WO2006084902A2 - Method of purifying a surfactant by ultrafiltration - Google Patents
Method of purifying a surfactant by ultrafiltration Download PDFInfo
- Publication number
- WO2006084902A2 WO2006084902A2 PCT/EP2006/050856 EP2006050856W WO2006084902A2 WO 2006084902 A2 WO2006084902 A2 WO 2006084902A2 EP 2006050856 W EP2006050856 W EP 2006050856W WO 2006084902 A2 WO2006084902 A2 WO 2006084902A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surfactant
- paclitaxel
- molecular weight
- membrane
- pharmaceutical formulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/16—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
Definitions
- the present invention relates to a method of purifying a surfactant.
- t he present invention relates to a method of purifying a surfactant for use in a stabinzed liquid pharmaceutical formulation, using a semi-permeable membrane filtration technique.
- Taxol ® is a commercially available paclitaxel formulation produced by Bristol- Meyers Squibb Company, 345 Park Avenue, New York, New York, USA 10154-
- Taxol contains paclitaxel in combination with a 50:50 mixture of dehydtated ethanol and Cremophor* EL (polyethoxylated castet oil available from BASF Aktiengesellschaft, Carl-Bosch-StraBe 38, 67056 Ludwigshafen, Germany; other designations include European Pharmacopeia, 4 th Edition, 2002: Castor oil, polyoxyl; United States Pharmacopeia - National Formulary: Polyoxyl 35 Castor Oil).
- Cremophor* EL is a non-ionic surfactant made by reacting castor oil with ethylene oxide in a molar ratio of 1:35.
- Cremophor* EL is used as a drug delivery vehicle: after reconstitution for intravenous injection with a suitable fluid, such as physiologically acceptable saline or 5% dextrose solution, it forms large polar micelles to transport and deliver the entrapped drug to the target (see, for example, van Tellingen O. */ */., British Journal of Cancer (1999) 81, 330-335).
- a suitable fluid such as physiologically acceptable saline or 5% dextrose solution
- Cremophor* EL Relatively high concentrations of Cremophor* EL are required to compensate for the insolubility of paclitaxel, and some patients have shown allergic reactions when administered such high concentrations of this surfactant. Moreover, certain fatty acid components of Cremophor* EL, particularly ricinoleic acid and octadecanoic acid, can lead to hepatotoxicity.
- Cremophor* EL contains impurities which can catalyse the degradation of paclitaxel, the latter being susceptible in particular to mild basic hydrolysis; paclitaxel formulated with a mixture of dehydrated ethanol and commercial grade Cremophor* EL is therefore not sufficiently stable over time and has been shown to exhibit a loss of potency of greater than 60% after storage for 12 weeks at 50 0 C (see, for example, EP 0,645,145).
- various methods of purifying commercial grade Cremophor* EL have been investigated.
- Cremophor* EL The main component of Cremophor* EL is glycerol polyethylene glycol ricinoleate, and this forms the hydrophobic part of the product together with fatty acid esters of polyethylene glycol; the smaller hydrophilic part consists of free polyethylene glycols and ethoxylated glycerol. Cremophor* EL forms clear solutions in water, and, in such aqueous solutions, it is stable towards electrolytes, e.g. acids and salts, provided that their concentration is not too high. Cremophor* EL has a molecular weight determined by steam osmometry of approximately 1630 (Fiedler, H.
- paclitaxel is thought to be susceptible to mild basic hydrolysis, some investigations have focused on removing anionic catboxylate impurities in Cremophor ® EL and/or controlling the pH of Cremophor* EL.
- WO 94/12031 discloses that the stability of a composition comprising paclitaxel,
- Cremophor* EL and dehydrated ethanol can be improved by adding an acid to the composition to reduce its pH to the range 1 to 8, preferably 5 to 7.
- Powdered acids, especially citric acid, are preferred, but other acids such as acetic acid can also be used.
