WO2006054045A1 - Dispersant - Google Patents
Dispersant Download PDFInfo
- Publication number
- WO2006054045A1 WO2006054045A1 PCT/GB2005/004284 GB2005004284W WO2006054045A1 WO 2006054045 A1 WO2006054045 A1 WO 2006054045A1 GB 2005004284 W GB2005004284 W GB 2005004284W WO 2006054045 A1 WO2006054045 A1 WO 2006054045A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dispersant
- polar
- ashless
- moiety
- polymeric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/86—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
- C10M129/92—Carboxylic acids
- C10M129/93—Carboxylic acids having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/68—Polyesters containing atoms other than carbon, hydrogen and oxygen
- C08G63/685—Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
- C08G63/6852—Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/06—Use of additives to fuels or fires for particular purposes for facilitating soot removal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/08—Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/18—Use of additives to fuels or fires for particular purposes use of detergents or dispersants for purposes not provided for in groups C10L10/02 - C10L10/16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/86—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of 30 or more atoms
- C10M129/88—Hydroxy compounds
- C10M129/90—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/54—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/02—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic oxygen-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/06—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M161/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/286—Esters of polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/30—Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/102—Polyesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/108—Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/11—Complex polyesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/02—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
- C10M2211/022—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides [having hydrocarbon substituents containing less than thirty carbon atoms]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides [having hydrocarbon substituents containing less than thirty carbon atoms]
- C10M2215/082—Amides [having hydrocarbon substituents containing less than thirty carbon atoms] containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/086—Imides [having hydrocarbon substituents containing less than thirty carbon atoms]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/12—Partial amides of polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/044—Polyamides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/36—Seal compatibility, e.g. with rubber
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2060/00—Chemical after-treatment of the constituents of the lubricating composition
- C10N2060/09—Treatment with nitrogen containing compounds
Definitions
- the present invention relates to a novel ashless polymeric dispersant and its use in an automotive lubricant composition.
- all functions performed by the lubricant base fluid and the range of additives are important.
- the suspending of insoluble contaminants and keeping surfaces clean are critical additive functions, which are undertaken by the combined presence of detergents and dispersants.
- the dispersant typically has a higher molecular weight than the "soap part" of the detergent so it is more effective in fulfilling the suspending and cleaning requirements.
- dispersants can suspend insoluble contaminants in the lubricant base fluid in a variety of ways in order to reduce engine oil viscosity build up due to soot, reduce engine sludge and reduce deposit formation on engines.
- Dispersants are key additives in transmission fluids to control sludge build up derived from extensive lubricant base fluid oxidation as certain parts of the transmission are at very high temperatures.
- Dispersants can also be used in gear oils.
- Gear oils typically contain thermally labile extreme pressure additives, which can decompose to form highly polar byproducts. Dispersants are used to contain these byproducts to avoid corrosion and deposit formation.
- dispersant in automotive lubricant compositions is to disperse soot, deposit precursors and deposits.
- dispersants require other properties in order to perform effectively. These properties include thermal and oxidative stability, good low temperature properties, i.e. maintenance of low viscosity, and maintenance of the integrity of seals in the automotive equipment.
- a dispersant which has poor thermal stability, will break down, thereby losing its ability to associate with and suspend potentially harmful products.
- a dispersant which has poor oxidative stability, will itself contribute towards deposit formation and oil thickening.
- the combination of the amount of dispersant present in automotive lubricant compositions (for example up to 20% in automotive engine oils) and the fact that it is often the highest molecular weight additive apart from the viscosity index improver can alter the viscosity of the lubricant composition.
- a boost in viscosity at high temperatures is desired but at low temperatures it is a disadvantage.
- Automotive engine oils require low to moderate viscosities for cranking viscosity and pumping viscosity during cold weather operation. It is important to have good low temperature properties of an automotive lubricant composition for ease of cold cranking, good lubricant circulation and fuel economy. For automotive applications fuel economy is an important factor.
