WO2008048024A1 - Appareil de processeur de signal de capteur - Google Patents
Appareil de processeur de signal de capteur Download PDFInfo
- Publication number
- WO2008048024A1 WO2008048024A1 PCT/KR2007/005028 KR2007005028W WO2008048024A1 WO 2008048024 A1 WO2008048024 A1 WO 2008048024A1 KR 2007005028 W KR2007005028 W KR 2007005028W WO 2008048024 A1 WO2008048024 A1 WO 2008048024A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- signal processor
- processor apparatus
- sensor signal
- ramp integrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/22—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
Definitions
- the present disclosure relates to a sensor signal processor apparatus, and more particularly to, a sensor signal processor apparatus providing an easy and simple interface for various sensors and having good performance.
- values measured by various sensors such as a temperature sensor, a humidity sensor, and a velocity sensor are processed by a sensor signal processor apparatus, such that such sensors can be used as a thermometer, a hygrometer, and a velocity meter.
- An aspect of the present invention provides a sensor signal processor apparatus providing an easy and simple interface for various sensors.
- An aspect of the present invention also provides a sensor signal processor appa- ratusthat can process measured values of a sensor more rapidly and efficiently.
- An aspect of the present invention also provides a sensor signal processor apparatus can be applied to various application modules in connection with various sensors.
- a sensor signal processor apparatus including: a current source generating a constant current according to a preset value; a sensor outputting a sensor voltage using the current from the current source; a ramp integrator generating and outputting an integral voltage according to an input command; a comparator comparing the sensor voltage output from the sensor with the integral voltage output from the ramp integrator and outputting a result of the comparison; and a controller controlling the generating and outputting of the integral voltage of the ramp integrator according to the comparison result of the comparator.
- a sensor signal processor apparatus including: a sensor including a sensor resistor; a ramp integrator including a current source generating a constant current according to a resistance of the sensor resistor, the ramp integrator generating and outputting an integral voltage based on the current generated by the current source in response to an input command; a digital comparator performing an comparison operation on the integral voltage output from the ramp integrator and outputting a result of the comparison; and a controller controlling the generating and outputting of the integral voltage of the ramp integrator according to the comparison result of the digital comparator.
- a sensor signal processor apparatus including: a ramp integrator generating and outputting an integral voltage for a sensor; a plurality of comparators comparing the integralvoltage of the ramp integrator with arbitrary input voltages; and a controller controlling the generating and outputting of the integral voltage of the ramp integrator according to outputs of the comparators.
- a sensor signal processor apparatus including: a ramp integrator including a current source generating a constant current, a capacitive sensor receiving the current generated from the current source for charging, and a switch usedto charge and discharge the capacitive sensor; a digital comparator performing an comparison operation on an integral voltage output from the ramp integrator and outputting a result of the comparison; and a controller controlling generating and outputting of the integral voltage of the ramp integrator according to the comparison result of the digital comparator.
- the interface circuit of the sensor signal processor apparatus can be used for various sensors. Furthermore, the interface circuit of the sensor signal processor apparatus is simple and has good characteristics. In addition, the interface circuit of the sensor signal processor apparatus can be used for various sensors such a capacitive sensor and a resistance sensor without modification or with less modification. [18] Moreover, the sensor signal processor apparatus of the present invention can be easily adapted for a measuring system and an information security system.
- the sensor signal processor apparatus has good performance and suitable for being manufactured in the form of a semiconductor chip.
- FIG. 1 is a block diagram illustrating a sensor signal processor apparatus according to a first embodiment of the present invention.
- FIG. 2 is a block diagram illustrating a modification version of the sensor signal processor apparatus of FIG. 1 having a multiple structure.
- FIGS. 3 and 4 are circuit diagrams illustrating exemplary circuit structures of the sensor signal processor apparatuses of FIGS. 1 and 2, respectively.
- FIG. 5 illustrates an exemplary structure of a controller of FIG. 4.
- FIG. 6 illustrates wave forms of signals that are output from elements of the sensor signal processor apparatus of FIG. 4 according to Equations.
- FIG. 7 is a block diagram illustrating a sensor signal processor apparatus for processing a signal of a resistance sensor according to a second embodiment of the present invention.
- FIG. 8 is a block diagram illustrating a modification version of the sensor signal processor apparatus of FIG. 7 having a multiple structure.
- FIG. 9 is a circuit diagram illustrating an exemplary circuit structure of the sensor signal processor apparatus of FIG. 7.
- FIG. 10 is circuit diagram illustrating an exemplary circuit structure of a sensor signal processor apparatus having two interfaces as compared with the circuit structure having an interface.
- FIG. 11 illustrates an exemplary structure of controller of FIG. 10.
- FIG. 12 illustrates wave forms of signals output from elements of the sensor signal processor apparatus of FIG. 10.
- FIG. 13 is a block diagram illustrating a sensor signal processor apparatus for a capacitive sensor according to a third embodiment of the present invention.
