WO2007030189A2 - Synthetiseur rf et emetteur rf ou recepteur equipe du synthetiseur - Google Patents
Synthetiseur rf et emetteur rf ou recepteur equipe du synthetiseur Download PDFInfo
- Publication number
- WO2007030189A2 WO2007030189A2 PCT/US2006/025664 US2006025664W WO2007030189A2 WO 2007030189 A2 WO2007030189 A2 WO 2007030189A2 US 2006025664 W US2006025664 W US 2006025664W WO 2007030189 A2 WO2007030189 A2 WO 2007030189A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- vco
- synthesizer
- phase
- output
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims description 7
- 238000010295 mobile communication Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
- H03L7/18—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03D—DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
- H03D7/00—Transference of modulation from one carrier to another, e.g. frequency-changing
- H03D7/18—Modifications of frequency-changers for eliminating image frequencies
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/087—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
- H03L7/22—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop
- H03L7/23—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop with pulse counters or frequency dividers
- H03L7/235—Nested phase locked loops
Definitions
- the present invention relates to an RF (radio frequency) synthesizer and an RF transmitter or receiver incorporating the RF synthesizer.
- the invention relates to an RF synthesizer which incorporates a VCO (voltage controlled oscillator) useful in a wireless transmitter or receiver for generating a stable RF signal.
- VCO voltage controlled oscillator
- Carrier frequency signals in RF communications transmitters are conventionally generated by a frequency synthesizer including a VCO connected in a phase locked loop (PLL).
- the phase locked loop including the VCO, provides an appropriate stable output signal at a precisely defined frequency.
- the VCO usually employs a resonator portion which provides oscillations in a given frequency band which includes the output signal frequency, a tuning portion, e.g. employing one or more voltage controlled devices such as varactors, which provides tuning of the output frequency in accordance with an input control voltage and an amplifier or active portion.
- RF synthesizers may also be used in RF receivers to provide accurate reference (local oscillator) frequency signals. In many cases, the receiver and transmitter are combined in a single transceiver unit.
- synthesizers for high performance applications e.g. RF high power transmitters or high sensitivity receivers for use in radio base transceiver stations in mobile wireless communications systems, have employed VCOs in which the resonator portion, the tuning portion and the amplifier portion are provided as discrete components. These components are soldered together on a PCB (printed circuit board). This conventional approach has shown several disadvantages.
- VCOs voltage-to-to-VCOs
- VCO parts have to be acquired and handled separately prior to assembly.
- the VCO is costly to assemble from its constituent parts.
- the VCO is constructed separately from the PLL circuits and the combination of the two is time consuming and costly to assemble. Assembly of the VCO and its combination with the PLL circuits is an intricate operation which is prone to assembly errors.
- the VCO suffers from the problem of 'microphonics' in which mechanical vibration of the PCB causes electrical noise in the VCO by piezoelectric modulation.
- the phase noise performance of the VCO is reduced to an undesirably low level by reduction of the Q- f actor of the resonator portion.
- VCOs in the form of an integrated circuit. This solves the problems described above obtained with the use of discrete components.
- the problem of reduced phase noise performance described above is increased with such VCOs as a resonator of sufficient Q-factor cannot be realized using current semiconductor technology used in integrated circuit manufacture. This performance reduction is unacceptable for VCO operation frequencies of 1 GHz or less when the VCO output is intended for receiving or transmitting a carrier signal in applications such as radio base transceiver stations.
- an RF synthesizer as defined in claim 1 of the accompanying claims.
- the novel synthesizer includes a frequency divider which divides down the output frequency provided by the VCO in an output path of the synthesizer, i.e. a path not included in the PLL. This allows a VCO to be used operating at a frequency much higher than the required output frequency of the synthesizer.
- the use of the frequency divider advantageously improves the phase noise performance of the output signal produced by the synthesizer compared with that of the VCO output signal of a prior art synthesizer producing an output signal at the same frequency. This is achieved because the phase noise performance of a signal produced by a VCO can be improved by a factor of 201og ! o(N x ) by applying the frequency division, where N x is the divisor number by which the VCO output signal frequency is divided to produce the synthesizer output signal frequency.
