WO2007019434A1 - Composition de revetement de fil metallique a base de nouveaux imides-amides de polyester et d'amides de polyester - Google Patents
Composition de revetement de fil metallique a base de nouveaux imides-amides de polyester et d'amides de polyester Download PDFInfo
- Publication number
- WO2007019434A1 WO2007019434A1 PCT/US2006/030709 US2006030709W WO2007019434A1 WO 2007019434 A1 WO2007019434 A1 WO 2007019434A1 US 2006030709 W US2006030709 W US 2006030709W WO 2007019434 A1 WO2007019434 A1 WO 2007019434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- enamel
- wire
- polyester
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D177/00—Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
- C09D177/12—Polyester-amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/64—Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
- C08G18/6415—Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
- C08G18/6438—Polyimides or polyesterimides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09D179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/303—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
- H01B3/305—Polyamides or polyesteramides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/303—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
- H01B3/306—Polyimides or polyesterimides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/42—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
- H01B3/421—Polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/12—Polyester-amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
Definitions
- the present invention relates to a new wire-coating composition based on new polyester amide imides and polyester amides which provides excellent enamelled surfaces of electrically conductive wires at elevated enamelling speeds, and is useful for coating of electric conductors.
- the wire-coating agents conventionally used nowadays are solutions of enamelled wire binders, such as, THEIC [tris(hydroxyethyl)isocyanurate] polyesters, polyesters, polyamides, polyamide-imides, THEIC polyester imides, polyester imides or polyurethanes in suitable organic solvents such as, cresol, phenol, benzyl alcohol, propylene carbonate or N-methylpyrrolidone, as well as diluents, such as, xylene, other substituted aromatic substances, aliphatic substances and small additions of additives, catalysts and regulators.
- the solvents are evaporated during thermal curing of the wire coating agents. In order to obtain a high-quality coating, it is necessary to drive out the solvents as completely as possible. In addition to the solvents, byproducts of the curing reactions pass from the enamelling phase into the gas phase as occurs during crosslinking by condensation reactions.
- the user of the wire coating endeavours to increase the output of enamelled electrically conductive wire as much as possible and to obtain the best possible process for the user.
- Even at elevated enamelling speeds not only the solvent but also cleavage products of the crosslinking reaction have to be removed as completely as possible from the enamel in order to achieve adequate crosslinking.
- the oven temperature or catalysis of the crosslinking reaction or both parameters therefore have to be increased to allow substantial crosslinking despite the relatively short residence time of the wire in the oven.
- the faster crosslinking leads to a rapid increase in viscosity, so the dissipation of solvent and condensation products also has to take place in a much shorter period of time.
- EP-A 873198 discusses an enamel which represents a polyamido amine bound to low-molecular acrylates by a Michael reaction.
- DE-A 3133571 proposes a polyurethane wire enamelling system which contains tris(hydroxyethyl)isocyanurate in addition to a polyol and a (blocked) isocyanate component. This system allows a higher enamelling speed than a similar composition without tris(hydroxyethyl)isocyanurate. However, this method is restricted to polyurethane wire enamels.
- DE-A 19648830 proposes a polyester imide wire enamelling resin which allows high enamelling speeds.
- a polyimide is initially produced by reacting polyisocyanate or polyamine with acid or acid anhydride, is reacted with a polyol to form a polyester imide and is subsequently reacted with acid or anhydride.
- This polyester imide is characterised, in particular, in that it also carries a significant number of acid groups in addition to hydroxy groups.
- the enamelling speed is limited by the OH- COOH esterification reaction, which generally takes place more slowly than a transesterification reaction.
- the invention provides wire-coating composition containing resins with nucleophilic groups as well as possibly amide group-containing resins which are capable of crosslinking with one another, comprising
- component (C) 5 to 95% by weight of at least one organic solvent, wherein the resins of either component (A) or, if component B) is contained in the composition, component (B) contain ⁇ -carboxy- ⁇ - oxocycloalkyl carboxylic acid amide groups and the percent by weight of (A) -(C) adds up to 100 percent.
- the wire-coating composition according to the invention allows a significant increase in the enamelling speed without losing the positive properties of standard wire enamels.
- the wire-coating agents according to the invention are stable in storage and exhibit good adhesion to round and profiled electrically conductive wires and have adequate heat shock resistance. An extremely high surface quality is achieved with very good electrical, thermal and mechanical properties, in particular at high enamelling speeds.
- the enamels according to the invention surprisingly also have better adhesion and better mechanical properties than those of the prior art.
- a wire-coating composition which additionally contains phenolic resins and/or melamine resins, catalysts, nano-scale particles and/or element-organic compounds, as well as, optionally conventionally used additives and/or auxiliaries and pigments and/or fillers is preferred.
- Wire-coating compositions of this type comprise
- component (H) 0 to 60% by weight and preferably 0.1 to 60% by weight of conventionally used fillers and/or pigments, wherein the resins of either component (A) or component (B) contain ⁇ -carboxy-/?-oxocyc!oalkyl carboxylic acid amide groups and the percent by weight of (A) - (H) adds up to 100 percent.
