention preferably contain the substantive dyes in an amount of from 0.01 to 20% by weight, based on the ready-to-use agent.
  • preparations of the invention may also naturally occurring dyes such as henna red, henna neutral, henna black, chamomile, sandalwood, black tea, buckthorn bark, sage, bluewood, madder root, Catechu, Sedre and alkano root are included.
  • oxidation dye precursors or the direct dyes it is not necessary for the oxidation dye precursors or the direct dyes to be in each case homogeneous compounds. Rather, in the compositions according to the invention, due to the production process for the individual dyes, minor amounts of other components may be included, as far as they do not adversely affect the dyeing result or for other reasons, e.g. toxicological, must be excluded.
  • the agent according to the invention contains oxidation dye precursors or in particular precursors of a nature-analogous dye based on indole or indoline
  • the actual oxidative dyeing of the fibers can in principle be carried out with atmospheric oxygen.
  • an additional chemical oxidizer is generally used.
  • a chemical oxidizing agent are persulfates, chlorites and in particular hydrogen peroxide or its addition products of urea, melamine and sodium borate in question.
  • compositions according to the invention contain at least one additional chemical oxidizing agent, preferably in an amount of 0.5 to 12.0% by weight, in particular 6 to 12% by weight, in each case based on the weight of the ready-to-use agent.
  • a further embodiment of the agent according to the invention is a coloring agent for keratin-containing fibers, in particular human hair, which is mixed immediately before use of two components, wherein the first component comprises an agent containing in a carrier at least one developer component and optionally at least one
  • the second component is an oxidizing agent composition containing at least one chemical oxidizing agent, in particular hydrogen peroxide, and at least one of the two components comprises at least one compound of the formula (I)
  • R 1 , R 2 and M are defined as described above, and / or at least one of the two components at least one compound of the formula (II)
  • the agent according to the invention can generally also be applied to the hair together with an oxidation activator which activates the oxidation of the oxidation dye precursors by the oxidizing agent.
  • the oxidizing agent is atmospheric oxygen or additional chemical oxidizing agents.
  • the oxidation activators are preferably selected from the group consisting of carbonates, hydrogencarbonates, carbamates, carboxylic esters or their salts, aldehydes, in particular aliphatic aldehydes, 1,3-dihydroxyacetone, imidazole and its derivatives, alkali metal and ammonium peroxydisulfates, metal ions, iodides, Quinones and enzymes.
  • the oxidation activators are preferably present in amounts of from 0.01 to 5% by weight, based on the weight of the ready-to-use agent, in the agents according to the invention.
  • Suitable metal ions are, for example, Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Mn 4+ , Li + , Mg 2+ , Ca 2+ and Al 3+ . Particularly suitable are Zn 2+ , Cu 2+ and Mn 2+ .
  • the metal ions can in principle be used in the form of any physiologically acceptable salt or in the form of a complex compound.
  • Preferred salts are the acetates, sulfates, halides, lactates and tartrates.
  • Suitable enzymes are e.g. Peroxidases that can significantly increase the effect of small amounts of hydrogen peroxide. Furthermore, such enzymes are suitable according to the invention which directly oxidize the oxidation dye precursors with the aid of atmospheric oxygen, such as, for example, the laccases, or generate small amounts of hydrogen peroxide in situ and thus biocatalytically activate the oxidation of the dye precursors. Particularly suitable catalysts for the oxidation of the dye precursors are the so-called 2-electron oxidoreductases in combination with the specific substrates, e.g.
  • Lactate oxidase and lactic acid and their salts Lactate oxidase and lactic acid and their salts
  • the actual (oxidative) hair dye is expediently prepared immediately before use by mixing the oxidizing agent composition with the carrier of the coloring components, preferably in the weight ratio range of 1: 4 to 4: 1, in particular 1: 2 to 2: 1.
  • the effects according to the invention of the compounds of the formulas (I) and (II) or their combination can be increased in a synergistic manner if the agent according to the invention additionally
  • an active ingredient combination according to the invention is preferred, the (a) at least one N-acylsarcosine derivative of the formula (I) and (b) at least one N-acyl taurine derivative of the formula (II) and (c) at least one member of the above c), c3) or c4).
  • the protein hydrolysates c1) are product mixtures which are obtained by acid, alkaline or enzymatically catalyzed degradation of proteins (proteins).
  • protein hydrolysates of both vegetable and animal origin can be used.
  • Animal protein hydrolysates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolysates, which may also be present in the form of salts.
  • Such products are, for example, under the trademarks keratin DEC ® (Vincience) Dehylan ® (Cognis), Promois® ® (Interorgana) Collapuron ® (Cognis), Nutrilan® ® (Cognis), Gelita-Sol ® (German Gelatinefabriken Stoess & Co) distributed Lexein ® (Inolex) and kerasol tm ® (Croda).
  • Preferred according to the invention is the use of protein hydrolysates of plant origin, eg. Soybean, almond, rice, pea, potato and wheat protein hydrolysates.
  • Such products are, for example, under the trademarks Gluadin ® (Cognis), diamine ® (Diamalt) ® (Inolex) and Crotein ® (Croda) available.
  • protein hydrolysates amino acid mixtures or individual amino acids obtained otherwise, such as, for example, arginine, lysine, histidine or pyrroglutamic acid, may also be used in their place.
  • derivatives of protein hydrolysates for example in the form of their fatty acid condensation products.
  • Such products are "(Croda) sold, for example, under the names Lamepon® ® (Cognis), Gluadin® (Cognis), Lexein ® (Inolex), Crolastin ® (Croda) or crotein ®.
  • the protein hydrolysates in an amount of 0.05 to 5 wt .-%, particularly preferably from 0.5 to 2.0 wt .-%, each based on the weight of the ready-to-use agent included.
  • the silicone derivatives c2) when present in the compositions according to the invention, are preferably present in amounts of from 0.05 to 5% by weight, preferably from 0.2 to 5% by weight, based in each case on the ready-to-use agent.
