[go: up one dir, main page]

WO2006068271A1 - 心臓弁データ計測方法および装置 - Google Patents

心臓弁データ計測方法および装置 Download PDF

Info

Publication number
WO2006068271A1
WO2006068271A1 PCT/JP2005/023797 JP2005023797W WO2006068271A1 WO 2006068271 A1 WO2006068271 A1 WO 2006068271A1 JP 2005023797 W JP2005023797 W JP 2005023797W WO 2006068271 A1 WO2006068271 A1 WO 2006068271A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
valve
dimensional
annulus
heart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2005/023797
Other languages
English (en)
French (fr)
Inventor
Nozomi Watanabe
Yasuo Ogasawara
Masashi Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikotec Co Ltd
YD Ltd
Original Assignee
Seikotec Co Ltd
YD Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikotec Co Ltd, YD Ltd filed Critical Seikotec Co Ltd
Priority to EP05819627A priority Critical patent/EP1832233A4/en
Priority to US11/722,748 priority patent/US20080085043A1/en
Priority to JP2006549079A priority patent/JP4452281B2/ja
Publication of WO2006068271A1 publication Critical patent/WO2006068271A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • A61B8/0883Clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • G06T2207/101363D ultrasound image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20116Active contour; Active surface; Snakes
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Definitions

