[go: up one dir, main page]

WO2006043523A1 - 骨粗鬆症診断支援装置 - Google Patents

骨粗鬆症診断支援装置 Download PDF

Info

Publication number
WO2006043523A1
WO2006043523A1 PCT/JP2005/019078 JP2005019078W WO2006043523A1 WO 2006043523 A1 WO2006043523 A1 WO 2006043523A1 JP 2005019078 W JP2005019078 W JP 2005019078W WO 2006043523 A1 WO2006043523 A1 WO 2006043523A1
Authority
WO
WIPO (PCT)
Prior art keywords
cortical bone
pixel
osteoporosis
storage area
program
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2005/019078
Other languages
English (en)
French (fr)
Inventor
Akira Asano
Akira Taguchi
Takashi Nakamoto
Keiji Tanimoto
Zainal Arifin AGUS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to US11/665,710 priority Critical patent/US7916921B2/en
Priority to JP2006542985A priority patent/JP4956745B2/ja
Publication of WO2006043523A1 publication Critical patent/WO2006043523A1/ja
Anticipated expiration legal-status Critical
Priority to GB0709582A priority patent/GB2436980B/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/51Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for dentistry
    • A61B6/512Intraoral means
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/94Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • A61B5/4509Bone density determination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/505Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Definitions

  • the present invention relates to an osteoporosis diagnosis support apparatus for diagnosing osteoporosis using a no-llama radiograph taken in dental treatment.
  • the X-ray imaging power of the lumbar spine, ribs, and femoral neck can also measure the bone mass of the DXA (dexa) method.
  • the Dexa method can make an accurate diagnosis based on detailed data, but it requires expensive and large-scale equipment.
  • the Mde method or the ultrasonic method can be measured easily, but the accuracy is inferior. In particular, the ultrasonic method has a large measurement error.
  • Patent Document 1 or 2 discloses osteoporosis that aims to improve bone density measurement accuracy. Diagnostic devices and methods are disclosed.
  • An apparatus for assisting diagnosis of osteoporosis using a no-V llama X-ray photograph performed in dental treatment as a means for determining the presence or absence of osteoporosis is also disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-215196
  • Patent Document 2 JP-A-11-313820
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-209089
  • the osteoporosis diagnostic apparatus or method based on the ultrasonic method disclosed in Patent Document 1 or 2 still requires improvement in measurement accuracy, and the problem is that improvement in force measurement accuracy is not easy due to its measurement principle.
  • the osteoporosis diagnosis support device using panoramic X-rays can diagnose osteoporosis using panoramic X-rays performed in dental treatment, so it treats sick people.
  • the present invention uses a panoramic radiograph without requiring special skills and experience of an operator involved in osteoporosis diagnosis.
  • Another object of the present invention is to propose an osteoporosis diagnosis support device that enables accurate diagnosis of osteoporosis by a simple method.
  • the osteoporosis diagnosis support device of the present invention emphasizes the contrast of the mandible on the digital X-ray panoramic X-ray photograph of the mandible, and covers a part of the mandibular body including the mental hole and the mandibular base.
  • Target area image acquisition means to be cut out as a classification area selection means for discriminating a background part and the lower jaw part from the target area image and obtaining a part excluding the background part as a determination area image;
  • a clear image acquisition means for sharpening the forms of the cortical bone and cancellous bone constituting the lower jaw body, a means for specifying a cortical bone portion on the image in which the form is clear, and the means specified by each of the means
  • the calculation means for calculating the thickness of the cortical bone based on the contour forming the mental hole and the cortical bone, and the output means for outputting the calculated thickness of the cortical bone.
  • the sorting / selection means may be a program for performing binary key processing having the following algorithm power. That is, (1) a frequency histogram of pixel values constituting the target area is generated, and pixel values with non-zero frequencies are arranged in order of smaller forces.
  • one cluster is composed of a group of pixels belonging to one pixel value.
  • (3) Repeat the above operation to proceed with cluster integration until there are two clusters.
  • the distance between clusters is defined as the product of intra-cluster variance and inter-cluster variance.
  • the calculation means may be a program having the following algorithm power.
  • (1) Starting from a point belonging to the identified cortical bone, a straight line is extended in the direction in which the X coordinate increases in parallel with the y axis, and the pixel at the point where the contour intersects is entered in the storage area.
  • (2) Each pixel force in the memory area Furthermore, pixels on the contour in the neighborhood of 8 are put in the memory area.
  • the outer edge of cortical bone shall be formed by pixel group A in the storage area.
  • the pixel with the largest X coordinate shall form the outer edge of the cortical bone.
  • a straight line is extended in the direction that the X coordinate decreases in parallel to the y axis, and the pixel at the point that intersects the contour is entered in the storage area.
  • the inner edge of the cortical bone is formed by the pixel group B in the storage area.
  • For each pixel in pixel group A find a regression line based on that pixel and neighboring pixels.
  • the y-coordinate means the coordinate from the bottom to the top when panoramic X-rays are taken, that is, the direction from the human foot to the head.
  • the X-coordinate is orthogonal to the y-coordinate.
  • the direction is the direction away from the tip force of the jaw.
  • the means for specifying the cortical bone part may be an external input means using a mouse or a light pen and a program power for specifying the cortical bone part based on a signal input by the external input means.
  • an osteoporosis database and means for comparing the data accumulated in the database with the thickness of the cortical bone and making an osteoporosis certification determination.
  • the osteoporosis diagnosis support apparatus according to the present invention can be easily configured using a computer-readable recording medium that records the following program.
  • a program that emphasizes the contrast of the mandible on the digital panoramic radiograph and cuts out a part of the mandible including the mental hole and the mandibular base as a target region image and (2) A classification 'selection program that discriminates a background part and the mandibular body part from a target area image and uses the part excluding the background part as a judgment area image; and (3) configures the mandibular body of the judgment area image
  • a computer-readable recording medium comprising a program for calculating the thickness of the cortical bone based on the contours forming the mental hole and cortical bone, and (6) a program for outputting the calculated thickness of the cortical bone .
  • the osteoporosis diagnosis support apparatus of the present invention uses a panoramic X-ray photograph generally taken in dentistry, and is a simple method without requiring special skills or experience of an operator involved in osteoporosis diagnosis. Can accurately diagnose osteoporosis. For this reason, it is expected to contribute to prevention of osteoporosis or improvement of medical care services through cooperation between dental medical institutions and related medical institutions.
  • FIG. 1 is a schematic diagram of a mandible.
  • FIG. 2 is a cross-sectional view of FIG.
  • FIG. 3 is a schematic diagram of an example of a panoramic X-ray photograph obtained by digital image display.
  • FIG. 4 is an explanatory diagram of cortical bone measurement using a determination region image including a pit hole in a V-Lama X-ray photograph.
  • FIG. 5 is an explanatory diagram showing a configuration of an osteoporosis diagnosis support apparatus according to the present invention.
  • FIG. 6 is an explanatory diagram for explaining a binary key method.
  • FIG. 7 is a graph showing an example of a frequency histogram related to pixel values to which the binary key method according to the present invention is applied.
  • FIG. 1 is a perspective view of a mandible targeted in the present invention.
  • 2 is a cross-sectional view of FIG. 1
  • FIG. 3 is a schematic diagram showing an example of a panoramic X-ray photograph taken in dental practice.
  • the mandible 10 has a pit hole 18 in a substantially intermediate portion between the mandibular bottom 121 and the mandibular second premolar 16 of the mandibular body 12.
  • FIG. 1 is a perspective view of a mandible targeted in the present invention.
  • 2 is a cross-sectional view of FIG. 1
  • FIG. 3 is a schematic diagram showing an example of a panoramic X-ray photograph taken in dental practice.
  • the mandible 10 has a pit hole 18 in a substantially intermediate portion between the mandibular bottom 121 and the mandibular second premolar 16 of the mandibular body 12.
  • FIG. 1 is a perspective view of a mandible targeted in the present invention.
  • 2 is a
  • the mandible 10 has a cortical bone 13 and a cancellous bone 14 constituting the mandibular body 12, and a mandibular base 121 is formed by the outer edge of the cortical bone 13.
  • the osteoporosis diagnosis support apparatus of the present invention emphasizes the contrast of the mandible on a digital radiographed panoramic radiograph of the mandible, and includes a mandibular body and a mandibular base.