- Seals in automotive equipment are used for many purposes, in particular to enable access to malfunctioning parts to perform repair, to minimise contamination and the loss of lubricant and to join parts together which are vibrating or parts which could expand or contract when exposed to differing temperatures. Therefore maintenance of the integrity of the seals, which can fail by shrinking, elongation or becoming brittle, is crucial to the on-going performance of the automotive equipment. Dispersants are often implicated as additives most likely to cause seal damage although this can be alleviated to some extent by the addition of seal swell agents.
- Dispersants typically consist of a non-polar hydrocarbon chain tail group linked to a connecting group which is linked to a polar head group.
- the polar group associates with the polar particles and the non-polar group keeps these particles suspended in the bulk lubricant solution.
- polyisobutylene succinimide which is derived from the reaction of polyisobutylene with maleic anhydride followed by reaction with a polyalkylenepolyamine. Such products are known to have good dispersancy properties but cause damage to seals.
- the present inventors have designed a dispersant for use with a lubricant base fluid in automotive applications that has improved dispersancy properties, when used as a sole dispersant or in combination with other dispersant(s) and also provides enhanced seal resistance when compared to current commercial products. Furthermore the low temperature viscosity of the automotive lubricant composition with the dispersant is superior to that of a composition with current commercial dispersants.
- an ashless polymeric dispersant having a number average molecular weight of between 200 and 15,000, wherein the dispersant is derived from the reaction of a polar head group, which comprises a polar moiety having more than one amine, alcohol, acid or halogen functionality with two or more polar tail groups where each polar tail group comprises a polymeric backbone of 2 to 30 monomeric repeat units, each repeat unit comprising a hydrocarbon chain functionalised by the presence of at least one electronegative element or moiety in an automotive lubricant composition.
- an automotive lubricant composition comprising a base fluid and an ashless polymeric dispersant having a number average molecular weight of between 200 and 15,000, wherein the dispersant is derived from the reaction of a polar head group, which comprises a polar moiety having more than one amine, alcohol, acid and halogen functionality with two or more polar tail groups where each polar tail group comprises a polymeric backbone of 2 to 30 monomeric repeat units, each repeat unit comprising a hydrocarbon chain functionalised by the presence of at least one electronegative element or moiety.
- Ashless polymeric dispersant is derived from the reaction of a polar head group, which comprises a polar moiety having more than one amine, alcohol, acid and halogen functionality with two or more polar tail groups where each polar tail group comprises a polymeric backbone of 2 to 30 monomeric repeat units, each repeat unit comprising a hydrocarbon chain functionalised by the presence of at least one electronegative element or moiety.
- the polar head group comprises a polar moiety having more than one amine, alcohol, acid or halogen functionality.
- the polar moiety has more than one amine or alcohol moiety.
- the polar moiety has two to four amine moieties.
- Examples of polar head groups include polyamines, for example tetraethylene pentamine, ethylene diamine, N.N-dimethylaminopropylamine, diethylenetriamine and triethylenetetramine and polyols, for example glycerol, sorbitol, trimethyolpropane, neopentylglycol and pentaerythritol.
- the polar head group is chosen such that, when it has reacted with the two or more tail groups, it is able to associate with the particles to be dispersed in the automotive lubricant composition.
- the polar moiety is chosen such that its polarity, once it has reacted with the two or more tail groups, does not render the polymeric ashless dispersant insoluble in the chosen base fluid with additives.
- Each polar tail group exhibits a level of polarity such that it is soluble in the combination of chosen base fluid with other polar additives that may be present in the automotive lubricant composition.
- Each tail group may be the same or different.
- Preferably each tail group is the same.
- Each monomeric repeat unit of the polymeric backbone of each polar tail group comprises a hydrocarbon chain functionalised by the presence of at least one electronegative element or moiety.
- the hydrocarbon chain may be a saturated or unsaturated, preferably saturated aliphatic chain.
- the hydrocarbon chain may be straight chained or branched. It is preferably branched. It is preferably a divalent radical. It preferably contains from 8 to 35, more preferably 10 to 25 and especially 12 to 20 carbon atoms.
- the electronegative element or moiety is chosen from oxygen, ester (defined as -COO-), amide (defined as -CONH-). More preferably the electronegative element or moiety is chosen from oxygen or ester and especially ester.
- the electronegative element or moiety is in the backbone of the monomeric repeat unit rather than being a pendant group.