  • the present invention relates to a method and apparatus for measuring heart valve data used in clinical practice. More specifically, the present invention relates to a method and apparatus for automatically extracting a clear three-dimensional heart valve image capable of measuring various heart valve data.
  • Mitral regurgitation (mitral insufficiency) is a serious disease that causes left heart failure in valvular diseases, which is a frequent and severe regurgitation.
  • Treatment of severe mitral regurgitation is basically external medicine, and mitral valve replacement using an artificial valve has been performed.
  • mitral valvuloplasty which preserves the self-valve, has become widespread recently due to problems such as decreased cardiac function and complications associated with anticoagulant therapy.
  • Mitral valvuloplasty is a method of selectively surgically forming the part of the mitral annulus, valve leaflet, chordae, etc. that is causing reflux, and it is also important for its success. Precise pathogenesis / lesion diagnosis by echocardiography is essential.
  • echocardiography which is widely used at present, is a diagnosis based on two-dimensional images, and the anatomy of the mitral valve and the surrounding mitral valve have a three-dimensional complex structure. It was difficult to clarify the target / positional relationship. In other words, an annulus that draws a saddle-shaped curve, a valve leaflet that has an elaborate curve, and a mitral valve that is made up of the valve supporting tissue from the chord to the papillary muscle to the left ventricle. In order to grasp the three-dimensional structure of the functional complex (mitral valve mechanism), two-dimensional images are insufficient, and three-dimensional image diagnosis has been required.
  • Non-Patent Document 1 Hirozo Yamada, “Recognition of cardiac motion images by collaborating global solution extraction and local solution tracking”, [online], Research Institute of Electronic Technology Research Institute 62-7, [December 22, 2005 search ], Internet 1 ⁇ Net ⁇ URL: http: //www.etl.go.jp/jp/results/bulletin/pdf/62_7/yamaaa72.pdf>
  • Echocardiograms obtained from an echocardiograph include an M-mode echocardiogram, a tomographic echocardiogram, and a Doppler echocardiogram.
  • M-mode echocardiogram the movement of the heart structure over time can be recorded graphically, and the movements of the valve, ventricle wall, aorta, etc. are drawn as characteristic patterns.
  • a tomographic echocardiogram a two-dimensional tomogram (B mode) of the heart is obtained by scanning the ultrasound beam at high speed.
  • Ultrasonic beam scanning methods include a high-speed mechanical scanning method and an electronic scanning method.
  • the tomographic method can easily observe the form of the heart or the movement of the heart and is useful for diagnosing the presence, location, and degree of abnormal findings.
  • Doppler echocardiograms include pulse Doppler method, continuous wave Doppler method, Doppler tomography method, 2D blood flow imaging method, color Doppler method, etc.
  • quantitative diagnosis such as blood flow measurement and pressure estimation, and cardiac function evaluation.
  • the conventional heart valve automatic extraction device is often mis-recognized, such as the window method that is determined based on the previous threshold and the edge extraction method that extracts areas with large luminance changes.
  • the image is different from images with clear boundaries such as CT and MRI, and the boundaries are unclear.
  • the window method and edge extraction method can be applied to those with clear boundaries such as CT and MRI, but cannot be applied to those with unclear boundaries such as echocardiograms.
  • the problem to be solved by the present invention is that the mitral valve's tenting volume, tenting area, tenting height, the annulus area, the perimeter length, and the height in the heart To obtain information about the heart valves that are needed in the clinic, such as the difference in the department.
  • the heart valve is automatically extracted to obtain a clear three-dimensional image, and the necessary amount is measured from this image.
  • the method and apparatus used in the present invention in addition to automatically extracting the heart annulus of a clear three-dimensional image in the echocardiogram, it is also possible to reproduce the boundary of the tissue not shown in the echo image. In other words, it is a method and apparatus for automating heart valve annulus extraction and function that could only be recognized by the eyes of a skilled physician.
  • the invention described in claim 1 is to obtain a three-dimensional heart valve image capable of measuring clinically necessary data about the heart valve.
  • a method of forming a 3-dimensional echocardiogram from 2-dimensional echocardiographic tomographic images scanned by an echocardiography device and automatically extracting 3-dimensional heart valve images from the 3-dimensional echocardiogram by computer processing In the clinical study, the fitting evaluation function (potential energy) of the annulus model in the fitting model considering the physical shape of the heart and the annulus is optimized by the replica exchange method 'expanded slow cooling method'. necessary This is a 3D heart valve image automatic extraction method that can measure data.
  • the invention described in claim 2 is based on a two-dimensional echocardiographic tomographic image scanned with an echocardiography apparatus in order to obtain a three-dimensional heart valve image capable of measuring clinically necessary data regarding the heart valve.
  • a device that forms a three-dimensional echocardiogram and automatically extracts a three-dimensional heart valve image from the three-dimensional echocardiogram by computer processing, the valve in the fitting model considering the physical shape of the heart and the annulus
  • a 3D heart valve image automatic extraction device that can measure clinically required data, and is equipped with a means to optimize the fitting evaluation function (potential energy) of the ring model by replica exchange method and extended slow cooling method is there.
  • the following means S can be taken.
  • the annulus extraction process consists of the following two steps. First, a fitting model that takes into account the physical shape of the heart is prepared, and the high-luminance part of the myocardium is fitted. Next, a place that looks like an annulus is searched for on the fitted shape.
  • the annulus model can use a cylindrical and net-like structure made of an elastic body. For example, take 1 control point with a total of 1600 control points, 40 per height and 40 heights, and connect each point with a panel of appropriate force. At this time, the control point is designated as high as possible.
  • the fitting evaluation function (potential energy) of this cylindrical annulus model is optimized by the replica exchange method 'extended slow cooling method'.
  • the replica exchange method is widely used as a method for elucidating the three-dimensional molecular structure of proteins and the like.
  • This method we consider an entire system consisting of multiple systems (replicas) that do not have equivalent interactions, assign different temperatures (energy) to each replica (copy), and initially assign the same molecule to all replicas.
  • Deploy. Metropolis simulation is performed independently in each replica system, and the molecular arrangement is periodically exchanged between adjacent replicas.
  • SA slow cooling method
  • Annulus search is performed according to the following rules.
  • the features of the apparatus of the present invention are as follows. (1) The ability to perform three-dimensional display and quantitative analysis of the mitral valve complex, which was impossible with conventional two-dimensional echocardiograms. (2) Reconstruction from a conventional 2D image takes a great deal of labor and time, but when the device of the present invention is used, all processes (echoes) leading up to the 3D analysis of the mitral valve at present are performed. Image collection-Image tracing ⁇ 3D image reconstruction ⁇ 3D data quantitative analysis) can be reduced to approximately 15 minutes.
  • FIG. 1 Eighteen images of the heart image during systole were taken at equal intervals using an echocardiogram diagnostic device, and the mitral leaflet and annulus were reconstructed into a 3-D image. It is a figure for demonstrating a method.
  • FIG. 2 is an explanatory diagram when creating a 3-D image from a 2-D image.
  • FIG. 3 (A) perspective view showing appearance and (B) view from LV direction of a mitral leaf leaflet and annulus of a normal person reconstructed with a 3D heart valve image by the apparatus of the present invention. (C) A top view and a side view of a mitral leaflet modified from the previous figure.
  • FIG. 4 (A) Perspective view showing the external appearance of the leaflet and annulus of the mitral valve of a person with ischemic MR reconstructed with a 3D heart valve image by the apparatus of the present invention. (B) From the LV direction. The leaflet (top view) and side view of the mitral valve as seen, (C) top view and side view of the leaflet of the mitral valve modified from the previous figure.
  • FIG. 5 A graph showing the distribution of the maximum number of tenting sites of 12 patients with local anemia MR on the leaflet of the mitral valve.
  • FIG. 6 is an explanatory diagram of control points and elastic panels.
  • FIG. 7 is an explanatory diagram of an evaluation function and an integration region.
  • LA left atrium
  • the following inspection can be performed.
  • the end diastolic volume (EDV) and end systolic volume (ES V) are modified Simpson method (approximate the entire left ventricle as a cylindrical stack) Can be measured by.
  • the ejection fraction (%) can be calculated by the equation 100 X (EDV-ESV) / EDV.
  • MR can be assessed by color Doppler echocardiography, and the degree of MR can be quantified by the PISA method using ROA.
  • the mitral valve is extracted by executing the following procedure to reproduce a clear image.
  • a real-time 3-D echocardiographic system is used to display a volumetric image (full volume mode) through the thoracic cavity in the apex view of the subject. obtain. Volumetric frame rates are taken at a depth of 12 to 16 centimeters, and 16 to 22 frames are taken every second. (The number of frames depends on the depth.) Before acquiring a full stereo image, adjust the probe so that it is positioned at the apex of the center of the mitral valve in the form of a 2D image. All stereoscopic images are recorded digitally on a compact disc and transferred to a personal computer for off-line analysis.
