[go: up one dir, main page]

WO2007019434A1 - Composition de revetement de fil metallique a base de nouveaux imides-amides de polyester et d'amides de polyester - Google Patents

Composition de revetement de fil metallique a base de nouveaux imides-amides de polyester et d'amides de polyester Download PDF

Info

Publication number
WO2007019434A1
WO2007019434A1 PCT/US2006/030709 US2006030709W WO2007019434A1 WO 2007019434 A1 WO2007019434 A1 WO 2007019434A1 US 2006030709 W US2006030709 W US 2006030709W WO 2007019434 A1 WO2007019434 A1 WO 2007019434A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
enamel
wire
polyester
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2006/030709
Other languages
English (en)
Inventor
Frank-Rainer Boehm
Michael Herm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to JP2008526105A priority Critical patent/JP2009504845A/ja
Priority to BRPI0615965-6A priority patent/BRPI0615965A2/pt
Priority to CN2006800296343A priority patent/CN101243148B/zh
Priority to EP06789511A priority patent/EP1913106A1/fr
Priority to MX2008001726A priority patent/MX2008001726A/es
Priority to AU2006278414A priority patent/AU2006278414A1/en
Publication of WO2007019434A1 publication Critical patent/WO2007019434A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/12Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • C08G18/6438Polyimides or polyesterimides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • the present invention relates to a new wire-coating composition based on new polyester amide imides and polyester amides which provides excellent enamelled surfaces of electrically conductive wires at elevated enamelling speeds, and is useful for coating of electric conductors.
  • the wire-coating agents conventionally used nowadays are solutions of enamelled wire binders, such as, THEIC [tris(hydroxyethyl)isocyanurate] polyesters, polyesters, polyamides, polyamide-imides, THEIC polyester imides, polyester imides or polyurethanes in suitable organic solvents such as, cresol, phenol, benzyl alcohol, propylene carbonate or N-methylpyrrolidone, as well as diluents, such as, xylene, other substituted aromatic substances, aliphatic substances and small additions of additives, catalysts and regulators.
  • the solvents are evaporated during thermal curing of the wire coating agents. In order to obtain a high-quality coating, it is necessary to drive out the solvents as completely as possible. In addition to the solvents, byproducts of the curing reactions pass from the enamelling phase into the gas phase as occurs during crosslinking by condensation reactions.
  • the user of the wire coating endeavours to increase the output of enamelled electrically conductive wire as much as possible and to obtain the best possible process for the user.
  • Even at elevated enamelling speeds not only the solvent but also cleavage products of the crosslinking reaction have to be removed as completely as possible from the enamel in order to achieve adequate crosslinking.
  • the oven temperature or catalysis of the crosslinking reaction or both parameters therefore have to be increased to allow substantial crosslinking despite the relatively short residence time of the wire in the oven.
  • the faster crosslinking leads to a rapid increase in viscosity, so the dissipation of solvent and condensation products also has to take place in a much shorter period of time.
  • EP-A 873198 discusses an enamel which represents a polyamido amine bound to low-molecular acrylates by a Michael reaction.
  • DE-A 3133571 proposes a polyurethane wire enamelling system which contains tris(hydroxyethyl)isocyanurate in addition to a polyol and a (blocked) isocyanate component. This system allows a higher enamelling speed than a similar composition without tris(hydroxyethyl)isocyanurate. However, this method is restricted to polyurethane wire enamels.
  • DE-A 19648830 proposes a polyester imide wire enamelling resin which allows high enamelling speeds.
  • a polyimide is initially produced by reacting polyisocyanate or polyamine with acid or acid anhydride, is reacted with a polyol to form a polyester imide and is subsequently reacted with acid or anhydride.
  • This polyester imide is characterised, in particular, in that it also carries a significant number of acid groups in addition to hydroxy groups.
  • the enamelling speed is limited by the OH- COOH esterification reaction, which generally takes place more slowly than a transesterification reaction.
  • the invention provides wire-coating composition containing resins with nucleophilic groups as well as possibly amide group-containing resins which are capable of crosslinking with one another, comprising
  • component (C) 5 to 95% by weight of at least one organic solvent, wherein the resins of either component (A) or, if component B) is contained in the composition, component (B) contain ⁇ -carboxy- ⁇ - oxocycloalkyl carboxylic acid amide groups and the percent by weight of (A) -(C) adds up to 100 percent.
  • the wire-coating composition according to the invention allows a significant increase in the enamelling speed without losing the positive properties of standard wire enamels.
  • the wire-coating agents according to the invention are stable in storage and exhibit good adhesion to round and profiled electrically conductive wires and have adequate heat shock resistance. An extremely high surface quality is achieved with very good electrical, thermal and mechanical properties, in particular at high enamelling speeds.