- An especially preferred monomeric repeat unit is where the hydrocarbon chain is CH 3 -(CH 2 )S-CH- (CH 2 )io- and the electronegative element or moiety is ester.
- the number of monomeric repeat units ranges from 2 to 30, preferably 2 to 20 and more preferably 3 to 15.
- each tail group has a functionalised group, for example an acid, anhydride, halogen or alcohol group which reacts with the polar moiety of the polar head group.
- the other end of the tail group is terminated with a chain terminating group.
- the precise structure of the chain terminating group is not critical provided it is inert to other components of the composition under the normal processing conditions to which it is subjected.
- it has a molecular weight of less than 800, more preferably less than 500 and especially less than 300 .
- the ashless polymeric dispersant may be an ABA block copolymer, where A is a tail group and B is a polar head.
- the dispersant may be a star shaped polymer or a comb graft polymer.
- a preferred dispersant is derived from reaction of two tail groups, where each tail group is the product obtained from the polyesterification of a hydroxyalkyl acid, where the alkyl group has from 8 to 35 carbon atoms, preferably 10 to 25 and especially 12 to 20 carbon atoms, with a polyamine polar head group.
- a hydroxyalkyl acid for each of these tail groups an especially preferred hydroxyalkyl acid is
- the chain terminating group is derivable from the hydroxyalkyl acid itself or from the non-hydroxyl analogue of the hydroxy acid which is generally present in the commercial grades of the hydroxy acids available.
- the chain terminating group can also be derived from any convenient acid that may be added to the polyesterification reaction mixture.
- Such convenient acids include saturated or unsaturated, preferably saturated monocarboxylic acids having 12 to 22 carbon atoms.
- a specific example is isostearic acid.
- the end of each tail group that reacts with the polar head is a carboxylic acid group.
- Examples of the polyamine polar head group for this preferred dispersant include tetraethylene pentamine, ethylene diamine, N,N-dimethylaminopropylamine, diethylenetriamine and triethylenetetramine. Tetraethylene pentamine is especially preferred.
- the dispersant has a number average molecular weight of between 200 and 15,000, preferably 500 to 10,000, more preferably 500 to 7,000. The number average molecular weight of the polymer can be determined by many techniques. Gel permeation chromatography (GPC) is a well known technique that has been employed to determine the number average molecular weight for the dispersant of the invention.
- Base fluid is a well known technique that has been employed to determine the number average molecular weight for the dispersant of the invention.
- base fluid includes engine oil, transmission oil and fuel.
- engine oil includes both gasoline and diesel four stroke (including heavy duty diesel) engine oils.
- the engine oil may be chosen from any of the Group I to Group Vl base oils as defined by the American Petroleum Institute (API) or a mixture thereof.
- the engine oil has not more than 20%, more preferably not more than 10% of Group I base oil.
- the engine oil has not more than 50% of Group V base oil.
- the viscosity of the four stroke engine oil at 100 0 C is from 3 to 15cSt, preferably 4 to 8cSt.
- the viscosity index is preferably at least 90 and more preferably at least 105.
- the Noack volatility, measured according to ASTM D-5800, is preferably less than 20%, more preferably less than 15%.
- engine oil also includes two stroke engine oil.
- a particularly preferred two stroke engine oil is a Group I base oil, specifically polyisobutylenes.
- Other preferred two stroke engine oils include some Group V base oils, for example esters and vegetable oil.
- Transmission oil includes automatic, gear, rear axle and continuously variable.
- Preferably preferred transmission oils are Group Il to Group Vl, in particular high viscosity polyalphaolefin and highly refined mineral oils.
- Fuel includes both gasoline and diesel fuel.
- the gasoline fuel should meet EN 228 standard and the diesel fuel should meet EN 590 standard.
- the base fluid is an engine oil, more preferably a four stroke engine oil.
- the % weight of ashless polymeric dispersant in the automotive lubricant composition when the base fluid is an engine oil is preferably 1 to 20 %.
- the % weight of ashless polymeric dispersant in the automotive lubricant composition when the base fluid is a transmission oil is preferably 0.1 to 5 %.