  • Fig. 1 shows a three-dimensional (3-D) three-dimensional (3-D) image obtained by automatically photographing (scanning) eighteen equally spaced radial planar images using a three-dimensional echocardiogram diagnostic apparatus. It shows the process of forming a 3D image. During cardiac contraction, manually mark the annulus and leaflet of the mitral valve for each scanned planar image. From these data, the mitral leaflets and 3-D images of the annulus are reconstructed. Specifically, it is shown in Figure 2.
  • Figure 2 shows three-dimensional solid images of smooth counterparts when the scanned planar images are arranged in order, check points (corresponding points between images) are connected by lines, smoothed, and rendered. (The example in the figure is for 18 frames).
  • the echo image does not have a clear outline like MRI or CT.
  • the apparatus of the present invention uses the fitting model to extract the annulus.
  • the high-intensity part of the myocardium is fitted in consideration of the physical shape of the heart.
  • a cylindrical and net-like structure made of an elastic body is used for the fitting model. Furthermore, a total of 1600 control points, 40 per height and 40 height, are provided, and each control point is connected with an appropriate panel. At this time, the control point is selected as high as possible.
  • a plurality of such structures (replicas) are prepared, and different brightness is assigned to each replica. Using this luminance as potential energy, the structure with the most stable potential energy (minimum value) is determined using the fitting evaluation function.
  • the method used at this time is an extended slow cooling method called a replica exchange method. In other words, starting from the point of high brightness, control points are exchanged between replicas, and the potential energy is obtained each time. By performing such a simulation, the one with the lowest potential energy (stable structure) is extracted as the shape of the structure (annulus) (optimization).
  • FIG. 3 shows the annulus extracted as described above.
  • the extracted mitral valve leaflet is referred to as “leaflet” and the root of the leaflet is referred to as “valve”.
  • the leaflet a tent, or bulge, or “tenting”.
  • LA left atrium
  • LV left ventricle
  • the LV pressure is higher than the LA pressure.
  • stenosis may occur if not enough blood is sent to an LV with poor mitral valve opening.
  • mitral valve is loosened and mitral regurgitation occurs, ischemia occurs because LV to LA regurgitation occurs and sufficient arterial blood is not supplied to the body.
  • mitral insufficiency due to mitral valve relaxation has been frequently treated with valvuloplasty without using a prosthetic valve. For that purpose, it is important to obtain the mitral valve's accuracy and shape, and the 3D heart valve image acquisition of the device of the present invention is effective.
  • FIG. 3 shows a three-dimensional image of the leaflet of a normal human mitral valve and its shape by three-dimensional heart valve image extraction performed by the apparatus of the present invention.
  • (A) in the figure is a 3-D image of the leaflet seen from different directions.
  • the annulus (base) of the mitral valve has a “Sadonor” shape.
  • the leaflet of the mitral valve appears to be almost flat, with a slight bite into the LV.
  • (B) in the figure is an actual 3-D tenting image.
  • the annulus is an approximate appearance for 3-D measurement.
  • the left figure shows the leaflet shape of the mitral valve as seen from the LV direction, and the degree of tenting is shown as contour lines.
  • the figure on the right is a leaflet viewed from the horizontal direction, which can accurately measure the degree of tenting of the annulus and leaflet.
  • the circumference and area of the mitral valve annulus can be measured from these 3-D data.
  • the height of the annulus in the figure indicates the degree of curvature of the annulus.
  • the black dots in the figure are the joint lines (valve commissures, that is, the position where the front and rear cusps engage during LV contraction).
  • (C) in the figure is a modified 3-D tenting image.
  • the curve shown in bold in the figure represents the annulus of the mitral valve and is drawn smoothly on a flat surface while keeping the distance from the ring-shaped surface to the leaflet constant.
  • the figure on the left is a leaflet view of the mitral valve as seen from the LV direction, and the degree of tenting is shown by contour lines.
  • the figure on the right is seen from the horizontal direction, and the tenting degree of the mitral valve annulus can be measured quantitatively. Maximum tenting length, average tenting length and tenting volume can also be measured by these 3-D data forces.
  • a black dot indicates a joining line.
  • FIG. 4 is a three-dimensional image of the mitral valve annulus, a leaflet representing the mitral valve of an ischemic mitral regurgitation (MR) patient.
  • (A) in the figure is a 3-D image of the leaflet viewed from different directions.
  • the mitral valve annulus is apparently smoothed by tenting.
  • the leaflet in the shape of a mountain has become convex, and it has penetrated into the LV as a whole.
  • (B) in the figure represents an actual 3-D tenting image. It can be seen that the entire mitral leaflet bulges in the LV direction, and the height of the annulus is low compared to normal. The mitral valve annulus is also spreading. The black dots indicate the mitral valve joint line.
  • (C) in the figure is a modified version of the 3-D tenting image.
  • the leaflet of the mitral valve is almost symmetrical with respect to A-P when viewed from the annulus of the mitral valve.
  • the maximum tenting length is longer than normal. Black dots indicate the joining line.
  • the green mark indicates the leaflet's maximum tenting site. In this patient, the maximum tenting site is located at the center of the leaflet front apex A (where the contour line in the left figure shows the highest position ⁇ position corresponding to the top of the mountain>).
  • FIG. 5 is a diagram showing the results of examining the location of the maximum tenting site for 12 patients with local anemia MR on the leaflet as a distribution of the number of people.
  • the letter 'A' in the figure represents the anterior apex (anterior), 'P' represents the posterior apex (posterior), 'L' is lateral, 'C' is central, 'M' Represents an intermediate part (medial).
  • the number in parentheses is the number of people . As the figure shows, the largest tenting site was located in front of the leaflet for all 12 people. The breakdown was 3 AM, 5 AC, and 4 AL.
  • the breakdown of 12 patients with ischemic MR consists of 3 patients with a single vascular disease, 6 patients with 2 vascular diseases, and 3 vascular diseases. There are 3 patients with.
  • LV dysfunction was severe in a wide range (EF 33.9 ⁇ 9.1%, width 18% to 47%).
  • R_ ⁇ _A is a 0.29 ⁇ 0 .15cm 2, ranged in 0.15 ⁇ 0.62cm 2.
  • patients with ischemic MR found no difference in age, gender, or body surface area.
  • an image creation software system for real-time 3-D echocardiography developed using the 3D heart valve image acquisition method of the present invention is as follows: 1) Mitral valve leaf 3-D geometric malformations of the retinal and annulus, 2) Maximum tenting site of the mitral leaflet, and 3) Mitral tenting and annulus in patients with ischemic MR We were able to make a quantitative measurement of the malformation.
  • a more detailed example of the fitting model used in the present invention will be described. Due to the characteristics of the echo measurement device, noise and shadows are generated in the image, and it is difficult to obtain an accurate tissue image only from the image information.
  • the doctor knows the ideal image of the actual tissue, combines the ideal image with echo images of various angles and times in the head, and complements the blurred echo image to draw the boundary of the tissue Doing work. Physical modeling allows the computer to replace the image completion work that is being done in the doctor's head.
  • Model construction on a computer uses a panel connecting the control points as shown in Fig. 6 and Fig. 7 and a boundary evaluation function established by the control points. Panels between control points maintain the physical structure of the organization. On the other hand, the boundary evaluation function picks up tissue boundary information from the image.
  • the elastic strength of the panel is determined empirically from the tissue strength between control points.
  • is the exclusion radius of the control point, and is selected so that the control point does not overlap. At this time, the natural length of the panel is
  • [0052] is a function that returns the brightness at the vector r point in the image
  • vector of length 1 defined by, c is a coupling constant
  • [0062] is an evaluation function between control points i and j (described later), and the line integral is defined by the shortest route between r and r
  • a function reflecting physical characteristics is selected empirically. For example, a function that recognizes that the luminance value has changed significantly as a boundary (the energy decreases near the boundary) can be written as follows.
  • [0071] is the gradient of the function M.
  • W and W are weights of elastic energy and evaluation energy, and it is possible to adjust which of the structures and the boundary evaluation is emphasized.
  • the boundaries of the organization can be extracted.
  • the feature of this function F is that the boundary can be searched for by the function E while maintaining the physical shape by the function S. Even if there is some noise or shadow in the echo image, it is complemented by the physical shape, so even if the shape cannot be estimated from the image alone, a plausible tissue boundary can be extracted.
  • Extended slow cooling is a powerful optimization technique that has been attracting attention in recent years in the field of physics, such as spin glass and protein folding problems, and it can solve complex optimization problems with multiple degrees of freedom efficiently. This is a possible calculation technique.
  • the Monte Carlo method is a method of computer simulation using a probabilistic algorithm.
  • the evaluation function advances only in the smaller direction as the simulation proceeds.
  • the evaluation function can move in the direction of increasing, and thus shows large fluctuations.
  • the evaluation function can be expressed as a surface (potential surface) in 3N + 1 dimensional space, and the simulation proceeds while jumping over the local minimum points.
  • the replica exchange Monte Carlo method is a technique for performing efficient optimization by preventing the trap to the local minimum value by running the Monte Carlo simulation described above in parallel at different temperatures. Prepare a set of M control points (replicas) and set the mth control point
  • the position of the control point between replicas is exchanged by the following method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Cardiology (AREA)
  • Software Systems (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Image Processing (AREA)

