WO2006114607A2 - Pressure responsive centralizer - Google Patents
Pressure responsive centralizer Download PDFInfo
- Publication number
- WO2006114607A2 WO2006114607A2 PCT/GB2006/001506 GB2006001506W WO2006114607A2 WO 2006114607 A2 WO2006114607 A2 WO 2006114607A2 GB 2006001506 W GB2006001506 W GB 2006001506W WO 2006114607 A2 WO2006114607 A2 WO 2006114607A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- structural component
- hollow structural
- centralizer
- hollow
- rupture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/063—Valve or closure with destructible element, e.g. frangible disc
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/10—Wear protectors; Centralising devices, e.g. stabilisers
- E21B17/1078—Stabilisers or centralisers for casing, tubing or drill pipes
Definitions
- the present invention relates to systems and methods for controlling pressure in wellbores.
- Annular pressure buildup within wellbores has been recognized in the oil and gas industry for many years as a serious problem. Fluids trapped in a wellbore or annular space in a wellbore will expand with a corresponding increase in temperature leading to a volume increase and increase in the force they exert upon the surrounding area. This pressure has been known to be a significant factor in the failure of subsea wells, including Well A-2 of British Petroleum 1999 Marlin development program in the deepwater program off the Gulf of Mexico. One relevant article is Practical and Successful Prevention of Annular Pressure Buildup on the Marlin Project. SPE International 77473, 2002, Richard F. Vargo, Jr., et al, and which is hereby incorporated by reference in its entirety.
- Annular pressure buildup is the pressure generated by thermal expansion of trapped fluids as they are heated. When wellbore fluids heat up and expand in a closed system, the expansion causes high induced pressures. Most land and many offshore locations may be able to bleed this pressure through surface-accessible wellhead equipment. In subsea completions, the primary annulus between the tubing and production casing may be the only accessible annulus. Consequently, bleeding the outer annuli may not be possible. Therefore, when the risk of subsea APB exists, well designers should give serious consideration to appropriate mitigation as part of the fundamental well design.
- Offshore hydrocarbon recovery operations are increasingly moving into deeper water and more remote locations.
- Satellite wells are completed at the sea floor and are tied to remote platforms or other facilities through extended subsea pipelines.
- Some of these pipelines extend through water that is thousands of feet deep, where temperatures of the water near the sea floor are in the range of about 40 0 F.
- the hydrocarbon fluids usually produced along with some water, reach the sea floor at much higher temperatures, characteristic of depths thousands of feet below the sea floor.
- APB In order for a well to experience APB, two conditions are generally known to be present. First, there must be a sealed region, typically an annulus, wherein pressure may build. Second, a temperature rise is generally associated with the increase in pressure.
- a good starting point is to try to ensure that the annulus does not become trapped.
- cement shortfall is usually designed. This assumes that cement heights will be below the previous casing shoe and that a trapped annulus condition may not occur.
- cement can still channel because of poor mud displacement.
- Such displacement problems are caused by poor casing eccentricity or poor credibility of the wellbore fluids during the primary cementing operation.
- barite sag following drilling can cause a trapped condition.
- a trapped condition can occur either by cementitious materials or due to the settling of weighting materials from the mud.
- a second APB prevention technique consists of attaching syntactic crushable-foam wrap to the casing.
- the syntactic foam contains small, hollow glass spheres filled with air at atmospheric pressure. When ABP reaches a certain level, the hollow spheres collapse. This collapse results in a correspondent increase in available volume to thereby decrease pressure. Data demonstrate that the volume required for an effective solution is about 2% to about 8% of the annular volume.
- APB Another way of prevention of APB is the use of compressible fluids in the trapped annulus to absorb volume increases as the heat up occurs.
- a final way of mitigating APB is by using enhanced casing products. Increased casing capacities can accommodate a higher degree of pressure buildup without detrimental effects to the casing or well. Extensive work has been applied here also involving advanced, probabilistic performance properties of the subject casings.