- US 5,925,776 discloses the treatment of Cremophor ® EL by heating at around 50 * C to remove water, followed by addition of dehydrated alcohol and contact with a strong cationic exchange resin, particularly styrene divinyl benzene resin, which exchanges cations for H + ions.
- a strong cationic exchange resin particularly styrene divinyl benzene resin, which exchanges cations for H + ions.
- the pH of the solution is thereby reduced to lower than 4.2, and the solution can be used for the preparation of paclitaxel formulations.
- WO 00/23070 discloses a method of contacting a solution of Cremophor ® EL and dehydrated ethanol with an activated carbon column, to absorb water and unsaturated aliphatic and aromatic impurities.
- the solution is then contacted with a mixed bed ion exchange resin column, which replaces anions such as carboxylate anions with OH- and cations such as potassium ions with H + .
- Residual water and ethanol is evaporated off, and the treated Cremophor ® EL is redissolved in dehydrated ethanol and used to prepare a paclitaxel formulation. This formulation is shown to be more stable than one prepared with untreated Cremophor ® EL.
- EP 0,645,145 discloses that stabilized paclitaxel formulations can be obtained by adding acid to the Cremophor ® EL used in their preparation, thereby neutralizing the carboxylate anions therein.
- the acid is preferably a mineral acid.
- Cremophor ® EL can be contacted with aluminium oxide, for example in a chromatography column, to remove the carboxylate anions.
- WO 01/72300 discloses the treatment of Cremophor* EL with a non-toxic metal salt of an acid, such as zinc, coppet or ferrous sulphate or gluconate, by heating them together or by passing the Cremophor* EL through a column containing the salt.
- a non-toxic metal salt of an acid such as zinc, coppet or ferrous sulphate or gluconate
- chromatography has been used.
- the chromatographic purification of Cremophor* EL produces a less hepatotoxic drug vehicle (Oliver P. Flint et. ai, 2001 American Society of Clinical Oncology Annual Meeting).
- Cremophor* ELP The purified version of Cremophor* EL available from BASF, Cremophor* ELP, was developed for sensitive pharmaceutical ingredients, and has a lower water content, pH and viscosity, and also a reduced potassium ion and free fatty acid content, particularly with regard to ricinoleic, oleic and palmitic acids. Even Cremophor* ELP, however, does not provide an entirely satisfactory stability profile of paclitaxel formulations, and methods for further purifying this surfactant have been studied.
- WO 00/32186 discloses that a composition comprising paclitaxel and Cremophor* ELP can be stabilized by addition of an antioxidant such as sodium metabisulfite, sodium sulfite, sodium bisulfite, dextrose, a phenol, a thiophenol, or a combination thereof.
- an antioxidant such as sodium metabisulfite, sodium sulfite, sodium bisulfite, dextrose, a phenol, a thiophenol, or a combination thereof.
- Cremophor* ELP with an adsorbent such as silica gel or aluminosilicate can reduce the content of polar and acidic impurities, and paclitaxel formulations prepared with the treated Cremophor* ELP show a significantly lower degree of degradation into products such as 10-deacetylpaclitaxel and 7-epi-paclitaxel.
- an adsorbent such as silica gel or aluminosilicate
- Membrane filtration is a technique widely used in the life sciences, most commonly for the separation, purification or concentration of proteins. Depending on membrane type it can be classified as microfiltration (membrane pore size between 0.1 and 10 ⁇ m) or ultrafiltration (membrane pore size between 0.001 and 0.1 ⁇ m). Ultrafiltration membranes are used for concentrating dissolved molecules (protein, peptides, nucleic acids, carbohydrates, and other biomolecules), desalting or exchanging buffers, and gross fractionation. An ultrafiltration membrane retains molecules that are larger than the pores of the membrane, while smaller molecules such as salts, solvents and water, which are 100% permeable, freely pass through the membrane.
