WO2007067150A1 - Navigation assistée par ordinateur pour arthroplastie totale du genou - Google Patents
Navigation assistée par ordinateur pour arthroplastie totale du genou Download PDFInfo
- Publication number
- WO2007067150A1 WO2007067150A1 PCT/SG2006/000360 SG2006000360W WO2007067150A1 WO 2007067150 A1 WO2007067150 A1 WO 2007067150A1 SG 2006000360 W SG2006000360 W SG 2006000360W WO 2007067150 A1 WO2007067150 A1 WO 2007067150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- patella
- tracking
- bone
- tracking device
- joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/14—Surgical saws
- A61B17/15—Guides therefor
- A61B17/154—Guides therefor for preparing bone for knee prosthesis
- A61B17/155—Cutting femur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/14—Surgical saws
- A61B17/15—Guides therefor
- A61B17/154—Guides therefor for preparing bone for knee prosthesis
- A61B17/157—Cutting tibia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/102—Modelling of surgical devices, implants or prosthesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/105—Modelling of the patient, e.g. for ligaments or bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/108—Computer aided selection or customisation of medical implants or cutting guides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3983—Reference marker arrangements for use with image guided surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
Definitions
- This invention relates to a new method and apparatus for total knee arthroplasty. It particularly includes a software control system and positional indicators but is not limited to such.
- Orthopaedic implants have been used in the past to repair damage to the skeleton and related structures, and to restore mobility and function.
- various devices such as pins, rods, surgical meshes and screws, have been used to join fractured bones in the proper orientation for repair.
- Implants that restore the function to a damaged joint have also been used.
- Surgery intended to restore function to a joint is referred to as arthroplasty.
- a successful arthroplasty may eliminate pain and prevent the degradation of adjacent tissue.
- Arthroplasty has been performed on knees, hips and shoulders by replacing portions of the joint with implants.
- arthrodesis is particularly common for the complex load-bearing joints of the spine.
- Total knee arthroplasty can involve the replacement of portions of the patella, femur and tibia with artificial components.
- a portion of the tibia and an adjacent (in use) portion of the femur can be cut away (resected) and replaced with artificial components.
- US 6,595,997 discloses methods used in performing femoral and tibial resection in knee surgery there is disclosed the need for aligning a resection guide relative to a patient's bone has applications during arthroplasty.
- An alignment guide is coupled to a patient's bone, to which there is coupled a resection guide.
- the resection guide is positioned along a transactional path and a plurality of rotational paths by manipulation of the alignment guide, thereby providing three degrees of freedom of manipulation over infinitely adjustable ranges.
- a provisional knee implant assembly including a femoral provisional having an articulating surface and a plurality of locating openings.
- a patella height gauge is required having at least two projections which each engage with a corresponding locating opening in the femoral provisional.
- the patella height gauge includes at least one visual locating reference for a patella.
- the femoral provisional is located relative to the patella by placing the femoral provisional on a distal end of the femur; attaching the patella height gauge to the femoral provisional; overlying the patella onto the gauge; and repositioning the femoral provisional relative to the one or more visual locating references on the patella height gauge.
- Communications network such as the Internet.
- computer use is involved in modelling and not control of the components of tibia, femur and patella in knee arthroplasty.
- a tool for resecting tibia and femur which includes anchoring devices, a three-way alignment guide attachable to the anchoring devices, two embodiments of a resection guide ' attachable to the alignment guide and equipped with couplings for trackers, a plane probe for examining the resected plane, and apparatus for extra-medullary (EM) alignment of the resection guide in the event of a computer failure.
- EM extra-medullary
- the methods of the invention include operating a computer aided navigation apparatus in the conventional manner including attaching one or more trackers to the bone to be resected; choosing a location for the anchoring device with or without guidance from the computer and installing the anchoring device; attaching the three-way alignment guide to the anchoring device; attaching a resection guide to the alignment guide; attaching one or two trackers to the resection guide; locating the resection guide with the aid of the alignment guide and the computer; fixing the resection guide to the bone with pins.
- the resection plane probe may be attached to a tracker and moved about the resected plane to obtain feedback from the computer navigation system.
- the methods include attaching the EM alignment guide to the resection guide; attaching the EM rod to the EM alignment guide; and locating the resection guide by visual location of the EM rod rather than by feedback from the computer navigation system.
- the prior art software programs are focused on the navigation of the tibial femoral joint. Those programs will guide the surgeon in terms of the angle and amount of resection of the lower end of the femur bone and upper end of the tibia bone. This is to facilitate correct placement of the metallic prosthesis which is shaped like the uncut bone so that after the surgery, the metallic prosthesis takes over the function of the joint and can achieve knee bending like that of a natural joint. The programs will also allow the surgeon to tighten or loosen the various ligaments around the knee joint so that the leg is straight after the surgery, as defined by so called "mechanical axis of the lower limb".
- the invention involves both a concept of guiding the knee replacement in the patello-femoral joint and also an apparatus for the computer system to track the position of the patella. This will allow the navigation of the patello-femoral joint during a computer assisted total knee arthroplasty.