- the % weight of ashless polymeric dispersant in the automotive lubricant composition when the base fluid is a fuel is preferably 0.001 to 1%.
- the automotive lubricant composition also comprises other types of additives of known functionality at levels between 0.1 to 30%, more preferably between 1 to 20 % more especially between 2 to oxidation inhibitors, corrosion inhibitors, rust inhibitors, friction modifiers, foam depressants, pour point depressants, viscosity index improvers, anti-wear agents, extreme pressure agents, ash-containing detergents, metal deactivators, demulsifiers and mixtures thereof.
- Viscosity index improvers include polyisobubutenes, polymethacrylate acid esters, polyacrylate acid esters, diene polymers, polyalkyl styrenes, alkenyl aryl conjugated diene copolymers and polyolefins.
- Foam depressants include silicones and organic polymers. Pour point depressants include polymethacrylates, polyacrylates, polyacrylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, terpolymers of dialkylfumarates, vinyl esters of fatty acids and alkyl vinyl ethers.
- Friction modifiers include amides, amines, molybdenum containing compounds and partial fatty acid esters of polyhydric alcohols.
- Ash-containing detergents include neutral and overbased alkaline earth metal salts of an acidic organic compound.
- Oxidation inhibitors include hindered phenols, sulphur containing compounds and alkyl diphenylamines.
- Antiwear agents include zinc dialkyldithiophosphate (ZDDP), ashless and ash containing organic phosphorous and organo-sulphur compounds, boron compounds, and organo-molybdenum compounds.
- Metal deactivators include benzotriazoles, mercaptobenzimidiazoles, thiadiazoles, and tolutriazole derivatives.
- Extreme pressure agents include sulphurised esters, sulphurised olefins, diaryl disulphides, dialkyldithiophosphate esters, heavy metal naphthenates, ashless and ash containing dialkyldithiophosphat.es, ashless and ash containing dialkyldithiocarbamates, ashless and ash containing salts of phosphate esters, chlorinated waxes, complex esters, borate esters, and oil insoluble sheet structure compounds such as graphite and molybdenum disulphide suspensions.
- Demulsifiers include polyalkoxylated phenols, polyalkoxylated polyols, and polyalkoxylated polyamines.
- Additives may include more than one functionality in a single additive.
- the automotive lubricant composition also comprises other types of additives of known functionality at levels between 0.1 to 30%, more preferably between 0.5 to 20 % more especially between 1 to 10% of the total weight of the automotive lubricant composition.
- additives can include oxidation inhibitors, corrosion inhibitors, rust inhibitors, friction modifiers, foam depressants, pour point depressants, viscosity index improvers, lubricity agents, ash-containing detergents, and mixtures thereof.
- Viscosity index improvers include polyisobubutenes, polymethacrylate acid esters, polyacrylate acid esters, diene polymers, polyalkyl styrenes, alkenyl aryl conjugated diene copolymers and polyolefins.
- Foam depressants include silicones and organic polymers. Pour point depressants include polymethacrylates, polyacrylates, polyacrylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, terpolymers of dialkylfumarates, vinyl esters of fatty acids and alkyl vinyl ethers.
- Friction modifiers include amides, amines, molybdenum containing compounds and partial fatty acid esters of polyhydric alcohols.
- Ash-containing detergents include neutral alkaline earth metal salts of an acidic organic compound.
- Oxidation inhibitors include hindered phenols, sulphur containing compounds and alkyl diphenylamines.
- Lubricity agents include fatty acids, bright stock, ZDDP, ashless and ash containing organic phosphorous and organo-sulphur compounds, boron compounds, sulphurised esters, sulphurised olefins, diaryl disulphides, dialkyldithiophosphate esters, ashless and ash containing dialkyldithiophosphates, ashless and ash containing dialkyldithiocarbamates, ashless and ash containing salts of phosphate esters, complex esters and borate esters.
- the automotive lubricant composition also comprises other types of additives of known functionality at levels between 0.1 to 30%, more preferably between 0.5 to 20 % more especially between 1 to 10% of the total weight of the automotive lubricant composition.