- Resins which are known for the coating of wire may be used as component A). These may be polyesters, also, polyesters with heterocyclic nitrogen-containing rings, for example polyesters with imide and hydantoin and benzimidazole structures condensed into the molecule.
- the polyesters are, in particular, condensation products of polybasic aliphatic, aromatic and/or cycloaliphatic carboxylic acids and the anhydrides thereof, polyhydric alcohols and, in the case of the imide- containing polyesters, polyester amino group-containing compounds, optionally, with a proportion of monofunctional compounds, for example, monohydric alcohols.
- the saturated polyester imides are preferably based on terephthalic acid polyester which may also contain polyols and, as an additional dicarboxylic acid component, a reaction product of diaminodiphenylmethane and trimellitic acid anhydride in addition to diols.
- unsaturated polyester resins and/or polyester imides, as well as, polyacrylates may also be used.
- polyamides for example, thermoplastic polyamides, aromatic, aliphatic and aromatic-aliphatic, also polyamide imides of the type produced, for example, from trimelletic acid anhydride and diisocyanato-diphenylmethane. Unsaturated polyesters and/or polyester imides are preferably used.
- composition according to the invention can additionally contain one or more further binders of the type known and conventional in the wire coating industry.
- these may be, for example, polyesters, polyester imides, polyamides, polyamide imides, THEIC-polyester imides, polytitanic acid ester-THEIC-ester imides, phenolic resins, meiamine resins, polymethacrylic imide, polyimides, polybismaleic imides, polyether imides, polybenzoxazine diones, polyhydantoins, polyvinylformals, polyacrylates and derivatives thereof, polyvinylacetals and/or masked isocyanates.
- Polyesters and THEIC-polyester imides are preferably used (Lit.: Behr, "Hochtemperatur brieflyige Kunststoffe” Hanser Verlage, Kunststoff 1969; Cassidy, “Thermally Stable Polymers” New York: Marcel Dekker, 1980; Frazer, "High Temperature Resistant Polymers” New York: Interscience, 1968; Mair, Kunststoffe 77 (1987) 204).
- the amide-containing resins of component B) contain ⁇ -carboxy-j ⁇ - oxocycloalkyl carboxylic acid amide groups as a component which is instrumental to the invention.
- the or-carboxy-/?-oxocycloalkyl carboxylic acid amide groups are preferably incorporated in a terminal position.
- ⁇ -carboxy groups are preferably alkyl- or aryl- esterified.
- ⁇ -carboxy- ⁇ -oxocycloalkyl carboxylic acid amides of this type may be produced, on the one hand, from the corresponding carboxylic acid or the reactive derivatives thereof, such as, carboxylic acid halide groups, carboxylic acid anhydride groups or the like by reaction with amine groups. It is also expedient to use amidation auxiliaries, such as, dicyclohexylcarbodiimide during synthesis from amine and carboxylic acid.
- the ⁇ -carboxy- ⁇ -oxocycloalkyl carboxylic acids may be obtained, for example, by reaction with hafoformic acid esters under basic conditions and subsequent selective saponification.
- 1 -carboxy-2-oxocycloalkanes may in turn be obtained synthetically, for example, from 1 ,n-carboxylic acid diesters by reaction with bases with alcohol cleavage.
- said ⁇ -carboxy-/?-oxocycloalkyl carboxylic acid amides may also be produced by reaction of said 1 -carboxy-2-oxocycloalkanes with isocyanates under basic condition.
- Said 1 -carboxy-2-oxocycloalkanes may be obtained, for example, from glutaric acid dialkyl esters, glutaric acid diaryl esters, adipic acid dialkyl esters, adipic acid diaryl esters, pimelic acid dialkyl esters, pimelic acid diaryl esters, octanoic dyacid dialkyl esters, octanoic dyacid diaryl esters and the alkyl-, aryl-, alkoxy-, aryloxy-, alkylcarboxy-, aryicarboxy-, halogen- and otherwise substituted derivatives thereof, particularly preferably from adipic acid dimethyl and ethyl ester.
- the aforementioned isocyanates may be, for example, propylene diisocyanate, trimethylene diisocyanate, tetramethyle diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, ethylethylene diisocyanate, 3,3,4-trimethyl hexamethylene diisocyanate, 1 ,3-cyclopentyl diisocyanate, 1 ,4-cyclohexyl diisocyanate, 1 ,2-cyclohexyl diisocyanate, 1 ,3-phenylene diisocyanate, 1 ,4-phenylene diisocyanate, 2,5-toluylene diisocyanate, 2,6-toluyIene diisocyanate, 4,4'-biphenylene diisocyanate, 1 ,5-naphthylene diisocyanate, 1 ,4-naphthylene diisocyanate, 4,4'
- Excess urethanes or ureas obtained from said isocyanates obtainable, for example, by reaction with ethylene glycol, propylene glycol, butane diol, 1 ,3-propane diol, hexane diol, neopentyl glycol, trimethylol propane, glycerine, pentaerythritol and other diols, triols, tetraols, polyols or else amino alcohols, diamines, triamines and polyamines may also be used.