- a method of purifying a surfactant for use in a pharmaceutical formulation which comprises mixing the surfactant with a solvent and bringing said mixture into contact with a semipermeable membrane so as to allow impurities present in the surfactant and having a molecular weight lower than the molecular weight cut-off of the membrane to pass through the membrane, whilst retaining purified surfactant.
- a purified surfactant obtainable by a method according to the invention in its first aspect.
- a solvent system comprising a purified surfactant according to the invention in its second aspect.
- a stabilized liquid formulation comprising a purified surfactant according to the invention in its second aspect.
- compositions comprising paclitaxel, dehydrated alcohol and glycerol polyethylene glycol ricinoleate, which contain:
- a method of purifying a surfactant for use in a pharmaceutical formulation which comprises forming a colloidal suspension of the surfactant in a solvent and subjecting the suspension to a physical separation technique, so as to remove impurities having a different molecular weight than that of the colloidal surfactant.
- surfactants When combined with a solvent, surfactants are capable of self-aggregating into numerous supramolecular structures including monolayers, bilayers and micelles having a wide variety of shapes. Such aggregates tend to exist in equilibrium with monomeric (i.e. non-aggregated) surfactant molecules.
- Micelles may be formed above a particular concentration of surfactant termed the critical micelle concentration; at this concentration there is a discontinuity in various physical properties such as surface tension, tubidity, molar conductivity and osmotic pressure.
- the critical micelle concentration can be affected by temperature and the presence of electrolytes; for example, micelles of ionic surfactants may only form above a particular temperature known as the Krafft temperature.
- Non-ionic surfactant solubility has a temperature limit called the cloud point. These parameters are known for any particular surfactant or can be determined experimentally by known methods.
- Micelles of a micellar solution tend to have an aggregation number (i.e. the number of aggregated surfactant molecules) around 20 - 100.
- the surfactant forms micellar aggregates having an average molecular weight higher than the molecular weight cut-off of the membrane, which do not pass through the membrane during the filtration.
- Impurities present in the surfactant that have a molecular weight lower than the average molecular weight of the surfactant in its aggregated form can be separated by appropriate choice of the molecular weight cut-off of the membrane.
- the molecular weight of the surfactant in its monomeric form can be higher or lower than the molecular weight cut-off of the membrane.
- the invention is particularly useful for the removal of impurities having a molecular weight similar to or higher than that of monomeric surfactant, but lower than that of the surfactant micelles.
- the solvent is preferably a polar solvent, in particular water.
- the surfactant is mixed with water in a concentration of at least its critical micelle concentration before being subjected to membrane filtration, preferably TFF. The large micelles are retained, whereas smaller impurities in the colloidal suspension pass through the membrane. After the tangential flow filtration, water can be removed from the retentate by distillation at low pressure.
- the surfactant is treated with activated catbon with stirring for 30 minutes at room temperature, followed by filtration.
- the surfactant is treated with the ion exchange resin with stirring for 30 minutes at room temperature, followed by filtration.
- the surfactant may be of any type including ionic and non-ionic, but is preferably non-ionic.
- the surfactant to be purified is a polyoxyl castor oil such as Cremophor ® EL or ELP.
- Cremophor* EL or ELP forms large polar micelles in aqueous solutions, which will be retained by the membrane during filtration; the critical micelle concentration is approximately 0.02 %.
- smaller molecules which can cause degradation of active agents such as paclitaxel, do not form micelles and will pass through the membrane.
- Such impurities may be ionic species, e.g. carboxylate anions or metal cations, or non- ionic species.
- the purified surfactant may also have a lower concentration of fatty acids than commercially available Cremophor* ELP.
- Suitable conditions for the membrane filtration can be determined by the skilled person.
- suitable flow rates may be in the range 30 — 100 ml/min, preferably 50 - 80 ml/min in respect of the retentate and 0.5 — 10 ml/min, preferably 0.5 - 5 ml/min, especially preferably 1 — 2 ml/min in respect of the filtrate.