- additives can include oxidation inhibitors, corrosion inhibitors, rust inhibitors, friction modifiers, foam depressants, pour point depressants, viscosity index improvers, anti-wear agents, detergents, metal deactivators, extreme pressure agents, demulsifiers and mixtures thereof.
- Viscosity index improvers include polyisobubutenes, polymethacrylate acid esters, polyacrylate acid esters, diene polymers, polyalkyl styrenes, alkenyl aryl conjugated diene copolymers and polyolefins.
- Foam depressants include silicones and organic polymers. Pour point depressants include polymethacrylates, polyacrylates, polyacrylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, terpolymers of dialkylfumarates, vinyl esters of fatty acids and alkyl vinyl ethers.
- Friction modifiers include amides, amines, molybdenum containing compounds and partial fatty acid esters of polyhydric alcohols.
- Ash-containing detergents include neutral and overbased alkaline earth metal salts of an acidic organic compound.
- Oxidation inhibitors include hindered phenols, sulphur containing compounds and alkyl diphenylamines.
- Antiwear agents include ZDDP, ashless and ash containing organic phosphorous and organo-sulphur compounds, boron compounds, and organo-molybdenum compounds.
- Metal deactivators include benzotriazoles, mercaptobenzimidiazoles, thiadiazoles, and tolutriazole derivatives.
- Extreme pressure agents include sulphurised esters, sulphurised olefins, diaryl disulphides, dialkyldithiophosphate esters, heavy metal naphthenates, ashless and ash containing dialkyldithiophosphates, ashless and ash containing dialkyldithiocarbamates, ashless and ash containing salts of phosphate esters, chlorinated waxes, complex esters, borate esters, and oil insoluble sheet structure compounds such as graphite and molybdenum disulphide suspensions.
- Demulsifiers include polyalkoxylated phenols, polyalkoxylated polyols, and polyalkoxylated polyamines.
- the automotive lubricant composition also comprises other types of additives of known functionality at levels between 50ppm to 5%, more preferably between IOOppm to 3% more especially between 150ppm to 2% of the total weight of the automotive lubricant composition.
- cetane number improver for example iso-octyl nitrate, octane number improver, for example oxygenated compounds such as methyltertiarybutyl ether, ashless detergent, for example Polyisobutylene monosuccinimide, lubricity additive, for example fatty acid and fatty acid esters, smoke suppressants, for example organometallic compounds, antifoam agents, for example organosilicone, de-icing additives, for example glycols, low temperature operability additives, for example polymeric wax, drag reducing additives, for example high molecular weight polymers, antioxidants, for example hindered phenols and aromatic amines, metal deactivators, for example benzotriazoles, corrosion inhibitors, for example imidazolines, demulsifier and antihazing additives, for example polyalkoxylated polyols, friction modifiers, for example fatty acid esters, emulsifiers, for example partial esters of polyols,
- the automotive lubricant composition may further comprise a surfactant additive.
- the surfactant additive has at least one alkoxylated or at least one ester moiety.
- the surfactant additive has not more than 40 carbon atoms.
- Especially preferred esters are derived from the reaction of a polyol, having from 2 to 8 hydroxyl groups with an aliphatic, straight chained or branched, saturated or unsaturated monocarboxylic acid having from 8 to 24 carbon atoms. Examples of especially preferred esters include sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate and sorbitan trioleate.
- the % weight of surfactant additive with respect to the % weight of the ashless polymeric dispersant is 0.1 to 20 %, preferably 1 to 15%.
- OLOA 774 available ex Chevron Oronite
- OLOA 774 available ex Chevron Oronite
- an automotive lubricant composition comprising a base fluid and 0.001 to 20 % by weight of a polymeric ashless dispersant having a number average molecular weight of between 200 and 15,000 wherein the dispersant is derived from the reaction of a polar head group, which comprises a polar moiety having more than one amine, alcohol, acid or halogen functionality with two or more polar tail groups where each polar tail group comprises a polymeric backbone of 2 to 30 monomeric repeat units, each repeat unit comprising a hydrocarbon chain functionalised by the presence of at least one electronegative element or moiety in an engine or a transmission or a fuel supply line.