  • the enamels according to the invention surprisingly also have better adhesion and better mechanical properties than those of the prior art.
  • a wire-coating composition which additionally contains phenolic resins and/or melamine resins, catalysts, nano-scale particles and/or element-organic compounds, as well as, optionally conventionally used additives and/or auxiliaries and pigments and/or fillers is preferred.
  • Wire-coating compositions of this type comprise
  • component (H) 0 to 60% by weight and preferably 0.1 to 60% by weight of conventionally used fillers and/or pigments, wherein the resins of either component (A) or component (B) contain ⁇ -carboxy-/?-oxocyc!oalkyl carboxylic acid amide groups and the percent by weight of (A) - (H) adds up to 100 percent.
  • Resins which are known for the coating of wire may be used as component A). These may be polyesters, also, polyesters with heterocyclic nitrogen-containing rings, for example polyesters with imide and hydantoin and benzimidazole structures condensed into the molecule.
  • the polyesters are, in particular, condensation products of polybasic aliphatic, aromatic and/or cycloaliphatic carboxylic acids and the anhydrides thereof, polyhydric alcohols and, in the case of the imide- containing polyesters, polyester amino group-containing compounds, optionally, with a proportion of monofunctional compounds, for example, monohydric alcohols.
  • the saturated polyester imides are preferably based on terephthalic acid polyester which may also contain polyols and, as an additional dicarboxylic acid component, a reaction product of diaminodiphenylmethane and trimellitic acid anhydride in addition to diols.
  • unsaturated polyester resins and/or polyester imides, as well as, polyacrylates may also be used.
  • polyamides for example, thermoplastic polyamides, aromatic, aliphatic and aromatic-aliphatic, also polyamide imides of the type produced, for example, from trimelletic acid anhydride and diisocyanato-diphenylmethane. Unsaturated polyesters and/or polyester imides are preferably used.
  • composition according to the invention can additionally contain one or more further binders of the type known and conventional in the wire coating industry.
  • these may be, for example, polyesters, polyester imides, polyamides, polyamide imides, THEIC-polyester imides, polytitanic acid ester-THEIC-ester imides, phenolic resins, meiamine resins, polymethacrylic imide, polyimides, polybismaleic imides, polyether imides, polybenzoxazine diones, polyhydantoins, polyvinylformals, polyacrylates and derivatives thereof, polyvinylacetals and/or masked isocyanates.
  • Polyesters and THEIC-polyester imides are preferably used (Lit.: Behr, "Hochtemperatur brieflyige Kunststoffe” Hanser Verlage, Kunststoff 1969; Cassidy, “Thermally Stable Polymers” New York: Marcel Dekker, 1980; Frazer, "High Temperature Resistant Polymers” New York: Interscience, 1968; Mair, Kunststoffe 77 (1987) 204).
  • the amide-containing resins of component B) contain ⁇ -carboxy-j ⁇ - oxocycloalkyl carboxylic acid amide groups as a component which is instrumental to the invention.
  • the or-carboxy-/?-oxocycloalkyl carboxylic acid amide groups are preferably incorporated in a terminal position.
  • ⁇ -carboxy groups are preferably alkyl- or aryl- esterified.
  • ⁇ -carboxy- ⁇ -oxocycloalkyl carboxylic acid amides of this type may be produced, on the one hand, from the corresponding carboxylic acid or the reactive derivatives thereof, such as, carboxylic acid halide groups, carboxylic acid anhydride groups or the like by reaction with amine groups. It is also expedient to use amidation auxiliaries, such as, dicyclohexylcarbodiimide during synthesis from amine and carboxylic acid.
  • the ⁇ -carboxy- ⁇ -oxocycloalkyl carboxylic acids may be obtained, for example, by reaction with hafoformic acid esters under basic conditions and subsequent selective saponification.
  • 1 -carboxy-2-oxocycloalkanes may in turn be obtained synthetically, for example, from 1 ,n-carboxylic acid diesters by reaction with bases with alcohol cleavage.
  • said ⁇ -carboxy-/?-oxocycloalkyl carboxylic acid amides may also be produced by reaction of said 1 -carboxy-2-oxocycloalkanes with isocyanates under basic condition.
  • Said 1 -carboxy-2-oxocycloalkanes may be obtained, for example, from glutaric acid dialkyl esters, glutaric acid diaryl esters, adipic acid dialkyl esters, adipic acid diaryl esters, pimelic acid dialkyl esters, pimelic acid diaryl esters, octanoic dyacid dialkyl esters, octanoic dyacid diaryl esters and the alkyl-, aryl-, alkoxy-, aryloxy-, alkylcarboxy-, aryicarboxy-, halogen- and otherwise substituted derivatives thereof, particularly preferably from adipic acid dimethyl and ethyl ester.
  • the aforementioned isocyanates may be, for example, propylene diisocyanate, trimethylene diisocyanate, tetramethyle diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, ethylethylene diisocyanate, 3,3,4-trimethyl hexamethylene diisocyanate, 1 ,3-cyclopentyl diisocyanate, 1 ,4-cyclohexyl diisocyanate, 1 ,2-cyclohexyl diisocyanate, 1 ,3-phenylene diisocyanate, 1 ,4-phenylene diisocyanate, 2,5-toluylene diisocyanate, 2,6-toluyIene diisocyanate, 4,4'-biphenylene diisocyanate, 1 ,5-naphthylene diisocyanate, 1 ,4-naphthylene diisocyanate, 4,4'