  • a target area image acquisition means 100 that cuts out a part of the target area image, and a classification and selection that discriminates a background part and the lower jaw part from the target area image and acquires a part excluding the background part as a determination area image Means 110, sharpened image acquisition means 120 for sharpening the form of cortical bone and cancellous bone constituting the lower jaw body of the determination region image, and the shape A means 130 for identifying the cortical bone portion on the image whose state has been clarified, and a calculation for obtaining the thickness of the cortical bone based on the contours forming the coral hole and the cortical bone clarified by each means.
  • Means 140 and output means 150 for outputting the determined cortical bone thickness.
  • the target region image acquisition means 100 emphasizes the contrast of the mandible 10 on the panoramic X-ray image of the mandible 10 that has been digitally imaged. Are cut out as target area images. For example, as shown in FIG. 3, the panoramic radiographic power of the mandible 10 that has been digitally imaged also cuts out a portion including the left chin hole 18A. In this case, the two target region images including the left and right mental holes 18A and 18B are cut out, and the average value of the thickness of the cortical bone 13 obtained by the method described below is used to determine the thickness of the cortical bone. Chisaru
  • the present invention is based on the mental hole 18 as described above.
  • the position of the chin hole 18 is specified in a predetermined range as described above, and the contrast is relatively easy to specify unlike the surrounding cancellous bone 14, but it is specified in the X-ray photograph. It has the feature that it requires skill and experience. For this reason, the contrast of the panoramic radiograph of the mandible 10 that has been digitally imaged is first emphasized.
  • a known means can be used. For example, by emphasizing the contrast ratio between the chin hole 18 observed in black and the cancellous bone 14 observed in white. As a result, the mental hole 18 becomes clear, and the position of the mental hole 18 can be easily specified.
  • the panoramic X-ray photograph of the mandible 10 that has been digitally imaged is a digital X-ray photograph film provided with the osteoporosis diagnosis support apparatus that can be prepared in advance. It may be by means of hesitation. In addition, the panoramic X-ray photograph taken on the film may be digitally recorded or a predetermined portion may be determined in advance.
  • a part of the mandibular body 12 including the mental hole 18 and the mandibular base 121 is cut out as a target region image L from the image in which the contrast is emphasized in this way.
  • the y-axis is the direction in which the lower force is applied, i.e., the direction toward the head of the human body. This should be set in the image.
  • an xy coordinate system as shown in Fig. 3 is set in the digital image, and A target range image L is cut out that includes the target value and the y-coordinate value is sufficiently small.
  • the classification 'selection means 110 discriminates the background portion and the portion corresponding to the lower jaw body 10 from the target region image L, and the portion corresponding to the lower jaw body 10 excluding the background portion B as shown in FIG. A is acquired as a judgment area image.
  • a method for acquiring the determination region image a binary method is used.
  • This binary method also has the following algorithm power. That is, first, from the target area image, (1) a frequency histogram of the pixel values constituting the target area is generated, and the frequency is zero! The smaller pixel values can be arranged in order.
  • the cluster is a distance between clusters defined by the product of the intra-cluster variance and inter-cluster variance based on the concept that a cluster is composed of a group of pixels belonging to one pixel value. Introduce concept.
  • the distance between clusters in cluster 1 and cluster 2 is defined as DX d.
  • inter-cluster variance D corresponds to the variance of these pixel values when the pixel values belonging to cluster 1 are all ml and the pixel values belonging to cluster 2 are all m2.
  • the intra-cluster variance d corresponds to the variance of all pixel values when both clusters are integrated.
  • FIG. 1 An example of a frequency distribution graph of pixel values of the target area image L is shown in FIG.
  • the pixel value that is the threshold value that is finally replaced with the pixel value ⁇ or 1 by the above-described binary correction method is 149.
  • This binarization method is based on Otsu's method (N.Otsu, A threshold selection method from gray-level histograms ⁇ IEEti, i rans. Systems Man and Cybernetics vol. SMC—9 no.l pp.41-47 1986). Good results have been obtained.
  • the form and contour of the cortical bone 13 and the cancellous bone 14 constituting the lower jaw body 12 are clarified by the clarified image acquisition means 120.
  • This sharpening can be done using known methods.
  • the shape and contour of cortical bone 13 and cancellous bone 14 are clarified by applying a known Rhonus filter and a Neupass filter.
  • the pixels belonging to the sharpened contour constitute a “contour” in the calculation means 140 for calculating the thickness of the cortical bone 13 described below.
  • the collection of pixels belonging to the contour is a collection of pixels in which pixel values called edges change sharply in image processing.
  • the image portion belonging to the cortical bone 13 is specified by the means 130 for specifying the cortical bone portion.
  • This means 130 for identifying the cortical bone portion allows the cortical bone 13 and the cancellous bone 14 to be observed on a monitor that displays a sharpened image that is clearly discriminated by human vision.
  • the person should be able to identify with a mouse or light pen. This makes it possible to measure cortical bone thickness with high accuracy even in patients with osteoporosis where the thickness of cortical bone is very thin, a few millimeters or less. In addition, the measurement time can be shortened.
  • the cortical bone part can also be specified by a program.
  • the thickness of the cortical bone 13 is obtained by the calculation means 140 as follows.
  • the xy coordinate system shown in Fig. 3 is defined on the judgment area image. That is, the direction from the bottom to the top when taking a V-Lama X-ray, that is, the direction of the force on the head of the human body is the y-axis, and the direction perpendicular to the y-axis is away from the tip of the jaw. Determine the xy coordinate system that is the X-axis force as the direction .
  • each pixel force in the storage area and pixels on the contour in the vicinity of 8 are put in the storage area.
  • pixels on the contour within 8 neighborhoods from each pixel are entered into the storage area.
  • Such operations are performed one after another until the force that there is no pixel to be stored in the storage area, or the number of pixels in the storage area reaches the initially set value.
  • the maximum number of pixels that can enter the stack can be about 1000.
  • the outer edge of the cortical bone is formed by the pixel group A in the storage area. However, if there are pixels in the storage area with the same y coordinate, the pixel with the largest X coordinate shall form the outer edge of the cortical bone.
  • a regression line based on the pixel and neighboring pixels is obtained.
  • the number of pixels used for obtaining the regression line can be, for example, about 50 near the target pixel.
  • the thickness of the cortical bone 13 obtained in this way is output by an output means 150 such as a voltage recorder or a monitor. Based on the output thickness of the cortical bone 13, it is determined whether or not it is osteoporosis.
  • the output means 150 is preferably provided with an osteoporosis database and means for comparing the data accumulated in the database with the thickness of the cortical bone 13 and making an osteoporosis certification determination. This enables highly accurate diagnosis.
  • Table 1 shows the results of actually diagnosing osteoporosis on the basis of 100 pieces of nororama radiographs using the osteoporosis diagnosis support apparatus according to the present invention.
  • the column for lumbar vertebrae is the sensitivity, etc., of visual judgment by a single operator who is experienced in the diagnosis of lumbar bone density data using the Dexa method (this result is referred to as Gold standard).
  • the results and the results of sensitivity and the like by automatic determination using the osteoporosis diagnosis support device of the present invention are shown.
  • the upper row shows the 95% confidence interval, and the lower row shows the lower and upper limits of the confidence interval.
  • the thigh bone criteria column shows the same results as the lumbar criteria for the diagnostic results from the dexterous lumbar examination.
  • the sensitivity is 92.0 in the case of the lumbar criterion and 88.0 in the case of the automatic determination, and 88.0 in the case of the femoral criterion.
  • 87.5 it is 87.5 for automatic judgment.
  • both the visual judgment and the automatic judgment have high sensitivity, and the sensitivity by the automatic judgment is almost the same as the sensitivity by the visual judgment.
  • the medical statistical values of the automatic judgment result using the osteoporosis diagnosis support device of the present invention and the visual judgment result of one operator who is experienced in medical treatment are in good agreement.
  • the results of automatic determination using the osteoporosis diagnosis support apparatus of the present invention clearly indicate that it is possible to diagnose osteoporosis with high accuracy.
  • the threshold for determining whether or not osteoporosis was set was set so that the sensitivity was about 90% for visual evaluation and automatic support, based on a sensitivity 'specificity curve (ROC curve).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Quality & Reliability (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Geometry (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 X線パノラマ写真を利用することにより、骨粗鬆症診断に係る術者の特別な技能や経験等を要することなく、簡便な方法で正確な骨粗鬆症の診断を可能とする。  デジタル画像化された下顎骨のX線パノラマ写真の明暗を強調化し、オトガイ孔と下顎底を含む下顎体の一部を対象領域画像として切り出す対象領域画像取得手段と、該対象領域画像から背景部分と前記下顎体部分を判別し、前記背景部分を排除した部分を判定領域画像として取得する分別・選択手段と、該判定領域画像の前記下顎体を構成する皮質骨と海面骨の形態を鮮明化する鮮明化画像取得手段と、該形態が鮮明化された画像上の皮質骨部分を特定する手段と、前記各手段により特定された前記オトガイ孔と皮質骨を形成する輪郭を基に皮質骨の厚さを求める計算手段と、該求められた皮質骨の厚さを出力する出力手段と、からなる。