  • the silicones c2) are selected from at least one member of the list formed from:
  • polyalkyl siloxanes polyaryl siloxanes, polyalkylaryl siloxanes which are volatile or nonvolatile, straight chain, branched or cyclic, crosslinked or uncrosslinked;
  • grafted polysiloxane backbone silicone polymers having grafted thereto non-silicone-containing organic monomers having a polysiloxane backbone to which at least one organic macromer containing no silicone has been grafted in the chain, and optionally at least at one of its ends , such as the commercial product Abil B 8832 from Degussa marketed under the INCI name Bis-PEG / PPG-20/20 dimethicone;
  • Particularly preferred cosmetic or dermatological preparations according to the invention are characterized in that they contain at least one silicone of the formula (Si-1)
  • x is a number from 0 to 100, preferably from 0 to 50, more preferably from 0 to 20 and in particular 0 to 10.
  • the inventively preferred cosmetic or dermatological preparations contain a silicone of the above formula (Si-1). These silicones are referred to as dimethicones according to the INCI nomenclature. It is in the context of the present invention as the silicone of the formula (Si-1), preferably the compounds:
  • mixtures of o.g. Silicones may be included in the preferred compositions of the invention.
  • silicones have viscosities at 20 0 C for from 0.2 to 2 mmV 1, wherein silicones having viscosities of 0.5 to 1 mmV 1 are particularly preferred.
  • Particularly preferred agents according to the invention contain one or more amino-functional silicones.
  • Such silicones may e.g. by the formula (Si-2)
  • R is a hydrocarbon or a hydrocarbon radical having 1 to about 6
  • Q is a polar radical of the general formula -R 1 HZ, in which
  • R 1 is a divalent linking group bonded to hydrogen and the radical Z composed of carbon and hydrogen atoms, carbon, hydrogen and oxygen atoms or carbon, hydrogen and nitrogen atoms, and
  • Z is an organic, amino-functional group containing at least one amino-functional group; a assumes values in the range of about 0 to about 2, b takes values in the range of about 1 to about 3, a + b is less than or equal to 3, and c is a number in the range of about 1 to about 3, and x a number ranging from 1 to about 2,000, preferably from about 3 to about 50, and most preferably from about 3 to about 25; and y is a number ranging from about 20 to about 10,000, preferably from about 125 to about 10,000 and most preferred is from about 150 to about 1000, and M is a suitable silicone end group as known in the art, preferably trimethylsiloxy.
  • Non-limiting examples of the groups represented by R in formula (Si-2) include alkyl groups such as methyl, ethyl, propyl, isopropyl, isopropyl, butyl, isobutyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals such as vinyl, halovinyl, alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl radicals such as cyclobutyl, cyclopentyl, cyclohexyl and the like; Phenyl radicals, benzyl radicals, halohydrocarbon radicals such as 3-chloropropyl, 4-bromobutyl, 3,3,3-trifluoropropyl, chlorocyclohexyl, bromophenyl, chlorophenyl and the like, as well as sulfur-containing radicals such as mercaptoethyl,
  • R 1 examples include methylene, ethylene, propylene, hexamethylene, decamethylene, - CH 2 CH (CH 3 ) CH 2 -, phenylene, naphthylene, -CH 2 CH 2 SCH 2 CH 2 -, -CH 2 CH 2 OCH 2 - , -OCH 2 CH 2 -, - OCH 2 CH 2 CH 2 -, -CH 2 CH (CH 3 ) C (O) OCH 2 -, - (CH 2 ) 3 CC (O) OCH 2 CH 2 - C 6 H 4 C 6 H 4 -, -C 6 H 4 CH 2 C 6 H 4 -; and - (CH 3 C (O) SCH 2 CH 2 -.
  • Z is according to formula (Si-2) an organic, amino-functional radical containing at least one functional amino group.
  • a possible formula for said Z is NH (CH 2 ) Z NH 2 , where z is an integer greater than or equal to 1.
  • Another possible formula for said Z is -NH (CH 2 ) Z (CH 2 ) ZZ NH, wherein both z and zz independently of one another are an integer greater than or equal to 1, this structure comprising diamino ring structures, such as piperazinyl.
  • Said Z is most preferably an -NHCH 2 CH 2 NH 2 radical.
  • Z is -N (CH 2 ) Z (CH 2 ) ZZ NX 2 or -NX 2 , wherein each X of X 2 is independently selected from the group consisting of hydrogen and alkyl groups of 1 to 12 carbon atoms, and zz is 0.
  • Q according to formula (Si-2) is most preferably a polar amino-functional radical of formula - CH 2 CH 2 CH 2 NH 2 CH 2 CH 2 NH 2 .
  • assumes values in the range of 0 to 2
  • b takes values in the range of 2 to 3
  • a + b is less than or equal to 3
  • c is a number in the range of 1 to 3.
  • the molar ratio of the R a Q b SiO (4 a a b) / 2 units to the R 0 SiO (4 c) / 2 units in formula (Si-2) is in the range of about 1: From 2 to 1: 65, preferably from about 1: 5 to about 1:65, and most preferably from about 1:15 to about 1: 20. If one or more of the above formula (Si-2) silicones are used then the various variable substituents in the above formula may be different for the various silicone components present in the silicone blend.
  • Preferred cosmetic or dermatological preparations according to the invention contain an amino-functional silicone of the formula (Si-3)
  • G is -H, a phenyl group, -OH, -O-CH 3 , -CH 3 , -O-CH 2 CH 3 , -CH 2 CH 3 , -O-CH 2 CH 2 CH 3 , -CH 2 CH 2 CH 3 , -O-CH (CH 3 ) 2 , -CH (CH 3 ) 2 , -O-CH 2 CH 2 CH 2 CH 3 , -CH 2 CH 2 CH 2 CH 3 , -O-CH 2 CH ( CHa) 2 , -CH 2 CH (CHa) 2 , -O-CH (CH 3 ) CH 2 CH 3 , -CH (CH 3 ) CH 2 CH 3 , -O-C (CH 3 J 3 , -C ( CH 3 ), a stands for a number between 0 and 3, in particular 0, b stands for a number between 0 and 1, in particular 1, m and n are numbers, whose sum (m + n) between 1 and 2000, preferably is between
  • R ' is a monovalent radical selected from -QN (R ") - CH 2 -CH 2 -N (R") 2
  • each Q is a chemical bond, -CH 2 -, -CH 2 -CH 2 -, -CH 2 CH 2 CH 2 -, -C (CHa) 2 -, -CH 2 CH 2 CH 2 CH 2 -, - CH 2 C (CHa) 2 -, -CH (CH 3 ) CH 2 CH 2 -, R "represents identical or different radicals from the group -H, -phenyl, -benzyl, -CH 2 - CH (CH 3 ) Ph, the C 1 -20 -Al kylreste, preferably -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , - CH (CH 3 ) 2 , -CH 2 CH 2 CH 2 H 3 , -CH 2 CH (CH 3 ) 2 , -CH (CH 3 ) CH 2 CH 3 , -
  • Cationic silicone oils such as the commercially available Dow Corning 929 emulsion (containing a hydroxylamino-modified silicone referred to as amodimethicone), DC 2-2078 (manufactured by Dow Corning, INCI: aminopropyl phenyl trimethicone), DC 5, are suitable according to the invention -71 13 (manufacturer Dow Corning, INCI name: Silicone Quaternium 16), SM-2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® -Quat 3270 and 3272 (manufacturer: Th Goldschmidt;. diquaternary polydimethylsiloxanes, quaternium-80).