- the membrane is preferably an ultrafiltration membrane; suitable molecular weight cut-offs may be in the range 2 - 20 kD, preferably 3 - 15 kD, especially preferably 5 — 10 kD.
- the filtration may be conducted under a pressure of 0.1 — 20 bats.
- a suitable solvent system is needed to solubilise the active agent and ensure stability of the formulation, providing a sufficiently long shelf life.
- these are often diluted prior to administration with a fluid, and the solvent system must be capable of maintaining the stability of the diluted form.
- a potentially useful solvent system for this purpose would be a mixture of a pharmaceutically acceptable polar solvent, such as ethanol, and a surfactant.
- the surfactant in general acts as a solubiliser or emulsifier in the stabilised liquid formulation.
- Many useful surfactants are condensation products of an alkylene oxide, such as ethylene oxide, and a fatty acid or fatty alcohol.
- Polyoxyl castor oils and polysorbates ethoxylated sorbitan esters
- the surfactant may consist of a mixture of surfactant compounds.
- the purified surfactants of the invention are particularly suitable for use in a wide range of stabilized liquid formulations comprising lipid-soluble drugs, especially injectable formulations.
- Cremophor* EL or ELP purified according to the invention can be used to prepare various solutions of numerous drugs including miconazole, hexedetine, clotrimazole and benzocaine, and also fat-soluble vitamins.
- Drugs that are particularly susceptible to degradation, such as paclitaxel, docetaxel, teniposide and camptothecin derivatives, are of major interest.
- the pharmaceutical formulations comprising paclitaxel, dehydrated alcohol and glycerol polyethylene glycol ricinoleate contain: less than 0.06% baccatine III; less than 0.05% ethyl ester side chain of paclitaxel; - less than 0.06% 10-deactyl-paclitaxel; no detectable 10-deacetyl-7-epipaclitaxel; and/or less than 0.16% 7-epipaclitaxel.
- Cremophor ® EL 80 g Cremophor ® EL (BASF Aktiengesellschaft) were mixed with 400 g water for injection. The solution obtained was subjected to tangential flow filtration (TFF) using a Minimate ® TFF System fitted with a 5 kD ultrafiltration membrane (Pall Corporation, 2200 Northern Boulevard, East Hills, NY 11548, USA) for 48 hours at room temperature. The filtration pressure was between 2 and 3 bar. A water volume equal to the volume of filtrate was added to the retentate every hour. The total amount of water added to the retentate was approximately 4500 ml. The aqueous solution obtained was distilled at low pressure (500 ⁇ bar) on a water bath. 58 g of purified Cremophor ® EL was obtained (Cremophor ® EL-TFF-I).
- the Cremophor ® EL-TFF-I was mixed with dehydrated ethanol and paclitaxel to obtain a pharmaceutical formulation (Formulation 1).
- Cremophor ® ELP 80 g Cremophor ® ELP were mixed with 400 g water for injection.
- the solution obtained was subjected to TFF using a 5 kD membrane and a Minimate ® TFF System from Pall for 40 hours at room temperature.
- the filtration pressure was between 2 and 3 bar.
- a water volume equal to the volume of filtrate was added to the retentate every hour.
- the total amount of water added to the retentate was approximately 4400 ml.
- the aqueous solution obtained was distilled at low pressure (500 ⁇ bar) on a water bath. 59 g of purified Cremophor ® ELP was obtained (Cremophor ® ELP-TFF-2).
- a paclitaxel formulation containing commercial grade Cremophor ® EL and dehydrated ethanol is prepared as follows (Formulation 3):
- a paclitaxel formulation containing commercial grade Cremophor® EL, dehydrated ethanol and citric acid is prepared as follows (Formulation 5):
- Formulations 1 — 4 were subjected to an accelerated degradation study (36 hours at 56 °C) and tested for the presence of the following degradation products: baccatine III, ethyl ester side chain, lO-deacetylpaclitaxel, lO-deacetyl-7-epi-paclitaxel and 7- cpi-paclitaxel. The results are presented in Table 1.