Description

明 細 書
骨粗鬆症診断支援装置
技術分野
[0001] 本発明は、歯科治療において撮影されるノ Vラマ X線写真を用いて骨粗鬆症の診 断を行うための骨粗鬆症診断支援装置に関する。
背景技術
[0002] 高齢者人口の増加に伴って骨粗鬆症の患者数が増え、骨粗鬆に対して社会的な 関心が集まっている。このような中で、骨粗鬆症検診は老人保健法の対象にもなつて おり、保健所を始め各種の医療機関で骨粗鬆症検診が行われるようになつている。
[0003] 骨粗鬆症の検診においては、腰椎、橈骨、大腿骨頸部の X線撮影力もそれらの骨 量を測定することができる DXA (デキサ)法、中手骨の X線撮影から皮質骨の骨量を 測定する MD (エムデ一)法、ある ヽは X線を使用しな 、超音波法が使用されて 、る。 デキサ法は詳しいデータに基づき正確な診断ができるが、高価で大がかりな装置を 要する。エムデ一法又は超音波法は簡便に測定できるが正確性に劣り、特に超音波 法は測定誤差が大きい。
[0004] このため、簡便にかつ正確に測定することができる骨粗鬆症診断方法又は装置が 求められており、超音波法については、特許文献 1又は 2に骨密度の測定精度の向 上を図る骨粗鬆症診断装置及び方法が開示されている。一方、骨粗鬆症の医学的 研究の進展により骨密度の低下に伴い下顎骨を形成する下顎体皮質骨の形態に変 化が生じることが明らかにされ、特許文献 3にこの下顎体皮質骨の形態の変化状態 力も骨粗鬆症の有無を判断する手段として歯科治療で行われるノ Vラマ X線写真を 利用した骨粗鬆症診断支援装置が開示されている。
[0005] 特許文献 1 :特開平 8-215196号公報
特許文献 2 :特開平 11-313820号公報
特許文献 3:特開 2004-209089号公報
発明の開示
発明が解決しょうとする課題 [0006] しかしながら、特許文献 1又は 2に開示された超音波法に基づく骨粗鬆症診断装置 又は方法はなお測定精度の向上が求めているとともにその測定原理上力 測定精 度の向上が容易でないという問題がある。これに対し、パノラマ X線写真を利用した 骨粗鬆症診断支援装置は、歯科治療で行われるパノラマ X線写真を利用した骨粗鬆 症診断を行うことができるので、病気になった者を治療するという従来のような医療で なぐ今後医療に期待される予防あるいは医療ケアサービスの支援として有望である 力 さらに測定精度の向上及び測定手段の簡素化を要するという問題がある。
[0007] 本発明は、係る従来の問題点及び社会的な要請を考慮し、パノラマ X線写真を利 用することにより、骨粗鬆症診断に関わる術者の特別な技能や経験等を要することな く、簡便な方法で正確な骨粗鬆症の診断を可能とする骨粗鬆症診断支援装置を提 案することを目的とする。
課題を解決するための手段
[0008] 本発明の骨粗鬆症診断支援装置は、デジタル画像化された下顎骨のパノラマ X線 写真上の下顎骨の明暗を強調化し、オトガイ孔と下顎底を含む下顎体の一部を対象 領域画像として切り出す対象領域画像取得手段と、該対象領域画像から背景部分と 前記下顎体部分を判別し、前記背景部分を排除した部分を判定領域画像として取 得する分別 ·選択手段と、該判定領域画像の前記下顎体を構成する皮質骨と海綿骨 の形態を鮮明化する鮮明化画像取得手段と、該形態が鮮明化された画像上の皮質 骨部分を特定する手段と、前記各手段により特定された前記オトガイ孔と皮質骨を形 成する輪郭を基に皮質骨の厚さを求める計算手段と、該求められた皮質骨の厚さを 出力する出力手段と、力 なる。
[0009] 上記発明にお 、て、分別'選択手段は、下記のアルゴリズム力もなる二値ィ匕処理を 行うプログラムであるのがよい。すなわち、(1)対象領域を構成する画素値の頻度ヒス トグラムを生成し、頻度がゼロでない画素値を小さい方力も順番にならべる。ここで、 1 つの画素値に属する画素の一群により 1つのクラスタが構成される。(2)隣接する 2つ のクラスタ間の距離を測定し、もっとも距離が小さい組を、画素値の小さい方のクラス タに統合する。 (3)上の操作を繰り返してクラスタが 2つになるまでクラスタの統合を進 める。(4) (3)で得られた 2つのクラスタのうち、画素値の大きい方のクラスタに属する 画素値をすベて 1 (白)とし、小さい方のクラスタに属する画素値をすベて o (黒)に置 きかえる。ここで、クラスタ間の距離とはクラスタ内分散と、クラスタ間分散の積で定義 される。
[0010] また、計算手段は、下記のアルゴリズム力もなるプログラムであるのがよい。すなわ ち、(1)特定された皮質骨に属する一点を起点として、 y軸と平行に X座標が大きくな る方向に直線をのばし、輪郭と交わった点の画素を記憶領域に入れる。(2)記憶領 域内の各画素力 さらに 8近傍内にある輪郭上の画素を記憶領域に入れる。(3)さら に各画素から 8近傍内にある輪郭上の画素を記憶領域に入れる。このような操作を次 々に行い、記憶領域に入れるべき画素がなくなる力 または記憶領域内の画素数が 当初に設定した値になるまで続ける。(4)その記憶領域内の画素群 Aにより皮質骨の 外縁が形成されるものとする。ただし、記憶領域内の画素で同一の y座標をもつもの があるときは、最も大きい X座標をもつ画素が皮質骨の外縁を形成するものとする。 (5 )特定された皮質骨に属する一点を起点として、 y軸と平行に X座標が小さくなる方向 に直線をのばし、輪郭と交わった点の画素を記憶領域に入れ、(2)から (4)と同様の 操作を行なって、記憶領域内の画素群 Bにより皮質骨の内縁が形成されるものとする 。 (6)画素群 Aの各画素について、その画素および近傍の画素に基づく回帰直線を 求める。(7)画素群 Aの各画素について、オトガイ孔とその画素を結ぶ直線と、その 画素についての回帰直線とがなす角度を求め、その角度が 90° に最も近くなる画素 を外縁点として特定する。(8)外縁点とオトガイ孔を結ぶ直線カゝら一定距離以内にあ る画素群 Bのうち、外縁点との距離が最小の点を内縁点とする。(9)外縁点から内縁 点までの長さを皮質骨の厚さとする。ここで、 y座標とはパノラマ X線写真を撮影したと きの下から上の方向すなわち人体の足から頭に向力う方向の座標をいい、 X座標は y 座標に直交し、その正の方向は顎の先端力 離れる方向とする。