  • Dow Corning 929 emulsion containing a hydroxylamino-modified silicone referred to as amodimethicone
  • DC 2-2078 manufactured by Dow Corning, INCI: aminopropyl phenyl trimethicone
  • Particularly preferred agents according to the invention are characterized in that they contain at least one amino-functional silicone of the formula (Si 3-a)
  • n and n are numbers whose sum (m + n) is between 1 and 2000, preferably between 50 and 150, where n preferably values of 0 to 1999 and in particular of 49 to 149 and m preferably values of 1 to 2000 , in particular from 1 to 10 assumes.
  • silicones are referred to as trimethylsilylamodimethicones according to the INCI declaration and are available, for example, under the name Q2-7224 (manufacturer: Dow Corning, a stabilized trimethylsilylamodimethicone).
  • compositions according to the invention which contain at least one amino-functional silicone of the formula (Si-3b)
  • R is -OH, an (optionally ethoxylated and / or propoxylated) (Ci to C 2 o) -
  • R ' is -OH, a (C 1 to C 20 ) alkoxy group or a -CH 3 group and m, n1 and n2 are numbers whose sum (m + n1 + n2) is between 1 and 2,000, preferably between 50 and Is 150, wherein the sum (n1 + n2) preferably takes values from 0 to 1999 and in particular from 49 to 149 and m preferably values from 1 to 2000, in particular from 1 to 10.
  • silicones are according to the INCI declaration as Amodimethicone, or as functionalized Amodimethicone, such as bis (C13-15 alkoxy) PG Amodimethicone (for example, as a commercial product: DC 8500 from Dow Corning available), trideceth-9 PG-amodimethicones (for example as a commercial product Silcare Silicone SEA available from Clariant).
  • Amodimethicone or as functionalized Amodimethicone, such as bis (C13-15 alkoxy) PG Amodimethicone (for example, as a commercial product: DC 8500 from Dow Corning available), trideceth-9 PG-amodimethicones (for example as a commercial product Silcare Silicone SEA available from Clariant).
  • amino-functional silicones preference is given to cosmetic or dermatological preparations according to the invention which contain an amino-functional silicone whose amine number is above 0.25 meq / g, preferably above 0.3 meq / g and in particular above 0.4 meq / g is.
  • the amine number stands for the milliequivalents of amine per gram of the amino-functional silicone. It can be determined by titration and also expressed in mg KOH / g.
  • Cosmetic or dermatological preparations preferred according to the invention are characterized in that, based on their weight, they contain 0.01 to 10% by weight, preferably 0.1 to 8% by weight, particularly preferably 0.25 to 7.5% by weight and in particular from 0.5 to 5% by weight of amino-functional silicone (s).
  • cyclic dimethicones designated as cyclomethicones according to INCI are also preferably used according to the invention.
  • cosmetic or dermatological preparations according to the invention which contain at least one silicone of the formula (Si -4) in which x is a number from 0 to 200, preferably from 0 to 10, more preferably from 0 to 7 and especially 0, 1, 2, 3, 4, 5 or 6.
  • the silicones described above have a backbone composed of -Si-O-Si units.
  • these Si-O-Si units may also be interrupted by carbon chains.
  • Appropriate molecules are accessible by chain extension reactions and are preferably used in the form of silicone-in-water emulsions.
  • silicone-in-water emulsions which can be used according to the invention can be prepared by known processes, as disclosed, for example, in US Pat. No. 5,998,537 and EP 0 874 017 A1.
  • this method of preparation comprises the emulsifying mixture of components, one of which contains at least one polysiloxane, the other of which contains at least one organosilicone material which reacts with the polysiloxane in a chain extension reaction, with at least one metal ion-containing catalyst for the chain extension reaction, at least one surfactant and water present are.
  • the chain extension reaction may also include the reaction of an Si-OH group (e.g., a hydroxy-terminated polysiloxane) with an alkoxy group (e.g., alkoxysilanes, silicates, or alkoxysiloxanes) in the presence of a metal-containing catalyst to form polysiloxanes.
  • the polysiloxanes used in the chain extension reaction comprise a substantially linear polymer of the following structure: R-Si (R 2 H-OSi (R 2 H n -O-SiR 3
  • each R independently represents a hydrocarbon radical having up to 20 carbon atoms, preferably having 1 to 6 carbon atoms, such as an alkyl group (for example, methyl, ethyl, propyl or butyl), an aryl group (for example, phenyl), or group required for the chain extension reaction ("reactive group", for example, Si-bonded H atoms, aliphatic unsaturated groups such as vinyl, allyl or hexenyl, hydroxy, alkoxy such as methoxy, ethoxy or propoxy, alkoxy-alkoxy, acetoxy, amino, etc.), with the proviso that on average one to two reactive groups are present per polymer, n is a positive number> 1.
  • n is numbers describing polysiloxanes having viscosities between 1 and 1,000,000 mm 2 / s, more preferably viscosities between 1,000 and 100,000 mm 2 / s.
  • the polysiloxanes may be branched to a low degree (for example, ⁇ 2 mol% of the siloxane units), but the polymers are substantially linear, more preferably fully linear.
  • the substituents R may in turn be substituted, for example with N-containing groups (for example amino groups), epoxy groups, S-containing groups, Si-containing groups, O-containing groups, etc.
  • N-containing groups for example amino groups
  • epoxy groups for example amino groups
  • S-containing groups for example amino groups
  • Si-containing groups for example O-containing groups
  • O-containing groups etc.
  • at least 80% of the radicals R are alkyl radicals, especially preferably methyl groups.
  • the organosilicone material that reacts with the polysiloxane in the chain extension reaction may be either a second polysiloxane or a molecule that acts as a chain extender.
  • the organosilicone material is a polysiloxane, it has the above-mentioned general structure. In these cases, one polysiloxane in the reaction has (at least) one reactive group, and a second polysiloxane has (at least) a second reactive group that reacts with the first.
  • the organosilicone material comprises a chain-extending agent