- the aforementioned amines used for amidation may be aliphatic primary diamines, such as, ethylene diamine, propylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, cycloaliphatic diamines such as, 4,4'-dicyclohexylmethane diamine or else triamines, and it is also possible to use secondary amines.
- the amines may also be aromatic amines, such as, diaminodiphenylmethane, phenylene diamine, polynuclear aromatic amines with a functionality of > 2, toluylene diamines or corresponding derivatives.
- amines with a further functional group in the molecule for example, amino alcohols such as, monoethanol amine and/or monopropanol amines, or amino acids, such as, glycine, aminopropanoic acids, aminocaproic acids or amine-benzoic acids and the esters thereof.
- amino alcohols such as, monoethanol amine and/or monopropanol amines
- amino acids such as, glycine, aminopropanoic acids, aminocaproic acids or amine-benzoic acids and the esters thereof.
- ⁇ -carboxy- ⁇ -oxocycloalkyl carboxylic acid amide groups may also be incorporated directly into component A). This can be achieved, for example, by reaction of the resin of component A) with di- or polyisocyanates and at least one carboxy-/?-oxocycloalkane.
- the compositions can contain one or more organic solvents, such as, aromatic hydrocarbons, N-methylpyrrolidone, cresols, phenols, xylenols, styrenes, vinyl toluene, methylacrylates.
- organic solvents such as, aromatic hydrocarbons, N-methylpyrrolidone, cresols, phenols, xylenols, styrenes, vinyl toluene, methylacrylates.
- Catalysts such as, tetrabuty! titanate, isopropyl titanate, cresol titanate, the polymeric forms thereof, dibutyl tin dilaurate, further tin catalysts, may be used, individually or in a mixture, as the component D).
- Phenolic resins and/or melamine resins which may be used as the component E) may be, for example, novolaks, obtainable by polycondensation of phenols and aldehydes or polyvinyl formals, obtainable from polyvinyl alcohols and aldehydes and/or ketones.
- Blocked isocyanates such as, NCO-adducts of polyols, amines, C- H-acidic compounds (for example, acetoacetic esters, malonic esters, etc.) and diisocyanates (for example, Lit. Methoden der org. Chemie, Houben- Weyl, Georg Thieme Verlag, Stuttgart, 4 th edition, Vol. 14/2, Part 2 "Makromolekulare Stoffe", 1963, page 61 ) may also be used as the component E, cresols and/or phenols conventionally being used as blocking agents.
- NCO-adducts of polyols, amines, C- H-acidic compounds for example, acetoacetic esters, malonic esters, etc.
- diisocyanates for example, Lit. Methoden der org. Chemie, Houben- Weyl, Georg Thieme Verlag, Stuttgart, 4 th edition, Vol. 14/2, Part 2 "Makromolekulare Stoffe", 1963, page
- Conventional additives and auxiliaries of component F) include, for example, conventional enamel additives, such as, extenders, plasticising components, accelerators (for example metal salts, substituted amines), initiators (for example photo initiators, heat-responsive initiators), stabilisers (for example, hydroquinones, quinones, alkylphenols, alkylphenol ethers), defoamers and flow control agents.
- Nano-scale particles of component G) include particles with an average particle size in the range of 1 to 300 nm, preferably in the range of 2 to 80 nm. These are, for example, inorganic nano-scale particles based on compounds, such as, Si ⁇ 2, AI 2 O 3 , TiO 2 , boronitride, silicon carbide.
- the particles can be, for example, compounds based on an element-oxygen network comprising elements from the series consisting of silicon, zinc, aluminium, tin, boron, germanium, gallium, lead, the transition metals and the lanthanides and actinides, in particular, from the series consisting of silicon, titanium, zinc, yttrium, cerium, vanadium, hafnium, zirconium, nickel and/or tantalum.
- the surface of the element- oxygen network of these particles being modifiable with reactive organic groups, as described, for example, in EP-A 1166283.
- compositions may contain as the component H) pigments and/or fillers, for example based on SiO 2 , AI 2 O3, TiO 2 , Cr 2 O 3 , for example, colour-imparting inorganic and/or organic pigments, such as, titanium dioxide or carbon black and effect pigments, such as, metal flake pigments and/or pearlescent pigments.
- component H pigments and/or fillers, for example based on SiO 2 , AI 2 O3, TiO 2 , Cr 2 O 3 , for example, colour-imparting inorganic and/or organic pigments, such as, titanium dioxide or carbon black and effect pigments, such as, metal flake pigments and/or pearlescent pigments.
- the coating composition can additionally contain monomeric and/or polymeric element-organic compounds.
- polymeric organo- element compounds include inorganic-organic hybrid polymers of the type mentioned, for example, in DE-A 198 41 977.
- monomeric organo-element compounds include ortho-titanic acid esters and/or ortho- zirconic acid esters such as, nonyl, cetyl, stearyl, triethanolamine, diethanolamine, acetylacetone, acetoacetic ester, tetraisopropyl, cresyl, tetrabutyltitanate and zirconate as well as titanium tetralactate, hafnium and silicon compounds, for example hafnium tetrabutoxide and tetraethyl silicate and/or various silicone resins.
- Additional polymeric and/or monomeric organo-element compounds of this type may be contained, for example in a content of 0 to 70% by weight, in the composition according to the invention.