Abstract

 本発明が解決しようとする課題は、心臓における僧帽弁のtenting volume、tenting area、tenting height、弁輪の面積、周囲長、高さ(最後部-最低部の差)など、臨床で必要とされる心臓弁に関する情報を得ることである。  心臓弁について臨床で必要なデータを計測可能な3次元心臓弁画像を得るため、心エコー図検査装置でスキャンした2次元の心エコー断層画像から3次元の心エコー図を形成し、前記3次元の心エコー図から3次元心臓弁画像をコンピュータ処理により自動抽出する方法において、心臓および弁輪の物理的形状を考慮したフィッティングモデルにおける前記弁輪のモデルのフィッティング評価関数(ポテンシャルエネルギー)をレプリカ交換法・拡張徐冷法で最適化することを特徴とする臨床で必要なデータを計測可能な3次元心臓弁画像自動抽出方法である。

Description

明 細 書
心臓弁データ計測方法および装置
技術分野
[0001] 本発明は、臨床に用いる心臓弁のデータを計測する方法及び装置に関する。更に 詳細には、心臓弁の各種データを計測可能な鮮明な 3次元心臓弁画像を自動で抽 出する方法および装置に関する。
背景技術
[0002] 僧帽弁逆流 (僧帽弁閉鎖不全)は弁膜疾患の中でも頻度が高ぐ重症の逆流例で は左心不全を引き起こす重大な疾患である。重症僧帽弁逆流の治療は基本的に外 科治療であり、従来は人工弁を用いた僧帽弁置換術が行われてきた。しかし、人工 弁置換後には心機能の低下や抗凝固療法に伴う合併症などの問題が多ぐ最近自 己弁を温存する僧帽弁形成術が広く行われるようになつてきた。
[0003] 僧帽弁形成術は僧帽弁輪 ·弁尖 ·腱索などのうち逆流の原因となっている部分を選 択的に外科的形成する方法であり、その成功のためにも心エコー図検査による術前 の正確な病因 ·病変診断が不可欠である。
[0004] しかし、現在広く用いられている心エコー図検查は 2次元画像による診断を行うもの であり、 3次元的に複雑な構造をしている僧帽弁と僧帽弁周囲の解剖学的 ·位置的 関係を明らかにすることは困難であった。つまり、鞍馬型 (サドル型)の曲線を描く弁 輪や、精巧なカーブを有する弁尖 '弁葉、さらに腱索から乳頭筋'左心室に至る弁下 部支持組織でなされる僧帽弁の機能的複合体 (僧帽弁機構)の立体的な構造を把 握するためには、 2次元画像では不十分であり、 3次元的な画像診断が必要とされて きた。
[0005] 最近開発された 3次元心エコー図装置を用いることにより、非侵襲的かつ簡便に心 臓全体をリアルタイムにスキャンし、画像を取り込むことが可能となった。 3次元心ェコ 一画像では、外科医が心臓を見るのと同じように心筋 ·弁膜などの構造を観察するこ とができ、これまでの 2次元画像による診断に比べて詳細な術前診断ができることが 期待されている。 [0006] しかし、この 3次元画像を用いた 3次元解析 ·計測は未だ困難であり、実際の詳細な 形態や位置関係を定量ィ匕することができないため、 3次元心エコー図は臨床的実用 化されてレヽなレ、のが現状である。
非特許文献 1 :山田博三、「大局解抽出と局所解追跡の協調による心臓動画像認識」 、 [online]、電子技術総合研究所彙報 62卷 7号、 [平成 17年 12月 22日検索]、イン タ1 ~ネット < URL:http://www.etl. go.jp/jp/results/bulletin/pdf/62_7/yamaaa72.pdf >
発明の開示
発明が解決しょうとする課題
[0007] CTや MRIは装置が大きぐ高価であるために、どこの病院でも利用できるというも のではない。これに対して超音波を利用した心エコー診断装置は小型で、手軽に利 用でき、広く普及している。このため心エコー(心臓超音波)検査は、心臓病や高血 圧をはじめとする循環器疾患の診断、治療には欠かせない存在となっている。ひと昔 前までは心臓カテーテル検查でしかわからなかった情報が、患者の痛みを伴うことな ぐ瞬時に把握できるようになった。また装置の軽量化に伴い、レ、までは聴診器のよう に携帯し、出向先でも検査することが可能となった。
[0008] 心エコー装置から得られる心エコー図には、 Mモード心エコー図、断層心エコー図 、ドッブラ心エコー図がある。 Mモード心エコー図では、心臓構造の経時的な動きを グラフィックに記録することができ、弁膜、心室壁、大動脈などの運動がそれぞれ特 徴的なパターンとして描かれる。断層心エコー図では、超音波ビームを高速走査する ことによって心臓の 2次元断層像 (Bモード)が得られる。
[0009] 超音波ビームの走査方法として高速機械走査法と電子走査法がある。断層法には 心臓の形態、または心臓の動きを容易に観察でき、異常所見の有無、部位、程度の 診断に役立つ。ドッブラ心エコー図にはパルスドッブラ法、連続波ドッブラ法、ドッブ ラ断層法、 2次元血流映像法、カラードップラ法などがあり、狭窄流や弁逆流などの 心腔内の異常血流の検査による定性診断とともに、血流計測や圧推定などの定量診 断や心機能評価にも応用されている。
[0010] し力、し、心エコー図(echocardiogram)を用いれば、すべてが解決するというもので はない。これまでの閾値によって判定するウィンドウ法、輝度変化の大きいところを抽 出するエッジ抽出法などで行われてレ、る心臓弁自動抽出装置は誤認識が多レ、。ェコ 一画像は CTや MRIなどの境界がはっきりした画像とは違レ、、境界が不明瞭である。 ウィンドウ法やエッジ抽出法は、 CTや MRIなどのような境界がはっきりしたものには 適用できるが、心エコー画像のような境界が不明瞭なものには適用できない。
[0011] 前記のウィンドウ法やエッジ抽出法の他に、心臓弁を曲線のフィッティングによりモ デル化し、適当な最適化手法を用いて境界のはっきりしない画像から輪郭像を得る 方法も提案されている。しかし、ニュートン法、最急勾配降下法では複雑な図形には 適用できず、また自由度を大きくしても GA (遺伝的アルゴリズム)、 SA (徐冷法)など を用いても局所最小値に簡単に捕われてしまって、最適解を見つけることが難しいと レ、う問題点がある。
[0012] 以上の点を踏まえ、本発明が解決しょうとする課題は、心臓における僧帽弁の tenti ng volume, tenting area, tenting height,弁輪の面積、周囲長、高さ(最後部一最低 部の差)など、臨床で必要とされる心臓弁に関する情報を得ることである。
[0013] 心エコー図検査装置で取り込んだ心エコー図をもとに、心臓弁を自動抽出して、鮮 明な 3次元画像を得て、この画像から必要な量を計測する。本発明で用いる方法及 び装置では、心エコー図における鮮明な 3次元画像の心臓弁輪を自動抽出すること のほかに、エコー画像に写っていない組織の境界を再現することも可能となる。すな わち、これまで熟練した医師の目でしか認識できなかった心臓弁輪抽出と機能を、 自 動化する方法及び装置である。
課題を解決するための手段
[0014] 上記の発明が解決しょうとする課題を解決するために、請求項 1に記載された発明 は、心臓弁について臨床で必要なデータを計測可能な 3次元心臓弁画像を得るため 、心エコー図検查装置でスキャンした 2次元の心エコー断層画像から 3次元の心ェコ 一図を形成し、前記 3次元の心エコー図から 3次元心臓弁画像をコンピュータ処理に より自動抽出する方法において、心臓および弁輪の物理的形状を考慮したフイツティ ングモデルにおける前記弁輪のモデルのフィッティング評価関数 (ポテンシャルエネ ルギ一)をレプリカ交換法'拡張徐冷法で最適化することを特徴とする臨床で必要な データを計測可能な 3次元心臓弁画像自動抽出方法である。
[0015] 請求項 2に記載された発明は、心臓弁について臨床で必要なデータを計測可能な 3次元心臓弁画像を得るため、心エコー図検査装置でスキャンした 2次元の心エコー 断層画像から 3次元の心エコー図を形成し、前記 3次元の心エコー図から 3次元心臓 弁画像をコンピュータ処理により自動抽出する装置において、心臓および弁輪の物 理的形状を考慮したフィッティングモデルにおける前記弁輪のモデルのフイツティン グ評価関数 (ポテンシャルエネルギー)をレプリカ交換法 ·拡張徐冷法で最適化する 手段を備えたことを特徴とする臨床で必要なデータを計測可能な 3次元心臓弁画像 自動抽出装置である。
[0016] 本発明では、弁輪の抽出とそのフィッティングのために、具体的には以下のような手 段をとること力 Sできる。弁輪抽出処理の流れは、以下の 2つの工程からなる。まず心臓 の物理的形状を考慮したフィッティングモデルを用意して、心筋の輝度の高い部分を フィットさせる。次に、そのフィットした形状の上で、弁輪らしき場所を探す。
[0017] 弁輪のモデルは、弾性体でできた円筒状かつ網状の構造を用いることができる。た とえば、 1周 40個、高さ 40個、計 1600個の制御点を取り、各点間は適当な力のパネで つなぐ。このとき、制御点はなるべく輝度の高い位置に指定する。この円筒状の弁輪 のモデルのフィッティング評価関数 (ポテンシャルエネルギー)をレプリカ交換法 '拡 張徐冷法で最適化する。
[0018] レプリカ交換法 (RE)はタンパク質などの立体分子構造を解明する手法として広く 用いられている。この手法では、等価な相互作用のない系(レプリカ)複数個で構成さ れる全体系を考え、各レプリカ(コピー)には異なる温度(エネルギー)を割り当て、最 初はすべてのレプリカに同じ分子を配置する。各レプリカ系で独立にメトロポリスシミ ユレーシヨンを行い、定期的に隣接するレプリカ間で分子配置を交換する。
[0019] さらに徐冷法(SA)を用レ、、高温(高工ネルギー)から低温 (低エネルギー)に徐冷 して最適解を見つける。この方法では、構造の、エネルギーのポテンシャル面が最小 (または極小)になる点 (最適解)を見つけ、安定構造として最終的な分子構造を決定 している。
[0020] レプリカ間分子配置交換には、まったくランダム交換するモンテカルロ法や、遺伝子 組み替えのように距離的に近い分子間(隣接分子間)で交換を行う遺伝子的アルゴリ ズム (GA)などが用いられる。分子構造をモデル化するに際しては、分子は点と考え 、隣接する分子間はクーロン力、パネ相互作用などが働き、これらの力の和が分子内 ポテンシャルエネルギーとして表現されている。
[0021] 弁輪探索は以下のルールに従って行う。
•なるべく輝度の高いところ
•下から上の方を見て 2次微分が正の場所 (窪んでレ、る所)
•隣の弁輪の制御点とあまり離れないところ
このルールにも適当な評価関数を定義して同様に最適化を行い、ポテンシャルエネ ルギ一が最小となる構造が、最終的に弁輪らしき場所として抽出される。弁輪の自動 抽出力 まくいかない場合に備え、マニュアルにて修正することのできる道も用意する ことちできる。
発明の効果
[0022] 本発明の装置の特徴は、以下のとおりである。(1)従来の 2次元心エコー図では不 可能であった、僧帽弁複合体の 3次元表示および定量解析ができること。(2)従来の 2 次元画像からの再構築には多大な労力と時間を要していたが、本発明の装置を用い た場合、現時点で僧帽弁 3次元解析にいたるすべてのプロセス(エコー画像の収集- 画像のトレース · 3次元画像再構築 · 3次元データ定量解析)に要する時間を計約 15 分に短縮できる。
