WO2008065537A2 - Procédé de fabrication de particules magnétiques métalliques nanocomposites de fept-fe- - Google Patents
Procédé de fabrication de particules magnétiques métalliques nanocomposites de fept-fe- Download PDFInfo
- Publication number
- WO2008065537A2 WO2008065537A2 PCT/IB2007/004282 IB2007004282W WO2008065537A2 WO 2008065537 A2 WO2008065537 A2 WO 2008065537A2 IB 2007004282 W IB2007004282 W IB 2007004282W WO 2008065537 A2 WO2008065537 A2 WO 2008065537A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- salt
- production method
- particle
- fept
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/065—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
- H01F1/0054—Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Definitions
- the invention relates to a production method for a nanocomposite metal magnetic particle that can be used as a high-density magnetic recording medium, a permanent magnet, etc.
- Magnetic recording medium materials are required to have high coercive force for stable record retention.
- a metal magnetic material having such a high coercive force an FePt-based metal magnetic particle is known.
- the FePt-based metal magnetic particle is disclosed in Japanese Patent Application Publication No. 2005-48250 (JP-A-2005-48250).
- This FePt-based metal magnetic particle can be obtained as follows. Firstly, iron acetylacetonate and platinum acetylacetonate are added to tetraethylene glycol, and are reacted at high temperature by blowing in a nitrogen gas. After that, oleic acid and oleylamine are added as dispersants into a suspension containing aggregated FePt particles, and furthermore, a mixture of cyclohexane, oleic acid and oleylamine is added, and then the suspension is shaken. In this manner, FePt-based metal magnetic particles are obtained as monodispersed FePt nanoparticles.
- Magnetic particles as described above are used in a wide variety of fields, including electronics, information and communications, industrial and automotive electric motors, etc. With regard to the magnetic particles, further enhancement in performance and further reduction in size and weight are demanded.
- One approach that has been made for such performance enhancement is the development of a nanocomposite magnet in which a soft magnetic phase with high magnetization and a hard magnetic phase with high coercive force are uniformly distributed in the same metallic structure and the soft and hard magnetic phases are magnetically coupled due to an exchange interaction.
- the foregoing method provides minute FePt nanoparticles
- the method does not provide nanocomposite particles. That is, after FePt hard magnetism particles are produced, Fe soft magnetism particles need to be mixed in and be supported on the surfaces of the FePt hard magnetism particles. This gives rise to a problem of performance degradation being caused by the oxidation or the like of either kind of particles at the time of the mixture.
- a first aspect of the invention relates to a method of producing a nanocomposite metal magnetic particle.
- a salt of Fe and a salt of Pt are dissolved in a solvent containing a surface-active agent, and a reducing agent is added at a temperature that is higher than or equal to a reduction temperature of an Fe ion that constitutes the salt of Fe, and the FePt particle is synthesized and at the same time the Fe particle is deposited.
- a second aspect of the invention relates to a method of producing a nanocomposite metal magnetic particle.
- a salt of Fe and a salt of Pt are dissolved in a solvent, and a reducing agent is added at a temperature that is higher than or equal to a reduction temperature of an Fe ion that constitutes the salt of Fe, and then a surface-active agent is added, and the FePt particle is synthesized and at the same time the Fe particle is deposited.
- the salt of Fe may be iron acetylacetonate
- the salt of Pt may be platinum acetylacetonate.
- the reducing agent may be a polyol.
- the polyol may be at least one of 1,2-octanediol, 1,2-dodecanediol, 1,2-tetradecanediol, and 1,2-hexadecanediol.
- the reducing agent may be added at a temperature higher than or equal to 230 0 C.
- a ratio between the salt of Fe and the salt of Pt may be set so that a molar ratio of Fe to Pt becomes excessively large.
- a ratio between the salt of Fe and the salt of Pt may be the salt of Fe:the salt of Pt is 7:3 to 9:1 in molar ratio.
- the solvent may be at least one of octyl ether, octadecene, squalene, tetraethylene glycol, and triphenyl methane.
- the surface-active agent may be at least one of oleylamine, oleic acid, tetraethylene glycol, sodium dodecylbenzenesulfonate, phenylphosphonic acid, myristylic acid, dodecanethiol, and dodecylamine.
- an amount of the surface-active agent added may be 10 to 100% of the solvent in mass ratio.
