[go: up one dir, main page]

WO2005038716A1 - 画像照合システム及び画像照合方法 - Google Patents

画像照合システム及び画像照合方法 Download PDF

Info

Publication number
WO2005038716A1
WO2005038716A1 PCT/JP2004/015612 JP2004015612W WO2005038716A1 WO 2005038716 A1 WO2005038716 A1 WO 2005038716A1 JP 2004015612 W JP2004015612 W JP 2004015612W WO 2005038716 A1 WO2005038716 A1 WO 2005038716A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
reference image
dimensional
distance value
matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2004/015612
Other languages
English (en)
French (fr)
Inventor
Masahiko Hamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to AU2004282790A priority Critical patent/AU2004282790A1/en
Priority to CN2004800308445A priority patent/CN1871622B/zh
Priority to EP04792761A priority patent/EP1677250B9/en
Priority to JP2005514861A priority patent/JP4556873B2/ja
Priority to US10/576,498 priority patent/US7715619B2/en
Publication of WO2005038716A1 publication Critical patent/WO2005038716A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/165Detection; Localisation; Normalisation using facial parts and geometric relationships
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance

Definitions

  • the present invention relates to an image collation system, an image collation method, and an image collation program.
  • a 3D model of an object cannot be registered in advance, and each database in the database in the system has Image collating system, image collating method and image collating method that can perform collation with high accuracy even when there are only one or a few reference images of the object and are captured under different conditions such as posture and lighting It is about the program.
  • FIG. 25 is a block diagram showing a conventional image matching system.
  • the conventional image matching system includes an image input unit 115, an image conversion unit 117, an image matching unit 157, a reference image storage unit 130, and a standard three-dimensional object model storage unit 135.
  • the reference image storage unit 130 stores in advance a reference image of an object.
  • the standard three-dimensional object model storage unit 135 stores a standard three-dimensional object model in advance.
  • the image conversion means 117 is a three-dimensional object model obtained from the standard three-dimensional object model storage part 135 with respect to the common partial area of the input image input from the image input means 115 and each reference image obtained from the reference image storage part 130. Is used to convert the input image and / or the reference image so that the posture conditions are the same, and generate a partial image.
  • a partial region is a characteristic portion such as an eye 'nose' and a mouth, and correspondence is established by designating feature points for each image and a 3D object model in advance. Can be.
  • the image matching unit 157 compares the input image converted by the image conversion unit 117 with the partial image of each reference image, calculates the average similarity, and selects the reference image having the highest similarity for each object (for example, And JP-A-2000-322577 (Patent Document 1).
  • FIG. 26 is a block diagram showing another conventional image matching system.
  • This conventional image matching system includes an image input unit 115, an illumination variation correction unit 122, an image conversion unit 118, an image matching unit 158, a reference image storage unit 130, and a standard three-dimensional object model storage unit 13. It is composed of five.
  • the reference image storage unit 130 stores in advance a reference image obtained by photographing an object.
  • the standard three-dimensional object model storage unit 135 stores a standard three-dimensional object model in advance.
  • the illumination variation correction unit 122 estimates the illumination condition (surface reflectance) of the input image input from the image input unit 115 using the three-dimensional object model obtained from the standard three-dimensional object model storage unit 135.
  • the image conversion means 118 generates an image obtained by converting the input image using the three-dimensional object model so as to match the illumination condition of the reference image.
  • the image matching unit 158 compares the input image converted by the image conversion unit 118 with each reference image, calculates the similarity, and selects the reference image having the highest similarity for each object (see, for example, -02 4830 (Patent Document 2)).
  • FIG. 27 is a block diagram showing still another conventional image matching system.
  • This conventional image matching system includes an image input unit 115, a reference three-dimensional object model storage unit 137, and a posture estimation / matching unit 150.
  • Posture estimation / collation means 150 includes posture candidate determination means 120, comparative image generation means 140, and image collation means 155.
  • the reference three-dimensional object model storage unit 137 stores a reference three-dimensional object model generated by measuring an object in advance.
  • the posture estimation 'matching means 150 obtains the minimum distance value (or maximum similarity) between the input image obtained from the image input means 115 and the reference three-dimensional object model obtained from the reference three-dimensional object model storage unit 137, and Select the model with the smallest minimum distance value.
  • posture candidate determining means 120 generates at least one posture candidate.
  • the comparison image generation means 140 generates a comparison image close to the input image while projecting the reference three-dimensional object model onto a two-dimensional image according to the posture candidate.
  • the image matching means 155 obtains a distance value between the comparative image and the input image, and selects a comparative image having the smallest distance value for each model, thereby estimating an optimal posture and simultaneously referring to the input image. Find the minimum distance value with the three-dimensional object model. Further, a model having the smallest minimum distance value is selected (see, for example, JP-A-2003-058896 (Patent Document 3)).
  • Patent Document 1 The reason is that in Patent Document 1, the posture is estimated for the image and the image is converted so as to match the posture condition. However, it is difficult to accurately estimate the posture for the image. Therefore, it is not possible to correctly match the images. In addition, since the image is converted using a standard three-dimensional object model that is different from the three-dimensional shape of the object to be observed, distortion due to the image conversion is reduced when the shape is complicated or the posture conditions are significantly different. This is because it becomes larger.
  • Patent Document 2 illumination conditions are estimated using a standard three-dimensional object model different from the three-dimensional shape of the object to be observed, and image conversion is performed. This is because erroneous corrections may be made in details even if they come.
  • Patent Document 3 when a three-dimensional object model of each object is not registered in advance or when there are few reference images, it is difficult to perform matching.
  • Patent Document 3 registers a three-dimensional object model in advance and matches it with an input image.