- an innovative centralizer comprises a centralizing structure with at least one sealed hollow structural component where a rupture disk is capable of breaking in response to sufficient pressure.
- the present innovations further teach a method of effecting a volumetric change in response to overpressure within a wellbore comprising at least one hollow structural component.
- the present innovative systems and methods can be used to avoid production loss due to wellbore damage or the need to restrict hydrocarbon flow in an effort to keep production temperature below danger levels.
- the centralizer can be fitted with a rupture component made part of the centralizer, screwed into the bottom of the centralizer by means of threads within the centralizer, or connected by some other means.
- FIGS. Ia and Ib show a preferred embodiment of a centralizer.
- FIG. 2 shows a preferred embodiment of a centralizer.
- FIG. 3 shows a preferred embodiment of a centralizer configuration using a 'hinged' arrangement within a bore.
- FIG. 4 shows a production system using a centralizer with hollow rupture components.
- FIG. 5 shows a preferred embodiment of a centralizer with multiple rupture components.
- FIG. 6 shows a preferred embodiment of a pressure responsive system with a centralizer and multiple rupture components.
- FIG. 7 shows a preferred embodiment of a hollow rupture component.
- FIG. 8 shows a preferred embodiment of a centralizer where an empty rupture component is affixed to the main chamber of the centralizer.
- a centralizer is combined with a rupture disk to allow for the release of excess pressure from a wellbore.
- the hollow components in this embodiment contain a burst disk or rupture disk, which are selected to rupture at a predetermined pressure as required by well hydrostatic pressure and other factors.
- the inside and outside diameters of the centralizer preferably provide effective centering of the casing in the borehole or outer casing.
- the number of struts and rupture and burst disks may be adjusted in such a way as to meet the specific pressure and volume needs of a specific project. For instance, in one embodiment, there may be six struts with one rupture disk in each strut. In another embodiment, there may be four struts with two rupture disks in each strut.
- a centralizer is combined with a relief valve in order to allow for the release of excess pressure from a wellbore.
- the hollow components in this embodiment contain a relief valve that is selected to open at a predetermined pressure as required by well hydrostatic pressure and other factors.
- a relief valve is something that is not destroyed when it opens.
- a hollow structural component is a prefabricated rigid structure capable of allowing for volumetric expansion.
- the rupture disk is sealed in such a way as to 'burst' at a predetermined pressure to facilitate the production of hydrocarbons.
- the centralizer may also comprise at least one centralizing structure and include at least one breakable structural component that can respond to pressure increase surges.
- the breakable structural component can collapse, burst, or rupture to provide a volume change in response to overpressure.
- One advantage of this embodiment is that pressures build up within boreholes can be alleviated.
- Another advantage is that the volume in a well can be controlled in such a manner as to optimize the production within a well.
- FIG. Ia shows a sample preferred embodiment of the centralizer unit 100. This is a side view of the centralizer unit itself, not showing the casing which, once the centralizer 100 has been installed, would normally pass through the axial central cavity 130.
- the struts 110 of the centralizer 100 in this embodiment, run parallel with the wellbore 140.
- One or more rupture disks are located in one or more of the struts. These struts are hollow structural components.
- the centralizer is made of stainless steel. Carbon steel, chrome-moly, or titanium or other materials can be used instead.
- FIG. Ib shows a sample preferred embodiment of one of the struts 110 of the centralizer unit 100.
- This is a formed shape of tubular steel, having a hollow center (not visible in this figure).
- a rupture disk 112 blocks the sole opening into the hollow center of strut 110. (Preferably a hole is drilled and tapped in the strut 110.)
- the end of strut 110 is attached to circumferential element 120 by a weld 114, which also serves to close off the hollow within the strut 110.
- the centralizer is made of stainless steel. Carbon steel, chrome-moly, or titanium or other materials can be used instead.
- FIG. 2 shows a sample preferred embodiment of the pressure responsive system using centralizer unit 200.
- This is a side view of the centralizer unit itself, not showing the casing which, once the centralizer 200 has been installed, would normally pass through the axial central cavity 230.