- At least part of the VCO of the novel synthesizer may beneficially be provided in the form of an integrated circuit, e.g. a semiconductor chip, which may also include at least part of the PLL circuitry.
- FIG. 1 is a schematic block circuit illustrating a frequency synthesizer in accordance with an embodiment of the present invention.
- FIG. 2 schematically depicts an integrated circuit which includes the components of the synthesizer of FIG. 1 provided in an area of the integrated circuit.
- FIG. 3 is a schematic block circuit illustrating a frequency synthesizer in accordance with a further embodiment of the present invention.
- FIG. 4 schematically depicts an integrated circuit which includes the components of the synthesizer of FIG. 3 provided in an area of the integrated circuit. DESCRIPTION OF EMBODIMENTS OF THE INVENTION
- the frequency synthesizer 200 includes a reference oscillator 102, e.g. a crystal oscillator or other known form of stable oscillator, a controller 108, a phase frequency detector 110, a charge pump 117, a loop filter 118, a VCO 220 and a feedback frequency divider 114.
- the VCO 220 includes as constituent parts a VCO tuning and resonating block or portion 212 and a VCO active block or portion 216.
- the reference oscillator 102 is connected to the phase frequency detector 110.
- the feedback frequency divider 114 is connected to the phase frequency detector 110, the controller 108 and the VCO active block 116.
- the charge pump 117 is connected to the phase frequency detector 110 and the loop filter 118.
- the loop filter 118 is connected to the VCO tuning and resonating block 212 as well as the charge pump 117.
- the VCO active block 216 is connected to the VCO tuning and resonating block 212 and to the feedback frequency divider 114.
- the loop including the VCO 220, the feedback frequency divider 114, the phase frequency detector 110, the charge pump 117 and the loop filter 118 forms a PLL (phase locked loop) 230.
- the reference oscillator 102 provides a reference signal to the phase frequency detector 110.
- the feedback frequency divider 114 receives a feedback signal, having a frequency Four, as an output from the VCO active block 216.
- the feedback frequency divider 114 divides the frequency of this signal by a divisor number M and provides a resultant signal, having a frequency Fou ⁇ /M, to the phase frequency detector 110.
- the phase frequency detector 110 compares the respective phase and frequency of the reference and feedback signals that it receives and generates an output control signal in response.
- the phase frequency detector 110 operates as follows.
- the phase frequency detector 110 receives two input signals and can produce one of two possible (alternative) output signals.
- the input signals are the reference signal from the reference oscillator 102 and the (variable) feedback signal from the feedback frequency divider 114.
- the two possible output signals are in the form of two types of pulse, i.e. a first type of pulse and a second type of pulse, e.g. known respectively as 'Up' and 'Down' pulses, each of variable width.
- a first type of pulse e.g. an 'Up' pulse
- the phase frequency detector 110 produces a pulse of the first type, e.g. an 'Up' pulse, to indicate this leading by the reference signal.
- the phase frequency detector 110 produces a pulse of the second type, e.g. a 'Down' pulse, to indicate this lagging.
- the pulse width of both the first type of pulse and the second type of pulse is proportional to the phase difference detected between the reference signal and the feedback signal, (thereby causing the phase frequency detector 110 to have a linear phase difference response).
- the detection of frequency difference as well as phase difference between the two input signals applied to the phase frequency detector 110 is provided by the phase frequency detector 110 for example to allow for correction of the frequency difference that occurs when starting up the PLL 230 or when switching channel frequency of the PLL 230, e.g. when the PLL 230 is used in a radio transmitter, e.g. by changing the value of the number M referred to above.
- the phase frequency detector 110 includes an amplifier (not shown) which amplifies the signal provided as an output control signal (a pulse of the first or second type described above, as appropriate).