- an amount of the reducing agent added may be 1.5 to 2 times as large in molar ratio as the amount of the salt of Fe and the amount of the salt of Pt.
- FePt hard magnetism particles and Fe soft magnetism particles can be simultaneously synthesized and composited in the order of nanometer by performing a reaction once.
- the FePt-Fe-based nanocomposite metal magnetic particle can easily be produced.
- FIGS. IA to ID are photographs of FePt particles and Fe particles used in working examples which were under a transmission electron microscope (hereinafter, referred to as "TEM"); and
- FIGS. 2A and 2B are graphs showing volume fraction data and particle diameter distribution of FePt particles and Fe particles obtained in working examples.
- a salt of Fe and a salt of Pt are dissolved in a solvent.
- the salt of Fe and the salt of Pt each be a metal complex that has an organic ligand.
- the salt of Fe usable herein include iron (II) acetylacetonate, iron (III) acetylacetonate, etc.
- Examples of the salt of Pt usable herein include platinum (II) acetylacetonate, dichloro-l,10-platinum phenanthroline, 2,2-bipyridine dichloroplatinum.
- the ratio between the salt of Fe and the salt of Pt is set so that the molar ratio of Fe to Pt becomes excessive in magnitude.
- the solvent have high boiling point and be stable, since the solvent is heated in the deposition reaction of the FePt particles and the Fe particles.
- Examples of the solvent usable herein include octyl ether, octadecene, squalene, tetraethylene glycol, triphenyl methane, etc.
- the salt of Fe and the salt of Pt are dissolved in the solvent after a surface-active agent has been added into the solvent.
- the surface-active agent usable herein include oleylamine, oleic acid, tetraethylene glycol, sodium dodecylbenzenesulfonate, phenylphosphonic acid, myristylic acid, dodecanethiol, dodecylamine, etc. It is preferable that the amount of the surface-active agent added be 10% to 100% of the solvent in mass ratio.
- the mixture may be heated to dissolve the salts into the solvent if needed.
- the solution is further heated.
- a reducing agent is added.
- the temperature at which the salts are dissolved is normally about 160 0 C, although it varies depending on the salts and the solvent that are used.
- the temperature at which the reducing agent is added is a temperature that allows the Fe ions constituting the salt of Fe to be reduced to Fe, and is normally about 230 0 C.
- the reducing agent it is preferable to use a polyol (polyhydric alcohol).
- the polyol is not particularly limited.
- 1,2-octanediol, 1,2-dodecanediol, 1,2-tetradecanediol, 1,2-hexadecanediol, etc. can be used.
- the polyols having a boiling temperature higher than the aforementioned reaction temperature are preferable. It is also preferable that the amount of the reducing agent added be 1.5 to 2 times as large in molar ratio as the total amount of the salt of Fe and the salt of Pt.
- the surface-active agent is added after the reducing agent has been added, instead of being added in the solvent beforehand as in the first embodiment.
- the reduction reaction in general, instantly occurs, and hardly involves the process of core growth, so that the size control of the particles obtained is difficult.
- a surface-active agent with polarity into a non-polar solvent, such as octyl ether or the like provides polarity.
- This polarity promotes the re-formation of complex irons having_a metal ion as a core in the solvent, so that the free energy declines. Therefore, the critical core radius during the core generation increases, and therefore the growth of particles is promoted. As a result, large FePt particles can be obtained.
- a surface-active agent with polarity is contained from the beginning, the degree of activity rises, and it becomes easier to generate Fe.
- the surface-active agent is added. Therefore, the volume fraction of the Fe nanoparticles can be lowered. This is considered to be because the activity (amount of activity) of the salt of Fe in octyl ether is low.
- nanocomposite metal magnetic particles containing FePt particles and Fe particles can be obtained.
- the metal magnetic particles can be used as a material for magnetic recording media, a permanent magnet material, etc.
- EXAMPLE 1 0.8 mL of oleic acid and 0.85 mL of oleylamine were added into 50 mL of octyl ether to prepare a mixed solvent. 1.236 g of iron (III) acetylacetonate and 0.59 g of platinum (II) acetylacetonate were added to the mixed solvent, and the solvent was kept at 160 0 C (for about 30 minutes) until the added salts dissolved. Next, after the solvent was heated to 230 0 C, 1.94 g of hexadecanediol, that is, a reducing agent, was added and the solvent was kept at 230 0 C for 60 minutes. After that, the mixture was cooled, and the particles were collected.
