WO2008087134A1 - High capacity burner - Google Patents
High capacity burner Download PDFInfo
- Publication number
- WO2008087134A1 WO2008087134A1 PCT/EP2008/050386 EP2008050386W WO2008087134A1 WO 2008087134 A1 WO2008087134 A1 WO 2008087134A1 EP 2008050386 W EP2008050386 W EP 2008050386W WO 2008087134 A1 WO2008087134 A1 WO 2008087134A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- burner
- fuel
- oxygen containing
- containing gas
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D1/00—Burners for combustion of pulverulent fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/48—Apparatus; Plants
- C10J3/485—Entrained flow gasifiers
- C10J3/487—Swirling or cyclonic gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/48—Apparatus; Plants
- C10J3/50—Fuel charging devices
- C10J3/506—Fuel charging devices for entrained flow gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/15—Details of feeding means
- C10J2200/152—Nozzles or lances for introducing gas, liquids or suspensions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/1223—Heating the gasifier by burners
Definitions
- the present invention relates to a burner comprising a burner head and supply openings for a fuel and an oxygen containing gas, a central tubular passage for the oxygen containing gas and a radial outward positioned passage for the fuel.
- the invention is also directed to process to operate a burner and to a process to start-up a gasification process using the burner process.
- Burners as above can be used as a start-up burner to start a pressurized coal gasification process. Examples of such coal gasification processes are for example described in WO-A-2004/005438 or WO-A-2006/117355.
- the temperature and pressure in the gasification reactor are increased by combustion of a liquid oil fuel with oxygen in such a burner.
- the burner is typically a single fuel burner as opposed to a dual fuel burner because of their more simple design. When the pressure and temperature reach a pre-selected level the actual gasification of the coal can be started.
- EP-A-108427 describes a burner having a burner head and supply openings for a coal fuel and an oxygen containing head.
- the burner has a central passage for the oxygen containing gas and fuel discharge openings for the coal fuel at the burner head.
- US-A-5351477 is directed to a dual fuel burner having separate fuel discharge openings for a gaseous and a liquid fuel.
- a suited start-up burner desirably has a high heat capacity to compensate for heat losses to the wall and to achieve a high reactor temperature. Because of reactor dimensions a suited start-up burner desirably further has a short flame length.
- a suited start-up burner will further be capable of operating with a stable flame in a large pressure range, starting at ambient and ranging to a more elevated pressure at which the actual gasification reactions are started.
- the aim of the present invention is to provide a burner, which meets these requirements.
- Burner comprising a burner head and supply openings for a fuel and an oxygen containing gas, a central tubular passage for the oxygen containing gas and a radial outward positioned passage for the fuel, wherein the passage for fuel is fluidly connected to one or more fuel discharge openings at the burner head and wherein the fuel discharge openings are directed inwardly such that in use the fuel is injected into the stream of oxygen containing gas and wherein the central passage is provided with an obstruction located in the flow path for oxygen and wherein at least part of the fuel discharge openings are located such that, in use, fuel is discharged in a stagnant zone as present at the downstream end of the obstruction .
- the above burner can have a small diameter in combination with a short flame length and a high heating capacity.
- the invention is also directed to a process to operate a burner by injecting a fuel into a stream of an oxygen containing gas in a stagnant zone as present downstream from an obstruction as present in the stream of oxygen located at a burner head of the burner and to a process to start-up a pressurized gasification reactor, which reactor is comprised of a vessel, an outlet conduit for product gas, which conduit is provided with a valve, a start-up burner and a burner for performing the gasification reaction, by
- Figure 1 is a schematic cross-sectional view of a preferred burner according to the present invention.
- Figure 2 is a combined device comprising a burner according to the present invention.
- Figure 3 is a schematic cross-sectional view of another preferred burner according to the present invention .
- Figure 4 is a cross-sectional view AA' of the burner of Figure 3.
- the burner according to the invention is preferably a co-annular burner having a central passage for the oxygen containing gas and an annular passage for the fuel.
