[go: up one dir, main page]

WO2008099989A1 - Unité de rétro-éclairage - Google Patents

Unité de rétro-éclairage Download PDF

Info

Publication number
WO2008099989A1
WO2008099989A1 PCT/KR2007/002612 KR2007002612W WO2008099989A1 WO 2008099989 A1 WO2008099989 A1 WO 2008099989A1 KR 2007002612 W KR2007002612 W KR 2007002612W WO 2008099989 A1 WO2008099989 A1 WO 2008099989A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
backlight unit
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2007/002612
Other languages
English (en)
Inventor
Kyung-Sik Kim
Seung-Gon Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTERNATIONAL DISPLAY SOLUTIONS CO Ltd
Original Assignee
INTERNATIONAL DISPLAY SOLUTIONS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTERNATIONAL DISPLAY SOLUTIONS CO Ltd filed Critical INTERNATIONAL DISPLAY SOLUTIONS CO Ltd
Publication of WO2008099989A1 publication Critical patent/WO2008099989A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]

Definitions

  • the present invention relates to a backlight unit, and more particularly, to a backlight unit wherein a light incident portion of a light guide plate for guiding the light emitted from an LED of a point light source to a front surface of the backlight unit is machined by laser to secure the visibility (prevention of bright lines, dark lines and light leakage).
  • LCDs liquid crystal displays
  • CRTs cathode ray tubes
  • such an LCD is a display device, in which a specific arrangement of liquid crystal molecules is converted into another arrangement thereof by applying a voltage to the specific arrangement to convert a change in optical characteristics of double refraction, optical rotation, dichroism, light diffusion and the like into a change in visual angle. That is, the LCD is a display device using light changed by a liquid crystal cell.
  • an LCD panel having array and color filter substrates bonded is stacked on and coupled to a backlight assembly as an optical unit, the LCD panel and the backlight assembly are inserted into a mold frame in order to protect them, and a support frame is then coupled to the mold frame in order to secure the mold frame into which the backlight assemblies are inserted.
  • a mold frame 2 into which a light guide plate 3 and optical sheets 4 are sequentially inserted, is supported in a state where the mold frame 2 is fitted and inserted into a support frame 1.
  • a plurality of projections 2a are formed on side surfaces of the mold frame 2, while a plurality of grooves Ia are formed in side surfaces of the support frame 1 so that the projections 2a are respectively inserted into the grooves Ia.
  • the light guide plate 3 receives the light emitted from a light source (not shown) provided on an inner side surface of the mold frame 2.
  • the backlight unit so configured allows the light emitted from the light source (not shown) to exit to a front surface of the backlight unit through the light guide plate 3.
  • a light receiving element such as an LCD panel will be positioned in front of the backlight unit.
  • a CCFL, EEFL or the like was used as the light source (not shown) for supplying light to the light guide plate 3.
  • an LED has been recently used as the light source.
  • dark lines, light leakage phenomena and the like may be more increased and luminance is easy to lower as compared with a case where the CCFL, EEFL or the like is used. Therefore, in a case where the LED of a point light source is used as a light source for providing light to a light guide plate, there is a problem in that the visibility (prevention of bright lines, dark lines and light leakage) should be secured. Disclosure of Invention Technical Problem
  • An object of the present invention is to provide a backlight unit wherein a light incident portion of a light guide plate for guiding the light emitted from an LED of a point light source to a front surface of the backlight unit is machined by laser to secure the visibility (prevention of bright lines, dark lines and light leakage).
  • a backlight unit comprising: a light source; a light guide plate for receiving light emitted from the light source at a side surface of the light guide plate and emitting the light to a front surface of the backlight unit; an optical sheet for diffusing the light exiting from the light guide plate; and a frame for accommodating the light source, the light guide plate and the optical sheet therein, wherein the light source includes LEDs, each of the LEDs is a point light source, and a light incident portion of the light guide plate for receiving the light emitted from the LEDs is machined by laser to be formed in a serration pattern.
  • the serration pattern machined in the light incident portion of the light guide plate may be divided into groove portions machined and not machined by laser, which are alternately formed.
  • An interval between the groove and flat portions is preferably determined depending on a distance between the LEDs and the light incident portion of the light guide plate and a distance between the LEDs.
  • the serration pattern may include any one of a V shape, a regularly concavo-convex shape, an irregularly concavo-convex shape, a prism shape, an embossed shape and a concentric circular shape.
  • a backlight unit of the present invention since a light incident portion of a light guide plate for guiding the light emitted from an LED of a point light source to a front surface of the backlight unit is machined by laser, there are advantages in that the visibility (prevention of bright lines, dark lines and light leakage) can be secured and thus the quality of the backlight unit can be enhanced.
  • FIG. 1 is an exploded perspective view of a conventional backlight unit
  • FIG. 2 is a view showing a layout of a light guide plate and LEDs included in a backlight unit according to the present invention.
  • FIG. 3 is an exemplary view showing shapes of a light incident portion of the light guide plate included in the backlight unit according to the present invention. Best Mode for Carrying Out the Invention