  • Excess urethanes or ureas obtained from said isocyanates obtainable, for example, by reaction with ethylene glycol, propylene glycol, butane diol, 1 ,3-propane diol, hexane diol, neopentyl glycol, trimethylol propane, glycerine, pentaerythritol and other diols, triols, tetraols, polyols or else amino alcohols, diamines, triamines and polyamines may also be used.
  • the aforementioned amines used for amidation may be aliphatic primary diamines, such as, ethylene diamine, propylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, cycloaliphatic diamines such as, 4,4'-dicyclohexylmethane diamine or else triamines, and it is also possible to use secondary amines.
  • the amines may also be aromatic amines, such as, diaminodiphenylmethane, phenylene diamine, polynuclear aromatic amines with a functionality of > 2, toluylene diamines or corresponding derivatives.
  • amines with a further functional group in the molecule for example, amino alcohols such as, monoethanol amine and/or monopropanol amines, or amino acids, such as, glycine, aminopropanoic acids, aminocaproic acids or amine-benzoic acids and the esters thereof.
  • amino alcohols such as, monoethanol amine and/or monopropanol amines
  • amino acids such as, glycine, aminopropanoic acids, aminocaproic acids or amine-benzoic acids and the esters thereof.
  • ⁇ -carboxy- ⁇ -oxocycloalkyl carboxylic acid amide groups may also be incorporated directly into component A). This can be achieved, for example, by reaction of the resin of component A) with di- or polyisocyanates and at least one carboxy-/?-oxocycloalkane.
  • the compositions can contain one or more organic solvents, such as, aromatic hydrocarbons, N-methylpyrrolidone, cresols, phenols, xylenols, styrenes, vinyl toluene, methylacrylates.
  • organic solvents such as, aromatic hydrocarbons, N-methylpyrrolidone, cresols, phenols, xylenols, styrenes, vinyl toluene, methylacrylates.
  • Catalysts such as, tetrabuty! titanate, isopropyl titanate, cresol titanate, the polymeric forms thereof, dibutyl tin dilaurate, further tin catalysts, may be used, individually or in a mixture, as the component D).
  • Phenolic resins and/or melamine resins which may be used as the component E) may be, for example, novolaks, obtainable by polycondensation of phenols and aldehydes or polyvinyl formals, obtainable from polyvinyl alcohols and aldehydes and/or ketones.
  • Blocked isocyanates such as, NCO-adducts of polyols, amines, C- H-acidic compounds (for example, acetoacetic esters, malonic esters, etc.) and diisocyanates (for example, Lit. Methoden der org. Chemie, Houben- Weyl, Georg Thieme Verlag, Stuttgart, 4 th edition, Vol. 14/2, Part 2 "Makromolekulare Stoffe", 1963, page 61 ) may also be used as the component E, cresols and/or phenols conventionally being used as blocking agents.
  • NCO-adducts of polyols, amines, C- H-acidic compounds for example, acetoacetic esters, malonic esters, etc.
  • diisocyanates for example, Lit. Methoden der org. Chemie, Houben- Weyl, Georg Thieme Verlag, Stuttgart, 4 th edition, Vol. 14/2, Part 2 "Makromolekulare Stoffe", 1963, page
  • Conventional additives and auxiliaries of component F) include, for example, conventional enamel additives, such as, extenders, plasticising components, accelerators (for example metal salts, substituted amines), initiators (for example photo initiators, heat-responsive initiators), stabilisers (for example, hydroquinones, quinones, alkylphenols, alkylphenol ethers), defoamers and flow control agents.
  • Nano-scale particles of component G) include particles with an average particle size in the range of 1 to 300 nm, preferably in the range of 2 to 80 nm. These are, for example, inorganic nano-scale particles based on compounds, such as, Si ⁇ 2, AI 2 O 3 , TiO 2 , boronitride, silicon carbide.
  • the particles can be, for example, compounds based on an element-oxygen network comprising elements from the series consisting of silicon, zinc, aluminium, tin, boron, germanium, gallium, lead, the transition metals and the lanthanides and actinides, in particular, from the series consisting of silicon, titanium, zinc, yttrium, cerium, vanadium, hafnium, zirconium, nickel and/or tantalum.
  • the surface of the element- oxygen network of these particles being modifiable with reactive organic groups, as described, for example, in EP-A 1166283.
  • compositions may contain as the component H) pigments and/or fillers, for example based on SiO 2 , AI 2 O3, TiO 2 , Cr 2 O 3 , for example, colour-imparting inorganic and/or organic pigments, such as, titanium dioxide or carbon black and effect pigments, such as, metal flake pigments and/or pearlescent pigments.
  • component H pigments and/or fillers, for example based on SiO 2 , AI 2 O3, TiO 2 , Cr 2 O 3 , for example, colour-imparting inorganic and/or organic pigments, such as, titanium dioxide or carbon black and effect pigments, such as, metal flake pigments and/or pearlescent pigments.
  • the coating composition can additionally contain monomeric and/or polymeric element-organic compounds.
  • polymeric organo- element compounds include inorganic-organic hybrid polymers of the type mentioned, for example, in DE-A 198 41 977.