- the obstruction in the central passage may be a part extending inwardly from the wall of the central passage. The size of this part should be sufficient to create a stagnant zone just downstream of said part.
- the fuel discharge opening is located at said stagnant zone.
- a suitable obstruction is a swirl imparting means.
- swirl imparting means are vanes fixed in the central passage of the burner.
- at least part of the fuel discharge openings are located such that in use fuel is discharged in a stagnant zone as present at the downstream end of the obstruction.
- Such stagnant zones are present just downstream of, for example, the end of the vanes of the swirl imparting means near the inner wall of the central passage.
- the distance between the discharge opening and the obstruction is between 0 and 2 mm, more preferably between 0 and 1 mm.
- the volume of stagnant zone will depend on the dimensions of the obstruction, e.g. the thickness, of the swirl imparting means. For example, a more bulky swirler will result in a larger stagnant zone, which will allow a larger distance between the swirling means and the discharge opening.
- a start-up burner will suitably be used in combination with an ignition burner and a means to detect a flame.
- the ignition burner is used to ignite the flame of the start-up burner.
- the means to detect the flame of the start-up burner and of the ignition burner is preferably done with flame eyes. Although other means such as for example ionisation detection are also possible.
- these different devices are typically present at separate positions, each requiring a separate passage through the pressure wall of the gasification reactor and separate passage through the reactor internal walls.
- Reactor internal walls can comprise of refractory or can be so- called membrane walls.
- the burner according to the invention can advantageously have a small diameter as explained above. Applicants have now found that it is attractive to combine the ignition burner and the start up burner and the flame detector in one apparatus. This is advantageous because for such a device only one passage through the pressure wall of the gasification reactor and through the reactor internal wall is required.
- the invention is thus also directed to a combined start-up burner, ignition burner and flame detector, wherein the start-up burner is a burner as described above.
- the combined device is a tubular apparatus wherein the start-up burner, the ignition burner and the flame detector means are positioned co-axial with the tubular apparatus.
- the ignition burner and the flame detector are well known and will therefore not be discussed here in great detail.
- the flame has such an improved stability that the use of a separate ignition burner may even be omitted.
- a sparking device suitably an electric sparker, is present downstream of the stagnant zone at the burner head.
- the invention is thus also directed to a combined tubular apparatus comprising a burner provided with a sparking device as described above according and a flame detector.
- the invention is also directed to a process to operate a burner by injecting a fuel into a swirling stream of an oxygen containing gas at a burner head of the burner.
- the superficial velocity of the oxygen containing gas at the burner head of the burner may range from 40 to 360 m/s and preferably from 40 to 250 m/s.
- the advantages of the invention are even more achieved at a gas velocity of above 100 m/s.
- the velocity may advantageously be the sonic velocity of the gas as measured at the conditions of the space in which the flame of the burner is discharged into.
- the fuel may be any gaseous or liquid hydrocabonaceous fuel.
- the fuel is a liquid hydrocarbonaceous fuel, preferably kerosene and more preferably gas oil or alternative hydrocarbon products boiling in the same boiling ranges as kerosene or gas oil.
- Such fuels are preferred because they are easy to obtain and transport. This process is preferably performed in a burner as such or in a combined device as described in this specification and figures.
- the invention is also directed to a process to startup a pressurized gasification reactor, which reactor is comprised of a vessel, an outlet conduit for product gas, which conduit is provided with a valve, a start-up burner and a burner for performing the gasification reaction.
- the pressurized gasification reactors are well known and for example described in Chapters 5.3.3-5.3.8 of Gasification by Christofer Higman and Maart van der Burgt, 2003, Elsevier Science, Burlington MA, pages 118-128.
- a burner as described above is used to increase the temperature in the gasification reactor from typically ambient conditions.
- the pressure is simultaneously increased by throttling the valve from typically ambient conditions.
- a solid carbonaceous feed for example coal or biomass, and an oxygen containing gas is provided to the gasification burner.
- the temperature at which the solid carbonaceous feed is supplied to the gasification burner is suitable above 1200 0 C.