- the struts 210 of the centralizer in this embodiment, run parallel with the wellbore 240.
- One or more rupture disks are located in one or more of the struts.
- the centralizer is made of stainless steel. Carbon steel, chrome-moly, or titanium or other materials can be used instead.
- a centralizer is attached to the rupture component using threads 260.
- FIG. 3 shows a sample preferred embodiment of the centralizer unit 300. This is a side view of the centralizer unit itself, not showing the casing which, once the centralizer 300 has been installed, would normally pass through the axial central cavity 330.
- the struts 310 of the centralizer in this embodiment, run parallel with the wellbore 340.
- One or more rupture disks are located in one or more of the struts.
- the centralizer is made of stainless steel, but or course carbon steel or chrome-moly or titanium or other materials can be used instead.
- a centralizer is attached to the rupture component using hinges 360.
- FIG. 4 shows a production system 400 using a centralizer 410 with hollow rupture component 420 surrounded by wellbore 440.
- a casing used to move the desired hydrocarbons or other material is illustrated by 470 in which hydrocarbons or other desired products may be moved from the well to some kind of recovery equipment located at 480.
- FIG. 5 shows a centralizer system 500 with multiple rupture components 510, 520, and 530.
- Rupture components 510, 520, and 530 are attached to the centralizer component 540.
- Centralizer component 540 is attached to hollow struts 550.
- Rupture components 510, 520, and 530 may be of different sizes and pressure sensitivities.
- FIG. 6 shows a casing combination with centralizer and hollow rupture components.
- a hollow component 600 contains multiple rupture components 610 and 630. Within said hollow component walls 640 a hole is drilled and the first rupture component is placed at 610. A second rupture component 630 is held in place by elements within the hollow component at 620.
- FIG. 7 shows a hollow rupture component 700.
- a ring 710 separates the sealed disc components 720 and 730.
- Hinges '740 can attach hollow rupture component to the centralizer system.
- Hollow rupture component can also be attached by means of threads found at 750.
- FIG. 8 shows a centralizer system 800 with a rupture component 810 located at either end of the centralizer system 850 or 860. Additional rupture components may be placed at 820, 830, and 840. The structural centralizer support struts 850 are placed along the bore.
- the present innovations are enabled as a downhole pressure adjusting system, comprising a centralizing structure and at least one closed hollow structural component wherein the hollow structural component is responsive to overpressure is claimed.
- the present innovations are enabled as a downhole pressure adjusting system, comprising a structure for placement on a downhole casing wherein the structure includes at least one hollow structural component wherein the hollow structural component is sealed by means of one or more seals is also claimed.
- the present innovations are enabled as a production system, comprising a casing and a centralizer which includes at least one hollow structural component is also claimed.
- the pressure responsive system may be made out of any number of materials, including, but not limited to, stainless steel, carbon steel, titanium, or any number of other materials.
- the number of struts, rupture disks, and relief valves may vary from embodiment to embodiment.
- the downhole string may be in different forms, including, but not limited to a tubular string or casing string.
- One variation includes replacing the rupture disks with relief valves or other structures that will allow the enclosed volume to open at a predetermined pressure.
- a particular advantage of the hollow chamber (at atmospheric pressure or pressurized) to be transported to a downhole location with a rupture disk is that it can be designed to rupture at a predetermined stage of operations.