- FIG. 14 is a block diagram illustrating a modification version of the sensor signal processor apparatus of FIG. 13 having a multiple structure.
- FIG. 15 is a circuit diagram illustrating an exemplary circuit structure of the sensor signal processor apparatus of FIG. 13.
- FIG. 16 is circuit diagram illustrating an exemplary circuit structure of a sensor signal processor apparatus having two interfaces as compared with the circuit structure of FIG. 15 having an interface.
- FIG. 17 illustrates an exemplary circuit of the sensor signal processor apparatus of
- FIG. 7B for generating an internal voltage.
- FIG. 18 illustrates wave forms of signals that are output from elements of the sensor signal processor apparatus of FIG. 16.
- FIG. 19 is a block diagram illustrating a sensor signal processor apparatus for a capacitive sensor according to a fourth embodiment of the present invention.
- FIG. 20 is a block diagram illustrating a modification version of the sensor signal processor apparatus of FIG. 19 having a multiple structure.
- FIG. 21 is a circuit diagram illustrating an exemplary circuit structure of the sensor signal processor apparatus of FIG. 19.
- FIG. 22 is circuit diagram illustrating an exemplary circuit structure for a sensor signal processor apparatus having two interfaces as compared with the circuit structure of FIG. 21 having an interface. [41] FIG.
- FIG. 23 illustrates a single supply power comparator of a sensor signal processor apparatus according to an embodiment of the present invention.
- FIG. 24 illustrates an application example of the comparator of FIG. 23using a single supply power source having two current sources.
- FIG. 25 illustrates an exemplary circuitstructure of a comparator using a single supply power source having four current sources.
- FIG. 26 illustrates an application example of the comparator of FIG. 25.
- FIG. 27 and 28 illustrate an exemplary structure of a digital comparator according to an embodiment of the present invention.
- FIG. 29 illustrates an application system and a sensor signal processor apparatus that are connected to each other according to an embodiment of the present invention.
- FIG. 30 illustrates application examples of sensor signal processor apparatuses to various chips according to embodiments of the present invention.
- FIG. 31 illustrates a relationship between a terminal and an information security chip including a sensor signal processor apparatus according to an embodiment of the present invention.
- FIG. 32 is a view for explaining a method of authenticating an information security chip without association with a terminal according to an embodiment of the present invention. [50]
- the present invention provides a sensor signal processor apparatus providing an easy and simple interface for various sensors.
- the interface circuit of the sensor signal processor apparatus can be used for various sensors such a capacitive sensor and a resistance sensor without modification or with less modification.
- the sensor signal processor apparatus can be used in various application fields in association with a control unit.
- the sensor signal processor apparatus of the present invention can be used in an information security chip for the purpose of physical security by preventing hacking. That is, the sensor signal processor apparatus can be used in an information security chip to process a sensor signal for determining whether the information security chip is physically hacked and controlling the operation of the information security chip when it is determined that the chip is hacked.
- FIG. 1 is a block diagram illustrating a sensor signal processor apparatus according to a first embodiment of the present invention.
- the sensor signal processor apparatus includes a current source
- the current source 1 lOgenerates and outputs a current according to a preset value.
- the resistance sensor 120 produces a sensor voltage V using the current generated
- the ramp integrator 130 generates an integral voltage V according to the control of the controller 150.
- the ramp integrator 130 has time- continuity characteristics.
- the comparator 140 compares the sensor voltage V of the resistance sensor 120
- the controller 150 outputs a control voltage V using the resulting voltage V to control the integral voltage V of the ramp integrator 130.
- the controller 150 can be configured in various manners according to application systems.
- the controller 150 can be configured with an N-bit counter and a clock.
- the controller 150 can be configured with a plurality of gate logics.
- the circuitry of the sensor signal processor apparatus including the resistance sensor 120 can be easily and simply constructed, and variations of properties such as velocity, temperature, pressure, and humidity can be measured by the resistance sensor 120 in the form of resistance.
- the sensor signal processor apparatus can be used in various application fields for various devices such as a display, a thermometer, a hygrometer, a thermohygrost at (a temperature and humidity regulator), a velocity meter, and a chip protection device by processing values measured by the resistance sensor 120 using the controller 150.
- the application fields of the sensor signal processor apparatus can be classified into measuring systems and information security systems.
- FIG. 2 is a block diagram illustrating a modification version of the sensor signal processor apparatus of FIG. 1 having a multiple structure.
- the sensor signal processor apparatus includes a plurality of current sources 111 through 115, a plurality of resistance sensors 121 through 125, a ramp integrator 130, a plurality of comparators 141 to 145, and a controller 150.
- the sensor signal processor apparatus of FIG. 2 operates in the same way as the sensor signal processor apparatus of FIG. 1. Since the sensor signal processor apparatus of FIG. 2 includes the plurality of resistance sensors 121 through 125, properties of different or same kind can be simultaneously measured by a system using the sensor signal processor apparatus.