- the pressure at which the solid carbonaceous feed is supplied to the gasification burner is suitable above 10 bars.
- FIG 1 shows a burner (1) comprising a burner head (9) and supply openings (3,4) for an oxygen containing gas and a fuel respectively.
- the burner (1) is further provided with a central tubular passage (2) for the oxygen containing gas and a radial outward positioned annular passage (5) for the fuel.
- the passage (5) for fuel is fluidly connected to fuel discharge opening (7) at the burner head (9) .
- the opening (7) are located in the inner wall (12) of the central tubular passage (2) .
- the openings may be separate openings or more preferably one continuous slit like opening (7) as shown.
- the opening (7) is directed inwardly, in the direction of the central axis (10) such that in use the fuel is injected into the stream (11) of oxygen containing gas.
- the central passage (2) is provided with swirl imparting means (6) located between the supply opening (3) for oxygen containing gas and the fuel discharge opening (7) .
- the swirl imparting means (6) provide, in use, a swirling motion to the oxygen containing gas (11) at the burner head (9) .
- a stagnant zone (13) is indicated at part (8) of the opening (7) located at the inner wall (12) of the central passage (2) and at the downstream end the swirl means (6) .
- At part (8) of slit opening (7) at least a portion of the fuel is discharged into stagnant zone (13) .
- Slit Opening (7) which are located further away from the stagnant zone, introduce fuel directly into the swirling gas stream (11) .
- FIG. 2 shows a combined device (15) .
- Combined device (15) is a tubular apparatus having positioned co- axially a start-up burner (16) according to the present invention, a ignition burner (18) and a visual flame detector (17).
- the flame detector (17) is equipped with flame eyes, whereby the flame is detected from the backside of the flame.
- the start-up burner (16) is provided with supply means for an oxygen containing gas (19) and a fuel (20) .
- the ignition burner (18) is provided with supply means for an oxygen containing gas (21) and a fuel (22) .
- a flame (23) is shown schematically. In reality the size of the flame (23) may be greater than shown.
- part of the pressure wall (24) of a gasification reactor and a membrane wall (25) comprised of inter-connected tubular parts in which, in use, water evaporates to provide cooling of the wall (25) .
- FIG. 3 shows another preferred burner (26) according to the present invention comprising a burner head (27) and supply openings (28, 29) for an oxygen containing gas and a fuel respectively.
- the burner (26) is further provided with a central tubular passage (30) for the oxygen containing gas and a radial outward positioned annular passage (31) for the fuel.
- the passage (31) for fuel is fluidly connected to a fuel discharge opening (32) at the burner head (27) .
- the slit like opening (32) is located in the inner wall (33) of the central tubular passage (30) .
- the opening (32) is directed inwardly, in the direction of the central axis (34) such that in use the fuel is injected into the stream (35) of oxygen containing gas.
- the central passage (30) is provided with four stud type obstructions (36) extending inwardly from wall (33) into passage (31) and located between the supply opening (28) for oxygen containing gas and the fuel discharge opening (32) .
- the fuel discharge opening partly open into a stagnant zone
- Figure 3 also shows a flame (38).