  • monomeric organo-element compounds include ortho-titanic acid esters and/or ortho- zirconic acid esters such as, nonyl, cetyl, stearyl, triethanolamine, diethanolamine, acetylacetone, acetoacetic ester, tetraisopropyl, cresyl, tetrabutyltitanate and zirconate as well as titanium tetralactate, hafnium and silicon compounds, for example hafnium tetrabutoxide and tetraethyl silicate and/or various silicone resins.
  • Additional polymeric and/or monomeric organo-element compounds of this type may be contained, for example in a content of 0 to 70% by weight, in the composition according to the invention.
  • Component A) and component B) can enter chemical reactions during the stoving (baking) process.
  • suitable reactions known to the person skilled in the art include, for example, an ester interchange reaction, polymerisation reaction, polyaddition reaction, condensation reaction. Addition reactions between component A) and B) 1 for example, ring opening in B) by nucleophilic attack of A), are preferred.
  • a polyester amide imide wire coating or a polyester amide wire coating is formed by the chemical reactions during the stoving process.
  • the composition according to the invention may optionally also be mixed with conventional wire enamels and subsequently be applied by conventional methods.
  • the composition according to the invention may be applied by conventional methods independently of the type and diameter of the electrically conductive wire used.
  • the wire may be coated directly with the composition according to the invention and subsequently be stoved (baked) in an oven. Coating and stoving may optionally take place several times in succession.
  • the ovens may be arranged horizontally or vertically, the coating conditions, such as, duration and number of coatings, stoving temperature, coating speed being adapted to the type of wire to be coated.
  • the coating temperatures may lie in a range from room temperature to 400 0 C.
  • ambient temperatures above 400 0 C for example of up to 800°C and higher, may be possible during the enamelling process without affecting the quality of the coating according to the invention.
  • the stoving may be supported by irradiation with infrared (IR) and/or near infrared (NIR) radiation with techniques known for a person skilled in the art.
  • composition according to the invention may be used independently of the type and diameter of the electrically conductive wire; for example, wires having a diameter of 5 ⁇ m to 6 mm may be coated.
  • the conventional metallic conductors made, for example, of copper, aluminium, zinc, iron, gold, silver or alloys thereof may be used as the wires.
  • the coating composition according to the invention may be contained as a component of a multilayer enamel.
  • This multilayer enamel can contain, for example, at least one coating composition according to the invention.
  • the electrically conductive wires may be coated with or without existing finishes.
  • Existing finishes may be, for example, insulating coatings and flame-retardant coatings.
  • the layer thickness of the coating according to the invention can differ greatly.
  • compositions based on polyamides, polyamides imides and poiyimides are particularly suitable as topcoats.
  • the composition according to the invention is also suitable as a single-layer application.
  • the composition may be applied in conventional layer thicknesses.
  • Thin layers of, for example, 5 to 10 ⁇ m may also be applied without influencing the resistance to partial discharge achieved according to the invention nor the adhesion, strength and extensibility of the finishes.
  • the dry layer thickness can vary, according to the standardised values for thin and thick electrically conductive wires, for example, for thin wires in low thicknesses of 5 to 10 ⁇ m, and for thick wires in thicknesses of about 75 to 89 ⁇ m.
  • the mixture is heated to 210 0 C within 3 hours while stirring and is kept at this temperature until the solid resin has reached a viscosity of 710 mPas (1 :2 in m-cresol, 25°C). 52 g water are distilled off. The residue is now cooled to 18O 0 C and 509 g cresol are added.
  • the resultant polyester imide solution has a solids content of 60.3%.
  • the mixture is now cooled to 180 0 C and 490.5 g cresol are added along with 21.6 g ortho-titanic acid-tetra- butyl ester at 150 0 C max.
  • the resultant polyester solution has a solids content of 59.7%.
  • Example 3 (Amide Group-Containing Polvurethane Resin as the Component B) 150.0 g xylene, 346.5 g Desmodur® 44 M, Please identify 0.2 g of a conventional catalyst (for example, hydroxide), 49.6 g trimethylol propane and 216.5 g 2-oxo-cyclopentyl carboxylic acid ethyl ester are heated to 70 0 C in a 2-litre three-neck flask with stirrer, reflux condenser and thermometer, until the NCO-number has fallen to ⁇ 6.5% after approx. 4 hours.
  • a conventional catalyst for example, hydroxide
  • 49.6 g trimethylol propane 49.6 g trimethylol propane
  • 216.5 g 2-oxo-cyclopentyl carboxylic acid ethyl ester are heated to 70 0 C in a 2-litre three-neck flask with stirrer, reflux condenser and thermometer, until the NCO-number
  • the mixture is then cooled to 4O 0 C, 160.0 g of a polyester imide resin solution (solids content 30.2% in cresol, hydroxyl number 322 mgKOH/g) are added and heated to 14O 0 C .
  • a viscosity of 1040 mPas (4:4 in cresol, 25°C) is achieved after 3 hours.