[0011] 皮質骨部分を特定する手段は、マウス又はライトペンによる外部入力手段と、該外 部入力手段による入力された信号に基づき皮質骨部分を特定するプログラム力 な るものがよい。
[0012] また、上記発明においては、骨粗鬆症データベースと、該データベースに蓄積され たデータと皮質骨の厚さを比較し、骨粗鬆症認定判断を行う手段とを設けるのがよい [0013] 本発明に係る骨粗鬆症診断支援装置は、下記のプログラムを記録したコンピュータ 読み込み可能な記録媒体を用いて容易に構成することができる。すなわち、(1)デジ タル画像化されたパノラマ X線写真上の下顎骨の明暗を強調化し、オトガイ孔と下顎 底を含む下顎体の一部を対象領域画像として切り出すプログラムと、 (2)該対象領域 画像から背景部分と前記下顎体部分を判別し、前記背景部分を排除した部分を判 定領域画像とする分別'選択プログラムと、(3)該判定領域画像の前記下顎体を構 成する皮質骨と海綿骨の形態及び輪郭を鮮明化するプログラムと、(4)外部入力手 段からの信号により前記皮質骨に属する画素を特定するプログラムと、 (5)前記各プ ログラムにより特定されたオトガイ孔と皮質骨を形成する輪郭を基に皮質骨の厚さを 求めるプログラムと、(6)求められた皮質骨の厚さを出力するプログラムと、からなるコ ンピュータ読み込み可能な記録媒体である。
発明の効果
[0014] 本発明の骨粗鬆症診断支援装置は、歯科医療で一般的に撮影されるパノラマ X線 写真を利用し、骨粗鬆症診断に関わる術者の特別な技能や経験等を要することなく 、簡便な方法で正確な骨粗鬆症の診断を行うことができる。このため、歯科医療機関 と関係医療機関との連携による骨粗鬆症の予防又は医療ケアサービスの向上に資 することが期待される。
図面の簡単な説明
[0015] [図 1]下顎骨の模式図である。
[図 2]図 1の断面図である。
[図 3]デジタル画像ィ匕されたパノラマ X線写真の一例の模式図である。
[図 4]ノ Vラマ X線写真のオトガイ孔を含む判定領域画像による皮質骨測定の説明図 である。
[図 5]本発明に係る骨粗鬆症診断支援装置の構成を示す説明図である。
[図 6]二値ィ匕法を説明する説明図である。
[図 7]本発明に係る二値ィ匕法を適用した画素値に関する頻度ヒストグラムの一例を示 すグラフである。 o
符号の説明
o 下顎骨
12 下顎体
121 下顎底
13 皮質骨
14 海綿骨
16 下顎第二小臼歯
18 オトガイ孔
100 対象画像取得手段
110 分別 ·選択手段
120 鮮明化画像取得手段
130 皮質骨を特定する手段
140 十异+
150 出力手段
発明を実施するための最良の形態
[0017] 以下に、本発明の骨粗鬆症診断支援装置について説明する。図 1は、本発明にお いて対象とされる下顎骨の斜視図である。図 2は図 1の断面図で、図 3は歯科診療に おいて撮影されたパノラマ X線写真の一例を模式ィ匕した図面である。図 1に示すよう に、下顎骨 10は、下顎体 12の下顎底 121と下顎第二小臼歯 16のほぼ中間部分にオト ガイ孔 18を有する。そして、下顎骨 10は、図 2に示すように、下顎体 12を構成する皮 質骨 13と海綿骨 14を有し、皮質骨 13の外縁により下顎底 121が形成されている。なお 、オトガイ孔 18は正中線を挟んで左右対称位置に 18Aと 18Bの二つがある。
[0018] 本発明の骨粗鬆症診断支援装置は、図 5に示すように、デジタル画像化された下 顎骨のパノラマ X線写真上の下顎骨の明暗を強調化し、オトガイ孔と下顎底を含む 下顎体の一部を対象領域画像として切り出す対象領域画像取得手段 100と、該対象 領域画像から背景部分と前記下顎体部分を判別し、前記背景部分を排除した部分 を判定領域画像として取得する分別'選択手段 110と、該判定領域画像の前記下顎 体を構成する皮質骨と海綿骨の形態を鮮明化する鮮明化画像取得手段 120と、該形 態が鮮明化された画像上の皮質骨部分を特定する手段 130と、前記各手段により明 確にされた前記オトガイ孔と皮質骨を形成する輪郭を基に皮質骨の厚さを求める計 算手段 140と、求められた皮質骨の厚さを出力する出力手段 150と、を有している。
[0019] 対象領域画像取得手段 100は、デジタル画像化された下顎骨 10のパノラマ X線写 真上の下顎骨 10の明暗を強調化し、オトガイ孔 18と下顎底 121を含む下顎体 12の一 部を対象領域画像として切り出す。例えば、図 3に示すように、デジタル画像化され た下顎骨 10のパノラマ X線写真力も左側のオトガイ孔 18Aを含む部分を切り出す。こ の場合、左右のオトガイ孔 18A及び 18Bを含む二つの対象領域画像を切り出し、以下 に説明する方法で得られた皮質骨 13の厚さの平均値力 皮質骨の厚さを判断するこ とちでさる。
[0020] 本発明は、上述のように、オトガイ孔 18を基準にする。このオトガイ孔 18は、上述の ように存在する位置は所定範囲に特定されており、し力もコントラストが周囲の海綿骨 14と異なり比較的特定しやすいのであるが、 X線写真ではそれを特定するのに技能と 経験を要するという特徴をもつ。このため、まずデジタル画像ィ匕された下顎骨 10のパ ノラマ X線写真の明暗を強調化する。強調化は公知の手段を使用することができる。 例えば、黒色に観察されるオトガイ孔 18とそれより白色に観察される海綿骨 14のコン トラス比を強調することによって行う。これによつて、オトガイ孔 18が明確になりオトガイ 孔 18の位置を容易に特定することができる。
[0021] なお、デジタル画像ィ匕された下顎骨 10のパノラマ X線写真は、予め作成されたもの を用いてもよぐ本骨粗鬆症診断支援装置に付属に設けたパノラマ X線写真フィルム をデジタルィ匕する手段によるものであってもよい。また、フィルムに撮影したパノラマ X 線写真をデジタルィ匕するのは、その全体であってもよぐ予め所定部分を定めたもの であってもよい。