- Component A) and component B) can enter chemical reactions during the stoving (baking) process.
- suitable reactions known to the person skilled in the art include, for example, an ester interchange reaction, polymerisation reaction, polyaddition reaction, condensation reaction. Addition reactions between component A) and B) 1 for example, ring opening in B) by nucleophilic attack of A), are preferred.
- a polyester amide imide wire coating or a polyester amide wire coating is formed by the chemical reactions during the stoving process.
- the composition according to the invention may optionally also be mixed with conventional wire enamels and subsequently be applied by conventional methods.
- the composition according to the invention may be applied by conventional methods independently of the type and diameter of the electrically conductive wire used.
- the wire may be coated directly with the composition according to the invention and subsequently be stoved (baked) in an oven. Coating and stoving may optionally take place several times in succession.
- the ovens may be arranged horizontally or vertically, the coating conditions, such as, duration and number of coatings, stoving temperature, coating speed being adapted to the type of wire to be coated.
- the coating temperatures may lie in a range from room temperature to 400 0 C.
- ambient temperatures above 400 0 C for example of up to 800°C and higher, may be possible during the enamelling process without affecting the quality of the coating according to the invention.
- the stoving may be supported by irradiation with infrared (IR) and/or near infrared (NIR) radiation with techniques known for a person skilled in the art.
- composition according to the invention may be used independently of the type and diameter of the electrically conductive wire; for example, wires having a diameter of 5 ⁇ m to 6 mm may be coated.
- the conventional metallic conductors made, for example, of copper, aluminium, zinc, iron, gold, silver or alloys thereof may be used as the wires.
- the coating composition according to the invention may be contained as a component of a multilayer enamel.
- This multilayer enamel can contain, for example, at least one coating composition according to the invention.
- the electrically conductive wires may be coated with or without existing finishes.
- Existing finishes may be, for example, insulating coatings and flame-retardant coatings.
- the layer thickness of the coating according to the invention can differ greatly.
- compositions based on polyamides, polyamides imides and poiyimides are particularly suitable as topcoats.
- the composition according to the invention is also suitable as a single-layer application.
- the composition may be applied in conventional layer thicknesses.
- Thin layers of, for example, 5 to 10 ⁇ m may also be applied without influencing the resistance to partial discharge achieved according to the invention nor the adhesion, strength and extensibility of the finishes.
- the dry layer thickness can vary, according to the standardised values for thin and thick electrically conductive wires, for example, for thin wires in low thicknesses of 5 to 10 ⁇ m, and for thick wires in thicknesses of about 75 to 89 ⁇ m.
- the mixture is heated to 210 0 C within 3 hours while stirring and is kept at this temperature until the solid resin has reached a viscosity of 710 mPas (1 :2 in m-cresol, 25°C). 52 g water are distilled off. The residue is now cooled to 18O 0 C and 509 g cresol are added.
- the resultant polyester imide solution has a solids content of 60.3%.
- the mixture is now cooled to 180 0 C and 490.5 g cresol are added along with 21.6 g ortho-titanic acid-tetra- butyl ester at 150 0 C max.
- the resultant polyester solution has a solids content of 59.7%.
- Example 3 (Amide Group-Containing Polvurethane Resin as the Component B) 150.0 g xylene, 346.5 g Desmodur® 44 M, Please identify 0.2 g of a conventional catalyst (for example, hydroxide), 49.6 g trimethylol propane and 216.5 g 2-oxo-cyclopentyl carboxylic acid ethyl ester are heated to 70 0 C in a 2-litre three-neck flask with stirrer, reflux condenser and thermometer, until the NCO-number has fallen to ⁇ 6.5% after approx. 4 hours.
- a conventional catalyst for example, hydroxide
- 49.6 g trimethylol propane 49.6 g trimethylol propane
- 216.5 g 2-oxo-cyclopentyl carboxylic acid ethyl ester are heated to 70 0 C in a 2-litre three-neck flask with stirrer, reflux condenser and thermometer, until the NCO-number
- the mixture is then cooled to 4O 0 C, 160.0 g of a polyester imide resin solution (solids content 30.2% in cresol, hydroxyl number 322 mgKOH/g) are added and heated to 14O 0 C .
- a viscosity of 1040 mPas (4:4 in cresol, 25°C) is achieved after 3 hours.
- the mixture is then diluted with 577.2 g cresol and the resin filtered.
- the resultant amidourethane resin solution has a viscosity of 5500 mPas at 25 0 C and a solids content of 44.6%.
- Example 5 (Amido Group-Containing Resin as the Component B) 150.0 g xylene, 304.0 g Desmodur® VL (please identify), 0.2 g of a conventional catalyst (for example hydroxide) and 356.9 g 2-oxo- cyclopentylcarboxylic acid ethyl ester are heated to 7O 0 C in a 2-litre three- neck flask with stirrer, reflux condenser and thermometer until the NCO number has dropped to ⁇ 0.5% after approx. 4 hours. A viscosity of 980 mPas (4: 5 in cresol, 25°C) is reached after 3 hours. The mixture is then diluted with 688.9 g cresol and the resin filtered. The resultant amide resin solution has a viscosity of 4200 mPas at 25°C and a solids content of 44.6%.