  • a general configuration of a backlight unit according to an embodiment of the present invention is similar to the conventional backlight unit shown in Fig. 1. That is, in the backlight unit according to the present invention, a light guide plate 3 and optical sheets 4 are sequentially inserted into a mold frame 2, and the mold frame 2 is supported in a state where the mold frame 2 is fitted and inserted into a support frame 1, as shown in Fig. 1.
  • a plurality of projections 2a are formed on side surfaces of the mold frame 2, while a plurality of grooves Ia are formed on side surfaces of the support frame 1 so that the projections 2a are respectively inserted into the grooves Ia. Meanwhile, the light guide plate 3 receives the light emitted from a light source (not shown) provided on an inner side surface of the mold frame 2.
  • the backlight unit of the present invention so configured allows the light emitted from the light source (not shown) to be emitted to a front surface of the backlight unit through the light guide plate 3.
  • a light receiving element such as an LCD panel will be positioned in front of the backlight unit.
  • the backlight unit of the present invention includes the light source; the light guide plate for receiving the light emitted from the light source at a side surface of the light guide plate and radiating the light to the front surface of the backlight unit; the optical sheets for diffusing the light emitted from the light guide plate; and the frame for accommodating the light source, the light guide plate and the optical sheets therein.
  • the light source comprises LEDs 10, each of which is a point light source, and a light incident portion 3a of the light guide plate 3 for receiving the light emitted from the LEDs 10 is machined by laser to be formed with a serration pattern, as shown in Fig. 2. That is the most important feature of the present invention.
  • Fig. 2 is a plan view showing the LEDs 10 as a light source and the light guide plate
  • the LEDs 10 are arranged at a side of the light guide plate 3, so that the light emitted through the light incident portion 3a of the light guide plate 3 is transmitted inside the light guide plate 3.
  • the LEDs 10 are used as a light source. Further, since visibility should be secured as the LEDs 10 are used, the light incident portion 3a of the light guide plate 3 is machined by laser to be formed with a serration pattern.
  • the serration pattern formed in the light incident portion 3a of the light guide plate 3 is divided into portions which are machined and not machined by laser. That is, the serration pattern is divided into groove portions 3b which are machined by laser and flat portions 3c which are not machined by laser. The groove and flat portions 3b and 3c are alternately formed.
  • the light emitted from the LEDs 10 is generally moves so that an angle 02 of the moving direction of the light is ranged from 0 to 42 degrees in accordance with Snell's law.
  • an interval between the LEDs 10 is 10mm or more, a dark portion cannot be prevented from occurring no matter how a density of the LEDs 10 may be large. This is because an amount of the light moving toward the dark portion between the LEDs 10 is too smaller than that of the light moving straight inside the light guide plate 3.
  • An interval between the groove and flat portions 3b and 3c included in the serration pattern formed in the light incident portion 3a of the light guide plate 3 is changed depending on various conditions, so that the groove and flat portions 3b and 3c are machined and shaped. That is, the interval between the groove and flat portions 3b and 3c is determined depending on the distance between the LEDs 10 used as the light source and the light incident portion 3a of the light guide plate 3, the distance between the LEDs 10 and the like. The reason why the interval between the groove and flat portions 3b and 3c is adjusted in such a manner is to satisfy the condition for enhancing the visibility and luminance of the backlight unit.
  • the serration pattern formed in the light incident portion 3a of the light guide plate 3 may be machined to have various shapes. That is, serration patterns with various shapes may be formed in the light incident portion 3a of the light guide plate 3 as shown in Fig. 3.
  • Fig. 3 (a) shows a V-shaped serration pattern which causes the light moving inside a light guide plate to be diffused by the roughness of a machined surface (a light incident portion) due to the reflection/diffusion in V-shaped grooves.
  • Fig. 3 (b) shows a regularly concavo-convex serration pattern which causes the light moving inside a light guide plate to be diffused by the roughness of a machined surface (a light incident portion) due to the refraction/reflection in minute concavo-convex portions.
  • Fig. 3 (b) shows a regularly concavo-convex serration pattern which causes the light moving inside a light guide plate to be diffused by the roughness of a machined surface (a light incident portion) due to the refraction/reflection in minute concavo-convex portions.
  • FIG. 3 (c) shows an irregularly concavo-convex serration pattern which causes the light moving inside a light guide plate is diffused due to the refraction/reflection in concavo-convex portions with various shapes.
  • Fig. 3 (d) shows a prism-shaped serration pattern which causes the light moving inside a light guide plate to be diffused by the roughness of a processed surface (a light incident portion) due to the reflection in micro-prisms.
  • Fig. 3 (e) shows an embossed serration pattern which causes the light moving inside a light guide plate to be diffused due to the reflection in hemispherical projections.
  • FIG. 3 (f) shows a concentrically circular serration pattern which causes the light moving inside a light guide plate to be diffused due to the reflection in curved grooves.
  • Fig. 3 (g) shows a side view of the light incident portion 3a of the light guide plate 3 having the serration patterns.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