- a method for assisting total knee arthroplasty comprising:
- the tracking device may be temporarily held on the surface of the patella bone; for example, by means of a clamp.
- the method includes the steps of:
- apparatus for assisting total knee arthroplasty comprising: •
- a computer adapted to receive data from the camera tracking system for software simulation that will calculate the correct position of the femoral component so that the trochlear groove will fall under the patella bone and achieve central tracking.
- the apparatus includes:
- a camera tracking system adapted to detect the 3-dimensional positions of the patella and the femur and/or tibia.
- Figure 1 shows a dissected, anatomical view of a knee in flexion; and Figure 2 shows the knee of Figure 2 in extension.
- the prior art was only involved in the tibio-femoral joint.
- the invention also guides cutting of the patello-femoral joint by haying control of the navigation of the patella.
- the patella tracks in the centre off a groove at the lower end of the femur called the trochlear groove.
- the objective is to restore the patello-femoral joint so that the patella will again track in the centre of the new trochlear groove of the prosthetic femoral component. How well the patella tracks after a knee replacement depends on several factors like rotation of the femoral component in the transverse plane, thickness of the patella, the tightness of the lateral patella fibres, etc.
- the present invention is performed with a computer assisted total knee arthroplasty.
- the surgeon will perform a registration of the patella tracking. This is achieved by inserting a tracking device or holding a tracking device on the surface of the patella. The surgeon will then bend the knee to a maximum degree of knee flexion to find out the 3-dimensional position of the patella relative to the femoral and tibial bone. Then the surgery will proceed as with any computer assisted knee replacement.
- the software will take into the account of the patella tracking position and position the femoral prosthesis to ensure the patella tracks centrally after the surgery. If necessary, the software will also guide the surgery to resect the patella accurately to a certain thickness and also guide the surgeon in correct placement of the patella button prosthesis so as to achieve a central patella tracking.
- the patella tracking device 5 it may be fixed onto the patella 6 with a drill hole in the bone or clamped around the patella with multiple claws. As the patella tracking is influenced significantly once the muscles around the knee joint are cut and dissected, the registration of the patella tracking has to be performed at this stage before the arthrotomy (cutting the muscle to enter the knee joint).
- the critical area that determines the patella tracking is on the posterior (back) side of the patella which moves in the trochlear groove (not shown in the drawings). This, obviously, is not accessible before the knee is opened (arthrotomy) as the muscles around the knee joint are still intact (not cut yet). The surgeon will then register the motion of the anterior (front) side of the patella during the bending of the knee. Then the knee is opened with an arthrotomy. The surgeon can now register the relative distance and location of the posterior (back) side of the patella. By knowing this relative location, the computer software can translate and project the motion on the posterior (back) side of the patella.
- This data from the motion and tracking is then used as a reference for determining the femoral cuts required to ensure a good central patella tracking after the surgery.
- the surgery of the replacement of the femur and tibial component continues as with conventional computer assisted total knee arthroplasty.
- the computer data can be used to guide the surgeon in deciding on the medial-lateral location of the femoral prosthesis, the internal and external rotation of the femoral component and whether the patella needs to be re s urfaced ⁇ 0 further enhance the tracking.
- the main technical difficulty in the patellar tracking is the development of the appropriate tracking device that is suitable for the patella.
- the patella is a much smaller and mobile bone in comparison with the femur or tibia.
- the femur and tibia average diameter (thickness) is about 36-40mm and the trackers are much larger and more robust.
- Using these trackers on the patella will likely to result in a fracture of the patella as a large hole is required.
- the trackers are too small, they are difficult to anchor sufficiently onto the patella bone which is usually about 18 to 24mm thick in the Asian population.
- Such trackers have to be small enough to require minimal drilling of the patella bone or to be capable of being clamped around the entire intact patella with good stability.
- the tracker has to be large enough for the computer camera to detect the motion accurately as the knee goes through from full extension into full flexion.
- the designed tracker has to be light enough so that the weight of the tracker will not change the tracking of the patella, resulting in a-mal-alignment or mal-rotation.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Robotics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pathology (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Abstract
L’invention concerne une méthode et un appareil pour assister l'arthroplastie totale du genou qui comprennent l'utilisation d'appareils de contrôle de position et du calcul par ordinateur des rapports spatiaux entre la rotule et le tibia et/ou le fémur. Le calcul par ordinateur assure une position correcte du composant fémoral de l'articulation pendant l’arthroplastie par simulation logicielle afin que la trochlée tombe sous la rotule et réalise une localisation centrale.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SG200508080-9 | 2005-12-05 | ||
| SG200508080-9A SG132557A1 (en) | 2005-12-05 | 2005-12-05 | Computer assisted navigation for total knee arthroplasty |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2007067150A1 true WO2007067150A1 (fr) | 2007-06-14 |
Family
ID=38123179
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/SG2006/000360 Ceased WO2007067150A1 (fr) | 2005-12-05 | 2006-11-24 | Navigation assistée par ordinateur pour arthroplastie totale du genou |
Country Status (2)
| Country | Link |
|---|---|
| SG (1) | SG132557A1 (fr) |
| WO (1) | WO2007067150A1 (fr) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9033997B2 (en) | 2009-06-03 | 2015-05-19 | Brainlab Ag | Express-registering regions of the body |
| USD995790S1 (en) | 2020-03-30 | 2023-08-15 | Depuy Ireland Unlimited Company | Robotic surgical tool |
| US12004816B2 (en) | 2020-03-30 | 2024-06-11 | Depuy Ireland Unlimited Company | Robotic surgical apparatus with positioning guide |
| US12042944B2 (en) | 2020-03-30 | 2024-07-23 | Depuy Ireland Unlimited Company | Robotic surgical system with graphical user interface |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10031887A1 (de) * | 2000-06-30 | 2002-01-17 | Stryker Leibinger Gmbh & Co Kg | System für Implantationen von Kniegelenksprothesen |
| US6450978B1 (en) * | 1998-05-28 | 2002-09-17 | Orthosoft, Inc. | Interactive computer-assisted surgical system and method thereof |
| US20020198451A1 (en) * | 2001-02-27 | 2002-12-26 | Carson Christopher P. | Surgical navigation systems and processes for high tibial osteotomy |
| US20050251065A1 (en) * | 2004-04-27 | 2005-11-10 | Stefan Henning | Planning method and planning device for knee implants |
-
2005
- 2005-12-05 SG SG200508080-9A patent/SG132557A1/en unknown
-
2006
- 2006-11-24 WO PCT/SG2006/000360 patent/WO2007067150A1/fr not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6450978B1 (en) * | 1998-05-28 | 2002-09-17 | Orthosoft, Inc. | Interactive computer-assisted surgical system and method thereof |
| DE10031887A1 (de) * | 2000-06-30 | 2002-01-17 | Stryker Leibinger Gmbh & Co Kg | System für Implantationen von Kniegelenksprothesen |
| US20020198451A1 (en) * | 2001-02-27 | 2002-12-26 | Carson Christopher P. | Surgical navigation systems and processes for high tibial osteotomy |
| US20050251065A1 (en) * | 2004-04-27 | 2005-11-10 | Stefan Henning | Planning method and planning device for knee implants |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9033997B2 (en) | 2009-06-03 | 2015-05-19 | Brainlab Ag | Express-registering regions of the body |
| USD995790S1 (en) | 2020-03-30 | 2023-08-15 | Depuy Ireland Unlimited Company | Robotic surgical tool |
| US12004816B2 (en) | 2020-03-30 | 2024-06-11 | Depuy Ireland Unlimited Company | Robotic surgical apparatus with positioning guide |
| US12042944B2 (en) | 2020-03-30 | 2024-07-23 | Depuy Ireland Unlimited Company | Robotic surgical system with graphical user interface |
| US12447627B2 (en) | 2020-03-30 | 2025-10-21 | Depuy Ireland Unlimited Company | Robotic surgical system with graphical user interface |
Also Published As
| Publication number | Publication date |
|---|---|
| SG132557A1 (en) | 2007-06-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2237729B1 (fr) | Système sans broche pour une opération orthopédique assistée par ordinateur | |
| US6558391B2 (en) | Methods and tools for femoral resection in primary knee surgery | |
| US20060271056A1 (en) | System and method for modular navigated osteotome | |
| AU2002254047B2 (en) | Total knee arthroplasty systems and processes | |
| US8882777B2 (en) | Indicator device for use with a surgical guide instrument | |
| US7427200B2 (en) | Computer-based training methods for surgical procedures | |
| EP1226788B1 (fr) | Système d'arthroplastie du genou assisté par ordinateur | |
| CA2496054C (fr) | Instruments pour arthroplastie du genou assistee par ordinateur, systemes et procedes associes | |
| Conditt et al. | Minimally invasive robotic-arm-guided unicompartmental knee arthroplasty | |
| US20060195111A1 (en) | Universal positioning block assembly | |
| US20050113846A1 (en) | Surgical navigation systems and processes for unicompartmental knee arthroplasty | |
| JP2003175046A (ja) | 膝の手術における大腿の切除用の器具およびその使用方法 | |
| AU2002254047A1 (en) | Total knee arthroplasty systems and processes | |
| CN102933163A (zh) | 用于基于患者的计算机辅助手术程序的系统和方法 | |
| CA2537711A1 (fr) | Ensemble bloc de positionnement universel | |
| WO2007067150A1 (fr) | Navigation assistée par ordinateur pour arthroplastie totale du genou | |
| CN116999221A (zh) | 一种定位膝关节单髁置换术中股骨假体安装的方法 | |
| Stulberg et al. | Total knee replacement: navigation technique intra-operative model system | |
| Chauhan | Computer-assisted minimally invasive total knee arthroplasty | |
| AU2006202002A1 (en) | Universal positioning block assembly |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, AS PER OUR COMMUNICATION DATED 23.09.2008 (EPO FORM 1205A) |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 06813140 Country of ref document: EP Kind code of ref document: A1 |