- the resistance sensor 121 can be used as a temperature sensor
- the resistance sensor 122 can be used as a humidity sensor. In this way, the resistance sensors 121 to 125 can be used, and thus variations of environmental conditions can be simultaneously measured using the resistance sensors 121 to 125. Values measured using the resistance sensors 121 to 125 are processed by the controller 150.
- FIGS. 3 and 4 are circuit diagrams illustrating exemplary circuit structures of the sensor signal processor apparatuses of FIGS. 1 and 2, respectively.
- the circuit structure of FIG. 3 for the sensor signal processor apparatus of FIG. 1 includes a current source (I ) 110, a resistance sensor (R ) 120, a ramp integrator 130,
- the current source 110 generates a predeter- minedcurrent I .
- the resistance sensor 120 receives the current I from the current
- the ramp integrator 130 has time-continuity characteristics.
- the comparator 140 compares a sensor voltage V of the resistance sensor 120 with an
- the controller 150 outputs a control voltage V using an output voltage V of the comparator 140 for on-off controlling the ramp integrator 130.
- the ramp integrator 130 includes a current source (I RC ), a capacitor (C R ), and a switch S R connected to the capacitor in parallel.
- I RC current source
- C R capacitor
- S R switch
- the sensor voltage V of the resistance sensor 120 can be measured by counting the number of pulses of a clock signal of the controller 150 for the time T .
- the clock signal has a higher frequency
- Equation 2 T can be adjusted by varying I /I , and I and I have the same
- the current source 110 may include a semiconductor device such as a metal-oxide-semiconductor (MOS) transistor and a bipolar transistor.
- MOS metal-oxide-semiconductor
- FIG. 4 is circuit diagram illustrating an exemplary circuit structure of the sensor signal processor apparatus of FIG. 2.
- the circuit structure of FIG. 4 provides two interfaces as compared with the circuitstructure of FIG. 3 providing an interface.
- the sensor signal processor apparatus of FIG. 4 provides the same functions as the sensor signal processor apparatus of FIG. 1.
- the circuit structure of the sensor signal processor apparatus of FIG. 4 includes a first current source (I ) 111, a second current
- RS source (I ) 112 a first resistance sensor (R ) 121, a secondresistance sensor (R ) 122,
- FIG. 5 illustrates an exemplary structure of the controller 150.
- the controller 150 of FIG. 5 can include a NAND gate 152 and an EX-OR gate 154.
- a mathematical model expressed by Equation 3 below can be obtained from the circuit structure of FIG. 4. Furthermore, times T and T
- 121 and 122 can be measured by counting the number of pulses of a clock signal of the controller 150 for times T and T .
- the controller 150 can be properly configured for
- Cl C2 an application system by using the respective times T and T of Equation 3.
- the controller 150 can be configured using a different ⁇ T between the times T and T as shown in Equation 4 in order for precise measurement with less
- the output values of the first and second resistance sensors 121 and 122 can be measured by counting the number of pulses of a clock signal of the controller 150 for time ⁇ T. Furthermore, as shown in Equation 4, time ⁇ T can be adjusted by varying I /I , and environmental factors decreasing the performance of the sensor signal processor apparatus due to a sensor resistance difference can be removed.
- FIG. 6 illustrates wave forms of signals that are output from the elements of the sensor signal processor apparatus of FIG. 4 according to above-described Equations. In FIG. 6, "switch on” and “switch off” denote turning on and off of the switch S of the ramp integrator 130 in response to the control signal V of the controller 150.
- FIG. 7 is a block diagram illustrating a sensor signal processor apparatus for processing a signal of a resistance sensor according to a second embodiment of the present invention.
- the sensor signal processor apparatus includes a resistance sensor 220, a ramp integrator 230 including a current source generating a constant current according to a sensor resistance of the resistance sensor 220, a digital comparator 240 comparing a voltage V from the ramp integrator 230 with a reference voltage, and a controller 250 receives an output signal V of the digital comparator 240 to generate a control signal V for controlling the ramp integrator 230.
- the digital comparator 240 includes a digital Schmitt trigger.
- FIG. 8 is a block diagram illustrating a modification version of the sensor signal processor apparatus of FIG. 7 having a multiple structure. [90] Referring to FIG.
- the sensor signal processor apparatus includes a plurality of resistance sensors 221 through 225, a plurality oframp integrators 231 through 235 each having a current source, a plurality of digital comparators 241 through 245, and a controller 250.
- the sensor signal processor apparatus of FIG. 8 operates in the same way as the sensor signal processor apparatus of FIG. 7. Since the sensor signal processor apparatus of FIG. 8 includes the plurality of resistance sensors 221 through 225, different properties can be simultaneously measured by a system using the sensor signal processor apparatus.
- FIG. 9 is a circuit diagram illustrating an exemplary circuit structure of the sensor signal processor apparatus of FIG. 7.