  • it may be a material such as a silane, a siloxane (e.g. disiloxane or trisiloxane) or a silazane.
  • a composition which comprises a polysiloxane according to the above-described general structure which comprises at least one Si-OH group has been chain extended by reacting with an alkoxysilane (for example, a dialkoxysilane or trialkoxysilane) in the presence of tin or titanium-containing catalysts.
  • an alkoxysilane for example, a dialkoxysilane or trialkoxysilane
  • the metal-containing catalysts in the chain extension reaction are usually specific for a particular reaction.
  • Such catalysts are known in the art and include, for example, metals such as platinum, rhodium, tin, titanium, copper, lead, etc.
  • a polysiloxane having at least one aliphatically unsaturated group, preferably an end group is reacted with an organosilicone material
  • a hydrosilylation catalyst which is a siloxane or polysiloxane having at least one (preferably terminal) Si-H group.
  • the polysiloxane has at least one aliphatically unsaturated group and satisfies the general formula given above in which R and n are as defined above, with an average of between 1 and 2 groups R having one aliphatically unsaturated group per polymer.
  • the organosilicone material having at least one Si-H group preferably has the above-mentioned structure, wherein R and n are as defined above and wherein, on average, between 1 and 2 groups R is hydrogen and n is 0 or a positive integer.
  • This material may be a polymer or a low molecular weight material such as a siloxane (for example, a disiloxane or a trisiloxane).
  • a siloxane for example, a disiloxane or a trisiloxane
  • the polysiloxane having at least one aliphatic unsaturated group and the organosilicone material having at least one Si-H group react in the presence of a hydrosilylation catalyst.
  • a hydrosilylation catalyst include, for example, platinum and rhodium-containing materials.
  • the catalysts may take any known form, for example platinum or rhodium coated on support materials (such as silica gel or activated carbon) or other suitable compounds such as platinum chloride, salts of platinum or chloroplatinic acids.
  • Chloroplatinic acid either as a commercially available hexahydrate or in anhydrous form is a preferred catalyst because of good dispersibility in organosilicone systems and low color change.
  • a polysiloxane having at least one Si-OH group, preferably an end group is added with an organosilicone material Reaction having at least one alkoxy group, preferably a siloxane having at least one Si-OR group or an alkoxysilane having at least two alkoxy groups.
  • the catalyst used is again a metal-containing catalyst.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • organometallic compounds such as organotin salts, titanates or titanium chelates or complexes.
  • examples include stannous octoate, dibutyltin dilaurate, dibutyltin diacetate, dimethyltin dineodecanoate, dibutyltin dimethoxide, isobutyltin triceroate, dimethyltin dibutyrate, dimethyltin dineo
  • Agents which are likewise preferred according to the invention are characterized in that they contain at least one silicone of the formula (Si-5)
  • R 3 is -Si- [O-SiR 2 ] X- (CH 2 ) H- [O-SiR 2 Jy-O-SiR 3 (Si-5),
  • R is identical or different radicals from the group -H, -phenyl, -benzyl, -CH 2 -CH (CH 3 ) Ph, the C 20 -alkyl radicals, preferably -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH (CH 3 ) 2 , -CH 2 CH 2 CH 2 H 3 , -CH 2 CH (CH 3 ) 2 , -CH (CH 3 ) CH 2 CH 3 , -C (CH 3 ) 3 , x and y are a number from 0 to 200, preferably from 0 to 10, more preferably from 0 to 7 and in particular 0, 1, 2, 3, 4, 5 or 6, and n is a number from 0 to 10, preferably from 1 to 8 and in particular from 2, 3, 4, 5, 6.
  • the silicones are preferably water-soluble. According to the invention preferred means of Ausf ⁇ hrungsform with a silicone c2) are characterized in that the silicone c2) is water-soluble
  • Corresponding hydrophilic silicones are selected, for example, from the compounds of the formulas (Si-6) and / or (Si-7).
  • Particularly preferred water-soluble silicone-based surfactants are selected from the group of dimethicone copolyols which are preferably alkoxylated, in particular polyethoxylated or polypropoxylated.
  • Dimethicone copolyols are understood according to the invention as meaning preferably polyoxyalkylene-modified dimethylpolysiloxanes of the general formulas (Si-6) or (Si-7):
  • Alkoxy group having 1 to 12 carbon atoms or a hydroxyl group the radicals R 'and R "are alkyl groups having 1 to 12 carbon atoms
  • x is an integer from 1 to 100, preferably from 20 to 30
  • y is a integer from 1 to 20, preferably from 2 to 10
  • a and b are integers from 0 to 50, preferably from 10 to 30.
  • dimethicone copolyols according to the invention are, for example, the products sold commercially under the trade name SILWET (Union Carbide Corporation) and DOW CORNING (Dow).
  • Dimethicone copolyols particularly preferred according to the invention are Dow Corning 190 and Dow Corning 193 (Dow).
  • Polyphenols c3) are generally compounds containing more than two phenolic (polyol) or phenolic ether groups belonging to different classes of substances.
  • the polyphenols are preferably selected from at least one member of the group formed from: c3- 1) hydroxycinnamic acids, c3-2) 6,7-dihydroxycoumarins, c3-3) hydroxybenzoic acids, c3-4) catechols, c3-5) Leucoanthocyanidins, c3-6) anthocyanidins, c3-7) flavanones and c3-8) flavones and c3-9) flavonols.
  • free and etherified polyphenols occur, for example, in flower dyes (anthocyanidins, flavones), in tannins (catechins, tannins), as lichen or fern ingredients (usnic acid, acylpolyphenols), in lignins and as gallic acid derivatives.
  • Preferred polyphenols are flavones, catechins, usnic acid, and as tannins the derivatives of gallic acid, digallic acid and digalloylgallic acid.
  • Particularly preferred polyphenols are the monomeric catechins, ie the derivatives of flavan-3-ols, and leucoanthocyanidins, ie the derivatives of leucoanthocyanidins which preferably carry phenolic hydroxyl groups in the 5,7,3 ', 4', 5 'position, preferably epicatechin and epigallocatechin, as well as the tannins resulting from self-condensation.
  • Such tannins are preferably not used in isolated pure substance, but as extracts of tanning-rich plant parts, eg. Extracts of catechu, quebracho and oak bark and other tree bark, leaves of green tea (camellia sinensis) and mate. Also particularly preferred are the tannins.
  • the ceramides c4) used are preferably the sphingolipids of the formula (VI),