  • the mixture is then diluted with 577.2 g cresol and the resin filtered.
  • the resultant amidourethane resin solution has a viscosity of 5500 mPas at 25 0 C and a solids content of 44.6%.
  • Example 5 (Amido Group-Containing Resin as the Component B) 150.0 g xylene, 304.0 g Desmodur® VL (please identify), 0.2 g of a conventional catalyst (for example hydroxide) and 356.9 g 2-oxo- cyclopentylcarboxylic acid ethyl ester are heated to 7O 0 C in a 2-litre three- neck flask with stirrer, reflux condenser and thermometer until the NCO number has dropped to ⁇ 0.5% after approx. 4 hours. A viscosity of 980 mPas (4: 5 in cresol, 25°C) is reached after 3 hours. The mixture is then diluted with 688.9 g cresol and the resin filtered. The resultant amide resin solution has a viscosity of 4200 mPas at 25°C and a solids content of 44.6%.
  • a conventional catalyst for example hydroxide
  • the resultant wire enamel has a solids content of 39.7% and a viscosity at 25 0 C of 1250 mPas.
  • Enamel 6b 479.0 g of the polyester imide solution from Example 1 , 214.0 g of the amido urethane resin solution for Example 3, 173.3 g cresol, 84.0 g aromatic hydrocarbon mixture, 30.6 g benzyl alcohol, 10.2 g of a conventional commercial catalyst A and small amounts (8.9 g) of conventional commercial surface additives and phenolic resins are made up into an enamel while stirring.
  • the resultant wire enamel has a solids content of 39.9% and a viscosity at 25 0 C of 1320 mPas.
  • Enamel 6c 479.0 g of the polyester imide solution from Example 1 , 214.0 g of the amido urethane resin solution for Example 3, 173.3 g cresol, 84.0 g aromatic hydrocarbon mixture, 30.6 g benzyl alcohol, 10.2 g of a conventional commercial catalyst A and small amounts (8.9 g) of conventional commercial surface additives and phenolic resins are made up into an enamel while stirring.
  • Enamel 6d 274.0 g of the polyester imide solution from Example 1 , 490.0 g of the amido urethane resin solution for Example 3, 106.3 g cresol, 80.0 g aromatic hydrocarbon mixture, 30.6 g benzyl alcohol, 10.2 g of a conventional commercial catalyst A and small amounts (8.9 g) of conventional commercial surface additives and phenolic resins are made up into an enamel while stirring.
  • the resultant wire enamel has a solids content of 40.0% and a viscosity at 25°C of 1420 mPas.
  • Enamel 7d 366.0 g of the polyester solution from Example 2, 508.0 g of the amido urethane resin solution from Example 3, 6.5 g cresol, 9.5 g benzyl alcohol, 13.0 g cyclohexanone, 15.0 methyldiglycol, 3.0 g aromatic hydrocarbon mixture A, 11.0 g aromatic hydrocarbon mixture B and 68.0 g of conventional commercial surface additives and phenolic resins are made up to an enamel while stirring.
  • the resultant wire enamel has a solids content of 49.9% and a viscosity at 25 0 C of 4430 mPas.
  • the resultant wire enamel has a solids content of 39.7% and a viscosity at 25°C of 1250 mPas (corresponding to enamel 6a).
  • the resultant wire enamel has a solids content of 39.8% and a viscosity at 25 0 C of 1310 mPas.
  • the resultant wire enamel has a solids content of 50.4% and a viscosity at 25°C of 3920 mPas (corresponding to enamel 7a).
  • Enamel 9e 204.0 g of the polyester solution from Example 2, 726.3 g of the amido ester resin solution from Example 4, 1.7 g benzyl alcohol and 68.0 g conventional commercial surface additives and phenolic resins are made up into an enamel while stirring.
  • the resultant wire enamel has a solids content of 50.6% and a viscosity at 25°C of 4300 mPas.
  • the resultant wire enamel has a solids content of 39.6% and a viscosity at 25°C of 1150 mPas.
  • Enamel 10d 353.8 g of the polyester imide solution from Example 1 , 382.7 g of the amide resin solution from Example 5, 124.6 g cresol, 89.2 g aromatic hydrocarbon mixture, 30.6 g benzyl alcohol, 10.2 g of a conventional commercial catalyst A and small amounts (8.9 g) of commercial surface additives and phenolic resins are made up into an enamel while stirring.
  • the resultant wire enamel has a solids content of 39.8% and a viscosity at 25°C of 1210 mPas.
  • Enamel 11 a (prior art V.
  • the resultant wire enamel has a solids content of 50.4% and a viscosity at 25°C of 3920 mPas (corresponding to enamel 7a).
  • Enamel 11c 566.1 g of the polyester solution from Example 2, 240.0 g of the amide resin solution from Example 5, 11.3 g cresol, 19.6 g benzyl alcohol, 27.9 g cyclohexanone, 34.2 g methyldiglycol, 6.9 g aromatic hydrocarbon mixture A 1 26.0 g aromatic hydrocarbon mixture B and 68.0 g conventional commercial surface additives and phenolic resins are made up to an enamel while stirring.
  • the resultant wire enamel has a solids content of 49.6% and a viscosity at 25°C of 3040 mPas.
  • EnameJ 11 d 456.4 g of the polyester solution from Example 2, 386.9 g of the amide resin solution from Example 5, 8.7 g cresol, 13.9 g benzyl alcohol, 19.6 g cyclohexanone, 23.8 g methyldiglycol, 5.2 g aromatic hydrocarbon mixture A, 17.5 g aromatic hydrocarbon mixture B and 68.0 g conventional commercial surface additives and phenolic resins are made up to an enamel while stirring.
  • the resultant wire enamel has a solids content of 49.7% and a viscosity at 25 0 C of 4030 mPas.
  • 0.65 mm diameter copper wire was enamelled at an oven temperature of 580 °C, at 38 and 46 m/min respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