[0022] このように明暗が強調化された画像から、図 3に示すように、オトガイ孔 18と下顎底 1 21を含む下顎体 12の一部を対象領域画像 Lとして切り出す。この場合、ノ Vラマ X線 写真を撮影したときに下力 上の方向すなわち人体の足力 頭に向力う方向を y軸と し、これに直交する X軸力もなる xy座標系を上記デジタル画像中に設定するのがよ ヽ 。例えば、図 3に示すような xy座標系をデジタル画像中に設定し、オトガイ孔 18の座 標値を含み、 y座標値が十分小さ!ヽ範囲を対象領域画像 Lとして切り出す。
[0023] 分別'選択手段 110は、上記対象領域画像 Lから背景部分と下顎体 10に相当する 部分を判別し、図 4に示すように、背景部分 Bを排除した下顎体 10に相当する部分 A を判定領域画像として取得する。この判定領域画像を取得する方法として二値ィ匕手 法を用いる。
[0024] 本二値ィ匕手法は、以下のアルゴリズム力もなる。すなわち、まず、対象領域画像しか ら(1)対象領域を構成する画素値の頻度ヒストグラムを生成し、頻度がゼロでな!、画 素値を小さい方力も順番にならべる。そして、 1つの画素値に属する画素の一群によ り 1つのクラスタが構成されるとするクラスタなる概念と、そのクラスタに基づくクラスタ 内分散とクラスタ間分散の積により定義されるクラスタ間の距離なる概念を導入する。
[0025] 本二値ィ匕手法について、図 6を利用して具体的に説明する。まず、隣接するクラス タ 1と 2について、それに属する画素値の平均を各々 ml、 m2とし、頻度を Pl、 P2とする 。なお、以下の手順によりクラスタの統合を未だ行っていない最初の段階においては 、 mlはクラスタ 1の画素値に等しぐ m2はクラスタ 2の画素値に等しい。頻度は、画素 数であっても、画素全体の画素数に対する割合であってもよい。任意の単位を採用 することができる。画素値に対しても同様である。
[0026] つぎに、画素値の平均値 mlと m2の、各クラスタに属する画素数で重み付けをした 平均 Mを求める。すなわち、 M=(ml X Pl+m2 X P2)/(Pl+P2)を求める。以上より、クラス タ間分散 Dを、 D={P1 X (ml- M)2+P2 X (m2- M)2}/(P1+P2)、クラスタ内分散 dを、 d={Pl X (ml-M)2+P2 X (m2- M)}/(P1+P2)}とし、クラスタ 1とクラスタ 2におけるクラスタ間の距離を D X dと定義する。なお、クラスタ間分散 Dは、クラスタ 1に属する画素値がすべて mlで 、クラスタ 2に属する画素値はすべて m2である、と考えたときの、これらの画素値の分 散に相当する。クラスタ内分散 dは、両クラスタを統合したときの、全画素値の分散に 相当する。
[0027] つぎに、(2)隣接する 2つのクラスタ間の距離を測定し、もっとも距離が小さい組を、 画素値の小さい方のクラスタに統合する。(3)この操作を繰り返してクラスタが 2つに なるまでクラスタの統合を進める。最後に、(4)上記の操作により最終的に得られた 2 つのクラスタのうち、画素値の大きい方のクラスタに属する画素値をすベて 1 (白)とし 、小さい方のクラスタに属する画素値をすベて 0 (黒)に置きかえる。そして、 1に属す る画素値により構成される画像を下顎体 10に相当する部分 Aとし、 0に属する画素値 により構成される画像を背景部分 Bとして判定領域画像を取得する。
[0028] 対象領域画像 Lの画素値の頻度分布グラフの一例を図 7に示す。この例の場合、上 記二値ィヒ法により最終的に画素値力^又は 1に置き換えられる閾値となる画素値は、 149である。本二値化法は、大津の方法(N.Otsu、 A threshold selection method from gray-level histograms ^ IEEti, i rans. Systems Man and Cybernetics vol. SMC— 9 no.l pp.41- 47 1986)より良好な結果を得ている。
[0029] このようにして得られた判定領域画像は、鮮明化画像取得手段 120により下顎体 12 を構成する皮質骨 13と海綿骨 14の形態及び輪郭が鮮明化される。この鮮明化は、公 知の方法を使用することができる。たとえば、公知のローノ スフィルター及びノヽィパス フィルターをかけることによって皮質骨 13と海綿骨 14の形態及び輪郭を鮮明化させる 。この鮮明化された輪郭に属する画素は、以下に説明する皮質骨 13の厚さを計算す る計算手段 140における「輪郭」を構成する。すなわち、輪郭に属する画素の集合体 は、画像処理にお 、てエッジと呼ばれる画素値が急峻に変化する画素の集合体であ る。
[0030] 鮮明化画像取得手段 120により得られた鮮明化画像は、皮質骨部分を特定する手 段 130により皮質骨 13に属する画像部分が特定される。この、皮質骨部分を特定する 手段 130は、皮質骨 13と海綿骨 14が人の視覚により明確に判別されるようになった鮮 明化画像を表示するモニターで観察できるようにし、例えば、術者がマウス又はライト ペンにより特定できるようにするのがよい。これにより、皮質骨の厚さが数 mm以下の 非常に薄くなる骨粗鬆症の患者の場合にも高精度で皮質骨の厚さを測定することが でき、し力もソフト'プログラム上の構成が簡単になり又測定時間も短縮できる。なお、 皮質骨部分の特定をプログラムで行うこともできる。
[0031] つぎに、皮質骨 13の厚さは、計算手段 140により、以下のように求められる。まず、 判定領域画像上に図 3に示した xy座標系を定める。すなわち、ノ Vラマ X線写真を撮 影したときの下から上の方向、つまり人体の足力 頭に向力 方向を y軸とし、 y軸に 直交しその正の方向を顎の先端力 離れる方向とする X軸力 なる xy座標系を定める 。そして、上記のように特定された皮質骨 13に属する一点を起点として、(l)y軸と平 行に X座標が大きくなる方向に直線をのばし、輪郭と交わった点の画素を記憶領域に 入れる。