- Cremophor* ELP 80 g Cremophor* ELP were mixed with 400 g water for injection.
- the solution obtained was subjected to TFF using a 10 kD membrane and a Minimate* TFF System from Pall for 30 hours at room temperature.
- the filtration pressure was between 2 and 3 bar.
- a water volume equal to the volume of filtrate was added to the retentate every hour.
- the total amount of water added to the retentate was approximately 3200 ml.
- the aqueous solution obtained was distilled at low pressure (500 ⁇ bar) on a water bath.
- 70 g of purified Cremophor* ELP was obtained (Cremophor* ELP-TFF-3).
- Formulations 4 and 6 - 8 were subjected to an accelerated degradation study (7 days at 56 0 C) and tested for the presence of the following degradation products: baccatine III, ethyl ester side chain, 10-deacetylpaclitaxel, 10-deacetyl-7-epi- paclitaxel and 7-epi-paclitaxel. The results are presented in Table 4.
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
Claims
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007554568A JP2008530052A (en) | 2005-02-10 | 2006-02-10 | Method for purifying surfactant |
| NZ560418A NZ560418A (en) | 2005-02-10 | 2006-02-10 | Method of purifying a surfactant derived from castor oil and ethylene oxide using a membrane, for use in stabilized liquid pharmaceutical formulations |
| AU2006212177A AU2006212177A1 (en) | 2005-02-10 | 2006-02-10 | Method of purifying a surfactant by ultrafiltration |
| CA002597223A CA2597223A1 (en) | 2005-02-10 | 2006-02-10 | Method of purifying a surfactant by ultrafiltration |
| US11/884,213 US8398860B2 (en) | 2005-02-10 | 2006-02-10 | Method of purifying a surfactant by ultrafiltration |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RO200500092 | 2005-02-10 | ||
| RO200500092 | 2005-02-10 | ||
| EP05108513A EP1690551A3 (en) | 2005-02-10 | 2005-09-15 | Method of purifying a surfactant by ultrafiltration |
| EP05108513.2 | 2005-09-15 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| WO2006084902A2 true WO2006084902A2 (en) | 2006-08-17 |
| WO2006084902A3 WO2006084902A3 (en) | 2006-10-26 |
| WO2006084902A8 WO2006084902A8 (en) | 2006-12-21 |
Family
ID=36190559
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2006/050856 Ceased WO2006084902A2 (en) | 2005-02-10 | 2006-02-10 | Method of purifying a surfactant by ultrafiltration |
Country Status (3)
| Country | Link |
|---|---|
| AU (1) | AU2006212177A1 (en) |
| CA (1) | CA2597223A1 (en) |
| WO (1) | WO2006084902A2 (en) |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05317654A (en) * | 1991-03-22 | 1993-12-03 | Ajinomoto Co Inc | Method for refining surfactant by membrane filtration |
| JP3759984B2 (en) * | 1995-10-13 | 2006-03-29 | よつ葉乳業株式会社 | Purification of component 3 of milk proteose peptone |
| FR2772742B1 (en) * | 1997-12-23 | 2000-02-18 | Cogema | METHOD FOR SEPARATING METALS BY MICELLAR ULTRAFILTRATION, USEFUL FOR THE TREATMENT OF RADIOACTIVE EFFLUENTS |
| US6388112B1 (en) * | 1998-10-20 | 2002-05-14 | Ben Venue Laboratories, Inc. | Process for purification of solvents useful in the preparation of pharmaceutical compositions |
| CA2404374A1 (en) * | 2000-03-24 | 2001-10-04 | Baker Norton Pharmaceuticals, Inc. | Use of metal salts to stabilize taxane-based compositions |
| US20040014624A1 (en) * | 2001-06-06 | 2004-01-22 | Bolkan Steven A. | Recylable cleaning compositions |
| CZ294371B6 (en) * | 2002-06-10 | 2004-12-15 | Pliva - Lachema, A. S. | Stabilized pharmaceutical composition based on polyoxyethylated castor oil and process for preparing thereof |