- Figure 4 is a cross sectional view AA' of Figure 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Air Supply (AREA)
Abstract
Description
Claims
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200880000783.6A CN101627259B (en) | 2007-01-17 | 2008-01-15 | Method for starting pressurized gasification reactor |
| EP08701496.5A EP2104801B1 (en) | 2007-01-17 | 2008-01-15 | High capacity burner |
| AU2008206968A AU2008206968B2 (en) | 2007-01-17 | 2008-01-15 | High capacity burner |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP07100646.4 | 2007-01-17 | ||
| EP07100646 | 2007-01-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2008087134A1 true WO2008087134A1 (en) | 2008-07-24 |
Family
ID=38289987
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2008/050386 Ceased WO2008087134A1 (en) | 2007-01-17 | 2008-01-15 | High capacity burner |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20090061374A1 (en) |
| EP (1) | EP2104801B1 (en) |
| CN (1) | CN101627259B (en) |
| AU (1) | AU2008206968B2 (en) |
| WO (1) | WO2008087134A1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2249082B1 (en) * | 2008-02-01 | 2019-04-10 | IHI Corporation | Combustion heater |
| CN103134076B (en) * | 2013-02-05 | 2015-05-06 | 贵州开阳化工有限公司 | High back pressure igniting method of gasification furnace |
| JP6231047B2 (en) * | 2015-06-30 | 2017-11-15 | 三菱日立パワーシステムズ株式会社 | Solid fuel burner |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0108425A1 (en) * | 1982-08-23 | 1984-05-16 | Shell Internationale Researchmaatschappij B.V. | Burner for the partial combustion of finely divided solid fuel |
| EP0108427A1 (en) * | 1982-09-02 | 1984-05-16 | Shell Internationale Researchmaatschappij B.V. | Burner for the partial combustion of finely divided solid fuel |
| WO1994021357A1 (en) * | 1993-03-22 | 1994-09-29 | Holman Boiler Works, Inc. | LOW NOx BURNER |
| US5351477A (en) * | 1993-12-21 | 1994-10-04 | General Electric Company | Dual fuel mixer for gas turbine combustor |
| US5441403A (en) * | 1992-06-05 | 1995-08-15 | Nippon Furnace Kogyo Kaisha, Ltd. | Method of low-NOx combustion and burner device for effecting same |
| US5700143A (en) * | 1994-01-24 | 1997-12-23 | Hauck Manufacturing Company | Combination burner with primary and secondary fuel injection |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1159832A (en) * | 1966-10-21 | 1969-07-30 | Geo Bray & Company Ltd | Post-Aerated Gas Jets |
| GB1203489A (en) * | 1968-08-20 | 1970-08-26 | Geo Bray & Company Ltd | Improvements in or relating to shrouded gas burners |
| US3850571A (en) * | 1972-11-10 | 1974-11-26 | Zink Co John | High energy flame burner |
| DE2756138C3 (en) * | 1977-12-16 | 1981-09-24 | Dr. C. Otto & Comp. Gmbh, 4630 Bochum | Ignition device for entrained flow carburetor |
| GB2060158A (en) * | 1979-10-02 | 1981-04-29 | Shell Int Research | Solid fuel combustion |
| US4385906A (en) * | 1982-02-25 | 1983-05-31 | Texaco Development Corporation | Start-up method for a gasification reactor |
| GB2159267B (en) * | 1984-05-23 | 1987-12-16 | Shell Int Research | Burner with ignition device |
| US5009174A (en) * | 1985-12-02 | 1991-04-23 | Exxon Research And Engineering Company | Acid gas burner |
| DD278692A3 (en) * | 1987-08-17 | 1990-05-16 | Freiberg Brennstoffinst | PROCESS FOR STARTING PLANTS FOR PARTIAL OXIDATION |
| US5242118A (en) * | 1989-08-17 | 1993-09-07 | Steyr-Daimler-Punch Ag | Fuel injector for internal combustion engines |
| DE3936732A1 (en) * | 1989-11-04 | 1991-05-08 | Krupp Koppers Gmbh | METHOD AND DEVICE FOR THE GASIFICATION OF FINE-GRAINED TO DUST-SHAPED FUELS |
| JP3282944B2 (en) * | 1994-07-18 | 2002-05-20 | トヨタ自動車株式会社 | Low NOx burner |
| DE19536837B4 (en) * | 1995-10-02 | 2006-01-26 | Alstom | Apparatus and method for injecting fuels into compressed gaseous media |
| JP2002161283A (en) * | 2000-11-27 | 2002-06-04 | Babcock Hitachi Kk | Startup method for coal gasifier |