- a conventional catalyst for example hydroxide
- the resultant wire enamel has a solids content of 39.7% and a viscosity at 25 0 C of 1250 mPas.
- Enamel 6b 479.0 g of the polyester imide solution from Example 1 , 214.0 g of the amido urethane resin solution for Example 3, 173.3 g cresol, 84.0 g aromatic hydrocarbon mixture, 30.6 g benzyl alcohol, 10.2 g of a conventional commercial catalyst A and small amounts (8.9 g) of conventional commercial surface additives and phenolic resins are made up into an enamel while stirring.
- the resultant wire enamel has a solids content of 39.9% and a viscosity at 25 0 C of 1320 mPas.
- Enamel 6c 479.0 g of the polyester imide solution from Example 1 , 214.0 g of the amido urethane resin solution for Example 3, 173.3 g cresol, 84.0 g aromatic hydrocarbon mixture, 30.6 g benzyl alcohol, 10.2 g of a conventional commercial catalyst A and small amounts (8.9 g) of conventional commercial surface additives and phenolic resins are made up into an enamel while stirring.
- Enamel 6d 274.0 g of the polyester imide solution from Example 1 , 490.0 g of the amido urethane resin solution for Example 3, 106.3 g cresol, 80.0 g aromatic hydrocarbon mixture, 30.6 g benzyl alcohol, 10.2 g of a conventional commercial catalyst A and small amounts (8.9 g) of conventional commercial surface additives and phenolic resins are made up into an enamel while stirring.
- the resultant wire enamel has a solids content of 40.0% and a viscosity at 25°C of 1420 mPas.
- Enamel 7d 366.0 g of the polyester solution from Example 2, 508.0 g of the amido urethane resin solution from Example 3, 6.5 g cresol, 9.5 g benzyl alcohol, 13.0 g cyclohexanone, 15.0 methyldiglycol, 3.0 g aromatic hydrocarbon mixture A, 11.0 g aromatic hydrocarbon mixture B and 68.0 g of conventional commercial surface additives and phenolic resins are made up to an enamel while stirring.
- the resultant wire enamel has a solids content of 49.9% and a viscosity at 25 0 C of 4430 mPas.
- the resultant wire enamel has a solids content of 39.7% and a viscosity at 25°C of 1250 mPas (corresponding to enamel 6a).
- the resultant wire enamel has a solids content of 39.8% and a viscosity at 25 0 C of 1310 mPas.
- the resultant wire enamel has a solids content of 50.4% and a viscosity at 25°C of 3920 mPas (corresponding to enamel 7a).
- Enamel 9e 204.0 g of the polyester solution from Example 2, 726.3 g of the amido ester resin solution from Example 4, 1.7 g benzyl alcohol and 68.0 g conventional commercial surface additives and phenolic resins are made up into an enamel while stirring.
- the resultant wire enamel has a solids content of 50.6% and a viscosity at 25°C of 4300 mPas.
- the resultant wire enamel has a solids content of 39.6% and a viscosity at 25°C of 1150 mPas.
- Enamel 10d 353.8 g of the polyester imide solution from Example 1 , 382.7 g of the amide resin solution from Example 5, 124.6 g cresol, 89.2 g aromatic hydrocarbon mixture, 30.6 g benzyl alcohol, 10.2 g of a conventional commercial catalyst A and small amounts (8.9 g) of commercial surface additives and phenolic resins are made up into an enamel while stirring.
- the resultant wire enamel has a solids content of 39.8% and a viscosity at 25°C of 1210 mPas.
- Enamel 11 a (prior art V.
- the resultant wire enamel has a solids content of 50.4% and a viscosity at 25°C of 3920 mPas (corresponding to enamel 7a).
- Enamel 11c 566.1 g of the polyester solution from Example 2, 240.0 g of the amide resin solution from Example 5, 11.3 g cresol, 19.6 g benzyl alcohol, 27.9 g cyclohexanone, 34.2 g methyldiglycol, 6.9 g aromatic hydrocarbon mixture A 1 26.0 g aromatic hydrocarbon mixture B and 68.0 g conventional commercial surface additives and phenolic resins are made up to an enamel while stirring.
- the resultant wire enamel has a solids content of 49.6% and a viscosity at 25°C of 3040 mPas.
- EnameJ 11 d 456.4 g of the polyester solution from Example 2, 386.9 g of the amide resin solution from Example 5, 8.7 g cresol, 13.9 g benzyl alcohol, 19.6 g cyclohexanone, 23.8 g methyldiglycol, 5.2 g aromatic hydrocarbon mixture A, 17.5 g aromatic hydrocarbon mixture B and 68.0 g conventional commercial surface additives and phenolic resins are made up to an enamel while stirring.
- the resultant wire enamel has a solids content of 49.7% and a viscosity at 25 0 C of 4030 mPas.