  • R 1 is a linear C 12 - to C 30 -alkyl group or a saturated or unsaturated U) - (C 12 - to C 20 ) -acyloxy- (C 12 -C 30 ) -alkyl group (as preferred tricosanyl, heptadecanyl or ⁇ -
  • R 2 is a saturated or unsaturated C 15 -alkyl group or a saturated or unsaturated C 15 -hydroxyalkyl group (such as, for example, pentadeca-1 -ene-1-yl, 3 -
  • Preferred compounds according to formula VI according to the invention are the compounds ceramides I, ceramides II, ceramides 1, ceramides 2, ceramides 3, ceramides 5 and ceramides 6 known under the INCI names as active ingredient (W).
  • Mixtures of the compounds of formula (VI) are particularly preferably used, which are obtainable for example under the trade name of SK-Influx ® and Ceramide III respectively by Degussa Care Specialties, and the commercial product Ceramide TIC-001, sold by the company Takasago International Corporation is marketed.
  • the compounds of the formula (VI) are preferably used in an amount of from 0.01 to 1.0% by weight, based on the weight of the ready-to-use cosmetic product.
  • Pseodoceramide such as in particular the pseudoceramide N- (C. 8 22 acyl) -C. 8 22 -acyl-hydroxyproline (such as the cetyl-hydroxyproline palmitamides according to the product Sym Repair 153884 from Symrise) according to the invention pseudoceramides c4).
  • the ready-to-use agent according to the invention should preferably have a pH in the range from pH 5 to pH 12, in particular from pH 7 to pH 11. Particularly preferred is the use of the hair dye in a weakly alkaline medium in a pH range between pH 7 and pH 9.
  • the agents according to the invention may additionally contain all known and commonly used active ingredients and adjuvants in these fields.
  • the compounds of the formula (I) and / or of the formula (II) used can completely or partially replace the anionic surfactants customarily used in color-changing agents.
  • the compounds of formula (I) and / or formula (II) can be used as the sole anionic surfactant in the compositions, or it can be used mixtures with conventional other anionic surfactants.
  • These further anionic surfactants are explained in more detail later.
  • the compounds of formulas (I) and / or (II) and further anionic surfactants in a weight ratio in the range of 1: 0.002 to 3.5: 1, particularly preferably 1: 0.5 to 1: 2, in particular 1: 0.75 to 1: 1, 5 are present.
  • alkyl sulfates or alkyl ether sulfates especially laureth sulfate, as anionic surfactants
  • the alkyl sulfates or alkyl ether sulfates wholly or partly by the compounds of formula (I) and / or (II) used in the invention replace.
  • the agent according to the invention in particular low in ammonia, contains as limited content of these surfactants therefore 0 to 0.5 wt .-%, in particular 0 to 0.3 wt .-% of at least one anionic surfactant selected from linear or branched Cs to C4o alkyl sulfates, linear or branched C 8 to C 40 alkyl ether sulfates with at least one ethylene oxide
  • the agents according to the invention may contain at least one additional surfactant which is different from compounds of the formulas (I) and (II).
  • additional surfactant which is different from compounds of the formulas (I) and (II).
  • both further anionic and zwitterionic, ampholytic, nonionic and cationic surfactants are suitable.
  • anionic surfactants suitable in preparations according to the invention are all anionic surfactants suitable for use on the human body. These are characterized by a water-solubilizing, anionic group such. Example, a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group having about 10 to 22 carbon atoms. In addition, glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups may be present in the molecule.
  • G glycoside unit which is derived from a sugar containing 5 or 6 carbon atoms, p number from 1 to 10, in particular the Laurylglucosidcarboxylat, such as is available as Plantapon ® LGC from Cognis Germany,
  • Esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and / or propylene oxide with fatty alcohols having 8 to 22 carbon atoms.
  • Preferred additional anionic surfactants are selected from the abovementioned anionic alkyl oligoglycoside or anionic alkenyl oligoglycoside derivatives, ether carboxylic acids having 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule and in particular salts of saturated and in particular unsaturated C 8 -C 22 -carboxylic acids, such as oleic acid, stearic acid, isostearic acid and palmitic acid.
  • Nonionic surfactants contain as hydrophilic group z.
  • Such compounds are, for example
  • Alkylphenols having 8 to 15 C atoms in the alkyl group having 8 to 15 C atoms in the alkyl group
  • Preferred nonionic surfactants are alkyl polyglycosides of the general formula R 1 O- (Z) x . These connections are identified by the following parameters.
  • the alkyl radical R 1 contains 6 to 22 carbon atoms and may be both linear and branched. Preference is given to primary linear and methyl-branched in the 2-position aliphatic radicals.
  • Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. Particularly preferred are 1-octyl, 1-decyl, 1-lauryl, 1-myristyl.
  • oxo-alcohols compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • the alkyl polyglycosides which can be used according to the invention can contain, for example, only one particular alkyl radical R 1 .
  • these compounds are prepared starting from natural fats and oils or mineral oils.
  • the alkyl radicals R are mixtures corresponding to the starting compounds or corresponding to the particular work-up of these compounds.
  • R 1 consists essentially of C 8 and C 10 -alkyl groups, essentially of C 12 and C 14 -alkyl groups, essentially of C 8 to C 16 -alkyl groups or essentially of C 2 - To Ci 6 alkyl groups.
  • sugar building block Z it is possible to use any desired mono- or oligosaccharides. Usually, sugars with 5 or 6 carbon atoms and the corresponding oligosaccharides are used.
  • Such sugars are, for example, glucose, fructose, galactose, arabinose, ribose, xylose, lyxose, allose, altrose, mannose, gulose, idose, talose and sucrose.
  • Preferred sugar building blocks are glucose, fructose, galactose, arabinose and sucrose; Glucose is particularly preferred.
  • alkyl polyglycosides which can be used according to the invention contain on average from 1.1 to 5 sugar units. Alkyl polyglycosides having x values of 1.1 to 1.6 are preferred. Very particular preference is given to alkyl glycosides in which x is 1: 1 to 1, 4.
  • the alkyl glycosides can also serve to improve the fixation of fragrance components on the hair.