La présente invention concerne une composition de revêtement de fils métalliques qui contient des résines renfermant des groupes nucléophiles ainsi qu'éventuellement des résines contenant un groupe amide qui sont capables de se réticuler ensemble. Cette composition renferme: (A) de 5 à 95 % en poids d'au moins une résine comprenant des groupes nucléophiles sélectionnés dans le groupe formé par OH, NHR, SH, le carboxylate et les groupes acides CH, (B) de 0 à 70 % en poids d'au moins une résine contenant un groupe amide et (C) de 5 à 95 % en poids d'au moins un solvant organique, lesdites résines du constituant (A) ou du constituant (B) contenant des groupes amide acide carboxylique a-carboxy-ß-oxocycloalkyle et le pourcentage en poids de (A) - (C) s'ajoutant jusqu'à l'obtention des 100 pour cent. Les compositions de revêtement de fils métalliques selon l'invention assurent une augmentation significative de la vitesse d'émaillage sans pour autant induire une perte des propriétés positives des émaux classiques pour fils métalliques.
PCT/US2006/030709 2005-08-08 2006-08-07 Composition de revetement de fil metallique a base de nouveaux imides-amides de polyester et d'amides de polyester Ceased WO2007019434A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008526105A JP2009504845A (ja) 2005-08-08 2006-08-07 新規ポリエステルアミドイミド及びポリエステルアミドをベースとする電線被覆用組成物
BRPI0615965-6A BRPI0615965A2 (pt) 2005-08-08 2006-08-07 composição de revestimento de fios, processo de revestimento de fios condutores de eletricidade e fio condutor de eletricidade
CN2006800296343A CN101243148B (zh) 2005-08-08 2006-08-07 基于新的聚酰胺酰亚胺酯和聚酰胺酯的漆包线漆组合物
EP06789511A EP1913106A1 (fr) 2005-08-08 2006-08-07 Composition de revetement de fil metallique a base de nouveaux imides-amides de polyester et d'amides de polyester
MX2008001726A MX2008001726A (es) 2005-08-08 2006-08-07 Composicion de recubrimiento de cable basado en nuevas imidas de amidas de poliester y amidas de poliester.
AU2006278414A AU2006278414A1 (en) 2005-08-08 2006-08-07 Wire-coating composition based on new polyester amide imides and polyester amides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70646005P 2005-08-08 2005-08-08
US60/706,460 2005-08-08