- the sensor signal processor apparatus includes a resistance sensor 220, a ramp integrator 230 having a current sensor, a digital comparator 240 comparing a voltage V of the ramp integrator 230 with a predetermined reference voltage, and a controller
- the ramp integrator 230 includes a current source (I ) generating a predetermined
- Equation 5 The characteristics of the sensor signal processor apparatus of FIG. 9 can be expressed by Equation 5 below similar to Equation 1 for the sensor signal processor apparatus of FIG. 3
- the digital comparator 240 receives only one input voltage.
- the digital comparator 240 receives only one input voltage.
- the digital comparator 240 has high and low threshold voltages V and V .
- the digital comparator 240 has high and low threshold voltages V and V .
- An output value of the resistance sensor 220 can be detected by counting the number of pulses of a clock signal of the controller 250 for the time T .
- the clock signal has a higher frequency
- output values of the resistance sensor 220 can be measured more precisely.
- the sensor signal processor apparatus of FIG. 9 includes the digital comparator 240, an additional comparison voltage source (refer to V of FIG. 1) is not necessary.
- FIG. 10 is circuit diagram illustrating an exemplary circuit structure of the sensor signal processor apparatus of FIG. 8.
- the circuit structure of FIG. 10 provides two interfaces as compared with the circuitstructure of FIG. 9 providing an interface.
- the circuit structure of the sensor signal processor apparatus includes two resistance sensors 221 and 222, two ramp integrators 231 and 232 each having a current source, two digital comparator 242 and 242, and a controller 250.
- FIG. 11 illustrates an exemplary structure of the controller 250.
- the controller 250 can include an AND gate 252 and an EX-OR gate 254.
- a mathematical model expressed by Equation 7 below can be obtained from the circuit structure of FIG. 10. Times T Cl and T C2 where out rput voltag &es of dig &ital comparators 241 and 242 change can be calculated using Equation 7. [108] [Equation 7]
- output values of the resistance sensors 221 and 222 can be measured by counting the number of pulses of a clock signal of the controller 250 for times T and T , respectively.
- the controller 250 can be properly configured for an application system by using the respective times T and T of Equation 7.
- the controller 250 can be configured using a different ⁇ T between the times T and T as shown in Equation 8 in order for precise measurement with less
- a nonlinear environment coefficient e.g., a nonlinear temperature coefficient
- the output values of the resistance sensors 221 and 222 can be measured by counting the number of pulses of a clock signal of the controller 250 for ⁇ T. Environmental factors decreasing the performance of the sensor signal processor apparatus due to a sensor resistance difference can be removed.
- FIG. 12 illustrates wave forms of signals output from the elements of the sensor signal processor apparatus of FIG. 10 according to the above-described mathematical models (Equations).
- FIG. 13 is a block diagram illustrating a sensor signal processor apparatus for a capacitive sensor according to a third embodiment of the present invention.
- the sensor signal processor apparatus includes a ramp integrator 330, a comparator 340, and a controller 350.
- the ramp integrator 330 includes a current source (I ) (refer to FIG. 15) generating a constant current, a capacitor (C ) (refer to FIG. 15) receiving the current I of the current source, and a switch S R for charging and discharging the capacitor (C Sl ).
- the comparator 340 compares two voltages. For example, the comparator
- the controller 350 can be configured in various manners.
- the controller 350 can be configured with an N-bit counter and a clock according to application systems.
- the controller 350 can be simply configured with several gate logics.
- the circuitry of the sensor signal processor apparatus can be easily and simply constructed for the capacitive sensor.
- the sensor signal processor apparatus in which values measured by a capacitive sensor are detected by the controller 350 can be used in various application fields for various devices such as a display, a thermometer, a hygrometer, a pressure gage, a thermohygrost at (a temperature and humidity regulator), a velocity meter, and a chip protection device.
- the application fields of the sensor signal processor apparatus can be broadly classified into measuring systems and information security systems.
- FIG. 14 is a block diagram illustrating a modification version of the sensor signal processor apparatus of FIG. 13 having a multiple structure.
- the sensor signal processor apparatus includes a plurality of ramp integrators 331 through 335, a plurality ofcomparators 341 through 345, and a controller 350.
- the comparators 341 through 345 compare an internal or external voltage V SR with voltages V CSl through V CSn received from the ramp integrators 331 through 335.
- a system including the sensor signal processor apparatus can simultaneously measure various properties using various kinds of resistance sensors.
- a system including the sensor signal processor apparatus can simultaneously measure properties such as temperature and humidity using resistance sensors such as a temperature sensor and a humidity sensor. Values measured in this way are processed by the controller 350.
- FIG. 15 is a circuit diagram illustrating an exemplary circuit structure of the sensor signal processor apparatus of FIG. 13.
- the circuit structure of FIG. 15 for the sensor signal processor apparatus includes a ramp integrator 330, a comparator 340, and a controller 350.
- the ramp integrator 330 includes a current source (I ) generating a constant current, a capacitor (C ) (a capacitive sensor) receiving the current I generated by the current source, and a switch S R for charging and discharging the capacitor (C Sl ).