[0023] 3次元心エコー図を用いた 3次元的定量解析は未だ実現されておらず、本発明を 用いた研究成果は世界的にも初めてのものである。とくに現在、僧帽弁尖'弁葉に異 常がないにもかかわらず乳頭筋や左心室の機能不全によって引き起こされる「機能 的僧帽弁逆流」のメカニズム解明や治療法の開発が世界的に注目されており、これ まで 2次元心エコー図画像での解析に頼っていたこれらのテーマに対する研究は、 3 次元解析が可能となることで大きく飛躍することが予想される。本発明の装置は、僧 帽弁逆流の術前診断'外科治療にまで密接した、臨床的に大いに有意義なものであ る。
図面の簡単な説明 [0024] [図 1]心臓収縮時の心臓画像を心エコー図診断装置を用いて等間隔で 18枚の画像 を撮影し、僧帽弁のリーフレットと弁輪を 3-Dイメージに再構築する手法を説明する ための図である。
[図 2]2-D画像から 3-Dイメージ画像を作成するときの説明図である。
[図 3]本発明の装置により 3次元心臓弁画像を再構築した、正常な人の僧帽弁のリー フレットと弁輪の、(A)外観を示す斜視図、(B) LV方向から見た僧帽弁のリーフレツ ト(上面図)および側面図、 (C)前図を修正した僧帽弁のリーフレットの上面図と側面 図である。
[図 4]本発明の装置により 3次元心臓弁画像を再構築した、虚血性 MRの人の僧帽弁 のリーフレットと弁輪の、(A)外観を示す斜視図、(B) LV方向から見た僧帽弁のリー フレット(上面図)および側面図、(C)前図を修正した僧帽弁のリーフレット上面図と 側面図である。
[図 5]僧帽弁のリーフレット上に、 12人の局所貧血 MRを持った患者の、最大テンティ ングサイトの人数分布を示した図である。
[図 6]制御点と弾性パネの説明図である。
[図 7]評価関数と積分領域の説明図である。
[図 8]ポテンシャル面と局所最小値の説明図である。
発明を実施するための最良の形態
[0025] 本発明を実施するための最良の形態を図を用いて説明する。以下の説明では次の ような省略リストを用いる。
MR =僧帽弁逆流
3-D = 3次元の
2-D = 2次元の
LV =左心室
LA =左心房
ROA =逆流開口部面積
EF =駆出分画
PISA =近位部等流速面積 EDV =拡張末期容量 (容積)
ESV =収縮末期容量 (容積)
[0026] 2次元の心エコー図検査では、以下のような検査が行える。すべての被験者の標準 的な 2-D心エコー図検査を行うことにより、拡張末期容量 (EDV)と収縮末期容量 (ES V)がモディファイドシンプソン方法 (左心室全体を円筒形の積み重ねとして近似する )によって測れる。その結果駆出分画(%)が方程式 100 X (EDV - ESV)/EDVによつ て計算できる。 MRはカラードップラ心エコー図検查によって評価し、 MRの度合いが ROAを使っている PISA方法によって数量化することができる。しかし、僧帽弁逆流 診断や僧帽弁手術を行うには、正確な弁輪の位置を見分け、立体的な弁膜画像が 必要になる。本発明の装置では僧帽弁を以下の手順の実行により抽出し、鮮明な画 像を再現する。
[0027] 立体画像イメージ (volumetic image)を得るために、リアルタイム 3-D心エコー図シ ステムを利用して、被験者の心尖部ビューで胸腔を通しての容積測定のイメージ (フ ルのボリュームモード)を得る。容積測定のフレームレートは 12から 16センチメートノレ の深度で、毎秒 16から 22フレームを撮影する。 (このフレーム数は深度に依存する) フルの立体画像イメージを獲得する前に、プローブが 2D画像の様式で僧帽弁の中 心部の頂点に位置するように調整する。すべての立体画像イメージはディジタル方 式でコンパクトディスク上に記録し、オフライン分析のためにパーソナルコンピュータ へ転送する。
[0028] 図 1は、 3次元心エコー図診断装置を用い、 18枚の等間隔の放射状平面画像を自 動撮影 (スキャン)し、その平面画像をもとに 3次元(3-D)の立体画像イメージを形成 する過程を示している。心臓収縮時に、スキャンされた各平面画像に対して、手作業 で僧帽弁の弁輪とリーフレットにマークを付ける。これらのデータから、僧帽弁のリー フレットと弁輪の 3-Dイメージが再構築される。具体的には、図 2に示す。
[0029] 図 2はスキャンされた各平面画像を順番に並べ、チェック点(画像間で対応する点) を線でつなぎ、スムージングをかけ、レンダリングを行うと滑らかな対応物の 3次元立 体画像が得られる(図の例は 18フレームの場合)。し力 背景技術でも述べたように、 エコー画像は MRIや CTのような鮮明な輪郭が得られない。とくに弁輪は複雑であり 、入り組んでいるために、本発明の装置ではフィッティングモデルを使って弁輪の抽 出処理を行う。そのために、心臓の物理的形状を考慮して、心筋の輝度の高い部分 をフィットさせる。さらに、フィットした形状の上で、弁輪らしき場所を探す。この弁輪探
[0030] この例では、フィッティングモデルには、弾性体で出来た円筒状かつ網状の構造を 用いる。さらに 1周 40個、高さ 40個の、計 1600個の制御点を設け、各制御点を適当な パネでつなぐ。このとき、制御点はなるべく輝度の高い所が選ばれるようにしてある。 このような構造物(レプリカ)を複数用意し、それぞれのレプリカには異なる輝度を割り 当てる。この輝度をポテンシャルエネルギーとし、フィッティング評価関数を用いてポ テンシャルエネルギーが最も安定した(最小値となる)構造を決定する。この際に用い る方法が、レプリカ交換法と呼ばれる拡張徐冷法である。すなわち、輝度の高いとこ ろから始め、レプリカ間で制御点の交換を行レ、、そのつどポテンシャルエネルギーを 求める。このようなシミュレーションを行うことで、ポテンシャルエネルギーが最小(安 定構造)となるものが、構造の形状 (弁輪)として抽出される (最適化)。
[0031] なお、弁輪自動抽出探索を行う際の主なルールは以下のとおりである。すなわち、 •探索はなるべく輝度の高いところ
•下から上の方を見て 2次微分が正の場所 (窪んでレ、る所)
•隣の弁輪の制御点とあまり離れていない所
このルールにも適当な評価関数を定義して、心臓の形状探索と同様に最適化を行う と、最終的に弁輪らしき場所が抽出される。なお、弁輪の自動抽出がうまく行かなか つたり、あるいは曖昧な点があるような場合には、マニュアル修正のルートも設けてお <。
[0032] 以上のようにして抽出された弁輪が図 3である。なお以下では、抽出された僧帽弁 膜を「リーフレット(leaflet :弁葉)」と呼び、リーフレットの付け根を「弁輪」と呼ぶ。また、 リーフレットが天幕を張ったように膨らみをもつこと、またはその膨らみを「テンティング (tenting)」と呼ぶことにする。肺で綺麗になった血液は左心房(LA)に流れ込み、 L A力 僧帽弁を通して左心室 (LV)に送られ、さらに LVから大動脈を通して体全体に 送出される。このため、 LAの圧力よりも LVの圧力の方が高くなる。 [0033] 弁に物理的あるいは機能的な障害が生じると、狭窄症や虚血症を引き起こすことに なる。例えば、僧帽弁の開きが悪ぐ LVに十分に血液が送られないと、狭窄症が起き る。逆に僧帽弁が緩み、僧帽弁閉鎖不全になると、 LVから LAの血液の逆流が起き 、十分な動脈血が体に供給されないために、虚血が起きる。最近は、僧帽弁の弛緩 などによる僧帽弁閉鎖不全は、人工弁を使わずに弁形成手術で治療することが多く なっている。そのためには僧帽弁の確力、な形状を得ることが重要であり、本発明の装 置の 3次元心臓弁画像取得が有効となる。
[0034] なお、図に示した記号は以下の意味を表している。
A 冃 ij尖部 (anterior)
P 後尖部(posterior)
しし 父連 (antero- lateral commissure)
し M 後父連、 postero-medial commissure)
LV 左心室(left ventricle)
LA 左 、房 (left atnum)
an皿 lar height 弁輪の高さ(湾曲度合い)
tenting length テンティングの長さ(テンティング長)
[0035] 図 3は、本発明の装置で行われる 3次元心臓弁画像抽出による、正常な人の僧帽 弁のリーフレットの立体画像とその形状を示している。図の(A)は、リーフレットを異な る方向から見た 3-Dイメージである。ここでは、僧帽弁の弁輪 (付け根部)が「サドノレ 形」をしている。僧帽弁のリーフレットが LVの中にわずかに食い込んでいる力 ほとん ど平らに見える。
[0036] 図の(B)は、実際の 3-Dテンティングイメージである。弁輪は 3-Dで測定するため の、およその外観である。左図は、 LV方向から見た僧帽弁のリーフレット形状であり、 テンティングの度合いを等高線として表している。右図は水平方向から見たリーフレツ トで、弁輪とリーフレットのテンティング度合いを正確に測ることができる。また、僧帽 弁の弁輪の円周やエリアが、これらの 3-Dデータから測れる。図の弁輪の高さが、弁 輪の湾曲度合レ、を示してレ、る。図の黒レ、点は接合ラインである(弁の交連部すなわち LV収縮時の前尖と後尖のかみ合う位置)。正常な場合、 LVの収縮期には僧帽弁の 腱索に支えられて、前尖と後尖はきちんと合わさり、左心室から左心房への血流は遮 断される。この接合ラインが黒点である。
[0037] 図の(C)は、 3-Dテンティングイメージを修正したものである。図の太線で示した曲 線は僧帽弁の弁輪を表し、輪状の表面からリーフレットまでの距離を一定に保ちなが ら、平面上で滑らかに描いたものである。左図は LV方向から見た僧帽弁のリーフレツ ト図であり、テンティングの度合いを等高線で表している。右図は水平方向から見た 図で、僧帽弁の弁輪のテンティング度合いを定量的に測定することができる。最大テ ンティング長、平均テンティング長およびテンティングの容積も、これらの 3-Dデータ 力 測定することができる。なお、黒い点は接合ラインを示す。
[0038] 図 4は、僧帽弁の弁輪の立体画像で、虚血性の僧帽弁逆流(MR)患者の僧帽弁を 表すリーフレットである。図の(A)は、リーフレットを異なる方向から見た 3-Dイメージ である。僧帽弁の弁輪が外見上も明らかにテンティングによって、平滑化している。ま た、山の形をしたリーフレットが凸状になり、全体的に LVへと食い込んでいる。
[0039] 図の(B)は、実際の 3-Dテンティングイメージを表している。僧帽弁のリーフレット全 体が明らかに LV方向に膨らみ、弁輪の高さも正常と比較してみても低いことがわか る。また僧帽弁の弁輪も広がっている。なお、黒い点は僧帽弁の接合ラインを示して いる。
[0040] 図の(C)は、 3-Dテンティングイメージを修正したものである。左図からもわかるよう に、僧帽弁のリーフレットが、僧帽弁の弁輪で見た場合、 A-Pに対してほとんど対称 的になっている。右図力らもわかるように、最大テンティング長は正常なものよりも長く なっている。黒い点は接合ラインを示している。カラー表示した場合、緑のマーク (右 図の薄く印刷された部分)がリーフレットの最大テンティングサイトを示している。この 患者の場合、最大テンティングサイトはリーフレット前尖部 Aの中央に位置している( 左図の等高線が最も高い位置を示している場所 <山の頂上に相当した位置 >)。