  • this substance class as a further constituent of the preparations according to the invention in the event that an effect of the perfume oil on the hair which exceeds the duration of the hair treatment is desired.
  • alkoxylated homologs of said alkyl polyglycosides can also be used according to the invention. These homologs may contain on average up to 10 ethylene oxide and / or propylene oxide units per alkyl glycoside unit.
  • zwitterionic surfactants can be used, in particular as cosurfactants.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one -COO * " 'or -SO 3 ' " 'group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as N-alkyl-N, N-dimethylammonium glycinates, for example cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinates, for example cocoacylaminopropyl-dimethylammonium glycinate, and 2-alkyl-3-carboxylmethyl-3-hydroxyethyl imidazolines having in each case 8 to 18 C atoms in the alkyl or acyl group and the coco acylaminoethylhydroxyethylcarboxymethylglycinate.
  • a preferred zwitterionic surfactant is the fatty acid amide derivative known by the INCI name Cocamidopropyl Betaine.
  • the cationic surfactants used are, in particular, those of the quaternary ammonium compound type, the esterquats and the amidoamines.
  • Preferred quaternary ammonium compounds are ammonium halides, especially chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g.
  • cetyltrimethylammonium chloride stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride, as well as the imidazolium compounds known under the INCI names Quaternium-27 and Quaternium-83.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred esterquats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are marketed under the trade names Stepantex® ®, ® and Dehyquart® Armocare® ®.
  • the alkylamidoamines are usually prepared by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group of substances under the name Tegoamid ® S 18 commercial stearamidopropyl dimethylamine is.
  • cationic surfactants which can be used according to the invention are the quaternized protein hydrolysates.
  • Glucquat ® 100 is, according to INCI nomenclature a "lauryl methyl Gluceth-10 Hydroxypropyl Dimonium Chloride”.
  • the compounds used as surfactant with alkyl groups may each be uniform substances. However, it is usually preferred to use native plant or animal raw materials in the manufacture of these substances, so that one can Substance mixtures with different, depending on the particular raw material alkyl chain lengths obtained.
  • both products with a "normal” homolog distribution and those with a narrow homolog distribution can be used.
  • "normal” homolog distribution are meant mixtures of homologues which are obtained in the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alkoxides as catalysts. Narrowed homolog distributions are obtained when, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alkoxides are used as catalysts. The use of products with narrow homolog distribution may be preferred.
  • the agents according to the invention contain acids and / or alkalizing agents.
  • acids according to the invention preferably phosphoric acid or edible acids, such as citric acid, tartaric acid or malic acid, are used.
  • the alkalizing agents usable in the present invention are preferably selected from the group consisting of ammonia, basic amino acids, alkali hydroxides, alkanolamines, alkali metal metasilicates, urea, morpholine, N-methylglucamine, imidazole, alkali phosphates and alkali hydrogen phosphates.
  • the alkali metal ions used are preferably lithium, sodium, potassium, in particular sodium or potassium. Again, preferably, the alkalizing agents are different from ammonia.
  • the basic amino acids which can be used as alkalizing agents according to the invention are preferably selected from the group formed from L-arginine, D-arginine, D, L-arginine, L-histidine, D-histidine, D, L-histidine, L-lysine, D-lysine, D, L-lysine, more preferably L-arginine, D-arginine, D, L-arginine used as an alkalizing agent according to the invention.
  • the usable as the inventive alkalizing alkali metal hydroxides are preferably selected from the group consisting of sodium hydroxide and potassium hydroxide.
  • the alkanolamines which can be used as alkalizing agents according to the invention are preferably selected from primary amines having a C 2 -C 6 -alkyl basic body which carries at least one hydroxyl group.
  • alkanolamines are selected from the group formed from 2-aminoethan-1-ol (monoethanolamine), 3-aminopropan-1-ol, 4-aminobutan-1-ol, 5-aminopentan-1-ol, 1 Aminopropan-2-ol, 1-aminobutan-2-ol, 1-aminopentan-2-ol, 1-aminopentan-3-ol, 1-aminopentan-1-ol, 3-amino-2-methylpropan-1-ol, 1-amino-2-methylpropan-2-ol, 3-aminopropane-1,2-diol, 2-amino-2-methylpropane-1,3-diol.
  • Very particularly preferred alkanolamines according to the invention are selected from the group consisting of 2-aminoethane-1-ol, 2-amino-2-methylpropan-1-ol and 2-amino-2-methyl-propane-1,3-diol.
  • the alkalizing agent is particularly preferably selected from at least one compound from the group formed from 2-aminoethanol, 2-amino-2-methylpropan-1-ol, 2-amino-2-methyl-propane-1,3-diol, Potassium hydroxide, L-arginine, D-arginine, DL-arginine, N-methylglucamine, morpholine, imidazole and urea.
  • colorants according to the invention may contain further active ingredients, auxiliaries and additives, for example nonionic polymers, for example vinylpyrrolidone / vinyl acrylate copolymers,
  • dimethyldiallylammonium chloride polymers acrylamide-dimethyldiallylammonium chloride copolymers, diethyl sulfate quaternized dimethylaminoethylmethacrylate-vinylpyrrolidone copolymers, vinylpyrrolidone-imidazolinium methochloride copolymers and quaternized polyvinyl alcohol, zwitterionic and amphoteric polymers such as acrylamidopropyl-tri methyl ammonium chloride / acrylate copolymers and octyl acrylamide / methyl methacrylate / tert.
  • Butylaminoethyl methacrylate ⁇ -hydroxypropyl methacrylate copolymers anionic polymers such as polyacrylic acids, crosslinked polyacrylic acids,
  • Structural agents such as maleic acid and lactic acid, hair conditioning compounds such as phospholipids, for example soya lecithin, egg lecithin and cephalins, Protein hydrolysates, in particular elastin, collagen, keratin, milk protein, soy protein and
  • Solvents and mediators such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerol and diethylene glycol, fiber structure-improving agents, especially mono-, di- and oligosaccharides such as glucose, galactose, fructose, fructose and lactose, quaternized amines such as methyl-1-alkylamidoethyl -2-alkylimidazolinium methosulfate