- a polar head group which comprises a polar moiety having more than one amine, alcohol, acid or halogen functionality
- each polar tail group comprises a polymeric backbone of 2 to 30 monomeric repeat units, each repeat unit comprising a hydrocarbon chain functionalised by the presence of at least one electronegative element or moiety in an engine or a transmission or a fuel supply line.
- an ashless polymeric dispersant having a number average molecular weight of between 200 and 15,000, wherein the dispersant is derived from the reaction of a polar head group, which comprises a polar moiety having more than one amine, alcohol, acid or halogen functionality with two or more polar tail groups where each polar tail group comprises a polymeric backbone of 2 to 30 monomeric repeat units, each repeat unit comprising a hydrocarbon chain functionalised by the presence of at least one electronegative element or moiety in an engine or transmission oil or a fuel.
- a polar head group which comprises a polar moiety having more than one amine, alcohol, acid or halogen functionality
- each polar tail group comprises a polymeric backbone of 2 to 30 monomeric repeat units, each repeat unit comprising a hydrocarbon chain functionalised by the presence of at least one electronegative element or moiety in an engine or transmission oil or a fuel.
- the dispersant for use with a lubricant base fluid in automotive application has good dispersancy properties for dispersion of soot, when used as a sole dispersant or in combination with other dispersants.
- the dispersant provides enhanced seal resistance as compared to current commercial dispersants.
- the low temperature viscosity of the automotive lubricant composition is superior to that of compositions comprising commercial dispersants.
- the automotive lubricant composition has a low temperature viscosity at -20 0 C of not more than 12,000 cSt, preferably not more than 10,000 cSt, especially not more than 8000 cSt.
- Automotive lubricant compositions having the dispersant present have lower coefficients of friction at both 40 0 C and 100 0 C than compositions containing current commercial dispersants.
- the ability of the ashless polymeric dispersant of the invention to disperse soot deposits was measured according to the following experimental details, 20mg of a mixture of an automotive lubricant composition for use in a four stroke engine comprising an ashless polymeric dispersant, A1 and Vulcan XC72R carbon black, containing about 6% by weight carbon black was added to a polyethylene bottle containing 20 0.24cm diameter stainless steel ball bearings and shaken for 1 hour. After allowing to stand for one hour the mixture was transferred to a Brookfield viscometer and the viscosity measured using a spindle with a fixed rotational speed of 50 revolutions per minute (rpm) (reading 1 ).
- the viscosity was then measured for an automotive lubricant composition without carbon black (reading 2).
- the absolute viscosity increase due to the presence of the carbon black was calculated as reading 1 minus reading 2.
- the results are illustrated in Table One below.
- the base fluid for the automotive lubricant composition is a mixture of NexbaseTM 3060 and NexbaseTM 3043 (colourless, catalytically hydroisomerised and dewaxed base oils comprising of hydrogenated, highly isoparaffinic hydrocarbons) with a standard additive package which includes 7% ashless dispersant ( C9265 ex Infineum).
- OLOA 774 is a commercial dispersant, which is polyisobutylene succinimide available ex Chevron Oronite. The commercial dispersant contains about 36% active dispersant. The % in Table One are to added actual active dispersant.
- the seal samples were immersed at 150 0 C for 94 hours in the automotive lubricant composition.
- the automotive lubricant composition was replaced and the samples immersed for a further 94 hours.
- the automotive lubricant composition was then replaced again and the samples immersed for 94 hours for a third time. After this third immersion the tensile strength, elongation at break, number of cracks and change of seal hardness were measured. The results are shown in Table Two below.
- the coefficient of friction of an automotive lubricant composition comprising 5% by weight of ashless polymeric dispersant as disclosed in Example 2 was determined at temperatures of 40 and 100 0 C using a mini-traction machine (MTM) of a steel ball on a smooth steel disc.
- MTM mini-traction machine
- the load applied was 36N and the speed of rotation was varied from 0.01 m/s to 4m/s to measure the Stribeck curve of the composition.