- the hollow structural component may be physically part of the centralizer, or be attached thereto, or may be separate from the centralizer itself.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
- Safety Valves (AREA)
Abstract
Description
Claims
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP06726895A EP1880079A2 (en) | 2005-04-27 | 2006-04-25 | Pressure responsive centralizer |
| MX2007014979A MX2007014979A (en) | 2005-04-27 | 2006-04-25 | Pressure responsive centralizer. |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/116,003 | 2005-04-27 | ||
| US11/116,003 US20060243435A1 (en) | 2005-04-27 | 2005-04-27 | Pressure responsive centralizer |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2006114607A2 true WO2006114607A2 (en) | 2006-11-02 |
| WO2006114607A3 WO2006114607A3 (en) | 2007-05-10 |
Family
ID=36636255
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2006/001506 Ceased WO2006114607A2 (en) | 2005-04-27 | 2006-04-25 | Pressure responsive centralizer |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20060243435A1 (en) |
| EP (1) | EP1880079A2 (en) |
| MX (1) | MX2007014979A (en) |
| WO (1) | WO2006114607A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012104574A3 (en) * | 2011-01-31 | 2013-01-03 | Tendeka B.V. | Downhole pressure relief apparatus |
| US8360151B2 (en) | 2009-11-20 | 2013-01-29 | Schlumberger Technology Corporation | Methods for mitigation of annular pressure buildup in subterranean wells |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2350434A2 (en) * | 2008-10-31 | 2011-08-03 | BP Corporation North America Inc. | Elastic hollow particles for annular pressure buildup mitigation |
| US8066074B2 (en) * | 2008-11-18 | 2011-11-29 | Chevron U.S.A. Inc. | Systems and methods for mitigating annular pressure buildup in an oil or gas well |
| CA2670218A1 (en) * | 2009-06-22 | 2010-12-22 | Trican Well Service Ltd. | Method for providing stimulation treatments using burst disks |
| US20110155377A1 (en) * | 2009-06-29 | 2011-06-30 | Laun Lyle E | Joint or coupling device incorporating a mechanically-induced weak point and method of use |
| US8082987B2 (en) * | 2009-07-01 | 2011-12-27 | Smith International, Inc. | Hydraulically locking stabilizer |
| US8695716B2 (en) | 2009-07-27 | 2014-04-15 | Baker Hughes Incorporated | Multi-zone fracturing completion |
| US8944167B2 (en) | 2009-07-27 | 2015-02-03 | Baker Hughes Incorporated | Multi-zone fracturing completion |
| US8613321B2 (en) * | 2009-07-27 | 2013-12-24 | Baker Hughes Incorporated | Bottom hole assembly with ported completion and methods of fracturing therewith |
| CN101994488A (en) * | 2009-08-25 | 2011-03-30 | 罗绍东 | Screw pump well sucker rod centralizer with bidirectional protection effect |
| US9145753B2 (en) * | 2011-09-02 | 2015-09-29 | Onesubsea Ip Uk Limited | Trapped pressure compensator |
| CA2798343C (en) * | 2012-03-23 | 2017-02-28 | Ncs Oilfield Services Canada Inc. | Downhole isolation and depressurization tool |
| US9057230B1 (en) | 2014-03-19 | 2015-06-16 | Ronald C. Parsons | Expandable tubular with integral centralizers |
| US11123215B2 (en) | 2016-08-16 | 2021-09-21 | Renuka Pradhan | Pressure relief apparatus for wound |
| EP3596306B8 (en) * | 2017-03-14 | 2023-03-08 | X-Holding GmbH | Expansion chamber |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2253675A (en) * | 1940-08-22 | 1941-08-26 | Arnold Rousseau | Centering cage |
| US3366182A (en) * | 1965-02-25 | 1968-01-30 | B & W Inc | Well tool for releasing liner hangers and the like |
| US4219081A (en) * | 1978-11-03 | 1980-08-26 | Halliburton Services | Knockdown centralizer |
| US4875524A (en) * | 1988-09-29 | 1989-10-24 | Halliburton Company | Casing centralizer |
| US5474127A (en) * | 1992-12-14 | 1995-12-12 | Halliburton Company | Annular safety system for oil well |
| US5782298A (en) * | 1996-06-07 | 1998-07-21 | Alexander Oil Tools, Inc. | Retrievable safety packer |
| US6293346B1 (en) * | 1998-09-21 | 2001-09-25 | Schlumberger Technology Corporation | Method and apparatus for relieving pressure |