- the comparator 340 compares a voltage V generated by the ramp integrator 330 with an external or internal voltage V SR .
- the controller 350 receives an output signal of the comparator
- the internal voltage V can be
- FIG. 17 An exemplary circuit structure of the ramp integrator 330 for this case is illustrated in FIG. 17.
- the comparator 340 compares the two voltages V CS 1 and V SR , and the voltage level of an output signal of the comparator 140 changes when the two voltages V and V are of the same level (refer to FIG. 18).
- Output values of a resistance sensor can be detected by counting the number of pulses of a clock signal of the controller 350 for the time T .
- the time T can be adjusted by varying I /I , and I and I have the same charac-
- the current source (I ) may include a semiconductor device such as a MOS cs J transistor and a bipolar transistor.
- FIG. 16 is circuit diagram illustrating an exemplary circuit structure for the sensor signal processor apparatus of FIG. 14.
- the circuit structure of FIG. 16 provides two interfaces as compared with the circuits gagture of FIG. 15 providing an interface.
- the sensor signal processor apparatus includes ramp integrators 331 and 332, comparators 341 and 342, and a controller 350 that have the same structures as those of the elements of the sensor signal processor apparatus of FIG. 15.
- the operation of the sensor signal processor apparatus of FIG. 16 can be expressed by the same mathematical model as that for the operation of the sensor signal processor apparatus of FIG. 15.
- the sensor signal processor apparatus of FIG. 16 can be more precise according to the configuration of the controller 350.
- the controller 350 can include a NAND gate and an EX-OR gate like the controller 150 of FIG. 5.
- a mathematical operation model of the sensor signal processor apparatus can be expressed with respect to times T and T where output voltages of the comparators 341 and 342 change, as shown by Equation 12 below.
- controller 350 can be configured for an application system by using the respective times T and T of Equation 12, the controller 350 is configured using a different ??T between the times T and T shown in Equation 13 in order for precise
- output values of resistance sensors can be measured by counting the number of pulses of a clock signal of the controller 350 for time ⁇ T. Furthermore, as shown in Equation 13, time ⁇ T can be adjusted by varying I SR /I CS , and environmental factors decreasing the performance of the sensor signal processor apparatus due to a sensor resistance difference can be removed.
- FIG. 18 illustrates wave forms of signals that are output from the elements of the sensor signal processor apparatus of FIG. 16 according to Equation 13.
- FIG. 19 is a block diagram illustrating a sensor signal processor apparatus for a capacitive sensor according to a fourth embodiment of the present invention. [148] Referring to FIG. 19, the sensor signal processor apparatus includes a ramp integrator
- the ramp integrator 430 includes a current source generating a predeterminedcurrent, a capacitor receiving a current from the current source, and a switch for charging and discharging the capacitor.
- the digital comparator 440 compares a voltage output from the ramp integrator 430 with a predetermined reference voltage.
- the digital comparator 440 includes a digital
- the controller 450 generates a control signal V according to an output signal of the
- FIG. 20 is a block diagram illustrating a modification version of the sensor signal processor apparatus of FIG. 19 having a multiple structure.
- the sensor signal processor apparatus of FIG. 20 has the same operational characteristics as the sensor signal processor apparatus of FIG. 19. However, the sensor signal processor apparatus of FIG. 20 can be used in a system that measures a plurality of properties simultaneously using various capacitive sensors.
- the sensor signal processor apparatus includes a plurality of ramp integrators 431 through 435, a plurality ofdigital comparators 441 through 445, and a controller 450.
- the comparators 441 through 445 compare an internal or external voltage V with voltages V through V received from the ramp integrators 431
- FIG. 21 is a circuit diagram illustrating an exemplary circuit structure of the sensor signal processor apparatus of FIG. 19.
- the sensor signal processor apparatus (an interface for processing a sensor signal) is constructed using a ramp integrator 430 and a digital comparator 440.
- the circuit structure of FIG. 21 for the sensor signal processor apparatus includes the ramp integrator 430, the digital comparator 440, and a controller 450.
- the ramp integrator 430 includes a current source (I ) generating a constant current, a capacitive sensor (C ) receiving a current I from the current source, and a switch S for charging
- the digital comparator 440 compares a voltage V of the ramp integrator 430 with a predetermined voltage.
- the controller 450 receives an output signal V of the digital comparator 440 and generates a control signal V for on-off controlling the ramp integrator 430.
- Equation 14 The circuit structure of FIG. 21 can be expressed by Equation 14 that is equal to Equation 9 for the circuit structure of FIG. 15.
- the digital comparator 440 uses two threshold voltages V and V , and thus the output signal V of the digital thH thL Cl comparator 430 varies in association with the threshold voltages V and V .
- the digital comparator 440 has a high threshold voltage V and a low thH threshold voltage V .
- the digital comparator 440 compares the voltage V of the ramp integrator 430 with the high threshold voltage V .