- the results are illustrated in Table Three below and Figure One for a temperature of 40 0 C and Table Four and Figure Two for a temperature of 100 0 C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Emergency Medicine (AREA)
- Lubricants (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
Claims
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP05801559A EP1812539A1 (en) | 2004-11-19 | 2005-11-07 | Dispersant |
| US11/791,077 US20080221002A1 (en) | 2004-11-19 | 2005-11-07 | Dispersant |
| JP2007542081A JP2008520796A (en) | 2004-11-19 | 2005-11-07 | Dispersant |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB0425509.7 | 2004-11-19 | ||
| GBGB0425509.7A GB0425509D0 (en) | 2004-11-19 | 2004-11-19 | Dispersant |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2006054045A1 true WO2006054045A1 (en) | 2006-05-26 |
Family
ID=33548547
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2005/004284 Ceased WO2006054045A1 (en) | 2004-11-19 | 2005-11-07 | Dispersant |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20080221002A1 (en) |
| EP (1) | EP1812539A1 (en) |
| JP (1) | JP2008520796A (en) |
| KR (1) | KR20070084350A (en) |
| GB (1) | GB0425509D0 (en) |
| WO (1) | WO2006054045A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1752516A1 (en) * | 2005-08-01 | 2007-02-14 | The Lubrizol Corporation | Dispersants |
| WO2007128740A1 (en) * | 2006-05-03 | 2007-11-15 | Shell Internationale Research Maatschappij B.V. | Lubricating oil composition |
| WO2009053413A1 (en) * | 2007-10-23 | 2009-04-30 | Shell Internationale Research Maatschappij B.V. | Use of a lubricating composition comprising a poly(hydroxycarboxylic) acid |
| WO2010014678A1 (en) * | 2008-07-31 | 2010-02-04 | Shell Oil Company | Poly(hydroxycarboxylic acid) amide salt derivative and lubricating composition containing it |
| EP2708586A1 (en) * | 2008-12-16 | 2014-03-19 | The Lubrizol Corporation | Friction modifier for drilling fluids |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110190181A1 (en) * | 2008-08-08 | 2011-08-04 | Jane Elizabeth Frank | Lubricating composition comprising poly(hydroxycarboxylic acid) amide and detergent |
| US8648019B2 (en) * | 2011-09-28 | 2014-02-11 | Uchicago Argonne, Llc | Materials as additives for advanced lubrication |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2117398A (en) * | 1982-03-02 | 1983-10-12 | Ici Plc | Emulsifying agents |
| EP0265254A2 (en) * | 1986-10-23 | 1988-04-27 | E.I. Du Pont De Nemours And Company | Oil additives |
| EP0572273A1 (en) * | 1992-05-29 | 1993-12-01 | Tonen Corporation | Lubricating oil compositions containing dispersants for two-cycle engines |
| EP0802255A2 (en) * | 1996-04-15 | 1997-10-22 | The Lubrizol Corporation | Hydroxy-group containing acylated nitrogen compositions useful as additives for lubricating oil and fuel compositions |
| US6458173B1 (en) * | 1998-12-04 | 2002-10-01 | Infineum International Ltd. | Fuel additive and fuel composition containing the same |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2553183A (en) * | 1948-07-03 | 1951-05-15 | Shell Dev | Fuel oil composition |
-
2004
- 2004-11-19 GB GBGB0425509.7A patent/GB0425509D0/en not_active Ceased
-
2005
- 2005-11-07 JP JP2007542081A patent/JP2008520796A/en active Pending
- 2005-11-07 US US11/791,077 patent/US20080221002A1/en not_active Abandoned
- 2005-11-07 KR KR1020077011311A patent/KR20070084350A/en not_active Withdrawn
- 2005-11-07 WO PCT/GB2005/004284 patent/WO2006054045A1/en not_active Ceased
- 2005-11-07 EP EP05801559A patent/EP1812539A1/en not_active Withdrawn
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2117398A (en) * | 1982-03-02 | 1983-10-12 | Ici Plc | Emulsifying agents |
| EP0265254A2 (en) * | 1986-10-23 | 1988-04-27 | E.I. Du Pont De Nemours And Company | Oil additives |
| EP0572273A1 (en) * | 1992-05-29 | 1993-12-01 | Tonen Corporation | Lubricating oil compositions containing dispersants for two-cycle engines |