[0032] つぎに、(2)記憶領域内の各画素力 さらに 8近傍内にある輪郭上の画素を記憶 領域に入れる。 (3)さらに各画素から 8近傍内にある輪郭上の画素を記憶領域に入 れる。このような操作を次々に行い、記憶領域に入れるべき画素がなくなる力、または 記憶領域内の画素数が当初に設定した値になるまで続ける。例えば、スタック内に入 れることができる最大画素数を 1000程度とすることができる。そして、(4)その記憶領 域内の画素群 Aにより皮質骨の外縁が形成されるものとする。ただし、記憶領域内の 画素で同一の y座標をもつものがあるときは、最も大きい X座標をもつ画素が皮質骨の 外縁を形成するものとする。
[0033] また、 (5)特定された皮質骨に属する一点を起点として、 y軸と平行に X座標が小さく なる方向に直線をのばし、輪郭と交わった点の画素を記憶領域に入れ、(2)から (4) と同様の操作を行う。そして、最終的に記憶領域内に入れられた画素群 Bにより皮質 骨の内縁が形成されるものとする。
[0034] つぎに、(6)画素群 Aの各画素について、その画素および近傍の画素に基づく回 帰直線を求める。回帰直線を求めるために用いる画素数は、例えば着目画素の近傍 50個程度とすることができる。これにより、骨粗鬆症の患者の皮質骨 13の内縁はスポ ンジ状になっているために、内縁部分を特定するのが容易でないという問題を解決 することができる。
[0035] 最後に、(7)画素群 Aの各画素について、オトガイ孔とその画素を結ぶ直線と、その 画素についての回帰直線とがなす角度を求め、その角度が 90° に最も近くなる画素 を外縁点として特定する。(8)外縁点とオトガイ孔を結ぶ直線カゝら一定距離以内にあ る画素群 Bのうち、外縁点との距離が最小の点を内縁点とする。そして、(9)外縁点か ら内縁点までの長さを皮質骨 13の厚さとする。なお、一定距離以内とは、例えば 7画 素程度とすることができる。
[0036] 上記の手順について図 4を用いて説明すると以下のようになる。図 4において、皮 質骨 13の外縁が 13aで、内縁が 13bである。まず、オトガイ孔 18を通る直線で皮質骨 1 3の外縁 (上記回帰直線が連結された曲線として表される)の垂線に最も近い直線 P
0
Hを求める。そして、直線 P Hと回帰直線 13aの交点 Pを外縁点とする。つぎに、直線 P
0 1
PHから一定範囲以内にある内縁上の画素のうち、外縁点との距離が最小である点 P
0 1
を求め、直線 PPの長さ力 皮質骨 13の厚さを求める。
[0037] このようにして求められた皮質骨 13の厚さは、例えば、電圧記録計あるいはモニタ 一等の出力手段 150により出力される。この出力された皮質骨 13の厚さにより、骨粗 鬆症であるか否かが判別される。この場合、出力手段 150は、骨粗鬆症データベース と、該データベースに蓄積されたデータと皮質骨 13の厚さを比較し、骨粗鬆症認定 判断を行う手段を設けるのがよい。これにより精度の高い診断が可能になる。
[0038] 本本発明による骨粗鬆症診断支援装置を用いて、実際に骨粗鬆症の診断を 100枚 のノ Vラマ X線写真データに基づいて行った結果を表 1に示す。表 1において、腰椎 基準の欄は、デキサ法を用いた腰椎の骨密度データによる診断結果 (この結果を Gol d standardとした)に対する診療経験豊富な 1人の術者による視覚判定による感度等 の結果と、本発明の骨粗鬆症診断支援装置を用いた自動判定による感度等の結果 を示す。上段は 95%信頼区間を示し、下段は信頼区間の下限及び上限を示す。大 腿骨基準欄は、デキサ法による腰椎検査による診断結果に対する腰椎基準と同様な 結果を示す。
[0039] この表 1によると、例えば、感度について、腰椎基準による場合は、視覚判定では 9 2.0であるのに対して自動判定による場合は 88.0であり、大腿骨基準による場合は、 視覚判定では 87.5であるのに対して自動判定による場合は 87.5である。視覚判定に よる場合も自動判定による場合も高い感度であり、自動判定による感度はほぼ視覚 判定による感度と同様であることが分かる。その他特異度等についても同様であり、 本発明の骨粗鬆症診断支援装置を用いた自動判定結果と診療経験豊富な 1人の術 者による視覚判定結果の医学統計学的な数値はよく一致しており、本発明の骨粗鬆 症診断支援装置を用いた自動判定結果は、高 、精度で骨粗鬆症の診断が可能で あることが分力ゝる。
[0040] [表 1] 感度 特異度 陽性 陰性 正 度
的中率 的中率
腰椎基準 視覚判定 92,0 60.0 43.4 95.7 68.0 2.3
8L4-100.0 48.9-71.1 30.1-56.7 90.0-100.0 58.9-77.1 1.7-3.1 自動判定 88,0 58, 7 41.5 93,6 66.0 2.1
75.3-100.0 47.5-69.8 28.2-54.8 86.6-100.0 56.7-75, 3 1,6-2.9 大腿骨基準 視赏判定 87.5 64.8 45.7 93.9 70.5 2.5
74.3-100.0 53.7-75.9 31.3-60.0 87.2-100.0 61.4-79.7 1.8-3.5 自動判定 87.5 56.3 40.4 93.0 64.2 2.0
74.3-100.0 44.8-67.9 27.0-53.7 85.4-100.0 54.6-73.9 1.5-2.7
[0041] なお、表 1において視覚判定を行った術者については、 100枚のパノラマ X線写真 データについて二回の判定を行ったが、観察者間再現性及び観察者内再現性とも 適正(moderate)からほとんど完全 (almost perfect)であり、その術者による視覚判定の 結果は信頼性があることを確認した。
[0042] 骨粗鬆症であるか否かの閾値の設定は、感度'特異度曲線 (ROC curve)により、視 覚評価及び自動支援にぉ 、て感度が約 90%になるように設定した。