- EXAMPLE 2 1.236 g of iron (III) acetylacetonate and 0.59 g of platinum (II) acetylacetonate were added into 50 mL of octyl ether, and the mixture was heated to 160 0 C and was kept (for about 30 minutes) until the added salts dissolved. Next, after the mixture was heated to 230 0 C, 1.94 g of hexadecanediol, that is, a reducing agent, was added. After 30 minutes, 0.8 mL of oleic acid and 0.85 mL of oleylamine were added as a surface-active agent, the mixture was kept at 230 0 C for 30 minutes. After the mixture was cooled, the obtained particles were collected.
- results of the TEM observation of obtained particles are shown in FIGS. IA to ID.
- the volume fraction data and the particle diameter distribution of the obtained FePt particles and the obtained Fe particles are shown in FIGS. 2 A and 2B. From these results, it can be understood that the volume fraction of FePt /Fe can be changed by changing the amount of the surface-active agent added into the reaction solvent and the timing of adding the surface-reactive agent.
- the particle diameter of the nanoparticle at that time did not depend on the concentration of the surface-active agent, and the particle diameter of FePt was 2 to 3 nm and the particle diameter of Fe was about 10 to 15 nm.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Selon l'invention, dans un procédé de fabrication de particules magnétiques métalliques nanocomposites contenant des particules de FePt et des particules Fe, un sel de Fe et un sel de Pt sont dissous dans un solvant contenant un agent tensio-actif en surface, et un agent réducteur est ajouté à une température qui est supérieure ou égale à une température de réduction d'ions Fe qui constituent le sel de Fe. De cette façon, des particules de FePt sont synthétisées, et en même temps, des particules Fe sont déposées sur une partie des particules de FePt servant de noyau.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006-320313 | 2006-11-28 | ||
| JP2006320313A JP4232817B2 (ja) | 2006-11-28 | 2006-11-28 | FePt−Fe系ナノコンポジット金属磁性粒子の製造方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2008065537A2 true WO2008065537A2 (fr) | 2008-06-05 |
| WO2008065537A3 WO2008065537A3 (fr) | 2008-07-24 |
Family
ID=39284267
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2007/004282 Ceased WO2008065537A2 (fr) | 2006-11-28 | 2007-11-27 | Procédé de fabrication de particules magnétiques métalliques nanocomposites de fept-fe- |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP4232817B2 (fr) |
| WO (1) | WO2008065537A2 (fr) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8076279B2 (en) | 2008-10-09 | 2011-12-13 | Hercules Incorporated | Cleansing formulations comprising non-cellulosic polysaccharide with mixed cationic substituents |
| CN102699346A (zh) * | 2012-06-14 | 2012-10-03 | 西北工业大学 | 一种依次包覆纳米粉末核体合成L10-FePt的化学方法 |
| CN106541147A (zh) * | 2016-11-15 | 2017-03-29 | 哈尔滨工业大学 | 一种以无机盐为前驱体制备硬磁性铁铂纳米颗粒的方法 |
| CN115255360A (zh) * | 2022-07-20 | 2022-11-01 | 中国科学院化学研究所 | 一种高性能FePt@Fe壳核结构磁性纳米晶及其制备方法 |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI377978B (en) | 2008-05-21 | 2012-12-01 | Mitsubishi Rayon Co | Hollow porous film and manufacturing method thereof |
| CN113579246B (zh) * | 2021-09-29 | 2021-12-07 | 西安石油大学 | 一种纳米高熵合金粉末的制备方法 |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6262129B1 (en) * | 1998-07-31 | 2001-07-17 | International Business Machines Corporation | Method for producing nanoparticles of transition metals |
| US7029514B1 (en) * | 2003-03-17 | 2006-04-18 | University Of Rochester | Core-shell magnetic nanoparticles and nanocomposite materials formed therefrom |
| GB0503694D0 (en) * | 2005-02-23 | 2005-03-30 | Univ Durham | Process |
-
2006