- the voltage level of an output signal V of the comparator 440 changes when the two voltages V and V are of the same level. That is, the voltage level of the output thH SCl signal V of the comparator 440 changes from 1 to 0.
- Output values of the capacitive sensor can be detected by counting the number of pulses of a clock signal of the controller 450 for the time T . Detection precision can be increased by using a clock signal having a high frequency. Furthermore, an additional power source for a reference voltage is not necessary since the digital comparator 440 is used.
- FIG. 22 is circuit diagram illustrating an exemplary circuit structure for the sensor signal processor apparatus of FIG. 20.
- the circuit structure of FIG. 22 provides two interfaces as compared with the circuits gagture of FIG. 21 providing an interface.
- the sensor signal processor apparatus includes ramp integrators 431 and 432, digital comparators 441 and 442, and a controller 450 that have the same structures as those of the elements of the sensor signal processor apparatus of FIG. 21.
- the operation of the sensor signal processor apparatus of FIG. 22 can be expressed by the same mathematical model as that for the operation of the sensor signal processor apparatus of FIG. 21.
- the sensor signal processor apparatus of FIG. 22 can be more precise according to the configuration of the controller 450.
- the controller 450 can include an AND gate and an EX-OR gate like the controller 250 of FIG. 11.
- a mathematical operation model of the sensor signal processor apparatus can be expressed with respect to times T and T where output voltages of the comparators 441 and 442 change, as shown by Equation 16 below.
- output values of resistance sensors can be measured by counting the number of pulses of a clock signal of the controller 450 for times T and T , respectively.
- the controller 450 can be properly configured for an application system by using the respective times T and T of Equation 16.
- the controller 450 can be configured using a different ⁇ T between the times T and T as
- the output values of the resistance sensors can be measured by counting the number of pulses of a clock signal of the controller 450for time ⁇ T. Environmental factors decreasing the performance of the sensor signal processor apparatusdue to a sensor resistance difference can be removed. Signals that are output from the elements of the sensor signal processor apparatus of FIG. 22 according to Equations 16 have wave forms as illustrated in FIG. 18. However, the wave forms of output voltages V and V of the digital comparator 441 and 442 are inversed.
- a comparator is necessary for the sensor signal processor apparatus of the present invention.
- Various comparators can be used according the circuit structure of the sensor signal processor apparatus. For example, in terms of supply power, comparators that can be used for the sensor signal processor apparatus of the present invention can be classified into comparators receiving positive and negative supply voltages and comparators receiving one of positive and negative supply voltages. Furthermore, according to application systems using the sensor signal processor apparatus, a comparator requiring two power sources or a comparator requiring a single power source can be used.
- FIG. 23 illustrates a comparator 140 of a sensor signal processor apparatus according to an embodimentof the present invention.
- the comparator 140 uses a single supply power source.
- the comparator 140 can use two supply power sources by applying both positive and negative voltages with respect to the ground.
- the comparator 140 can be widely used for processing a sensor signal using a single supply power source.
- the comparator 140 has a simple circuits gagture, and it is easy to construct the comparator 140 using a semiconductor device.
- the comparator 140 is characterized in that an input signal is biased using a p-channel metal oxide semiconductor (PMOS) device.
- PMOS metal oxide semiconductor
- MOS devices Ml to M5 operate as a differential amplifier
- MOS devices M6 and M7 operate as a common-source amplifier.
- the comparator 140 can be mathematically modeled as shown by Equation 18 below. [178] [Equation 18]
- Equation 19 N 821 v r / ⁇ '+ - ⁇ > v ' W- » v ' /,Vl+ - ⁇ > v WM- ' v ⁇ out - - v Y dd
- the comparator 140 is characterized by high impedance at an input terminal and a simple circuits gagture.
- the comparator 140 can be easily constructed using a semiconductordevice such as a MOS device and a bipolar device.
- FIG. 23 illustrates a comparator 140 of a sensor signal processor apparatus according to an embodimentof the present invention.
- the comparator 140 uses a single supply power source.
- Thecomparator 140 can use two supply power sources by applying both positive and negative voltages with respect to the ground.
- FIG. 24 illustrates an application example of the comparator 140 of FIG. 23 using a single supply power source having two current sources.
- FIG. 25 illustrates an exemplary circuitstructure of a comparator using a single supply power source having four current sources
- FIG. 26 illustrates an application example of the comparator of FIG. 25.
- the comparator of FIG. 25 has the same mathematical model as that of the FIG. 23. However, the comparator of FIG. 25 is configured without a resistor.
- FIG. 27 and 28 illustrate an exemplary structure of the digital comparator 440 according to an embodiment of the present invention.
- the digital comparator 440 receives a single input signal and outputs a single output signal.
- the digital comparator 440 uses a high threshold voltage and a low threshold voltage.
- FIG. 27 and 28 illustrate an exemplary digital comparator that can be used in the sensor signal processor apparatus of the present invention.
- an additional power source is not necessary since the digital comparator 440 can perform a comparing operation on a single input signal, as compared with the case of using a comparator requiring two input signals for performing a comparing operation.