| US7213348B2 (en) * | 2004-11-12 | 2007-05-08 | Bsh Home Appliances Corporation | Gas burner and air heater assembly for a gas clothes dryer |
| DE102005003559B4 (en) * | 2005-01-26 | 2014-07-03 | Andreas Stihl Ag & Co. Kg | carburettor |
-
2008
- 2008-01-15 WO PCT/EP2008/050386 patent/WO2008087134A1/en not_active Ceased
- 2008-01-15 CN CN200880000783.6A patent/CN101627259B/en active Active
- 2008-01-15 US US12/014,649 patent/US20090061374A1/en not_active Abandoned
- 2008-01-15 AU AU2008206968A patent/AU2008206968B2/en active Active
- 2008-01-15 EP EP08701496.5A patent/EP2104801B1/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0108425A1 (en) * | 1982-08-23 | 1984-05-16 | Shell Internationale Researchmaatschappij B.V. | Burner for the partial combustion of finely divided solid fuel |
| EP0108427A1 (en) * | 1982-09-02 | 1984-05-16 | Shell Internationale Researchmaatschappij B.V. | Burner for the partial combustion of finely divided solid fuel |
| US5441403A (en) * | 1992-06-05 | 1995-08-15 | Nippon Furnace Kogyo Kaisha, Ltd. | Method of low-NOx combustion and burner device for effecting same |
| WO1994021357A1 (en) * | 1993-03-22 | 1994-09-29 | Holman Boiler Works, Inc. | LOW NOx BURNER |
| US5351477A (en) * | 1993-12-21 | 1994-10-04 | General Electric Company | Dual fuel mixer for gas turbine combustor |
| US5700143A (en) * | 1994-01-24 | 1997-12-23 | Hauck Manufacturing Company | Combination burner with primary and secondary fuel injection |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2104801A1 (en) | 2009-09-30 |
| EP2104801B1 (en) | 2016-06-22 |
| AU2008206968B2 (en) | 2010-09-09 |
| CN101627259A (en) | 2010-01-13 |
| CN101627259B (en) | 2011-09-07 |
| AU2008206968A1 (en) | 2008-07-24 |
| US20090061374A1 (en) | 2009-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9488371B2 (en) | System for gasification fuel injection | |
| CN103822207B (en) | A variable pressure, variable working condition oil burner | |
| US20170081601A1 (en) | Coal co-gasification method | |
| JP5642552B2 (en) | Burner with sprayer | |
| CN101679885B (en) | Process to start-up a coal gasification reactor | |
| JP2016536562A (en) | Lean gas burner | |
| AU2008206968B2 (en) | High capacity burner | |
| KR101483566B1 (en) | Gasifying burner and synthesis gas conversion apparatus with the same | |
| US20110265379A1 (en) | Process and Burner for Production of Syngas from Hydrocarbons | |
| EA012937B1 (en) | Method for a lean gas combustion, a burner and installation | |
| DK2410276T4 (en) | Process for chemical reaction of a fuel with oxygen-containing gas by means of a pre-mix burner | |
| US20170101593A1 (en) | Coal co-gasification method | |
| Abu-Qudais et al. | Diesel fuel and olive-cake slurry: atomization and combustion performance | |
| Bhoi et al. | Optimization of producer gas fired premixed burner | |
| KR20050046606A (en) | IMPROVED FUEL STAGING PROCESS FOR LOW NOx OPERATIONS | |
| EP2707325B1 (en) | Process for producing synthesis gas | |
| GB2162303A (en) | Burner for coal and/or oil | |
| KR101484617B1 (en) | Gasifying burner and synthesis gas conversion apparatus with the same | |
| JP2022165449A (en) | Spray nozzle, gas combustor, boiler and power generating system | |
| RU135080U1 (en) | TORCH INJECTION BURNER | |
| CN116697351A (en) | Hot oxygen combustion-supporting new energy combustor | |
| CN112760138A (en) | Burner for producing high hydrogen by using low slurrying coal quality and control method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200880000783.6 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08701496 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2008701496 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2008206968 Country of ref document: AU |
|
| ENP | Entry into the national phase |
Ref document number: 2008206968 Country of ref document: AU Date of ref document: 20080115 Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |