[go: up one dir, main page]

WO2006119340A2 - Systeme dynamique de diagnostic et de traitement de tumeur - Google Patents

Systeme dynamique de diagnostic et de traitement de tumeur Download PDF

Info

Publication number
WO2006119340A2
WO2006119340A2 PCT/US2006/016941 US2006016941W WO2006119340A2 WO 2006119340 A2 WO2006119340 A2 WO 2006119340A2 US 2006016941 W US2006016941 W US 2006016941W WO 2006119340 A2 WO2006119340 A2 WO 2006119340A2
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
image
case study
parameters
study storage
Prior art date
Application number
PCT/US2006/016941
Other languages
English (en)
Other versions
WO2006119340A3 (fr
Inventor
Timothy Sawyer
Thomas. Edwin Payne
Original Assignee
Imquant, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imquant, Inc. filed Critical Imquant, Inc.
Publication of WO2006119340A2 publication Critical patent/WO2006119340A2/fr
Publication of WO2006119340A3 publication Critical patent/WO2006119340A3/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Definitions

  • Expert systems have been proposed for many medical applications.
  • An expert system generates an inference based on a stored body of knowledge related to the disease and based on inputs in the form of test results and other information about the patient.
  • Inference engines for expert systems come in many forms such as a Bayesian network, fuzzy logic, a decision tree, a neural network, or a self- organized map.
  • the present invention is a system for receiving information regarding a tumor in a patient, which includes an expert system for diagnosing disease, predicting outcome, suggesting further testing, or suggesting therapy based on the received information and a stored knowledge base. Using such information as test results and patient information along with the medical images of the tumor, the system produces diagnostic, outcome, testing and therapeutic information that draws on the latest knowledge about the disease and its treatment.
  • One aspect of the present invention is the manner in which information in the form of medical images of the tumor are reduced to measurable parameters that are suitable for use as input to an expert system. More specifically, imported images are processed to produce isometric images that clearly indicate boundaries and other selected tumor parameters that may be used for analysis by expert systems.
  • the PCI bus 24 may also connect to a therapeutic system through a therapeutic driver card 42.
  • Computer data may be output through the therapeutic driver to program a therapeutic system to treat a patient, or may be downloaded to CD.
  • These may include the following: calculate volume of each contour; calculate surface area of each contour; calculate shape characteristics; calculate median, mean, peak intensity values for voxels confined within a contour-defined volume; calculate contour distances from reference points or center; calculate distances of contours from each other; calculate volumes of contours containing contours of progressively increasing intensity ("elevations”); calculate volumes of contours containing contours of progressively decreasing intensity ("depressions”); calculate differences in threshold intensity levels, maximum or minimum intensity level within elevation or depression, versus contour representing base of depression or elevation; calculate locations of depressions and elevations; and calculate range or average thickness of contours. These are only a sampling of the calculations that may be made employing the isonumeric images. All the calculated parameter values are stored in the case study storage 106.
  • the "modality” field indicates the imaging modality used, such as MRI, MRS, SPECT, or PET.
  • the "type” field indicates the particulars of the image scan that is performed to produce the "entire image” that is stored.
  • the generation of an isonumeric image enables a long list of tumor parameters to be calculated and stored. Parameters that can be calculated and stored are not limited to the above list. Of particular note is the ability to identify sub-volumes within the tumor boundary which enclose distinct peaks or valleys in the image as shown at 111 and 113 in the isonumeric image 115 in Fig. 8.
  • Average Intensity Value Average of average distance of thirst three contours to next inner contour (cm) Number of non-contiguous elevated sub- volumes (number) Volume of largest elevated sub- volume (cc, 0 if not applicable) Volume of 2nd largest elevated sub-volume (cc, 0 if not applicable Volume of 3rd largest elevated sub- volume (cc, 0 if not applicable) Average volume of elevated sub- volumes (cc, 0 if not applicable) Height of largest elevated sub-volume (SUV, 0 if not applicable) Height of 2nd largest elevated sub- volume (SUV, 0 if not applicable) Height of 3rd largest elevated sub-volume (SUV, 0 if not applicable)
  • the results of such an analysis can be represented by a number, a set of numbers, graphs, or equations and used by the expert system as will be described below.
  • Changes in isonumeric contour parameters can be grouped conceptually into buckets, such as 0-20% change, 21-40 % change, 41-60 % change, and so on.
  • the production of an isonumeric image can be accomplished in a number of ways. As indicated at process block 80, most medical images require filtering to improve the results and reduce the processing time. For example, this step gives the user the option of selecting a region in the image for processing rather than processing the entire image. The user draws a line or creates a box around the region containing the tumor, making sure to allow ample space around its boundary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

Selon cette invention, une station de travail importe des images médicales qui décrivent une tumeur et fournit des outils qui permettent à un physicien de voir les résultats de thérapies antérieures, de planifier des thérapies futures, de prévoir le résultat de thérapies futures et de commander les thérapies futures. La station de travail traite les images importées pour produire des images isonumériques de la tumeur qui peuvent être analysées par un système expert qui fournit des informations de diagnostic et de résultat ainsi que des suggestions pour d'autres analyses et une autre thérapie.
PCT/US2006/016941 2005-05-04 2006-05-03 Systeme dynamique de diagnostic et de traitement de tumeur WO2006119340A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67775005P 2005-05-04 2005-05-04
US60/677,750 2005-05-04

Publications (2)

Publication Number Publication Date
WO2006119340A2 true WO2006119340A2 (fr) 2006-11-09
WO2006119340A3 WO2006119340A3 (fr) 2007-10-11

Family

ID=37308660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/016941 WO2006119340A2 (fr) 2005-05-04 2006-05-03 Systeme dynamique de diagnostic et de traitement de tumeur

Country Status (1)

Country Link
WO (1) WO2006119340A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008067241A3 (fr) * 2006-11-27 2008-08-28 Con Inc Fa Système et procédé de mappage d'évaluations de caractéristiques et de visualisation d'images médicales
WO2008134598A1 (fr) * 2007-04-27 2008-11-06 Medtronic, Inc. Systèmes et procédés facilitant l'analyse secondaire de données issues de dispositifs médicaux implantés
WO2009035573A1 (fr) * 2007-09-11 2009-03-19 Siemens Medical Solutions Usa, Inc. Étalonnage automatique de diagnostic assisté par ordinateur sur la base d'examen rétrospectif
WO2008081365A3 (fr) * 2007-01-03 2009-06-04 Koninkl Philips Electronics Nv Surveillance thérapeutique assistée par ordinateur
US9014448B2 (en) 2009-12-18 2015-04-21 Koninklijke Philips N.V. Associating acquired images with objects
US9668668B2 (en) 2011-09-30 2017-06-06 Medtronic, Inc. Electrogram summary
US20210082569A1 (en) * 2019-09-13 2021-03-18 Siemens Healthcare Gmbh Method and data processing system for providing a prediction of a medical target variable
CN112711658A (zh) * 2020-12-31 2021-04-27 北京万方数据股份有限公司 一种恶性肿瘤诊疗知识推理方法及装置
CN113674254A (zh) * 2021-08-25 2021-11-19 上海联影医疗科技股份有限公司 医学图像异常点识别方法、设备、电子装置和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611630B1 (en) * 1996-07-10 2003-08-26 Washington University Method and apparatus for automatic shape characterization
US6526117B1 (en) * 2001-11-09 2003-02-25 Ge Medical Systems Global Technology Company, Llc Method and apparatus to minimize phase misregistration artifacts in gated CT images
US7187790B2 (en) * 2002-12-18 2007-03-06 Ge Medical Systems Global Technology Company, Llc Data processing and feedback method and system
US7343030B2 (en) * 2003-08-05 2008-03-11 Imquant, Inc. Dynamic tumor treatment system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008067241A3 (fr) * 2006-11-27 2008-08-28 Con Inc Fa Système et procédé de mappage d'évaluations de caractéristiques et de visualisation d'images médicales
US8150192B2 (en) 2006-11-27 2012-04-03 Merge Cad Inc. System and method for feature score mapping and visualization of medical images
WO2008081365A3 (fr) * 2007-01-03 2009-06-04 Koninkl Philips Electronics Nv Surveillance thérapeutique assistée par ordinateur
JP2010516301A (ja) * 2007-01-03 2010-05-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コンピュータ支援治療モニタリング装置及び方法
WO2008134598A1 (fr) * 2007-04-27 2008-11-06 Medtronic, Inc. Systèmes et procédés facilitant l'analyse secondaire de données issues de dispositifs médicaux implantés
WO2009035573A1 (fr) * 2007-09-11 2009-03-19 Siemens Medical Solutions Usa, Inc. Étalonnage automatique de diagnostic assisté par ordinateur sur la base d'examen rétrospectif
US9014448B2 (en) 2009-12-18 2015-04-21 Koninklijke Philips N.V. Associating acquired images with objects
US9668668B2 (en) 2011-09-30 2017-06-06 Medtronic, Inc. Electrogram summary
US20210082569A1 (en) * 2019-09-13 2021-03-18 Siemens Healthcare Gmbh Method and data processing system for providing a prediction of a medical target variable
US11626203B2 (en) * 2019-09-13 2023-04-11 Siemens Healthcare Gmbh Method and data processing system for providing a prediction of a medical target variable
CN112711658A (zh) * 2020-12-31 2021-04-27 北京万方数据股份有限公司 一种恶性肿瘤诊疗知识推理方法及装置
CN113674254A (zh) * 2021-08-25 2021-11-19 上海联影医疗科技股份有限公司 医学图像异常点识别方法、设备、电子装置和存储介质
CN113674254B (zh) * 2021-08-25 2024-05-14 上海联影医疗科技股份有限公司 医学图像异常点识别方法、设备、电子装置和存储介质

Also Published As

Publication number Publication date
WO2006119340A3 (fr) 2007-10-11

Similar Documents

Publication Publication Date Title
US7606405B2 (en) Dynamic tumor diagnostic and treatment system
US12437424B2 (en) Method and system for processing multi-modality image
US20230010515A1 (en) Method and system for identifying biomarkers using a probability map
US9275451B2 (en) Method, a system, and an apparatus for using and processing multidimensional data
US11324968B2 (en) System and method for the validation and quality assurance of computerized contours of human anatomy
US9370304B2 (en) Subvolume identification for prediction of treatment outcome
JP5785184B2 (ja) 画像の医療データ及び非画像の医療データの両者の連続的な記憶及び統合された分析のための診断技術
US20110124976A1 (en) Model enhanced imaging
WO2006119340A2 (fr) Systeme dynamique de diagnostic et de traitement de tumeur
Morozov et al. A simplified cluster model and a tool adapted for collaborative labeling of lung cancer CT scans
CN113728392B (zh) 自动癌症登记表记录生成
US20140153795A1 (en) Parametric imaging for the evaluation of biological condition
EP2689344B1 (fr) Segmentation d'image automatique basée sur des connaissances
WO2009148803A2 (fr) Procédés et systèmes pour systèmes de santé intégrés
CN116784821A (zh) 基于复杂网络脑胶质肿瘤患者脑功能重塑预测方法及系统
Vaugier et al. Radiomics for radiation oncologists: are we ready to go?
US11354803B1 (en) Identifying spurious tracts in neuro-networks
Yan et al. Edge roughness quantifies impact of physician variation on training and performance of deep learning auto-segmentation models for the esophagus
Miller et al. Evaluating Automated Tools for Lesion Detection on 18F Fluoroestradiol PET/CT Images and Assessment of Concordance with Standard-of-Care Imaging in Metastatic Breast Cancer
Dessoude et al. Development and routine implementation of deep learning algorithm for automatic brain metastases segmentation on MRI for RANO-BM criteria follow-up
US11445989B1 (en) Interfaces for identifying and characterizing tracts in neuro-networks
EP4471709A1 (fr) Caractérisation de délimitations de lésions
Heemsbergen et al. The Importance of the Quality of Data
Jha Quantitative imaging and artificial intelligence in oncology
CN114927216A (zh) 基于人工智能的黑素瘤患者pd-1治疗疗效预测方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06752134

Country of ref document: EP

Kind code of ref document: A2