- FIG. 29 illustrates an application system 180 and a sensor signal processor apparatus 100 that are connected to each other according to an embodiment of the present invention.
- the sensor signal processor apparatus 100 includes a sensor
- the sensor signal processor apparatus 100 is connected to the application system 180 to provide a processed sensor signal to the application system 180.
- Application systems such as a measuring systemand an information security system can be constructed more easily and simply by using the sensor signal processor apparatus of the present invention.
- the application system 180 when the application system 180 is a display devicerequiring a temperature measurement mechanism, the application system 180 can be easily provided with the temperature measurement mechanism by constructing the sensor signal processor apparatus 100 to process an output signal of a temperature sensor.
- the sensor signal processor apparatus 100 When the application system 180 is a security chip, the sensor signal processor apparatus 100 can be constructed to provide information protection functions to the application system 180.
- FIG. 30 illustrates application examples of sensor signal processor apparatuses to various chips according to embodiments of the present invention.
- a controller 150, an interface 170, and a sensor 120 of a sensor signal processor apparatus are embedded in a chip 1100.
- a controller 150 and an interface 170 of a sensor signal processor apparatus are embedded in a chip 1100, and a sensor 120 of the sensor signal processor apparatus is separated from the chip 1200.
- a controller 150, interfaces 171 and 175, and sensors 121 and 125 of a sensor signal processor apparatus are embeddedin a chip 1300.
- a controller 150 and interfaces 171 and 175 of a sensor signal processor apparatus are embedded in a chip 1400, and sensors 121 and 125 of the sensor signal processor apparatus are separated from the chip 1400.
- FIG. 31 illustrates a relationship between a terminal 1800 and an information security chip 100 including a sensor signal processor apparatus according to an embodiment of the present invention.
- the information security chip 100 is embedded in the terminal 1800 for the purpose of security.
- the information security chip 100 can be embedded in the terminal 1800f or the purpose of security through the following procedures: a sensor security device is embedded in the terminal 1800during a manufacturing process (SlOO); and the terminal 1800 is authenticated in response to a user's request (S200).
- the terminal 1800 requests initial value setting (SI lO). Then, a manufacturer embeds the information security chip 100 into the terminal 1800 and sets a sensor using an initial value, and the information security chip 100 measures the set initial value and stores the measured initial value (S 120).
- the measured initial value is transmitted to the terminal 1800 (S 130). Then, the terminal 1800 performs initial value setting using the received initial value (S 140).
- the terminal 1800 is sold to a user.
- the user requests security authentication (S210).
- the information security chip 100 embedded in the terminal 1800 compares the initial value (Si) of the sensor with an authentication sensor value (SA) (S220).
- SA authentication sensor value
- the information security chip 100 analyzes a chip state using the comparison result and informs the terminal 1800 of the analysis result (s230).
- the terminal 1800 determines whether it is authenticated or not by using the comparison result and reports the determination result to the user (S240).
- FIG. 32 is a view for explaining a method of authenticating an information security chip 100 without association with a terminal according to an embodiment of the present invention.
- the information security chip 100 can be embedded in a smart card for physical safety.
- the information security chip lOO is manufactured by embedding a sensor security device into the information security chip 100 (S300). For this, a user measures and stores an initial value of a sensor (S310).
- the sensor security device authenticates the information security chip 100 in response to a user's request (S400).
- the sensor security device compares an initial value (Si) of the sensor with an authentication sensor value (SA) (S410) and determines from the comparison result whether the information security chip 100 is hacked (S420).