- the phase frequency detector 110 provides its output control signal to the charge pump 117 and the loop filter 118. If the charge pump 117 receives a pulse of the first kind from the phase frequency detector 110, it drives current into the loop filter 118. If the charge pump 117 receives a pulse of the second kind from the phase frequency detector 110, it draws current out of the loop filter 118.
- the loop filter 118 adjusted in this manner by the charge pump 117, converts the signal from the phase frequency detector 110 comprising a series of pulses into a resultant output control voltage V OUT which is applied as an adjustable bias voltage to the VCO tuning and resonating block 212. Depending on the value of the output control voltage V OUT it receives, the
- VCO tuning and resonating block 212 adjusts an output frequency FQ UT of a signal it produces to be equal to a desired value.
- the VCO active block 216 amplifies the signal of frequency F O UT produced by the VCO tuning and resonating block 212 and provides it as an output signal having a frequency F OUT to an output path 250 as well as to the feedback frequency divider 114 in the PLL 230.
- the loop filter 118 in the synthesizer 200 also filters out jitter, e.g. caused by noise of the charge pump 117, and prevents voltage overshoot.
- the controller 108 in the synthesizer 200 provides selection and control of the value of the divisor number M and thereby provides adjustment of the value of V OUT .
- the divider 114 may be a variable divider.
- the value of M may be varied by rapid switching by the controller 108 according to a pre-defined switching program between a first integer N and a second integer, e.g. N+l. This has the effect of providing an average value of M equal to a value between N and the second integer.
- the variable feedback frequency divider is known in the art as a 'fractional-N' divider.
- the controller 108 may in practice be a programmed digital signal processor. Where the synthesizer 200 is employed in an RF transceiver the controller 108 may perform other control and signal processing functions of the transceiver.
- the VCO 220 operates at a much higher frequency than VCOs of the prior art (for a given output frequency). For example, if the desired output frequency is in the range 100 MHz to 1 GHz, the VCO 220 may be operable to oscillate at a frequency of at least 6 GHz and to produce an output signal having a frequency Fvco at least 6GHz, e.g. in the range 6 GHz to 60 GHz.
- the output signal produced by the VCO 220 is applied to the output path 250 as well as to the feedback frequency divider 114.
- the output path 250 has two branches 251 and 252.
- the branch 251 of the output path 250 includes an output frequency divider 241.
- the branch 252 of the output path 250 includes an output frequency divider 243.
- the output frequency dividers 241 and 243 operate in a known manner to divide the frequency Fvco of the output signal from the VCO 220 by fixed numbers Nl and N2 respectively.
- the number Nl by which the output frequency divider 241 divides the frequency Fvco is different from the number N2 by which the output frequency divider 243 divides the frequency Fvco-
- the numbers Nl and N2 are preferably integers.
- the numbers Nl and N2 depend on the value of Fvco and the value of desired output frequencies. For example, where Fvco is 10 GHz, Nl may be 12 and N2 may be 24 giving respectively output signals having frequencies respectively of 10/12 GHz and 10/24 GHz, i.e. frequencies of about 833 MHz and about 416 MHz.
- the signals of different frequency produced by the output frequency dividers 241 and 243 are delivered to a band selector 245 operating under the control of a controller 247.
- the band selector 245 provides an output signal having a desired frequency Four by selecting an output signal from either the output frequency divider 241 or from the output frequency divider 243 as appropriate.
- the controller 108 of the synthesizer 200 may in practice be a programmed digital signal processor. Where the synthesizer 200 is employed in an RF transceiver, the controller 108 may perform other known control and signal processing functions of the transceiver.
- the controller 247 in practice may also be a programmed digital signal processor. It may be combined with the controller 108 in a single unit. Where the synthesizer 200 is employed in an RF transceiver, the controller 247 may perform other known control and signal processing functions of the transceiver.
- the synthesizer 200 illustrates use of multiple output frequency dividers to produce different output frequencies. In principle, any multiple number of different output frequency dividers may be used. Alternatively, the output path 250 could be connected to a single output frequency divider.