- 0.65 mm diameter copper wire was enamelled at an oven temperature of 580 °C, at 38 and 46 m/min respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Organic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008526105A JP2009504845A (ja) | 2005-08-08 | 2006-08-07 | 新規ポリエステルアミドイミド及びポリエステルアミドをベースとする電線被覆用組成物 |
| BRPI0615965-6A BRPI0615965A2 (pt) | 2005-08-08 | 2006-08-07 | composição de revestimento de fios, processo de revestimento de fios condutores de eletricidade e fio condutor de eletricidade |
| CN2006800296343A CN101243148B (zh) | 2005-08-08 | 2006-08-07 | 基于新的聚酰胺酰亚胺酯和聚酰胺酯的漆包线漆组合物 |
| EP06789511A EP1913106A1 (fr) | 2005-08-08 | 2006-08-07 | Composition de revetement de fil metallique a base de nouveaux imides-amides de polyester et d'amides de polyester |
| MX2008001726A MX2008001726A (es) | 2005-08-08 | 2006-08-07 | Composicion de recubrimiento de cable basado en nuevas imidas de amidas de poliester y amidas de poliester. |
| AU2006278414A AU2006278414A1 (en) | 2005-08-08 | 2006-08-07 | Wire-coating composition based on new polyester amide imides and polyester amides |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US70646005P | 2005-08-08 | 2005-08-08 | |
| US60/706,460 | 2005-08-08 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2007019434A1 true WO2007019434A1 (fr) | 2007-02-15 |
Family
ID=37492836
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/030709 Ceased WO2007019434A1 (fr) | 2005-08-08 | 2006-08-07 | Composition de revetement de fil metallique a base de nouveaux imides-amides de polyester et d'amides de polyester |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US20070031672A1 (fr) |
| EP (1) | EP1913106A1 (fr) |
| JP (1) | JP2009504845A (fr) |
| KR (1) | KR20080034990A (fr) |
| CN (1) | CN101243148B (fr) |
| AU (1) | AU2006278414A1 (fr) |
| BR (1) | BRPI0615965A2 (fr) |
| MX (1) | MX2008001726A (fr) |
| WO (1) | WO2007019434A1 (fr) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008079237A1 (fr) * | 2006-12-22 | 2008-07-03 | E. I. Du Pont De Nemours And Company | Émail autoaggloméré à base de nouveaux polyester amide imides et polyester amides |
| WO2009079542A1 (fr) * | 2007-12-18 | 2009-06-25 | E. I. Du Pont De Nemours And Company | Procédé de fixation d'articles enroulés |
| WO2009079540A1 (fr) * | 2007-12-18 | 2009-06-25 | E. I. Du Pont De Nemours And Company | Procédé de revêtement de l'acier électrique |
| JP2011512420A (ja) * | 2007-12-20 | 2011-04-21 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 巻回物を固定するための組成物 |
| JP2011515549A (ja) * | 2008-03-25 | 2011-05-19 | ロディア オペレーションズ | ポリアミド組成物 |
| CN103059702A (zh) * | 2012-12-29 | 2013-04-24 | 四川东材科技集团股份有限公司 | 一种环保改性耐热聚酯漆包线漆及其制备方法 |
| WO2013096238A1 (fr) * | 2011-12-20 | 2013-06-27 | U.S. Coatings Ip Co. Llc | Procédé de revêtement avec composition auto-réticulable pour tôle magnétique en acier |
| CN103725148A (zh) * | 2013-11-25 | 2014-04-16 | 铜陵天河特种电磁线有限公司 | 一种多树脂复合漆包线漆及其制备方法 |
| CN104087153A (zh) * | 2014-07-18 | 2014-10-08 | 上海晟然绝缘材料有限公司 | 一种润滑性优异的聚酰胺漆包线漆及其制备方法 |
| CN104178022A (zh) * | 2014-07-18 | 2014-12-03 | 上海晟然绝缘材料有限公司 | 一种高速机用耐热无孔漆包线绝缘漆的制备方法 |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102009003512A1 (de) * | 2009-02-20 | 2010-09-02 | Elantas Gmbh | Umweltfreundlicher lötbarer Drahtlack |
| DE102009026343A1 (de) * | 2009-08-06 | 2011-02-17 | Elantas Gmbh | Lösemittelzusammensetzung und Drahtbeschichtungsmittel |
| CN102936451A (zh) * | 2011-08-16 | 2013-02-20 | 上海晟然绝缘材料有限公司 | 超微细线用180级聚氨酯漆包线绝缘漆的制备方法 |
| BR112014010692A2 (pt) | 2011-11-04 | 2017-04-25 | Valspar Sourcing Inc | artigo, e, método de revestimento de um substrato metálico |
| EP2746353A1 (fr) * | 2012-12-18 | 2014-06-25 | PPG Industries Ohio Inc. | Composition de revêtement |
| CN103725171A (zh) * | 2013-11-25 | 2014-04-16 | 铜陵天河特种电磁线有限公司 | 一种不饱和聚酯树脂漆包线漆及其制备方法 |
| CN103725167A (zh) * | 2013-11-25 | 2014-04-16 | 铜陵天河特种电磁线有限公司 | 一种改性聚酯漆包线漆及其制备方法 |