Publications (1)

Publication Number Publication Date
WO2007019434A1 true WO2007019434A1 (fr) 2007-02-15

Family

ID=37492836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/030709 Ceased WO2007019434A1 (fr) 2005-08-08 2006-08-07 Composition de revetement de fil metallique a base de nouveaux imides-amides de polyester et d'amides de polyester

Country Status (9)

Country Link
US (1) US20070031672A1 (fr)
EP (1) EP1913106A1 (fr)
JP (1) JP2009504845A (fr)
KR (1) KR20080034990A (fr)
CN (1) CN101243148B (fr)
AU (1) AU2006278414A1 (fr)
BR (1) BRPI0615965A2 (fr)
MX (1) MX2008001726A (fr)
WO (1) WO2007019434A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008079237A1 (fr) * 2006-12-22 2008-07-03 E. I. Du Pont De Nemours And Company Émail autoaggloméré à base de nouveaux polyester amide imides et polyester amides
WO2009079542A1 (fr) * 2007-12-18 2009-06-25 E. I. Du Pont De Nemours And Company Procédé de fixation d'articles enroulés
WO2009079540A1 (fr) * 2007-12-18 2009-06-25 E. I. Du Pont De Nemours And Company Procédé de revêtement de l'acier électrique
JP2011512420A (ja) * 2007-12-20 2011-04-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 巻回物を固定するための組成物
JP2011515549A (ja) * 2008-03-25 2011-05-19 ロディア オペレーションズ ポリアミド組成物
CN103059702A (zh) * 2012-12-29 2013-04-24 四川东材科技集团股份有限公司 一种环保改性耐热聚酯漆包线漆及其制备方法
WO2013096238A1 (fr) * 2011-12-20 2013-06-27 U.S. Coatings Ip Co. Llc Procédé de revêtement avec composition auto-réticulable pour tôle magnétique en acier
CN103725148A (zh) * 2013-11-25 2014-04-16 铜陵天河特种电磁线有限公司 一种多树脂复合漆包线漆及其制备方法
CN104087153A (zh) * 2014-07-18 2014-10-08 上海晟然绝缘材料有限公司 一种润滑性优异的聚酰胺漆包线漆及其制备方法
CN104178022A (zh) * 2014-07-18 2014-12-03 上海晟然绝缘材料有限公司 一种高速机用耐热无孔漆包线绝缘漆的制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009003512A1 (de) * 2009-02-20 2010-09-02 Elantas Gmbh Umweltfreundlicher lötbarer Drahtlack
DE102009026343A1 (de) * 2009-08-06 2011-02-17 Elantas Gmbh Lösemittelzusammensetzung und Drahtbeschichtungsmittel
CN102936451A (zh) * 2011-08-16 2013-02-20 上海晟然绝缘材料有限公司 超微细线用180级聚氨酯漆包线绝缘漆的制备方法
BR112014010692A2 (pt) 2011-11-04 2017-04-25 Valspar Sourcing Inc artigo, e, método de revestimento de um substrato metálico
EP2746353A1 (fr) * 2012-12-18 2014-06-25 PPG Industries Ohio Inc. Composition de revêtement
CN103725171A (zh) * 2013-11-25 2014-04-16 铜陵天河特种电磁线有限公司 一种不饱和聚酯树脂漆包线漆及其制备方法
CN103725167A (zh) * 2013-11-25 2014-04-16 铜陵天河特种电磁线有限公司 一种改性聚酯漆包线漆及其制备方法
JP2019175679A (ja) * 2018-03-28 2019-10-10 東特塗料株式会社 スチルベン系ポリエステルイミドよりなる電気絶縁材料、電気絶縁塗料及び電気絶縁電線
EP4259730A1 (fr) * 2020-12-11 2023-10-18 Asta Energy Solutions GmbH Laquage photonique de fils
CN117995473A (zh) * 2024-03-13 2024-05-07 江西中易微连新材料科技有限公司 一种耐磨抗电晕漆包铜圆线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009359A1 (fr) * 1987-05-25 1988-12-01 Basf Lacke + Farben Aktiengesellschaft Utilisation d'agents de revetement a base de resine imide de polyester pour le revetement de bandes metalliques
DE10260299A1 (de) * 2002-12-20 2004-07-01 Bayer Ag Reaktivsysteme, deren Herstellung und deren Verwendung
DE10260269A1 (de) * 2002-12-20 2004-07-01 Bayer Ag Neue Dual Cure-Systeme

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956239A (en) * 1974-10-25 1976-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Epoxy resin composition including amide derivative of 4-aminomethyl-1,8-diaminooctane
DE3133571A1 (de) * 1981-08-25 1983-03-10 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von ueberzuegen und die verwendung von n,n',n" -tris-(2-hydroxyethyl)-isocyanurat als zusatzmittel fuer drahtlacke auf polyurethanbasis
GB2212830B (en) * 1987-11-26 1992-07-08 Matsushita Electric Works Ltd Vibration-controlling member
US5786086A (en) * 1996-01-02 1998-07-28 Union Camp Corporation Conductive wire coating
DE19648830A1 (de) * 1996-11-26 1998-05-28 Beck & Co Ag Dr Verfahren zur Herstellung carboxyl- und hydroxylgruppenhaltiger Polyesterimide und deren Verwendung in Drahtlacken
AU5740999A (en) * 1998-09-01 2000-03-21 Basf Aktiengesellschaft Cycloalkyl carboxylic acid amides, their production and their use as fungicides in agriculture
HU226903B1 (en) * 2001-07-03 2010-01-28 Bayer Ag Cyclic ketones as blocking agents
JP2003035552A (ja) * 2001-07-25 2003-02-07 Nec Corp 最適経路検索・誘導システム及びそれに用いる最適経路検索・誘導方法
JP2004055185A (ja) * 2002-07-17 2004-02-19 Toshiba Aitekku Kk エナメル線
US7923500B2 (en) * 2003-08-21 2011-04-12 Rensselaer Polytechnic Institute Nanocomposites with controlled electrical properties
CN1635038A (zh) * 2003-12-25 2005-07-06 左晓兵 一种新型f级高速聚氨酯漆包线漆的制备方法
CN100345924C (zh) * 2004-08-03 2007-10-31 中国化工建设总公司常州涂料化工研究院 盐水针孔性能良好可低温直焊的h级聚氨酯漆包线漆