Claims

請求の範囲 [1] デジタル画像化されたパノラマ X線写真上の下顎骨の明暗を強調化し、オトガイ孔 と下顎底を含む下顎体の一部を対象領域画像として切り出す対象領域画像取得手 段と、 該対象領域画像から背景部分と前記下顎体部分を判別し、前記背景部分を排除 した部分を判定領域画像として取得する分別 ·選択手段と、 該判定領域画像の前記下顎体を構成する皮質骨と海綿骨の形態及び輪郭を鮮明 化する鮮明化画像取得手段と、 該形態が鮮明化された画像上の皮質骨部分を特定する手段と、 前記各手段により特定された前記オトガイ孔と皮質骨を形成する輪郭を基に皮質 骨の厚さを求める計算手段と、 該求められた皮質骨の厚さを出力する出力手段と、からなる骨粗鬆症診断支援装 置。 [2] 分別'選択手段は、下記のアルゴリズム力もなる二値ィ匕処理を行うプログラムである ことを特徴とする請求項 1に記載の骨粗鬆症診断支援装置。 (1)対象領域を構成する画素値の頻度ヒストグラムを生成し、頻度がゼロでな 、画 素値を小さい方力も順番にならべる。ここで、 1つの画素値に属する画素の一群によ り 1つのクラスタが構成される。 (2)隣接する 2つのクラスタ間の距離を測定し、もっとも距離力 、さい組を、画素値 の小さ 、方のクラスタに統合する。 (3)上の操作を繰り返してクラスタが 2つになるまでクラスタの統合を進める。 (4) (3)で得られた 2つのクラスタのうち、画素値の大きい方のクラスタに属する画素 値をすベて 1 (白)とし、小さい方のクラスタに属する画素値をすベて 0 (黒)に置きか える。 ここで、クラスタ間の距離とはクラスタ内分散と、クラスタ間分散の積で定義される。 [3] 計算手段は、下記のアルゴリズム力もなるプログラムであることを特徴とする請求項 1又は 2に記載の骨粗鬆症診断支援装置。
(1)特定された皮質骨に属する一点を起点として、 y軸と平行に X座標が大きくなる 方向に直線をのばし、輪郭と交わった点の画素を記憶領域に入れる。
(2)記憶領域内の各画素からさらに 8近傍内にある輪郭上の画素を記憶領域に入 れる。
(3)さらに各画素から 8近傍内にある輪郭上の画素を記憶領域に入れる。このような 操作を次々に行い、記憶領域に入れるべき画素がなくなる力、または記憶領域内の 画素数が当初に設定した値になるまで続ける。
(4)その記憶領域内の画素群 Aにより皮質骨の外縁が形成されるものとする。ただ し、記憶領域内の画素で同一の y座標をもつものがあるときは、最も大きい X座標をも つ画素が皮質骨の外縁を形成するものとする。
(5)特定された皮質骨に属する一点を起点として、 y軸と平行に X座標が小さくなる 方向に直線をのばし、輪郭と交わった点の画素を記憶領域に入れ、(2)から (4)と同 様の操作を行なって、記憶領域内の画素群 Bにより皮質骨の内縁が形成されるものと する。
(6)画素群 Aの各画素について、その画素および近傍の画素に基づく回帰直線を 求める。
(7)画素群 Aの各画素について、オトガイ孔とその画素を結ぶ直線と、その画素に ついての回帰直線とがなす角度を求め、その角度が 90° に最も近くなる画素を外縁 点として特定する。
(8)外縁点とオトガイ孔を結ぶ直線から一定距離以内にある画素群 Bのうち、外縁 点との距離が最小の点を内縁点とする。
(9)外縁点力 内縁点までの長さを皮質骨の厚さとする。
ここで、 y座標とはパノラマ X線写真を撮影したときの下から上の方向すなわち人体 の足から頭に向かう方向の座標をいい、 X座標は y座標に直交し、その正の方向は顎 の先端から離れる方向とする。
[4] 皮質骨部分を特定する手段は、マウス又はライトペンによる外部入力手段と、該外 部入力手段による入力された信号に基づき皮質骨部分を特定するプログラム力 な ることを特徴とする請求項 1〜3のいずれかに記載の骨粗鬆症診断支援装置。
[5] 骨粗鬆症データベースと、該データベースに蓄積されたデータと皮質骨の厚さを比 較し、骨粗鬆症認定判断を行う手段とを設けたことを特徴とする請求項 1〜4の ヽず れかに記載の骨粗鬆症診断支援装置。
下記のプログラムを記録したコンピュータ読み込み可能な記録媒体。
(1)デジタル画像化されたパノラマ X線写真上の下顎骨の明暗を強調化し、オトガ ィ孔と下顎底を含む下顎体の一部を対象領域画像として切り出すプログラムと、
(2)該対象領域画像から背景部分と前記下顎体部分を判別し、前記背景部分を排 除した部分を判定領域画像とする分別 ·選択プログラムと、
(3)該判定領域画像の前記下顎体を構成する皮質骨と海綿骨の形態及び輪郭を 鮮明化するプログラムと、
(4)外部入力手段力 の信号により前記皮質骨に属する画素を特定するプログラム と、
(5)前記各プログラムにより特定されたオトガイ孔と皮質骨を形成する輪郭を基に皮 質骨の厚さを求めるプログラムと、
(6)求められた皮質骨の厚さを出力するプログラム。
PCT/JP2005/019078 2004-10-19 2005-10-18 骨粗鬆症診断支援装置 Ceased WO2006043523A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/665,710 US7916921B2 (en) 2004-10-19 2005-10-18 Osteoporosis diagnosis support device
JP2006542985A JP4956745B2 (ja) 2004-10-19 2005-10-18 骨粗鬆症診断支援装置
GB0709582A GB2436980B (en) 2004-10-19 2007-05-18 Osteoporosis diagnosis support device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-304855 2004-10-19
JP2004304855 2004-10-19

Publications (1)

Publication Number Publication Date
WO2006043523A1 true WO2006043523A1 (ja) 2006-04-27

Family

ID=36202938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019078 Ceased WO2006043523A1 (ja) 2004-10-19 2005-10-18 骨粗鬆症診断支援装置

Country Status (4)