-
2006
- 2006-02-10 AU AU2006212177A patent/AU2006212177A1/en not_active Abandoned
- 2006-02-10 CA CA002597223A patent/CA2597223A1/en not_active Abandoned
- 2006-02-10 WO PCT/EP2006/050856 patent/WO2006084902A2/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| CA2597223A1 (en) | 2006-08-17 |
| WO2006084902A3 (en) | 2006-10-26 |
| AU2006212177A1 (en) | 2006-08-17 |
| WO2006084902A8 (en) | 2006-12-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| FI72875B (en) | FOERFARANDE FOER FRAMSTAELLNING AV PARENTERALT APPLICERBARA STABILA PHARMACEUTISKA PREPARAT AV BENSODIAZEPIN. | |
| KR102525493B1 (en) | A poloxamer composition free of long circulating material and methods for production and uses thereof | |
| RS54275B1 (en) | Aqueous 2,6-DIISOPROPYLPHENOL PHARMACEUTICAL COMPOSITIONS | |
| JPH03271234A (en) | Method for producing immunoglobulin G | |
| GB2359747A (en) | An anaesthetic formulation comprising micelles and propofol | |
| EP1299095A1 (en) | Clear aqueous anaesthetic composition | |
| EP3417937A1 (en) | Hemocompatible adsorber for dialysis of protein-bound uraemic toxins | |
| JP5989675B2 (en) | Pharmaceutical formulation | |
| HRP20041107A2 (en) | Stabilised pharmaceutical compositions on the basis of polyoxyethylated castor oil and method for manufacturing the same | |
| US8398860B2 (en) | Method of purifying a surfactant by ultrafiltration | |
| US20210128810A1 (en) | Cleaning of biological fluid | |
| CN116350590A (en) | Production and filtration process of honokiol liposome | |
| WO2006084902A2 (en) | Method of purifying a surfactant by ultrafiltration | |
| CN113804802B (en) | Method for detecting cyclosporine pharmaceutical preparation and auxiliary materials thereof | |
| US8680061B2 (en) | Medicinal forms of phospholipid preparations and methods for their preparation | |
| JP5028564B2 (en) | Retentive blood multiphase emulsion preparation for treating or preventing liver disease and method for producing the same | |
| KR20240093613A (en) | uric acid liposomes | |
| EP1919455A2 (en) | Medicinal forms of phospholipid preparations and methods for their preparation | |
| RU2500396C2 (en) | Agent showing cardioprotective action, and method for preparing it | |
| KR20220140487A (en) | protein bioprocessing | |
| JP7689535B2 (en) | Method for obtaining alpha-1 proteinase inhibitors | |
| Coquelet et al. | Association between benzalkonium chloride and a poly (acrylic acid) gel. Study by microfiltration and membrane dialysis | |
| CN108653204B (en) | Polyene phosphatidyl choline injection pharmaceutical composition and preparation method thereof | |
| JPH04338334A (en) | Prostaglandin e1 lipo-preparation | |
| US20200246297A1 (en) | Liquid pharmaceutical formulations of tetraiodothyronine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 560418 Country of ref document: NZ Ref document number: 2006212177 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2597223 Country of ref document: CA Ref document number: 2007554568 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2006212177 Country of ref document: AU Date of ref document: 20060210 Kind code of ref document: A |
|
| WWP | Wipo information: published in national office |
Ref document number: 2006212177 Country of ref document: AU |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 06708198 Country of ref document: EP Kind code of ref document: A2 |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 6708198 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 11884213 Country of ref document: US |