  • Anti-dandruff agents such as Piroctone Olamine, Zinc Omadine and Climbazole,
  • Light stabilizers in particular derivatized benzophenones, cinnamic acid derivatives and
  • Active ingredients such as allantoin, pyrrolidonecarboxylic acids and their salts, and bisabolol,
  • Vitamins, provitamins and vitamin precursors in particular those of groups A, B3, B5, Be,
  • Plant extracts such as extracts of green tea, oak bark, stinging nettle, witch hazel,
  • Spruce needle horse chestnut, sandalwood, juniper, coconut, mango, apricot, lime,
  • Bodying agents such as sugar esters, polyol esters or polyol alkyl ethers,
  • Fats and waxes such as spermaceti, beeswax, montan wax and paraffins,
  • Swelling and penetration substances such as glycerol, propylene glycol monoethyl ether, carbonates,
  • Opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers
  • Pearlescing agents such as ethylene glycol mono- and distearate and PEG-3-distearate,
  • Propellants such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air,
  • antioxidants contain.
  • the agent according to the invention contains the ingredients according to the invention in a carrier.
  • a carrier are for example creams, emulsions, gels or surfactant-containing foaming solutions, such as shampoos, foam aerosols or other preparations which are particularly suitable for use on the hair.
  • the ingredients in a powdered or tablet-like formulation, which is dissolved in water before use.
  • the carriers may in particular be aqueous or aqueous-alcoholic.
  • An aqueous carrier contains at least 50% by weight of water.
  • aqueous-alcoholic carriers are to be understood as meaning aqueous solutions containing from 3 to 70% by weight of a C 1 -C 4 -alcohol, in particular ethanol or isopropanol.
  • the compositions according to the invention may additionally contain further organic solvents, for example methoxybutanol, benzyl alcohol, ethyl diglycol or 1,2-propylene glycol. Preference is given to all water-soluble organic solvents.
  • the agent according to the invention can be provided in a packaging unit (kit) which contains at least one separately prepared, inventive agent of the second subject of the invention.
  • the kit may contain at least one separately formulated oxidizer composition, especially if an (oxidative) colorant is to be provided.
  • the kit may additionally contain optional instructions for use, application aids, mixing bowls or protective gloves.
  • a third object of the present invention is a method for treating keratin-containing fibers, in which an agent of the second subject of the invention is applied to the fibers and rinsed again after an exposure time.
  • the application temperatures can be in a range between 15 and 40 0 C.
  • the hair dye is removed by rinsing of the hair to be dyed.
  • the washing with a shampoo is omitted if a strong surfactant-containing carrier, such as a dyeing shampoo was used.
  • Texapon ® K 14 S 70 C Laurylmyristylethersulfat sodium salt (ca. 68% to 73% active substance content '; INCI name: Sodium Myreth Sulfate) (Cognis) Disponil ® FES 77 Kokosfettalkoholether (30 EO) sulfate sodium salt (ca 33% active ingredient content, INCI name: Sodium Coceth-30 Sulfate) (Cognis)
  • Turpinal ® SL 1-hydroxyethane-1, 1-diphosphonic acid (INCI name: Etidronic Acid, Aqua (Water)) (Solutia) Texapon ® NSO UP sodium lauryl ether sulfate (27% active substance in water; INCI: Sodium Laureth Sulfate) (manufacturer: Cognis )
  • Aculyn ® 33 30 wt .-% of active substance in water (INCI name: Acrylates copolymer) (Rohm & Haas) DOW Corning® DB 1 10
  • a Nonionic Silicone Emulsion (10% by Weight Active Ingredient) (INCI name: Dimethicone) (Dow Corning)
  • the formulations V1 and V2 of Table 1 are known dyeing creams with conventional surfactant system.
  • the formulations E1 and E2 of Table 1 and all formulations of Table 4 correspond to formulations according to the invention.
  • Hair strands of the company Kerling (80% gray, 15 cm long, about 2 g) were used.
  • the tresses were first treated with Poly Blonde Ultrablondtechnik for 30 min at 32 ° C, rinsed with lukewarm water and finally dried in air and stored for 24 h.
  • the tresses were measured colorimetrically (device Spectraflash 450, software Colortools) with determination of the Lab values of the initial hair.
  • Each color cream V1, E1, V2 and E2 of Table 1 was mixed with the developer emulsion according to Table 2 in a weight ratio of 1: 1.
  • the finished mixtures were placed on the pretreated strands and rinsed after a contact time of 30 min at 32 ° C.
  • the strands were dried and measured again colorimetrically.
  • the hair strands were subjected to a washing procedure that simulates hair washing:
  • the ⁇ E values are determined from the measured quantities via the color difference formula in each case from the bleached starting hair.
  • the color retention of the dyeings obtained with the compositions according to the invention is greater than with the noninventive formulations.
  • each of the color creams E3 to E12 of Table 4 was mixed with the developer emulsion according to Table 5 in a weight ratio of 1: 1.
  • the open epicutaneous test according to COLIPA (Test Guidelines for the Assessment of Human Skin Tolerance, 1997) is suitable for testing substances and finished products for skin tolerance. Twenty voluntary female and male skin healthy subjects without age limit were included in the test.
  • the creams C1 and C2 of Table 6 were each mixed in a weight ratio of 1 to 1 with the developer EW of Table 6.
  • the above-described mixture of bleaching cream C1 with the developer EW gives an agent according to the invention.
  • the other agent is not according to the invention and was used for comparison.
  • the finished three application mixtures were randomly placed on the forearm inside with a glass rod over a period of 30 minutes every 30 seconds. After the end of the application, the substances were carefully washed off with water from the forearm and the skin areas were dried. The subjects were then checked for redness of the skin. It was also asked if the test subjects feel itching and, if so, on which skin area.
  • the test results are the table 7 and show the number of subjects in percent, who had at least one of the queried skin reactions.
  • Table 7 Test results The mixture according to the invention caused less discomfort on the skin than the mixture of the prior art.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Abstract