| US6457528B1 (en) * | 2001-03-29 | 2002-10-01 | Hunting Oilfield Services, Inc. | Method for preventing critical annular pressure buildup |
| US7048059B2 (en) * | 2002-10-15 | 2006-05-23 | Baker Hughes Incorporated | Annulus pressure control system for subsea wells |
| WO2004079240A1 (en) * | 2003-03-01 | 2004-09-16 | Raska Nathan C | Reversible rupture disk apparatus and method |
| US6736012B1 (en) * | 2003-04-07 | 2004-05-18 | Aker Kvaerner Oilfield Products, Inc. | Safety device for use as overpressure protection for a trapped volume space |
| US6957704B2 (en) * | 2003-05-14 | 2005-10-25 | Halliburton Energy Services Inc. | Limit clamp for use with casing attachments |
| US20060243456A1 (en) * | 2005-04-27 | 2006-11-02 | Halliburton Energy Services, Inc. | Pressure responsive centralizer |
-
2005
- 2005-04-27 US US11/116,003 patent/US20060243435A1/en not_active Abandoned
-
2006
- 2006-04-25 MX MX2007014979A patent/MX2007014979A/en unknown
- 2006-04-25 EP EP06726895A patent/EP1880079A2/en not_active Withdrawn
- 2006-04-25 WO PCT/GB2006/001506 patent/WO2006114607A2/en not_active Ceased
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8360151B2 (en) | 2009-11-20 | 2013-01-29 | Schlumberger Technology Corporation | Methods for mitigation of annular pressure buildup in subterranean wells |
| WO2012104574A3 (en) * | 2011-01-31 | 2013-01-03 | Tendeka B.V. | Downhole pressure relief apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2006114607A3 (en) | 2007-05-10 |
| US20060243435A1 (en) | 2006-11-02 |
| MX2007014979A (en) | 2008-02-14 |
| EP1880079A2 (en) | 2008-01-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20060243435A1 (en) | Pressure responsive centralizer | |
| US8066074B2 (en) | Systems and methods for mitigating annular pressure buildup in an oil or gas well | |
| US10208564B2 (en) | Tubular airlock assembly | |
| AU656066B2 (en) | Borehole stressed packer inflation system | |
| US6457528B1 (en) | Method for preventing critical annular pressure buildup | |
| EP2239414B1 (en) | Sealing assembly | |
| US20110030954A1 (en) | Use of swellable material in an annular seal element to prevent leakage in a subterranean well | |
| EP2418348B1 (en) | Filler rings for swellable packers | |
| NO334741B1 (en) | Method and apparatus for use in isolating a section of a drilled bore | |
| CN107923230B (en) | Downhole Completion System with Sealed Caprock | |
| CN102971484B (en) | Mitigating leaks in production tubing | |
| US20060243456A1 (en) | Pressure responsive centralizer | |
| Santos et al. | APB mitigation techniques and design procedure | |
| Saltel et al. | Restoring casing integrity using an expandable steel patch prior to drilling ahead with minimal reduction of next hole size | |
| NO346964B1 (en) | Flow guides for regulating pressure change in hydraulically-actuated downhole tools | |
| EP2670944A2 (en) | Downhole pressure relief apparatus | |
| NO20210901A1 (en) | Hydraulic landing nipple | |
| NL2037428B1 (en) | Protective layer over swellable compound | |
| US12060773B2 (en) | Controlling a wellbore pressure | |
| Perdana et al. | Annular Pressure Build up in Subsea Well | |
| US20250146374A1 (en) | Chemical Resistant Elastomeric Seal Having Two Elastomers | |
| RU2286443C2 (en) | Well provided with production flexible rising pipe | |
| US20220154552A1 (en) | Rupture apparatus | |
| CN120211667A (en) | A cementing seal compensation device | |
| US20150041140A1 (en) | Casing Joint Assembly for Producing an Annulus Gas Cap |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
| NENP | Non-entry into the national phase |
Ref country code: RU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/014979 Country of ref document: MX Ref document number: 2006726895 Country of ref document: EP Ref document number: 2007/MUMNP/2007 Country of ref document: IN |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: RU |
|
| WWP | Wipo information: published in national office |
Ref document number: 2006726895 Country of ref document: EP |