- the synthesizer 200 has been described above in terms of a single frequency division being applied by each of the output frequency dividers 241 and 243, the required division of the output frequency Fvco of the output signal from the VCO 220 may, as will be apparent to those skilled in the art, be carried out in two or more stages in series.
- an overall frequency division by 24 may be obtained by successive divisions of by 8 and by 3.
- the phase noise performance may beneficially be improved in a manner described later.
- production of the VCO 220 in the form of an integrated circuit, e.g. fabricated on a semiconductor chip in a known manner, is greatly facilitated. This is because the dimensions of components needed to operate at the higher frequency are significantly reduced and also the resonator of the VCO resonator tuning and resonating block 212 may be fabricated more easily in integrated circuit form, if necessary avoiding the use of inductors by providing the resonator in the form of an R-C circuit.
- the integrated circuit incorporating the VCO 220 may also include most of the other components of the synthesizer 200.
- the reference oscillator 102 and the loop filter 118 are the only components that will normally need to be supplied separately. In other words, all components enclosed by a dashed line 260 in FIG. 1 may be fabricated together in the form of an integrated circuit. In some cases, it may even be possible to include the loop filter 118 in the integrated circuit.
- FIG. 2 schematically depicts an integrated circuit 270 which includes the components indicated by dashed line 260 in FIG. 1 shown as an area 280 of the integrated circuit.
- the integrated circuit optionally may provide one or more other known functions as provided by components in another area 290 of the integrated circuit.
- PLL oscillator circuits operating at frequencies of 10 GHz or more fabricated in integrated circuit form are already in wide use in the optical communications industry and the technology for producing such circuits can suitably be adapted to produce the synthesizer 200 using the components indicated by area 280 of the integrated circuit 270.
- phase noise performance of the output signal at a frequency F OUT produced by dividing by a number N x the frequency of a signal having a frequency Fvco is enhanced by a factor 2Olog 10 (N x ) compared with the signal of frequency Fvco-
- N x the following examples of phase noise performance figures may be obtained for the synthesizer 200. In these examples, reference is made in each case to an 'offset'. Ideally power is only present at a single wanted frequency - the carrier.
- the 'offset' is unwanted power at a given frequency spacing from the wanted signal.
- the phase noise performance which can be obtained is about -120 dBc (decibels below carrier) at 10 IcHz offset from the carrier, -130 dBc at 25 kHz offset from the carrier, -150 dBc at 500 kHz offset from the carrier and about -170 dBc at 2 MHz offset from the carrier.
- the phase noise performance which can be obtained is about -125 dBc at 10 kHz offset from the carrier, -135 dBc at 25 kHz offset from the carrier, -150 dBc at 500 kHz offset from the carrier and about -170 dBc at 2 MHz offset from the carrier.
- the frequency synthesizer 200 provides compatible phase noise performance compared with a prior art synthesizer of conventional form operating at the same frequency; yet the VCO 220 operates at a much higher frequency than such a prior art synthesizer.
- the prior art synthesizer to be replaced with the synthesizer 200 in which the VCO 220 and other components are in integrated circuit form thereby providing the manufacturing and quality control benefits mentioned above but without significant phase noise performance degradation expected in the prior art.
- the frequency of the reference signal provided by the reference oscillator 102 is at least 100 MHz, e.g. in the range 100 MHz to 200 MHz.
- the frequency of the feedback signal from the feedback frequency divider 114 will also be at least 100 MHz when the PLL 230 is locked.
- the reference frequency determines the feedback divisor number M if the VCO frequency is fixed. This in turn has influence on the loop bandwidth which may be obtained for the PLL 230.
- the noise floor within the loop bandwidth of the PLL 230 is to a large extent determined by the reference frequency. It is highly desirable to minimize the noise floor within the loop bandwidth to optimize the overall phase noise performance of the PLL 230. It has been found that in order to minimize the noise floor, the reference signal frequency should desirably be at least 100 MHz, e.g. from 100 MHz to 200 MHz, preferably between 150 MHz and 170 MHz, when the VCO 230 is operated at 10 GHz. This is also required to obtain a satisfactory value for the loop bandwidth of the PLL 230.