L'invention concerne des produits, en particulier pauvres en ammoniac, pour la color
PCT/EP2007/057015 2006-07-11 2007-07-10 Colorant pour cheveux Ceased WO2008006820A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07787290A EP2037870A1 (fr) 2006-07-11 2007-07-10 Colorant pour cheveux

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006032315.7 2006-07-11
DE102006032315 2006-07-11
DE102006055675.5 2006-11-23
DE102006055675A DE102006055675A1 (de) 2006-07-11 2006-11-23 Haarfärbemittel

Publications (1)

Publication Number Publication Date
WO2008006820A1 true WO2008006820A1 (fr) 2008-01-17

Family

ID=38556524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/057015 Ceased WO2008006820A1 (fr) 2006-07-11 2007-07-10 Colorant pour cheveux

Country Status (4)

Country Link
EP (1) EP2037870A1 (fr)
DE (1) DE102006055675A1 (fr)
RU (1) RU2009104071A (fr)
WO (1) WO2008006820A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081942A1 (fr) 2008-12-05 2010-07-22 Alex Hr Roustaei Piles ou micro piles a hydrogene avec un generateur d ' hydrogene
JP2010174113A (ja) * 2009-01-29 2010-08-12 Autonetworks Technologies Ltd 難燃剤、難燃性樹脂組成物及び絶縁電線
WO2010100345A2 (fr) 2009-03-02 2010-09-10 Alex Hr Roustaei Systeme intelligent de production d'énergie solaire a haut rendement en chambres multiples de capture muni de cellules photovoltaiques a base des nano particules
CN110872454A (zh) * 2018-08-31 2020-03-10 保土谷化学工业株式会社 含有碱性染料和氨基酸的化合物、染发用染料以及染发用组合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1353074A (fr) * 1962-01-26 1964-02-21 Clairol International Dérivés de nitro-p-phénylènediamine et leur procédé de préparation
US6261325B1 (en) * 1997-10-03 2001-07-17 L'ORéAL S.A. Oxidizing composition for treating keratin fibres
US6530959B1 (en) * 1998-08-19 2003-03-11 L'oreal S.A. Dyeing composition for keratinous fibres with a direct cationic coloring agent and a surfactant
US20030074743A1 (en) * 1999-12-20 2003-04-24 Mutsumi Noguchi Hair dye composition
US20050071931A1 (en) * 2001-01-09 2005-04-07 Katsunori Yoshida Hairdye preparation
EP1820488A2 (fr) * 2006-02-16 2007-08-22 The Procter and Gamble Company Compositions de teinture pour les cheveux

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1353074A (fr) * 1962-01-26 1964-02-21 Clairol International Dérivés de nitro-p-phénylènediamine et leur procédé de préparation
US6261325B1 (en) * 1997-10-03 2001-07-17 L'ORéAL S.A. Oxidizing composition for treating keratin fibres
US6530959B1 (en) * 1998-08-19 2003-03-11 L'oreal S.A. Dyeing composition for keratinous fibres with a direct cationic coloring agent and a surfactant
US20030074743A1 (en) * 1999-12-20 2003-04-24 Mutsumi Noguchi Hair dye composition
US20050071931A1 (en) * 2001-01-09 2005-04-07 Katsunori Yoshida Hairdye preparation
EP1820488A2 (fr) * 2006-02-16 2007-08-22 The Procter and Gamble Company Compositions de teinture pour les cheveux

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081942A1 (fr) 2008-12-05 2010-07-22 Alex Hr Roustaei Piles ou micro piles a hydrogene avec un generateur d ' hydrogene
JP2010174113A (ja) * 2009-01-29 2010-08-12 Autonetworks Technologies Ltd 難燃剤、難燃性樹脂組成物及び絶縁電線
WO2010100345A2 (fr) 2009-03-02 2010-09-10 Alex Hr Roustaei Systeme intelligent de production d'énergie solaire a haut rendement en chambres multiples de capture muni de cellules photovoltaiques a base des nano particules
CN110872454A (zh) * 2018-08-31 2020-03-10 保土谷化学工业株式会社 含有碱性染料和氨基酸的化合物、染发用染料以及染发用组合物
EP3616680B1 (fr) 2018-08-31 2021-03-17 Hodogaya Chemical Co., Ltd. Composé contenant un colorant de base et des acides aminés, agent de coloration capillaire et composition de coloration capillaire
CN110872454B (zh) * 2018-08-31 2023-10-31 保土谷化学工业株式会社 含有碱性染料和氨基酸的化合物、染发用染料以及染发用组合物

Also Published As

Publication number Publication date
DE102006055675A1 (de) 2008-01-17
EP2037870A1 (fr) 2009-03-25
RU2009104071A (ru) 2010-08-20

Similar Documents

Publication Publication Date Title
EP2023890B1 (fr) Traitement capillaire oxydatif avec une altération réduite des cheveux
EP2192958A1 (fr) Traitement capillaire oxydant avec altération réduite des cheveux
EP1986596A1 (fr) Traitement oxydatif du cheveu calmant pour la peau
EP1800654B1 (fr) Réduction des signes de vieillesse des cheveux
EP2054123B1 (fr) Coloration capillaire protectrice pour la peau
EP1923048A1 (fr) Traitement capillaire en vue de la réduction de l'endommagement des cheveux
EP2037870A1 (fr) Colorant pour cheveux
DE102005050913A1 (de) Haarfärbemittel
WO2008028895A1 (fr) Diminution du vieillissement capillaire
EP2054027A2 (fr) Produit de traitement capillaire d'oxydation à l'extrait de litchi
DE102007034482A1 (de) Oxidative Haarbehandlungsmittel mit Litchi-Extrakt und Catechinen
EP1948125B1 (fr) Agent de traitement capillaire volumisant
DE102005057183A1 (de) Biomimetische Melaninpigmente
DE102006053692A1 (de) Oxidative Haarbehandlung mit verringerter Haarschädigung
EP2332615A1 (fr) Crème de coloration capillaire à base de polymères
EP1909913A1 (fr) Procede pour dissimuler rapidement des racines capillaires resultant de la pousse de cheveux colores
EP1891930A2 (fr) Intensification de la couleur
EP1962789A1 (fr) Produit capillaire volumisant
DE102006048738A1 (de) Oxidative Haarbehandlung mit verringerter Haarschädigung
DE102006020246A1 (de) Dialkylketonperoxide als effektive Oxidationsmittel in der Haarbehandlung
DE102006054147A1 (de) Volumengebendes Haarbehandlungsmittel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07787290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007787290

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009104071

Country of ref document: RU

Kind code of ref document: A