[0041] 図 5は、局所貧血 MRを持っている 12人の患者について最大テンティングサイトの 場所を調べた結果を、リーフレット上に人数分布として表した図である。図の英字 'A' は前尖部(anterior)、 'P'は後尖部(posterior)を表し、 'L'は側部(lateral)、 'C,は 中央部(central)、 'M'は中間部(medial)を表す。また、括弧内の数字は人数である 。図が示すように、最大のテンティングサイトは、 12人すべてにおいてリーフレット前 方部に位置していた。内訳は AMが 3人、 ACが 5人、 ALが 4人であった。
[0042] 虚血性の MRを持っている 12人の患者の内訳は、単一の脈管疾患を持つ 3人の患 者、二つの脈管疾患を持つ 6人の患者、三つの脈管疾患を持つ 3人の患者である。
LV機能障害は広範囲(EF33.9±9.1%、幅 18%〜47%)でひどかった。 R〇Aは 0.29 ± 0 .15cm2であって、 0.15〜0.62cm2に及んだ。 10件の実験照查基準と比較して、虚血性 の MRを持っている患者が年齢、性別、あるいは体表面エリアにおける相違は見いだ せな力、つた。しかし LVの容積力 正常な人と比較して虚血性の MRの患者では際立 つて増カロしていた。
[0043] 以上のように、本発明の 3次元心臓弁画像取得方法を利用して開発された、リアル タイム 3-D心エコー図検查用イメージ作成ソフトウェアシステムは、 1)僧帽弁のリーフ レットと弁輪の 3-D幾何学的な奇形、 2)僧帽弁のリーフレットの最大テンティングサイ ト、および 3)虚血性の MRを持っている患者での僧帽弁テンティングと弁輪の奇形の 量的な測定をすることができた。
[0044] 本発明で用いるフィッティングモデルについて、更に詳細な例を説明する。エコー 測定装置の特性により、画像にノイズや影が発生し、その画像の情報だけから正確 な組織の像を得ることは難しレ、。医師は実際の組織の理想的なイメージを知っており 、その理想的イメージといろいろな角度や時間のエコー画像を頭の中で組み合わせ 、不鮮明なエコー画像を補完して組織の境界線を引くという作業を行っている。物理 モデリングはこの医師の頭の中で行っている画像補完作業をコンピューターに肩代 わりさせるものである。
[0045] コンピューター上でのモデルの構築は、図 6および図 7に示すような制御点間を繋 ぐパネと制御点によって張られる境界評価関数を用いる。制御点間のパネは組織の 物理的な構造を維持する。一方、境界評価関数は画像から組織の境界情報を拾う。
[0046] モデルの評価には、パネの弾性エネルギーと境界評価による評価エネルギーを足 し合わせたポテンシャル関数を用いる。 i番目の制御点の位置を rとして、制御点のセ ット r,r,· · · Γを rNのように書く。このとき、パネの弾性エネルギー関数 S(rN)を以下のよ
1 2 N
うに定義する。 [0047] [数 1]
Figure imgf000014_0001
[0048] ここで はパネの弾性強度で、制御点間の組織強度などから経験的に決定される。
繋がっていない制御点間の場合は 0とする。 σは制御点の排除半径で、制御点同 土が重ならないように選ぶ。このとき、パネの自然長は
[0049] [数 2]
[0050] となる。理想的な物理形状の時にエネルギーが最低になるようにこれらのパラメータ 一を設定する。評価エネルギー関数
[0051] [数 3]
E{ rN)
[0052] は、画像のベクトル r地点の輝度を返す関数
[0053] [数 4]
M{r)
[0054] を用いて以下のように定義する。
[0055] [数 5]
Figure imgf000014_0002
[0056] ここで
[0057] [数 6] [0058] は、
[0059] [数 7] = ( 一 一 I
[0060] で定義される長さ 1のベクトル、 cは結合の定数、
ij
[0061] [数 8]
[0062] は制御点 i, j間の評価関数 (後述)、線積分は rと rの間の最短ルートで定義される
[0063] 各制御点間の評価関数は、物理的特性を反映した関数を経験的に選ぶ。例えば、 輝度値が大きく変化していることを境界として認識する(境界付近でエネルギーが下 がる)ような関数は以下のように書ける。
[0064] [数 9]
Figure imgf000015_0001
[0065] ここで、
[0066] [数 10]
[0067] は、
[0068] [数 11] [0069] に垂直な長さ 1のベクトル、
[0070] [数 12]
[0071] は関数 Mの勾配である。
[0072] 同様に、以下のような関数を評価関数として用いることが出来る。
[0073] [数 13] 空洞: ,void(A ,p,?)=-M( »)
組織: f^(M,p,f)=M(p)
評価関数なし: )-0
[0074] これらの関数を組み合わせて、最終的に以下のようなエネルギー関数を定義する。
[0075] [数 14]
F(rN)=Ws-S(rN)+WE'E(rN)
[0076] W ,Wは弾性エネルギーと評価エネルギーの重みで、構造と境界評価のどちらを 重視したレ、かを調節できる。この関数 Fが最低になるような制御点のセット
[0077] [数 15]
[0078] を探すことで、組織の境界を抽出することが出来る。この関数 Fの特徴は、関数 S による物理形状を維持したまま、関数 Eによって境界を探すことができることである。 エコー画像に多少のノイズや影があっても物理形状による補完が行われるため、画 像だけから形状が推測できない場合でも、もっともらしい組織の境界を抽出すること が出来る。
[0079] 拡張徐冷法による最適化処理について説明する。組織の境界を正確に求めるため には多数の制御点が必要であるが、評価関数は非線形のため、制御点の数が多くな ると評価関数の最小点を見つけることは難しい。一般的な最適化手法である二ユート ン法、最急勾配降下法、 GA (遺伝的アルゴリズム)、 SA (徐冷法)などを用いても局所 最小値に簡単に捕われてしまって、最適解を見つけることが出来ない。
[0080] 拡張徐冷法は、スピングラスやタンパク質のフォールデイング問題など、物理'化学 の分野で近年注目されている強力な最適化手法で、多自由度の複雑な最適化問題 を効率良く解くことの出来る計算手法である。我々は、この拡張徐冷法の一種である レプリカ交換モンテカルロ法を用いて評価関数を最適化した。
[0081] まず、レプリカ交換モンテカルロ法の基礎になる、モンテカルロ法による徐冷法を説 明する。モンテカルロ法は確率的アルゴリズムを使って計算機シミュレーションを行う 手法である。制御点のセット
[0082] [数 16]
' \, r2, " ' rN
[0083] について、最初のステップの制御点のセットを
[0084] [数 17]
N
' 0
[0085] とする。次に、制御点の中からランダムに 1つ選んで、ランダムな方向'大きさ
[0086] [数 18]
[0087] だけずらす。その制御点のセットを
[0088] [数 19]
, ,Ν
r 0
[0089] と書くと、最初のステップとずらした時の評価エネルギーはそれぞれ [0090] [数 20]
E(r!) 、 E(r'S)
[0091] と書ける c のずらした制御点のセットは以下の確率で次のステップに採用される c [0092] [数 21]
Figure imgf000018_0001
[0093] の時、採用 c
[0094] [数 22]
E(^)<E(r^)
[0095] の時
[0096] [数 23]
Figure imgf000018_0002
[0097] の確率で採用。
[0098] 採用された場合は、
[0099] [数 24]
Figure imgf000018_0003
[0100] として次のステップに進む。棄却された場合は
[0101] [数 25]
Figure imgf000018_0004
[0102] として次のステップに進む。
[0103] ここで βはシステムの最適化具合を決定するパラメーターで、統計力学ではボルツ マン定数を k、温度を Tとしたとき = l/k Tとして知られるパラメーターである。 β
Β Β
が十分大きい(温度が低い)とき、シミュレーションが進んでいくと評価関数は小さい 方向のみに進んでいく。一方、 が小さい(温度が高い)とき、評価関数は大きくなる 方向にも動けるようになるため、大きな変動を示すようになる。
[0104] 評価関数は 3N+1次元空間の面(ポテンシャル面)として表現でき、シミュレーション はその表面の極小点を飛び移りながら進んでいく。
[0105] このモンテカルロ法による最適化探索を行うには、まず j3を小さくして制御点のセッ トを十分ランダムな状態にして力 ^混ぜた後、 βを徐々に大きくして評価関数の値を 収束させていく。十分 j3を大きくしたところでしばらくシミュレーションを走らせて、評 価関数が最小になる制御点のセット
[0106] [数 26]
N
0
[0107] を探す。制御点の数が少ない場合や、評価関数が複雑でない場合はこの方法で最 適化点を見つけることが出来る。しかし、一般的にはポテンシャル面は複雑な形状を しており、温度を単純に下げただけではすぐに局所最小値にトラップされてしまい、 レ、くら時間をかけても十分な最適化を行うことが出来ない。 (図 8参照)
[0108] レプリカ交換モンテカルロ法は、上で説明したモンテカルロシミュレーションを異なる 温度で並列に走らせることで局所最小値へのトラップを防ぎ、効率良く最適化を行う 手法である。 M個の制御点のセット(レプリカ)を用意し、 m番目の制御点のセット
[0109] [数 27]
-JV
' M
[0110] をパラメーター β でシミュレーションを進める。ここで、各レプリカの温度パラメータ
m
一は β く β のように温度の高い順に並んでいるものとする。適当なステップごとに m m+1
、以下の方法でレプリカ間の制御点の位置を入れ替える。
[0111] [数 28] [0112] を計算し、
Δ < 0の時、入れ替え
Δ >0の時、 exp (— Δ )の確率で入れ替え
[0113] この温度交換の方法により、温度の低い制御点のセットが局所最小値にトラップさ れていても、適度に温度の高いセットと入れ替えられ、局所最小値を脱出することが 出来る。ノ メーターを適切にセットすれば、時間をかければかけるほど最適化が進 む。
[0114] 一般的にレプリカの数を増やし、隣り合う /3 の差を狭くすると最適化解を見つけや m
すくなるが、レプリカの数を増やすと計算コストがかさむため、評価関数の分散を調べ ながら計算効率が最高になるように調節する必要がある。計算効率を上げるために は、レプリカ間で十分な頻度で交換が起こり、 1つのレプリカが温度空間でランダムゥ オーク出来るような状況が必要である。そのためには、隣り合うレプリカの評価関数の 分散が同じ面積で重なり合うように、レプリカの数や の値を調節する必要がある。
m
[0115] この方法はパラメーターの調節や、計算アルゴリズムの実装に非常に手間がかかる が、時間さえかければかなりの確率で最適化点を見つけることができる。そのため、 一旦パラメーターを調節すれば、他の最適化アルゴリズムのように初期値を注意深く 選んで何度も試行する必要がなレ、。そのため、人間がほとんど手をカ卩えずに自動的 に精度の高い境界線を抽出することが出来る。