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009359A1 (fr) * 1987-05-25 1988-12-01 Basf Lacke + Farben Aktiengesellschaft Utilisation d'agents de revetement a base de resine imide de polyester pour le revetement de bandes metalliques
DE10260299A1 (de) * 2002-12-20 2004-07-01 Bayer Ag Reaktivsysteme, deren Herstellung und deren Verwendung
DE10260269A1 (de) * 2002-12-20 2004-07-01 Bayer Ag Neue Dual Cure-Systeme

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008079237A1 (fr) * 2006-12-22 2008-07-03 E. I. Du Pont De Nemours And Company Émail autoaggloméré à base de nouveaux polyester amide imides et polyester amides
RU2464290C2 (ru) * 2007-12-18 2012-10-20 Е.И. Дюпон Де Немур Энд Компани Способ покрытия электротехнической стали
WO2009079540A1 (fr) * 2007-12-18 2009-06-25 E. I. Du Pont De Nemours And Company Procédé de revêtement de l'acier électrique
JP2011510482A (ja) * 2007-12-18 2011-03-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 巻回物を固定する方法
WO2009079542A1 (fr) * 2007-12-18 2009-06-25 E. I. Du Pont De Nemours And Company Procédé de fixation d'articles enroulés
CN101970588B (zh) * 2007-12-18 2013-10-23 纳幕尔杜邦公司 涂覆电工钢的方法
JP2011512420A (ja) * 2007-12-20 2011-04-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 巻回物を固定するための組成物
JP2011515549A (ja) * 2008-03-25 2011-05-19 ロディア オペレーションズ ポリアミド組成物
WO2013096238A1 (fr) * 2011-12-20 2013-06-27 U.S. Coatings Ip Co. Llc Procédé de revêtement avec composition auto-réticulable pour tôle magnétique en acier
US9657192B2 (en) 2011-12-20 2017-05-23 Axalta Coating Systems Ip Co., Llc Coating process with self-crosslinkable composition for electrical steel sheet
CN103059702A (zh) * 2012-12-29 2013-04-24 四川东材科技集团股份有限公司 一种环保改性耐热聚酯漆包线漆及其制备方法
CN103725148A (zh) * 2013-11-25 2014-04-16 铜陵天河特种电磁线有限公司 一种多树脂复合漆包线漆及其制备方法
CN104087153A (zh) * 2014-07-18 2014-10-08 上海晟然绝缘材料有限公司 一种润滑性优异的聚酰胺漆包线漆及其制备方法
CN104178022A (zh) * 2014-07-18 2014-12-03 上海晟然绝缘材料有限公司 一种高速机用耐热无孔漆包线绝缘漆的制备方法
CN104087153B (zh) * 2014-07-18 2017-02-15 上海晟然绝缘材料有限公司 一种润滑性优异的聚酰胺漆包线漆及其制备方法

Also Published As

Publication number Publication date
JP2009504845A (ja) 2009-02-05
EP1913106A1 (fr) 2008-04-23
BRPI0615965A2 (pt) 2011-05-31
MX2008001726A (es) 2008-04-07
AU2006278414A1 (en) 2007-02-15
CN101243148B (zh) 2011-10-05
KR20080034990A (ko) 2008-04-22
CN101243148A (zh) 2008-08-13
US20070031672A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
EP2121856B1 (fr) Émail autoaggloméré à base de nouveaux polyester amide imides et polyester amides
US20070031672A1 (en) Wire-coating composition based on new polyester amide imides and polyester amides
EP2222805B1 (fr) Procédé de revêtement de l'acier électrique
RU2473579C2 (ru) Наномодифицированные эмали для проводов и соответственно эмалированные провода
US4448844A (en) Heat resistant resin and process for producing the same
KR20000029890A (ko) 분자단위로폴리옥시알킬렌디아민을가지는폴리에스테르이미드및(또는)폴리아미드이미드를함유하는와이어에나멜
US4477624A (en) Heat-resistant synthetic resin composition
US4614782A (en) Heat resistant resin composition
CA1318431C (fr) Email pour fil metallique a brasage rapide et resistant aux temperatures elevees
CA2271138A1 (fr) Procede de preparation de polyester-imides contenant des groupes carboxyle et hydroxyle et leur utilisation dans des vernis pour fils de fer
EP2619273B1 (fr) Composition de revêtement pour conducteurs métalliques
EP1202292B1 (fr) Liant pour composition de revêtement pour conducteurs électriques
DE102008004926A1 (de) Hochtemperaturbeständiger Elektroisolierlack
GB2052308A (en) Dual coated electrical conductor
JPH07220526A (ja) エナメル線
JPS5927921A (ja) 耐熱性樹脂の製造法
JPH03233813A (ja) 絶縁電線
JPH0831285B2 (ja) ハンダ処理可能な絶縁電線
JPH1149859A (ja) 電気絶縁塗料用ポリエステルイミド樹脂
JPH0258522A (ja) 耐熱性樹脂の製造法およびこの耐熱性樹脂を用いた耐熱性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029634.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006278414

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 562/DELNP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2006278414

Country of ref document: AU

Date of ref document: 20060807

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006789511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/001726

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2008526105

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087005655

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0615965

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080122