| JP2019175679A (ja) * | 2018-03-28 | 2019-10-10 | 東特塗料株式会社 | スチルベン系ポリエステルイミドよりなる電気絶縁材料、電気絶縁塗料及び電気絶縁電線 |
| EP4259730A1 (fr) * | 2020-12-11 | 2023-10-18 | Asta Energy Solutions GmbH | Laquage photonique de fils |
| CN117995473A (zh) * | 2024-03-13 | 2024-05-07 | 江西中易微连新材料科技有限公司 | 一种耐磨抗电晕漆包铜圆线 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1988009359A1 (fr) * | 1987-05-25 | 1988-12-01 | Basf Lacke + Farben Aktiengesellschaft | Utilisation d'agents de revetement a base de resine imide de polyester pour le revetement de bandes metalliques |
| DE10260299A1 (de) * | 2002-12-20 | 2004-07-01 | Bayer Ag | Reaktivsysteme, deren Herstellung und deren Verwendung |
| DE10260269A1 (de) * | 2002-12-20 | 2004-07-01 | Bayer Ag | Neue Dual Cure-Systeme |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3956239A (en) * | 1974-10-25 | 1976-05-11 | Asahi Kasei Kogyo Kabushiki Kaisha | Epoxy resin composition including amide derivative of 4-aminomethyl-1,8-diaminooctane |
| DE3133571A1 (de) * | 1981-08-25 | 1983-03-10 | Bayer Ag, 5090 Leverkusen | Verfahren zur herstellung von ueberzuegen und die verwendung von n,n',n" -tris-(2-hydroxyethyl)-isocyanurat als zusatzmittel fuer drahtlacke auf polyurethanbasis |
| GB2212830B (en) * | 1987-11-26 | 1992-07-08 | Matsushita Electric Works Ltd | Vibration-controlling member |
| US5786086A (en) * | 1996-01-02 | 1998-07-28 | Union Camp Corporation | Conductive wire coating |
| DE19648830A1 (de) * | 1996-11-26 | 1998-05-28 | Beck & Co Ag Dr | Verfahren zur Herstellung carboxyl- und hydroxylgruppenhaltiger Polyesterimide und deren Verwendung in Drahtlacken |
| AU5740999A (en) * | 1998-09-01 | 2000-03-21 | Basf Aktiengesellschaft | Cycloalkyl carboxylic acid amides, their production and their use as fungicides in agriculture |
| HU226903B1 (en) * | 2001-07-03 | 2010-01-28 | Bayer Ag | Cyclic ketones as blocking agents |
| JP2003035552A (ja) * | 2001-07-25 | 2003-02-07 | Nec Corp | 最適経路検索・誘導システム及びそれに用いる最適経路検索・誘導方法 |
| JP2004055185A (ja) * | 2002-07-17 | 2004-02-19 | Toshiba Aitekku Kk | エナメル線 |
| US7923500B2 (en) * | 2003-08-21 | 2011-04-12 | Rensselaer Polytechnic Institute | Nanocomposites with controlled electrical properties |
| CN1635038A (zh) * | 2003-12-25 | 2005-07-06 | 左晓兵 | 一种新型f级高速聚氨酯漆包线漆的制备方法 |
| CN100345924C (zh) * | 2004-08-03 | 2007-10-31 | 中国化工建设总公司常州涂料化工研究院 | 盐水针孔性能良好可低温直焊的h级聚氨酯漆包线漆 |
-
2006
- 2006-08-04 US US11/499,060 patent/US20070031672A1/en not_active Abandoned
- 2006-08-07 JP JP2008526105A patent/JP2009504845A/ja active Pending
- 2006-08-07 AU AU2006278414A patent/AU2006278414A1/en not_active Abandoned
- 2006-08-07 CN CN2006800296343A patent/CN101243148B/zh not_active Expired - Fee Related
- 2006-08-07 BR BRPI0615965-6A patent/BRPI0615965A2/pt not_active IP Right Cessation
- 2006-08-07 EP EP06789511A patent/EP1913106A1/fr not_active Withdrawn
- 2006-08-07 KR KR1020087005655A patent/KR20080034990A/ko not_active Abandoned
- 2006-08-07 MX MX2008001726A patent/MX2008001726A/es unknown
- 2006-08-07 WO PCT/US2006/030709 patent/WO2007019434A1/fr not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1988009359A1 (fr) * | 1987-05-25 | 1988-12-01 | Basf Lacke + Farben Aktiengesellschaft | Utilisation d'agents de revetement a base de resine imide de polyester pour le revetement de bandes metalliques |
| DE10260299A1 (de) * | 2002-12-20 | 2004-07-01 | Bayer Ag | Reaktivsysteme, deren Herstellung und deren Verwendung |
| DE10260269A1 (de) * | 2002-12-20 | 2004-07-01 | Bayer Ag | Neue Dual Cure-Systeme |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008079237A1 (fr) * | 2006-12-22 | 2008-07-03 | E. I. Du Pont De Nemours And Company | Émail autoaggloméré à base de nouveaux polyester amide imides et polyester amides |
| RU2464290C2 (ru) * | 2007-12-18 | 2012-10-20 | Е.И. Дюпон Де Немур Энд Компани | Способ покрытия электротехнической стали |
| WO2009079540A1 (fr) * | 2007-12-18 | 2009-06-25 | E. I. Du Pont De Nemours And Company | Procédé de revêtement de l'acier électrique |