| EP0802255A2 (en) * | 1996-04-15 | 1997-10-22 | The Lubrizol Corporation | Hydroxy-group containing acylated nitrogen compositions useful as additives for lubricating oil and fuel compositions |
| US6458173B1 (en) * | 1998-12-04 | 2002-10-01 | Infineum International Ltd. | Fuel additive and fuel composition containing the same |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1752516A1 (en) * | 2005-08-01 | 2007-02-14 | The Lubrizol Corporation | Dispersants |
| WO2007128740A1 (en) * | 2006-05-03 | 2007-11-15 | Shell Internationale Research Maatschappij B.V. | Lubricating oil composition |
| JP2009535473A (en) * | 2006-05-03 | 2009-10-01 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Lubricating oil composition |
| WO2009053413A1 (en) * | 2007-10-23 | 2009-04-30 | Shell Internationale Research Maatschappij B.V. | Use of a lubricating composition comprising a poly(hydroxycarboxylic) acid |
| EP2055729A1 (en) * | 2007-10-23 | 2009-05-06 | Shell Internationale Researchmaatschappij B.V. | Lubricating composition |
| WO2010014678A1 (en) * | 2008-07-31 | 2010-02-04 | Shell Oil Company | Poly(hydroxycarboxylic acid) amide salt derivative and lubricating composition containing it |
| US8633142B2 (en) | 2008-07-31 | 2014-01-21 | Shell Oil Company | Poly (hydroxycarboxylic acid) amide salt derivative and lubricating composition containing it |
| EP2708586A1 (en) * | 2008-12-16 | 2014-03-19 | The Lubrizol Corporation | Friction modifier for drilling fluids |
Also Published As
| Publication number | Publication date |
|---|---|
| GB0425509D0 (en) | 2004-12-22 |
| KR20070084350A (en) | 2007-08-24 |
| US20080221002A1 (en) | 2008-09-11 |
| EP1812539A1 (en) | 2007-08-01 |
| JP2008520796A (en) | 2008-06-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1122707C (en) | Polyol ester compositions with unconverted hydroxyl groups for use as lubricant base stocks | |
| KR101678258B1 (en) | Friction reducing additive | |
| JP5604453B2 (en) | Lubricating composition | |
| JP2000351813A5 (en) | ||
| JPH02160888A (en) | Improved end-capped polyfunctional | |
| EP2633009A1 (en) | Non-aqueous lubricant and fuel compositions comprising fatty acid esters of hydroxy- carboxylic acids, and uses thereof | |
| JP5959621B2 (en) | Lubricating oil composition | |
| KR100273608B1 (en) | Oil additives and compositions | |
| US20080221002A1 (en) | Dispersant | |
| JP4733974B2 (en) | Lubricating oil composition | |
| US8603957B2 (en) | Lubricating composition comprising a polyester dispersant | |
| WO2019189887A1 (en) | Dispersing agent for lubricating oil, method for producing same, and lubricating oil composition | |
| JPH02238095A (en) | Improved multifunctional viscosity index improver | |
| JP7107741B2 (en) | Turbine oil composition | |
| JPH07258678A (en) | Gas engine oil composition | |
| JP2024004790A (en) | Lubricating oil composition for gas engines | |
| JP2006348297A (en) | Two-cycle lubrication oil with low or no ash content for reducing formation of exhaust smoke | |
| JP7317188B2 (en) | Modified oil-soluble polyalkylene glycol | |
| JP3988237B2 (en) | Engine oil composition | |
| US9957461B2 (en) | Polyester dispersants, synthesis and use thereof | |
| CN112646079A (en) | High-dispersion lasting carbon deposition resistant synthetic ester base oil and preparation method thereof | |
| CN117551488A (en) | Industrial gear oil based on coal base oil and its application | |
| JP2007091982A (en) | Fatty acid composition and fuel oil composition | |
| JP2001234183A (en) | Lubricating oil for rail or rail point | |
| JP2010077403A (en) | Lubricating oil additive and lubricating oil composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2005801559 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2007542081 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020077011311 Country of ref document: KR |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWP | Wipo information: published in national office |
Ref document number: 2005801559 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 11791077 Country of ref document: US |