Claims

請求の範囲
[1] 心臓弁について臨床で必要なデータを計測可能な 3次元心臓弁画像を得るため、 心エコー図検查装置でスキャンした 2次元の心エコー断層画像から 3次元の心ェコ 一図を形成し、前記 3次元の心エコー図から 3次元心臓弁画像をコンピュータ処理に より自動抽出する方法において、
心臓および弁輪の物理的形状を考慮したフィッティングモデルにおける前記弁輪 のモデルのフィッティング評価関数 (ポテンシャルエネルギー)をレプリカ交換法 '拡 張徐冷法で最適化することを特徴とする臨床で必要なデータを計測可能な 3次元心 臓弁画像自動抽出方法。
[2] 心臓弁について臨床で必要なデータを計測可能な 3次元心臓弁画像を得るため、 心エコー図検査装置でスキャンした 2次元の心エコー断層画像から 3次元の心ェコ 一図を形成し、前記 3次元の心エコー図から 3次元心臓弁画像をコンピュータ処理に より自動抽出する装置において、
心臓および弁輪の物理的形状を考慮したフィッティングモデルにおける前記弁輪 のモデルのフィッティング評価関数 (ポテンシャルエネルギー)をレプリカ交換法 '拡 張徐冷法で最適化する手段を備えたことを特徴とする臨床で必要なデータを計測可 能な 3次元心臓弁画像自動抽出装置。
PCT/JP2005/023797 2004-12-24 2005-12-26 心臓弁データ計測方法および装置 Ceased WO2006068271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05819627A EP1832233A4 (en) 2004-12-24 2005-12-26 METHOD AND DEVICE FOR MEASURING HEADLAPSE DATA
US11/722,748 US20080085043A1 (en) 2004-12-24 2005-12-26 Cardiac Valve Data Measuring Method And Device
JP2006549079A JP4452281B2 (ja) 2004-12-24 2005-12-26 心臓弁データ計測方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-374860 2004-12-24
JP2004374860 2004-12-24

Publications (1)

Publication Number Publication Date
WO2006068271A1 true WO2006068271A1 (ja) 2006-06-29

Family

ID=36601863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023797 Ceased WO2006068271A1 (ja) 2004-12-24 2005-12-26 心臓弁データ計測方法および装置

Country Status (6)