L'invention concerne une unité de rétro-éclairage et, plus particulièrement, une unité de rétro-éclairage dans laquelle une partie de la lumière incidente d'une plaque de guidage de lumière, servant au guidage de la lumière émise par une diode électroluminescente (LED) d'une source lumineuse ponctuelle sur une surface frontale de l'unité de rétro-éclairage, est usinée par laser en vue de garantir la visibilité (prévention des lignes brillantes, des lignes sombres et des fuites lumineuses). L'unité de rétro-éclairage selon l'invention comprend : une source lumineuse; une plaque de guidage de lumière pour la réception de la lumière émise par la source lumineuse sur une surface latérale de la plaque de guidage de lumière, et pour l'émission de la lumière sur une surface frontale de l'unité de rétro-éclairage; une feuille optique pour la diffusion de la lumière sortant de ladite plaque de guidage de lumière; et un cadre servant au logement de la source lumineuse, de la plaque de guidage de lumière et de la feuille optique, et est caractérisée en ce que la source lumineuse comprend des LED, chacun des LED étant une source lumineuse ponctuelle, et en ce qu'une partie de la lumière incidente de la plaque de guidage de lumière pour la réception de la lumière émise par les LED, est usinée au laser de manière à être formée en un modèle de dentelure.
PCT/KR2007/002612 2007-02-15 2007-05-30 Unité de rétro-éclairage Ceased WO2008099989A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070016187 2007-02-15
KR10-2007-0016187 2007-02-15

Publications (1)

Publication Number Publication Date
WO2008099989A1 true WO2008099989A1 (fr) 2008-08-21

Family

ID=39690206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2007/002612 Ceased WO2008099989A1 (fr) 2007-02-15 2007-05-30 Unité de rétro-éclairage

Country Status (1)

Country Link
WO (1) WO2008099989A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017204A1 (fr) * 2009-08-03 2011-02-10 Qualcomm Mems Technologies, Inc. Microstructures pour éclairage par guide de lumière
WO2011091026A1 (fr) * 2010-01-20 2011-07-28 3M Innovative Properties Company Module de guide de lumière et rétro-éclairage le comprenant
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
WO2013185368A1 (fr) * 2012-06-13 2013-12-19 深圳市华星光电技术有限公司 Module de rétroéclairage et écran à cristaux liquides
US8654061B2 (en) 2008-02-12 2014-02-18 Qualcomm Mems Technologies, Inc. Integrated front light solution
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
TWI560403B (en) * 2014-12-15 2016-12-01 Global Lighting Technology Inc Edge type backlight module and its light guide plate
EP2549173A4 (fr) * 2010-03-17 2017-11-22 Mitsubishi Chemical Corporation Dispositif de source de lumière de surface, élément guide de lumière utilisé dans le dispositif de source de lumière de surface, et procédé de production d'élément guide de lumière