| JP2011510482A (ja) * | 2007-12-18 | 2011-03-31 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 巻回物を固定する方法 |
| WO2009079542A1 (fr) * | 2007-12-18 | 2009-06-25 | E. I. Du Pont De Nemours And Company | Procédé de fixation d'articles enroulés |
| CN101970588B (zh) * | 2007-12-18 | 2013-10-23 | 纳幕尔杜邦公司 | 涂覆电工钢的方法 |
| JP2011512420A (ja) * | 2007-12-20 | 2011-04-21 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 巻回物を固定するための組成物 |
| JP2011515549A (ja) * | 2008-03-25 | 2011-05-19 | ロディア オペレーションズ | ポリアミド組成物 |
| WO2013096238A1 (fr) * | 2011-12-20 | 2013-06-27 | U.S. Coatings Ip Co. Llc | Procédé de revêtement avec composition auto-réticulable pour tôle magnétique en acier |
| US9657192B2 (en) | 2011-12-20 | 2017-05-23 | Axalta Coating Systems Ip Co., Llc | Coating process with self-crosslinkable composition for electrical steel sheet |
| CN103059702A (zh) * | 2012-12-29 | 2013-04-24 | 四川东材科技集团股份有限公司 | 一种环保改性耐热聚酯漆包线漆及其制备方法 |
| CN103725148A (zh) * | 2013-11-25 | 2014-04-16 | 铜陵天河特种电磁线有限公司 | 一种多树脂复合漆包线漆及其制备方法 |
| CN104087153A (zh) * | 2014-07-18 | 2014-10-08 | 上海晟然绝缘材料有限公司 | 一种润滑性优异的聚酰胺漆包线漆及其制备方法 |
| CN104178022A (zh) * | 2014-07-18 | 2014-12-03 | 上海晟然绝缘材料有限公司 | 一种高速机用耐热无孔漆包线绝缘漆的制备方法 |
| CN104087153B (zh) * | 2014-07-18 | 2017-02-15 | 上海晟然绝缘材料有限公司 | 一种润滑性优异的聚酰胺漆包线漆及其制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2009504845A (ja) | 2009-02-05 |
| EP1913106A1 (fr) | 2008-04-23 |
| BRPI0615965A2 (pt) | 2011-05-31 |
| MX2008001726A (es) | 2008-04-07 |
| AU2006278414A1 (en) | 2007-02-15 |
| CN101243148B (zh) | 2011-10-05 |
| KR20080034990A (ko) | 2008-04-22 |
| CN101243148A (zh) | 2008-08-13 |
| US20070031672A1 (en) | 2007-02-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2121856B1 (fr) | Émail autoaggloméré à base de nouveaux polyester amide imides et polyester amides | |
| US20070031672A1 (en) | Wire-coating composition based on new polyester amide imides and polyester amides | |
| EP2222805B1 (fr) | Procédé de revêtement de l'acier électrique | |
| RU2473579C2 (ru) | Наномодифицированные эмали для проводов и соответственно эмалированные провода | |
| US4448844A (en) | Heat resistant resin and process for producing the same | |
| KR20000029890A (ko) | 분자단위로폴리옥시알킬렌디아민을가지는폴리에스테르이미드및(또는)폴리아미드이미드를함유하는와이어에나멜 | |
| US4477624A (en) | Heat-resistant synthetic resin composition | |
| US4614782A (en) | Heat resistant resin composition | |
| CA1318431C (fr) | Email pour fil metallique a brasage rapide et resistant aux temperatures elevees | |
| CA2271138A1 (fr) | Procede de preparation de polyester-imides contenant des groupes carboxyle et hydroxyle et leur utilisation dans des vernis pour fils de fer | |
| EP2619273B1 (fr) | Composition de revêtement pour conducteurs métalliques | |
| EP1202292B1 (fr) | Liant pour composition de revêtement pour conducteurs électriques | |
| DE102008004926A1 (de) | Hochtemperaturbeständiger Elektroisolierlack | |
| GB2052308A (en) | Dual coated electrical conductor | |
| JPH07220526A (ja) | エナメル線 | |
| JPS5927921A (ja) | 耐熱性樹脂の製造法 | |
| JPH03233813A (ja) | 絶縁電線 | |
| JPH0831285B2 (ja) | ハンダ処理可能な絶縁電線 | |
| JPH1149859A (ja) | 電気絶縁塗料用ポリエステルイミド樹脂 | |
| JPH0258522A (ja) | 耐熱性樹脂の製造法およびこの耐熱性樹脂を用いた耐熱性樹脂組成物 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200680029634.3 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2006278414 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 562/DELNP/2008 Country of ref document: IN |
|
| ENP | Entry into the national phase |
Ref document number: 2006278414 Country of ref document: AU Date of ref document: 20060807 Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006789511 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2008/001726 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2008526105 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020087005655 Country of ref document: KR |
|
| ENP | Entry into the national phase |
Ref document number: PI0615965 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080122 |