Country Link
US (1) US7916921B2 (ja)
JP (1) JP4956745B2 (ja)
GB (1) GB2436980B (ja)
WO (1) WO2006043523A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036068A (ja) * 2006-08-04 2008-02-21 Hiroshima Univ 骨粗鬆症診断支援装置および方法、骨粗鬆症診断支援プログラム、骨粗鬆症診断支援プログラムを記録したコンピュータ読み取り可能な記録媒体、骨粗鬆症診断支援用lsi
JP2012143387A (ja) * 2011-01-12 2012-08-02 Hiroshima Univ 骨粗鬆症診断支援装置及び骨粗鬆症診断支援プログラム
WO2012128121A1 (ja) 2011-03-18 2012-09-27 国立大学法人岐阜大学 パノラマエックス線写真を利用した診断支援システム、及びパノラマエックス線写真を利用した診断支援プログラム
JP5722414B1 (ja) * 2013-11-25 2015-05-20 メディア株式会社 骨粗鬆症診断支援装置
JPWO2018127949A1 (ja) * 2017-01-05 2019-11-07 佳知 高石 骨質評価装置,方法およびプログラムならびに骨折リスク評価装置,方法およびプログラム
WO2020027481A1 (ko) * 2018-08-03 2020-02-06 고려대학교 산학협력단 인공지능 기반의 치과방사선사진을 이용한 골밀도 예측시스템 및 이에 의한 골밀도 예측 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0718534D0 (en) * 2007-09-21 2007-10-31 Univ Manchester Method for indicating a characteristic of bone mineral density
US9179843B2 (en) 2011-04-21 2015-11-10 Hassan Ghaderi MOGHADDAM Method and system for optically evaluating proximity to the inferior alveolar nerve in situ
GB2510368B (en) * 2013-01-31 2017-03-01 Imagination Tech Ltd Pixel Clustering
CN114027858B (zh) * 2020-07-21 2025-09-16 株式会社岛津制作所 X射线摄影装置和图像处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113484A (ja) * 2002-09-26 2004-04-15 Aloka Co Ltd 断層像処理装置
JP2004209089A (ja) * 2003-01-07 2004-07-29 Japan Science & Technology Agency パノラマx線画像を用いた骨粗鬆症診断支援装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3377882B2 (ja) 1994-12-14 2003-02-17 積水化学工業株式会社 骨粗鬆症診断装置
JPH11313820A (ja) 1998-05-07 1999-11-16 Sekisui Chem Co Ltd 骨粗鬆症診断装置及び骨粗鬆症診断方法
WO2003049615A1 (en) 2001-12-10 2003-06-19 Osteomate Aps Method and apparatus for establishing an osteoporosis measure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113484A (ja) * 2002-09-26 2004-04-15 Aloka Co Ltd 断層像処理装置
JP2004209089A (ja) * 2003-01-07 2004-07-29 Japan Science & Technology Agency パノラマx線画像を用いた骨粗鬆症診断支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OTOGOTO J. ET AL: "Panorama X-sen Shashin Parameter o Mochiita Shishubyo to Kotsu Soshosho no Kankei no Kento Oyobi Kotsu Soshosho Shindan no Kokoromi. (Correlation between Periodontal Disease and Osteoporosis Using Panoramic Radiographic Parameters to Diagnose Osteoporosis)", JOURNAL OF THE JAPANESE SOCIETY OF PERIODONTOLOGY, vol. 43, no. 1, 2001, pages 13 - 24, XP002996892 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036068A (ja) * 2006-08-04 2008-02-21 Hiroshima Univ 骨粗鬆症診断支援装置および方法、骨粗鬆症診断支援プログラム、骨粗鬆症診断支援プログラムを記録したコンピュータ読み取り可能な記録媒体、骨粗鬆症診断支援用lsi
JP2012143387A (ja) * 2011-01-12 2012-08-02 Hiroshima Univ 骨粗鬆症診断支援装置及び骨粗鬆症診断支援プログラム
WO2012128121A1 (ja) 2011-03-18 2012-09-27 国立大学法人岐阜大学 パノラマエックス線写真を利用した診断支援システム、及びパノラマエックス線写真を利用した診断支援プログラム
US9710907B2 (en) 2011-03-18 2017-07-18 Gifu University Diagnosis support system using panoramic radiograph and diagnosis support program using panoramic radiograph
JP5722414B1 (ja) * 2013-11-25 2015-05-20 メディア株式会社 骨粗鬆症診断支援装置
WO2015076406A1 (ja) * 2013-11-25 2015-05-28 メディア株式会社 骨粗鬆症診断支援装置
US10004448B2 (en) 2013-11-25 2018-06-26 Media Co., Ltd. Osteoporosis diagnostic support apparatus
US11672471B2 (en) 2013-11-25 2023-06-13 Media Co., Ltd. Osteoporosis diagnostic support apparatus
US12336838B2 (en) 2013-11-25 2025-06-24 Media Co., Ltd. Osteoporosis diagnostic support apparatus
JPWO2018127949A1 (ja) * 2017-01-05 2019-11-07 佳知 高石 骨質評価装置,方法およびプログラムならびに骨折リスク評価装置,方法およびプログラム
WO2020027481A1 (ko) * 2018-08-03 2020-02-06 고려대학교 산학협력단 인공지능 기반의 치과방사선사진을 이용한 골밀도 예측시스템 및 이에 의한 골밀도 예측 방법

Also Published As

Publication number Publication date
JP4956745B2 (ja) 2012-06-20
GB2436980A (en) 2007-10-10
JPWO2006043523A1 (ja) 2008-08-07
US20070286467A1 (en) 2007-12-13
GB2436980B (en) 2009-12-16
US7916921B2 (en) 2011-03-29
GB0709582D0 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
Wani et al. Computer-aided diagnosis systems for osteoporosis detection: a comprehensive survey
Chen et al. Missing teeth and restoration detection using dental panoramic radiography based on transfer learning with CNNs
GB2436980A (en) Apparatus for assisting diagnosis of osteoporosis
US12336852B2 (en) Methods for generating skeletal characteristic values related to bone quality
JP4934786B2 (ja) 膝関節診断支援方法及び装置並びにプログラム
Braz Anthropological estimation of sex
US7602955B2 (en) Osteoporosis diagnosis aiding apparatus utilizing panoramic radiographs
Jiao et al. Deep learning for automatic detection of cephalometric landmarks on lateral cephalometric radiographs using the Mask Region-based Convolutional Neural Network: a pilot study
Cho et al. Accuracy of convolutional neural networks-based automatic segmentation of pharyngeal airway sections according to craniofacial skeletal pattern
JP2008036068A (ja) 骨粗鬆症診断支援装置および方法、骨粗鬆症診断支援プログラム、骨粗鬆症診断支援プログラムを記録したコンピュータ読み取り可能な記録媒体、骨粗鬆症診断支援用lsi
Radulesco et al. Geometric morphometric contribution to septal deviation analysis
Sikri et al. Applications of artificial intelligence in dentistry: a narrative review
CN115588020A (zh) 一种颅骨ct图像的多类型骨折特征检测和区域分割方法
Mandwe et al. Detection of brain tumor using k-means clustering
Ren et al. A knowledge-based automatic cephalometric analysis method
Hu et al. Photographic analysis and machine learning for diagnostic prediction of adenoid hypertrophy
Seeley-Hacker et al. An anatomic predisposition to mandibular angle fractures
Patil et al. Detection of osteoporosis in lumbar spine [L1–L4] trabecular bone: A review article
CN112907507A (zh) Graf法髋关节超声图像测量方法、装置、设备及存储介质
Gamboa et al. A semiautomatic segmentation method, solid tissue classification and 3d reconstruction of mandible from computed tomography imaging for biomechanical analysis
CN101803920B (zh) 用于产生层图像的方法
Shu Association between diameter of upper esophageal sphincter maximal opening and high-resolution cervical auscultation signal features
Deng et al. AI-Driven CBCT Analysis for Surgical Decision-Making and Mucosal Damage Prediction in Sinus Lift Surgery for patients with low RBH
Bhatnagar Identification of Dental Implants with the Development of an Artificial Intelligence Model using Radiograph
Arora et al. Analysis and review of current deep learning techniques for dental image segmentation with a novel deep neural network

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006542985

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 0709582

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20051018

WWE Wipo information: entry into national phase

Ref document number: 0709582.1

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 11665710

Country of ref document: US

REG Reference to national code

Ref country code: GB

Ref legal event code: 789A

Ref document number: 0709582

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 05795659

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11665710

Country of ref document: US