- a suitable low noise oscillator for use as the reference frequency oscillator 102 in the synthesizer 200 is the product sold under the trade name Vectron VCCl- B3B-155M52 which produces an output reference frequency signal at 155 MHz.
- FIG. 3 is a schematic block circuit diagram of a frequency synthesizer, generally referenced as 300, in accordance with a further embodiment of the invention.
- the synthesizer 300 is a modified form of the synthesizer 200.
- the modification employed in the synthesizer 300 is an example of a phase adjusted PLL to correct for spurious phase errors which is the subject of a copending UK patent application of even date by the present Applicant.
- the synthesizer 300 includes a further control loop 330 inside the phase locked loop 230.
- the further control loop 330 includes a phase detector 301 connected to a further loop filter 303 and a phase rotator 305 connected to the further loop filter 303.
- the phase rotator 305 is located in a path 307 between the VCO 220 and the output path 250 and between the VCO 220 and the feedback frequency divider 114.
- the phase detector 301 is connected to the feedback frequency divider 114 and to the reference oscillator 102 and receives as input signals a feedback signal from the feedback frequency divider 114 and a reference signal from the reference oscillator 102.
- the phase detector 301 detects a difference in phase between the feedback signal and the reference signal and provides an output signal indicating the difference in phase to the loop filter 303 which filters and integrates the output signal and provides a control input signal to the phase rotator 305.
- the purpose of the further control loop 330 including the phase rotator 305 is as follows.
- spurious signals can be present in the spectrum of the output signal produced by VCO 220 as a result of the switches in the value of the divisor number used in the feedback frequency division (between use of a divisor N and another integral divisor such as N+l) by the feedback frequency divider 114.
- phase detector 301 measures any phase error arising in this way in the output signal produced by the VCO 220, and a control signal indicating the phase error is provided by the loop filter 303 to the phase rotator 305.
- the phase rotator 305 applies a phase change to the output signal provided by the VCO 220.
- the amount of the phase change applied by the phase rotator 305 is determined adaptively by the control signal applied from the loop filter 303 and is thereby adjusted continuously to be suitable to equalize the detected phase error in the output signal provided by the VCO 220.
- the phase rotator 305 may be an analog or digital phase rotator of known form.
- phase detector 301 a phase frequency detector, e.g. similar to that described earlier (phase frequency detector 110) with reference to FIG. 1, may be used instead.
- a charge pump (not shown) is also used, in the manner described for the charge pump 117 in the synthesizer 200 of FIG. 1.
- the loop bandwidth of the secondary loop, i.e. the further control loop 330 is selected to give rapid phase error equalization and suitable system stability.
- the bandwidth of the further control loop 330 is desirably at least twice, preferably at least ten times the bandwidth of the phase locked loop 230.
- components of the synthesizer 300 may be incorporated in an integrated circuit.
- the integrated circuit may include the additional components of the further control loop 330 except the loop filter 303 which, like the loop filter 118, will normally be supplied separately.
- all components enclosed by a dashed line 360 in FIG. 3 may be fabricated together in the form of an integrated circuit.
- FIG. 4 schematically depicts an integrated circuit 370 which includes the components indicated by dashed line 360 in FIG. 3 shown as an area 380 of the integrated circuit 370.
- the integrated circuit 370 optionally may provide one or more other functions as provided by components in another area 390 of the integrated circuit 370.
- a reference frequency divider (not shown) may be included as an optional component if the frequency of output reference signal provided by the reference oscillator 102 requires division to a suitable scale.
- the PLL 230 in the synthesizers 200 and 300 may be modified in a known manner to operate in a digital or a semi-digital form analogous to the analog form shown in FIGS. 1 and 3.
- a counter e.g. an 'Up/Down' counter which counts the pulses it receives from the phase frequency detector 110 by incrementing for 'Up' pulses and decrementing for 'Down' pulses, each increment or decrement being proportional to the received pulse width.