Country Link
US (1) US20080085043A1 (ja)
EP (1) EP1832233A4 (ja)
JP (1) JP4452281B2 (ja)
KR (1) KR20070110837A (ja)
CN (1) CN101111194A (ja)
WO (1) WO2006068271A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448409C (zh) * 2007-02-01 2009-01-07 上海交通大学 三维超声心动图四腔切面图像自动检测的方法
JP2010284218A (ja) * 2009-06-09 2010-12-24 Toshiba Corp 超音波診断装置及び医用画像処理装置
JP2011504629A (ja) * 2007-11-22 2011-02-10 トウシバメディカルビジュアライゼーションシステムズヨーロッパ・リミテッド ボリュームレンダリング装置及び方法
JP2011172933A (ja) * 2010-02-25 2011-09-08 Siemens Medical Solutions Usa Inc 医学的な超音波診断におけるボリューム定量化方法および医学的な超音波診断におけるボリューム定量化のためにプログラミングされたプロセッサによって実行される命令を表すデータが記憶されているコンピュータ読取り可能記憶媒体
JP2011239889A (ja) * 2010-05-17 2011-12-01 Toshiba Corp 画像処理装置
US8594413B2 (en) 2011-11-02 2013-11-26 Kabushiki Kaisha Toshiba Image processing apparatus
US9020217B2 (en) 2008-09-25 2015-04-28 Cae Healthcare Canada Inc. Simulation of medical imaging
WO2018061279A1 (ja) * 2016-09-29 2018-04-05 株式会社日立製作所 画像処理装置、及びその方法
JP2019204263A (ja) * 2018-05-23 2019-11-28 富士通株式会社 生体モデル生成装置、生体モデル生成方法、および生体モデル生成プログラム
JP2020092941A (ja) * 2018-12-14 2020-06-18 キヤノンメディカルシステムズ株式会社 超音波診断装置、医用情報処理装置、医用情報処理プログラム
WO2022241425A1 (en) * 2021-05-11 2022-11-17 Ohio State Innovation Foundation Systems and methods for reconstructing an anatomical structure model
JP2023149834A (ja) * 2022-03-31 2023-10-16 キヤノン株式会社 医用画像処理装置、方法及びプログラム
JP2024516952A (ja) * 2021-04-16 2024-04-18 プレディサージ 心臓弁をモデリングするための方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8660645B2 (en) 2002-02-28 2014-02-25 Greatbatch Ltd. Electronic network components utilizing biocompatible conductive adhesives for direct body fluid exposure
US8009887B2 (en) * 2007-11-02 2011-08-30 Siemens Corporation Method and system for automatic quantification of aortic valve function from 4D computed tomography data using a physiological model
US8218845B2 (en) * 2007-12-12 2012-07-10 Siemens Aktiengesellschaft Dynamic pulmonary trunk modeling in computed tomography and magnetic resonance imaging based on the detection of bounding boxes, anatomical landmarks, and ribs of a pulmonary artery
DE102008053073B4 (de) * 2008-10-24 2010-08-05 Tomtec Imaging Systems Gmbh Dreidimensionale Ableitung einer proximalen isokinetischen Schale einer proximalen Flusskonvergenzzonze sowie dreidimensionale PISA-Flussmessung
US20100168557A1 (en) * 2008-12-30 2010-07-01 Deno D Curtis Multi-electrode ablation sensing catheter and system
US8900150B2 (en) 2008-12-30 2014-12-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Intracardiac imaging system utilizing a multipurpose catheter
US8948476B2 (en) * 2010-12-20 2015-02-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Determination of cardiac geometry responsive to doppler based imaging of blood flow characteristics
US9610118B2 (en) 2008-12-31 2017-04-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for the cancellation of motion artifacts in medical interventional navigation
US8538109B2 (en) * 2009-03-18 2013-09-17 Siemens Aktiengesellschaft Method and system for dynamic pulmonary trunk modeling and intervention planning
US8812431B2 (en) * 2010-02-03 2014-08-19 Siemens Aktiengesellschaft Method and system for medical decision support using organ models and learning based discriminative distance functions
WO2011106622A1 (en) * 2010-02-25 2011-09-01 The Trustees Of The University Of Pennsylvania Automatic quantification of mitral valve dynamics with real-time 3d ultrasound
GB201013721D0 (en) 2010-08-16 2010-09-29 Mbda Uk Ltd Image processing method
US8792699B2 (en) * 2010-09-29 2014-07-29 Siemens Aktiengesellschaft Motion tracking for clinical parameter derivation and adaptive flow acquisition in magnetic resonance imaging
JP5697638B2 (ja) * 2011-09-26 2015-04-08 富士フイルム株式会社 質点系の挙動を予測するシミュレーション装置およびシミュレーション方法並びにその方法を実行するためのプログラムおよび記録媒体
EP3146507B1 (en) * 2014-05-20 2023-10-04 Materialise NV System and method for valve quantification
JP6411073B2 (ja) * 2014-06-02 2018-10-24 キヤノンメディカルシステムズ株式会社 医用画像処理装置および医用画像処理方法
EP4338679A3 (en) * 2016-12-06 2024-06-12 FUJIFILM Corporation Ultrasonic diagnosis apparatus and method for controlling ultrasonic diagnosis apparatus
CN108198235B (zh) * 2017-12-25 2022-03-04 中国科学院深圳先进技术研究院 一种三维超声重建方法、装置、设备及存储介质
KR102128033B1 (ko) * 2018-05-03 2020-06-29 울산대학교 산학협력단 이첨판막의 판막륜 크기 결정 방법
TWI796647B (zh) * 2021-03-10 2023-03-21 宏碁股份有限公司 用於評估心臟影像的影像處理裝置及心室狀態辨識方法
KR102481564B1 (ko) * 2021-03-17 2022-12-29 재단법인 아산사회복지재단 의료영상 처리 장치와 그 의료영상 학습 방법 및 의료영상 처리 방법
CN112992313B (zh) * 2021-03-30 2023-01-06 华南理工大学 一种心脏二尖瓣力学性能优化方法、系统及设备
US12254418B2 (en) * 2022-03-29 2025-03-18 D-Wave Systems Inc. Systems and methods for heuristic algorithms with variable effort parameters
CN115381594B (zh) * 2022-04-11 2025-09-16 浙江大学 人工心脏瓣膜的确定方法及装置、计算机设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889524A (en) * 1995-09-11 1999-03-30 University Of Washington Reconstruction of three-dimensional objects using labeled piecewise smooth subdivision surfaces
US5768413A (en) * 1995-10-04 1998-06-16 Arch Development Corp. Method and apparatus for segmenting images using stochastically deformable contours
JP3668629B2 (ja) * 1999-01-29 2005-07-06 株式会社東芝 画像診断装置及び画像処理方法
JP3679990B2 (ja) * 2000-10-31 2005-08-03 株式会社東芝 医用画像処理装置及びその方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OGASAWARA Y. ET AL.: "Real Time 3D Choonpa Dansozo ni yoru Soboben Warittai kozo no Hyoka", IEICE TECHNICAL REPORT, vol. 104, no. 179, 7 July 2004 (2004-07-07), pages 5 - 8, XP003007774 *
See also references of EP1832233A4 *
WATANABE N. ET AL.: "Kyoketsusei Soboben Gyakuryu ni Okeru Soboben tenting no Keijo wa Shinkinkosoku Bui ni yori Kotonaru: Real Time Sanjigen Shin Echo-zu o Mochiita Teiryo Kaiseki", JOURNAL OF CARDIOLOGY, vol. 46, no. 1, 10 August 2005 (2005-08-10), pages 309, XP003007773 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448409C (zh) * 2007-02-01 2009-01-07 上海交通大学 三维超声心动图四腔切面图像自动检测的方法
JP2011504629A (ja) * 2007-11-22 2011-02-10 トウシバメディカルビジュアライゼーションシステムズヨーロッパ・リミテッド ボリュームレンダリング装置及び方法
US9020217B2 (en) 2008-09-25 2015-04-28 Cae Healthcare Canada Inc. Simulation of medical imaging
JP2010284218A (ja) * 2009-06-09 2010-12-24 Toshiba Corp 超音波診断装置及び医用画像処理装置
US9138202B2 (en) 2009-06-09 2015-09-22 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus and medical image processing method
JP2011172933A (ja) * 2010-02-25 2011-09-08 Siemens Medical Solutions Usa Inc 医学的な超音波診断におけるボリューム定量化方法および医学的な超音波診断におけるボリューム定量化のためにプログラミングされたプロセッサによって実行される命令を表すデータが記憶されているコンピュータ読取り可能記憶媒体
JP2011239889A (ja) * 2010-05-17 2011-12-01 Toshiba Corp 画像処理装置
US8594413B2 (en) 2011-11-02 2013-11-26 Kabushiki Kaisha Toshiba Image processing apparatus
US11049255B2 (en) 2016-09-29 2021-06-29 Hitachi, Ltd. Image processing device and method thereof
WO2018061279A1 (ja) * 2016-09-29 2018-04-05 株式会社日立製作所 画像処理装置、及びその方法
JP2018051001A (ja) * 2016-09-29 2018-04-05 株式会社日立製作所 画像処理装置、及びその方法
JP2019204263A (ja) * 2018-05-23 2019-11-28 富士通株式会社 生体モデル生成装置、生体モデル生成方法、および生体モデル生成プログラム
US10891787B2 (en) 2018-05-23 2021-01-12 Fujitsu Limited Apparatus and method for creating biological model
JP7038377B2 (ja) 2018-05-23 2022-03-18 富士通株式会社 生体モデル生成装置、生体モデル生成方法、および生体モデル生成プログラム
JP2020092941A (ja) * 2018-12-14 2020-06-18 キヤノンメディカルシステムズ株式会社 超音波診断装置、医用情報処理装置、医用情報処理プログラム
JP7258538B2 (ja) 2018-12-14 2023-04-17 キヤノンメディカルシステムズ株式会社 超音波診断装置、医用情報処理装置、医用情報処理プログラム
US11712219B2 (en) 2018-12-14 2023-08-01 Canon Medical Systems Corporation Ultrasonic wave diagnostic apparatus, medical information processing apparatus, and computer program product
JP2024516952A (ja) * 2021-04-16 2024-04-18 プレディサージ 心臓弁をモデリングするための方法
WO2022241425A1 (en) * 2021-05-11 2022-11-17 Ohio State Innovation Foundation Systems and methods for reconstructing an anatomical structure model
JP2023149834A (ja) * 2022-03-31 2023-10-16 キヤノン株式会社 医用画像処理装置、方法及びプログラム

Also Published As

Publication number Publication date
US20080085043A1 (en) 2008-04-10
KR20070110837A (ko) 2007-11-20
EP1832233A1 (en) 2007-09-12
CN101111194A (zh) 2008-01-23
JPWO2006068271A1 (ja) 2008-06-12
JP4452281B2 (ja) 2010-04-21
EP1832233A4 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP4452281B2 (ja) 心臓弁データ計測方法および装置
JP5868052B2 (ja) 包括的な患者固有の心臓のモデリング方法およびシステム
Sengupta et al. Left ventricular structure and function: basic science for cardiac imaging
Salcedo et al. A framework for systematic characterization of the mitral valve by real-time three-dimensional transesophageal echocardiography
Eltzschig et al. A practical approach to a comprehensive epicardial and epiaortic echocardiographic examination
Kwan et al. Geometric changes of mitral annulus assessed by real-time 3-dimensional echocardiography: becoming enlarged and less nonplanar in the anteroposterior direction during systole in proportion to global left ventricular systolic function
Ashraf et al. Defining left ventricular apex-to-base twist mechanics computed from high-resolution 3D echocardiography: validation against sonomicrometry
Cammalleri et al. Transcatheter tricuspid valve therapy: from anatomy to intervention
Podlesnikar et al. Influence of the quantity of aortic valve calcium on the agreement between automated 3-dimensional transesophageal echocardiography and multidetector row computed tomography for aortic annulus sizing
Ge et al. Measurement of mitral leaflet and annular geometry and stress after repair of posterior leaflet prolapse: virtual repair using a patient-specific finite element simulation
Khalique et al. Role of echocardiography in transcatheter valvular heart disease interventions
Tops et al. Noncoronary applications of cardiac multidetector row computed tomography
Benenstein et al. Mitral valve prolapse: role of 3D echocardiography in diagnosis
Wolf et al. ROPES: A semiautomated segmentation method for accelerated analysis of three-dimensional echocardiographic data
Duncan et al. Transcatheter mitral valve replacement: long-term outcomes of first
JP5885234B2 (ja) 疾患判定装置および超音波画像形成装置における画像解析方法
Mahmood et al. Regional heterogeneity in the mitral valve apparatus in patients with ischemic mitral regurgitation
Mahmood et al. Echocardiographic assessment of the mitral valve for suitability of repair: An intraoperative approach from a mitral center
Solis et al. Three-dimensional echocardiography. New possibilities in mitral valve assessment
Meng et al. Comparison between multimodality imaging approaches for measurement of the tricuspid annulus in severe tricuspid regurgitation
JP2010502245A (ja) 左心室のねじれを測定するシステム及び方法
JP7534188B2 (ja) 医用データ処理装置、医用データ処理方法及び医用データ処理プログラム
Furnary et al. Initial clinical trial of substernal epicardial echocardiography: SEEing a new window to the postoperative heart
Grbic et al. Multi-modal validation framework of mitral valve geometry and functional computational models
Kang et al. Pattern of mitral leaflet elongation and its association with functional mitral regurgitation in nonischemic dilated cardiomyopathy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006549079

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005819627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077017027

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580047359.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005819627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11722748

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11722748

Country of ref document: US