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210539A1 (en) * 2002-05-11 2003-11-13 Ls Tech Co., Ltd. Surface light source apparatus, and method and apparatus for manufacturing the same
JP2006114379A (ja) * 2004-10-15 2006-04-27 Toppan Printing Co Ltd 照明装置
JP2006140020A (ja) * 2004-11-11 2006-06-01 Citizen Electronics Co Ltd 表示装置のバックライト
JP2006210140A (ja) * 2005-01-28 2006-08-10 Radiant Opt-Electronics Corp 光を均一に拡散する導光板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210539A1 (en) * 2002-05-11 2003-11-13 Ls Tech Co., Ltd. Surface light source apparatus, and method and apparatus for manufacturing the same
JP2006114379A (ja) * 2004-10-15 2006-04-27 Toppan Printing Co Ltd 照明装置
JP2006140020A (ja) * 2004-11-11 2006-06-01 Citizen Electronics Co Ltd 表示装置のバックライト
JP2006210140A (ja) * 2005-01-28 2006-08-10 Radiant Opt-Electronics Corp 光を均一に拡散する導光板

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8654061B2 (en) 2008-02-12 2014-02-18 Qualcomm Mems Technologies, Inc. Integrated front light solution
WO2011017204A1 (fr) * 2009-08-03 2011-02-10 Qualcomm Mems Technologies, Inc. Microstructures pour éclairage par guide de lumière
WO2011091026A1 (fr) * 2010-01-20 2011-07-28 3M Innovative Properties Company Module de guide de lumière et rétro-éclairage le comprenant
EP2549173A4 (fr) * 2010-03-17 2017-11-22 Mitsubishi Chemical Corporation Dispositif de source de lumière de surface, élément guide de lumière utilisé dans le dispositif de source de lumière de surface, et procédé de production d'élément guide de lumière
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
WO2013185368A1 (fr) * 2012-06-13 2013-12-19 深圳市华星光电技术有限公司 Module de rétroéclairage et écran à cristaux liquides
TWI560403B (en) * 2014-12-15 2016-12-01 Global Lighting Technology Inc Edge type backlight module and its light guide plate

Similar Documents

Publication Publication Date Title
EP1933178B1 (fr) Feuille optique et procédé de fabrication correspondant
US7422357B1 (en) Optical plate and backlight module using the same
US7637646B2 (en) Backlight assembly and liquid crystal display device having the same
JP4750831B2 (ja) 導光板及びバックライトモジュール
EP2081059B1 (fr) Plaque à prismes et afficheur à cristaux liquides
US9429700B2 (en) Backlight module
KR100978078B1 (ko) 프리즘 시트와 이를 구비한 액정표시장치
KR100905241B1 (ko) 복수의 구조체를 포함하는 광학 필름 및 이를 포함하는백라이트 유닛
JP2008282825A6 (ja) 導光板及びバックライトモジュール
KR20160022212A (ko) 도광판, 이를 포함하는 백라이트 유닛 및 디스플레이 장치
WO2008099989A1 (fr) Unité de rétro-éclairage
US20090010024A1 (en) Optical plate and backlight module using the same
US20090016067A1 (en) Optical plate and backlight module using the same
US20070086191A1 (en) Optical member, method of manufacturing the optical member, and display device having the optical member
EP3015884A1 (fr) Lentille, appareil électroluminescent comprenant la lentille et unité de rétroéclairage comprenant ledit appareil
US7837373B2 (en) Optical plate having encircling protrusions and elongated V-shaped protrusions and backlight module using the same
KR20150067836A (ko) 액정표시장치
KR20080072344A (ko) 백라이트 어셈블리
KR20070040012A (ko) 직하형 백라이트 장치
JP2003187620A (ja) 面状発光装置およびこれを備えた液晶表示装置
KR20120068498A (ko) 도광판, 이를 구비한 백라이트 유닛 및 이들을 포함하는 액정표시장치
US20090010005A1 (en) Optical plate and backlight module using the same
WO2009072697A1 (fr) Panneau optique à guides d'onde de diffusion de lumière pour rétroéclairage
CN100468164C (zh) 背光模组
KR20090022171A (ko) 확산 기능을 갖는 휘도향상 광학시트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07746759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07746759

Country of ref document: EP

Kind code of ref document: A1