- the output of the counter is a digital word, for example a 16 bit word, which represents the total number obtained by the incrementing and decrementing procedure for a given sampled frame of the feedback signal.
- the digital word produced by the counter is then fed to a digital encoder which translates the digital word to a digital control word for use in digital control of the VCO 220.
- the output signal produced by the loop filter 118 may for example be converted to digital form by an A/D (analog to digital) converter which produces as an output a digital signal.
- the digital signal so produced is fed to a digital encoder which translates the digital word to a digital control word for use in digital control of the VCO 220.
- the synthesizers 200 and 300 are suitable for use in RF transceivers, e.g. to provide carrier frequency signals for transmission or to provide local oscillator signals for use in receiver processing.
- the synthesizers 200 and 300 are particularly suitable for use in transceivers transmitting at a high power level or receiving a high sensitivity level.
- An example of a high power transmitter level is an output RF power of at least 10 Watts as measured at the radiator (antenna) of the transmitter.
- An example of a high sensitivity receiver is a receiver having a sensitivity better than - 118 dBm at 3% static BER (Bit Error rate) for a ⁇ /4 Differential Quadrature Phase Shift Keyed signal (DQPSK modulation).
- Such a transceiver may be suitable for use in a base transceiver station of a mobile wireless communication system, e.g. in particular one for operation in accordance with TETRA standards.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Transceivers (AREA)
- Transmitters (AREA)
Abstract
Un synthétiseur RF (radiofréquence) (200) comprend un VCO (oscillateur contrôlé par tension) (220) qui émet un signal de sortie à la fréquence souhaitée (FVCO) et, couplé au VCO, un diviseur de fréquence qui reçoit le signal de sortie du VCO et qui fournit un signal de sortie lequel est divisé en fréquence en fonction du signal de sortie du VCO. Le synthétiseur comprend un trajet de sortie (250, 251) qui comporte un diviseur de fréquence (241). Le synthétiseur émet en outre un signal de sortie dans une fréquence de sortie (FVCO/Nx) du diviseur de fréquence. De plus, le synthétiseur peut avantageusement comporter un circuit intégré qui renferme au moins une partie du VCO. Par ailleurs, l'invention concerne un émetteur ou un récepteur RF, devant par exemple servir dans une station de base d'un système de communications mobiles, qui comprend le synthétiseur.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP06786008A EP1935100A4 (fr) | 2005-09-08 | 2006-06-30 | Synthetiseur rf et emetteur rf ou recepteur equipe du synthetiseur |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB0518214A GB2430089B (en) | 2005-09-08 | 2005-09-08 | RF synthesizer and RF transmitter or receiver incorporating the synthesizer |
| GB0518214.2 | 2005-09-08 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2007030189A2 true WO2007030189A2 (fr) | 2007-03-15 |
| WO2007030189A3 WO2007030189A3 (fr) | 2007-07-19 |
Family
ID=35221020
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/025664 WO2007030189A2 (fr) | 2005-09-08 | 2006-06-30 | Synthetiseur rf et emetteur rf ou recepteur equipe du synthetiseur |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP1935100A4 (fr) |
| KR (1) | KR100990802B1 (fr) |
| CN (1) | CN101278486A (fr) |
| GB (1) | GB2430089B (fr) |
| WO (1) | WO2007030189A2 (fr) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019023881A1 (fr) * | 2017-07-31 | 2019-02-07 | 深圳和而泰智能控制股份有限公司 | Circuit d'analyse de l'eau et de l'huile de la peau humaine et instrument de test cutané |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0834589B2 (ja) * | 1990-03-30 | 1996-03-29 | 三菱電機株式会社 | サンプリングクロック発生回路 |