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
L'invention concerne un appareil de processeur de signal de capteur présentant de bonnes caractéristiques et une interface facile et simple destinée à des capteurs variés. L'appareil de processeur de signal de capteur de l'invention comprend une source de courant, un capteur, un intégrateur de rampe, un comparateur et un contrôleur. La source de courant génère un courant constant selon une valeur prédéterminée, et le capteur produit une tension de capteur à l'aide du courant provenant de la source de courant. L'intégrateur de rampe génère et produit une tension intégrale selon une instruction d'entrée, et le comparateur compare la tension du capteur à la tension intégrale de l'intégrateur de rampe et produit un résultat de cette comparaison. Le contrôleur contrôle la génération et la production de la tension intégrale de l'intégrateur de rampe selon le résultat de comparaison du comparateur.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/445,785 US8098148B2 (en) | 2006-10-20 | 2007-10-15 | Sensor signal processor apparatus |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR20060102249 | 2006-10-20 | ||
| KR10-2006-0102249 | 2006-10-20 | ||
| KR10-2007-0019228 | 2007-02-26 | ||
| KR1020070019228A KR100872174B1 (ko) | 2006-10-20 | 2007-02-26 | 센서 신호 처리 장치 및 이를 응용한 정보 보호 칩에서의 신뢰성 인증 방법 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2008048024A1 true WO2008048024A1 (fr) | 2008-04-24 |
Family
ID=39314203
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2007/005028 Ceased WO2008048024A1 (fr) | 2006-10-20 | 2007-10-15 | Appareil de processeur de signal de capteur |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2008048024A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2320567A1 (fr) | 2009-11-10 | 2011-05-11 | STMicroelectronics (Tours) SAS | Circuit de raccordement de capteurs |
| US8450332B2 (en) | 2008-04-21 | 2013-05-28 | Lexicon Pharmaceuticals, Inc. | LIMK2 inhibitors, compositions comprising them, and methods of their use |
| US9374101B2 (en) | 2014-10-21 | 2016-06-21 | Electronics And Telecommunications Research Institute | Sensor device including high-resolution analog to digital converter |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3876933A (en) * | 1973-12-28 | 1975-04-08 | Itt | Resistance measuring instrument with linearized digital readout |
| US4020357A (en) * | 1976-01-29 | 1977-04-26 | Metrologic Instruments, Inc. | Signal processing for print scanners |
| US4337456A (en) * | 1979-04-16 | 1982-06-29 | Leeds & Northrup Company | Analog to digital converter with offset error correction |
-
2007
- 2007-10-15 WO PCT/KR2007/005028 patent/WO2008048024A1/fr not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3876933A (en) * | 1973-12-28 | 1975-04-08 | Itt | Resistance measuring instrument with linearized digital readout |
| US4020357A (en) * | 1976-01-29 | 1977-04-26 | Metrologic Instruments, Inc. | Signal processing for print scanners |
| US4337456A (en) * | 1979-04-16 | 1982-06-29 | Leeds & Northrup Company | Analog to digital converter with offset error correction |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8450332B2 (en) | 2008-04-21 | 2013-05-28 | Lexicon Pharmaceuticals, Inc. | LIMK2 inhibitors, compositions comprising them, and methods of their use |
| EP2320567A1 (fr) | 2009-11-10 | 2011-05-11 | STMicroelectronics (Tours) SAS | Circuit de raccordement de capteurs |
| FR2952488A1 (fr) * | 2009-11-10 | 2011-05-13 | St Microelectronics Tours Sas | Circuit de raccordement de capteurs |
| US8476936B2 (en) | 2009-11-10 | 2013-07-02 | Stmicroelectronics (Tours) Sas | Sensor connection circuit |
| US8963584B2 (en) | 2009-11-10 | 2015-02-24 | Stmicroelectronics (Tours) Sas | Sensor connection circuit |
| US9374101B2 (en) | 2014-10-21 | 2016-06-21 | Electronics And Telecommunications Research Institute | Sensor device including high-resolution analog to digital converter |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7187053B2 (en) | Thermal sensing method and system | |
| US7990305B2 (en) | Current mode double-integration conversion apparatus | |
| EP1164697A1 (fr) | Contacteur à touche sensitive | |
| CN103430032A (zh) | 在触摸感应设备的初始化过程中的导电物体的探测 | |
| US8098148B2 (en) | Sensor signal processor apparatus | |
| CN106092358B (zh) | 一种电阻式传感器信号的处理方法和装置 | |
| CN104570789B (zh) | 半导体器件和电子控制器件 | |
| WO2017211193A1 (fr) | Circuit de détection et de détermination de tension, et système de batterie d'alimentation le comprenant | |
| TW202004511A (zh) | 匯流排系統以及其偵測方法 | |
| WO2008048024A1 (fr) | Appareil de processeur de signal de capteur | |
| CN208968648U (zh) | 一种高精度电子称 | |
| US7023221B1 (en) | Structure of object proximity and position detector | |
| US20070092117A1 (en) | Fingerprint Sensing device using pulse processing | |
| KR20170053047A (ko) | 배터리 전류량을 측정하는 퓨얼 게이지 시스템 및 이를 포함하는 휴대용 전자장치 | |
| US8156354B2 (en) | Power-saving system and method for computer | |
| KR102176201B1 (ko) | 인체 검출 장치 | |
| De Marcellis et al. | Uncalibrated integrable wide-range single-supply portable interface for resistance and parasitic capacitance determination | |
| US6639587B2 (en) | Method and apparatus for a scaleable touch panel controller | |
| CN107728862B (zh) | 触摸检测电路、触摸检测程序和触摸检测方法 | |
| CN107977026A (zh) | 基于陀螺仪传感器的温度控制装置及无人机 | |
| KR100825717B1 (ko) | 가스 검출용 센서 및 그를 포함하는 전자 후각 시스템 | |
| US20120092056A1 (en) | Hysteresis Device | |
| US20200200618A1 (en) | Detection of strain direction in an integrated circuit | |
| US10151807B2 (en) | Magnetic field sensing apparatus with anisotropic magneto-resistive resistors and detection method thereof | |
| TWI889939B (zh) | 觸控感測器互充電取消以及相關系統、方法及設備 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07833337 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 12445785 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 07833337 Country of ref document: EP Kind code of ref document: A1 |