- 2006-11-28 JP JP2006320313A patent/JP4232817B2/ja not_active Expired - Fee Related
-
2007
- 2007-11-27 WO PCT/IB2007/004282 patent/WO2008065537A2/fr not_active Ceased
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8076279B2 (en) | 2008-10-09 | 2011-12-13 | Hercules Incorporated | Cleansing formulations comprising non-cellulosic polysaccharide with mixed cationic substituents |
| CN102699346A (zh) * | 2012-06-14 | 2012-10-03 | 西北工业大学 | 一种依次包覆纳米粉末核体合成L10-FePt的化学方法 |
| CN106541147A (zh) * | 2016-11-15 | 2017-03-29 | 哈尔滨工业大学 | 一种以无机盐为前驱体制备硬磁性铁铂纳米颗粒的方法 |
| CN106541147B (zh) * | 2016-11-15 | 2018-03-27 | 哈尔滨工业大学 | 一种以无机盐为前驱体制备硬磁性铁铂纳米颗粒的方法 |
| CN115255360A (zh) * | 2022-07-20 | 2022-11-01 | 中国科学院化学研究所 | 一种高性能FePt@Fe壳核结构磁性纳米晶及其制备方法 |
| CN115255360B (zh) * | 2022-07-20 | 2024-01-16 | 中国科学院化学研究所 | 一种高性能FePt@Fe壳核结构磁性纳米晶及其制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4232817B2 (ja) | 2009-03-04 |
| WO2008065537A3 (fr) | 2008-07-24 |
| JP2008133504A (ja) | 2008-06-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Huber | Synthesis, properties, and applications of iron nanoparticles | |
| Yu et al. | One-pot synthesis of urchin-like FePd–Fe3O4 and their conversion into exchange-coupled L10–FePd–Fe nanocomposite magnets | |
| Xie et al. | A Hydrothermal Reduction Route to Single‐Crystalline Hexagonal Cobalt Nanowires | |
| JP3693647B2 (ja) | 金属合金微粒子及びその製造方法 | |
| Yang et al. | Single domain SmCo5@ Co exchange-coupled magnets prepared from core/shell Sm [Co (CN) 6]· 4H2O@ GO particles: a novel chemical approach | |
| US20100104767A1 (en) | Production method for nanocomposite magnet | |
| Zhu et al. | Surfactant‐assisted synthesis and characterization of novel chain‐like CoNi alloy assemblies | |
| Gandha et al. | Synthesis and characterization of FeCo nanowires with high coercivity | |
| WO2008065537A2 (fr) | Procédé de fabrication de particules magnétiques métalliques nanocomposites de fept-fe- | |
| US9773594B2 (en) | Non-rare earth magnetic nanoparticles | |
| Zulhijah et al. | α ″-Fe16N2 phase formation of plasma-synthesized core–shell type α-Fe nanoparticles under various conditions | |
| Mandal et al. | Formation of L10 ordering in feni by mechanical alloying and field-assisted heat treatment: synchrotron XRD studies | |
| Logutenko et al. | Characterization and growth mechanism of nickel nanowires resulting from reduction of nickel formate in polyol medium | |
| JP3693618B2 (ja) | 金属磁性粒子、およびその製造方法 | |
| JP2009097038A (ja) | FePtナノ粒子の製造方法 | |
| US20100323219A1 (en) | FeRh-FePt CORE SHELL NANOSTRUCTURE FOR ULTRA-HIGH DENSITY STORAGE MEDIA | |
| Kang et al. | Synthesis and magnetic properties of α ″-Fe16N2 nanofibers prepared by an electrospinning method | |
| US11804318B2 (en) | Scalable process for manufacturing iron cobalt nanoparticles with high magnetic moment | |
| Kim et al. | Synthesis and characterization of crystalline FeCo nanoparticles | |
| US9251938B2 (en) | Soft magnetic phase nanoparticles preparations and associated methods thereof | |
| Abel et al. | Ferromagnetic L10-structured CoPt nanoparticles for permanent magnets and low Pt-based catalysts | |
| Najarzadegan et al. | The effect of reduction process parameters on magnetic and structural properties of SmCo/Co nanocomposites | |
| JP2015185602A (ja) | FePd/Feナノコンポジット磁石及びその製造方法 | |
| JP3896443B2 (ja) | 磁気記録媒体用合金微粒子の製造方法 | |
| Nguyen et al. | Solvothermal synthesis of high-performance magnetic cobalt nanowires and bonded anisotropic magnets prepared thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07859319 Country of ref document: EP Kind code of ref document: A2 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 07859319 Country of ref document: EP Kind code of ref document: A2 |