| US6711227B1 (en) * | 1999-02-05 | 2004-03-23 | Broadcom Corporation | Synchronizing method and apparatus |
| US6785525B2 (en) * | 1999-05-21 | 2004-08-31 | Telefonaktiebolaget L M Ericsson (Publ) | Multiband frequency generation using a single PLL-circuit |
| US7426220B2 (en) * | 2002-01-09 | 2008-09-16 | L-3 Communications Corporation | Method and apparatus for aligning the clock signals of transceivers in a multiple access communication system utilizing programmable, multi-tap phase-locked loops |
| US6642800B2 (en) * | 2002-04-04 | 2003-11-04 | Ati Technologies, Inc. | Spurious-free fractional-N frequency synthesizer with multi-phase network circuit |
-
2005
- 2005-09-08 GB GB0518214A patent/GB2430089B/en not_active Expired - Fee Related
-
2006
- 2006-06-30 WO PCT/US2006/025664 patent/WO2007030189A2/fr active Application Filing
- 2006-06-30 EP EP06786008A patent/EP1935100A4/fr not_active Withdrawn
- 2006-06-30 KR KR1020087008359A patent/KR100990802B1/ko not_active Expired - Fee Related
- 2006-06-30 CN CNA2006800327731A patent/CN101278486A/zh active Pending
Non-Patent Citations (1)
| Title |
|---|
| See references of EP1935100A4 * |
Also Published As
| Publication number | Publication date |
|---|---|
| GB2430089B (en) | 2007-10-17 |
| EP1935100A4 (fr) | 2012-04-18 |
| GB2430089A (en) | 2007-03-14 |
| CN101278486A (zh) | 2008-10-01 |
| GB0518214D0 (en) | 2005-10-19 |
| KR100990802B1 (ko) | 2010-10-29 |
| KR20080042181A (ko) | 2008-05-14 |
| WO2007030189A3 (fr) | 2007-07-19 |
| EP1935100A2 (fr) | 2008-06-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101344879B1 (ko) | 주파수 튜닝을 위한 오실레이터, 방법 및 컴퓨터-판독가능 저장 매체 | |
| US6670861B1 (en) | Method of modulation gain calibration and system thereof | |
| US6844763B1 (en) | Wideband modulation summing network and method thereof | |
| EP2238683B1 (fr) | Synthétiseur de fréquences et procédé associé pour générer des signaux à large bande | |
| CN102308478A (zh) | 具有多个调谐环路的频率合成器 | |
| US8115525B2 (en) | Frequency synthesizer | |
| US8004367B2 (en) | VCO control and methods therefor | |
| Collins | Phase-locked loop (PLL) fundamentals | |
| US20050118973A1 (en) | Low leakage local oscillator system | |
| US7190236B2 (en) | Apparatus and method of oscillating wideband frequency | |
| JP4903969B2 (ja) | 回転周波数合成器 | |
| US6459341B1 (en) | Voltage controlled oscillation device | |
| US11973509B2 (en) | Fast frequency synthesizer switching | |
| US20010008384A1 (en) | Method for generating frequencies in a dual phase locked loop | |
| WO2007030358A2 (fr) | Synthetiseur rf et emetteur rf ou recepteur equipe du synthetiseur | |
| US6091943A (en) | Combining oscillator with a phase-indexed control circuit for a radio receiver | |
| US7945218B1 (en) | Method and system for tuning quality factor in high-Q, high-frequency filters | |
| WO2014078311A2 (fr) | Synthèse de fréquence utilisant une boucle à verrouillage de phase | |
| EP1935100A2 (fr) | Synthetiseur rf et emetteur rf ou recepteur equipe du synthetiseur | |
| US7312665B2 (en) | Oscillation control apparatus | |
| EP1271788B1 (fr) | Circuits pour radiocommunication | |
| Petrushin et al. | Forming Microwave Signals with Small Step of Frequency Grid | |
| WO2024245537A1 (fr) | Système de boucle à verrouillage de phase et procédé d'accord d'oscillateur | |
| WO2018224144A1 (fr) | Commande de phase d'une boucle à phase asservie | |
| JPH0661744A (ja) | 送受信周波数変換器 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200680032773.1 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2006786008 Country of ref document: EP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020087008359 Country of ref document: KR |