  • it is necessary to measure each object with a three-dimensional shape measuring device before matching, but this is often difficult.
  • it is also possible to generate a three-dimensional object model from a plurality of images. If there are few force reference images, it is difficult to generate a three-dimensional object model.
  • the present invention has been made in view of the above-described conventional problems, and has as its object to achieve high-precision matching and high-precision matching even when a reference image of each object is photographed under different conditions such as posture and lighting.
  • the goal is to enable search.
  • Another object of the present invention is to enable high-precision collation and retrieval even when a three-dimensional object model of each object cannot be obtained in advance.
  • Another object of the present invention is to enable high-precision collation and retrieval even when only one or a small number of reference images of each object exist.
  • an image matching system includes an input unit that inputs three-dimensional data of an object and a reference unit that stores at least one reference image of the object.
  • Image storage means attitude candidate generating means for generating an attitude candidate that is a candidate for the attitude of the object, and generating a comparison image close to a reference image while projecting three-dimensional data onto a two-dimensional image according to the attitude candidate
  • a comparison image generation unit that performs comparison based on one of a distance value and a similarity between the reference image and the comparison image.
  • the image matching system includes a step of inputting three-dimensional data of the object, a step of generating a posture candidate that is a candidate of the posture of the object, and a step of generating three-dimensional data according to the posture candidate.
  • the image collation program includes a step of inputting three-dimensional data of an object, a step of generating a posture candidate that is a candidate of the posture of the object, and a step of generating the three-dimensional data according to the posture candidate.
  • a procedure for generating a comparative image that is close to the reference image while projecting the image on a two-dimensional image, and a procedure for performing matching based on either the distance value or the similarity between the reference image and the comparative image, i. are executed by a computer.
  • a first effect of the present invention is that collation and search can be performed with high accuracy even when a reference image of each object is photographed under different conditions such as posture and lighting.
  • the reason is to measure the three-dimensional data of the object, generate a comparison image that matches the shooting conditions such as the posture and lighting of each reference image, and compare the comparison image with the reference image for collation.
  • the second effect is that collation and search can be performed with high accuracy even when a three-dimensional object model of each object is not obtained in advance or when only one or a small number of reference images exist. It is.
  • the reason for this is to measure the three-dimensional data of the object at the time of matching, generate a comparison image that matches the pre-existing reference image, and compare the comparison image with the reference image to perform the matching.
  • FIG. 1 is a diagram showing a configuration of a first embodiment of an image matching system according to the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of an image matching unit according to the first embodiment.
  • FIG. 3] is a flowchart showing an operation in one-to-one matching in the first embodiment.
  • FIG. 4 is a flowchart showing an operation in one-to-N matching of the first embodiment.
  • C FIG. 5 is a diagram showing a specific example of a reference image of the first embodiment.
  • FIG. 6 is a diagram showing a specific example of three-dimensional data of the first embodiment.
  • FIG. 7 is a diagram showing a specific example of a comparative image of the first embodiment.
  • FIG. 8 is a block diagram showing a configuration of a second exemplary embodiment of the present invention.
  • FIG. 9 is a flowchart showing the operation in the one-to-N matching of the second embodiment.
  • FIG. 10 is a block diagram showing the configuration of the third embodiment of the present invention. .
  • FIG. 11 is a block diagram showing the configuration of the image matching means of the third embodiment.
  • FIG. 12 is a flowchart showing the operation in the 1: N comparison of the third embodiment.
  • FIG. 13 is a diagram showing a specific example of a standard three-dimensional reference point of the third embodiment.
  • FIG. 14 is a diagram showing a specific example of the standard three-dimensional weighting factor of the third embodiment.
  • FIG. 15 is a diagram showing a specific example of the reference weight coefficient of the third embodiment.
  • FIG. 16 is a diagram showing a specific example of the input three-dimensional reference points of the third embodiment.
  • FIG. 17 is a diagram showing a specific example of the two-dimensional weighting factor of the third embodiment.
  • FIG. 18 is a block diagram showing the configuration of the fourth embodiment of the present invention.
  • FIG. 19 is a flowchart showing the operation of the fourth embodiment.
  • FIG. 20 is a flowchart showing the operation of the fourth embodiment.
  • FIG. 21 is a diagram showing a specific example of a representative three-dimensional object model of the fourth embodiment.
  • C FIG. 22] FIG. 22 is a block diagram showing a configuration of a fifth embodiment of the present invention. .
  • FIG. 23 is a flowchart showing the operation of the fifth embodiment.
  • FIG. 24 is a diagram showing a specific example of a representative image of the fifth embodiment.
  • FIG. 25 is a block diagram showing a conventional image matching system.
  • FIG. 26 is a block diagram showing another conventional image matching system.
  • FIG. 27 is a block diagram showing still another conventional image matching system. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a first embodiment of the image matching system according to the present invention.
  • reference numeral 10 denotes three-dimensional data input means for inputting three-dimensional data of an object
  • reference numeral 30 denotes a reference image storage unit
  • reference numeral 50 denotes posture estimation / collation means.
  • Posture estimation / collation means 50 includes posture candidate determination means 20, comparison image generation means 40, and image collation means 55.
  • the reference image storage unit 30 stores in advance reference images obtained by photographing at least one object.
  • the imaging conditions such as the posture and illumination of the reference image are not limited.
  • the reference image storage unit 30 may be provided inside the system or outside the system and may be used by connecting to a network.
  • the three-dimensional data input means 10 inputs three-dimensional data of an object to be collated (or an object to be searched).
  • the three-dimensional data can be obtained, for example, by using a three-dimensional shape measuring device described in JP-A-2001-12925, or from a plurality of images taken with a large number of force cameras described in JP-A-9-91436. It can be generated by using a device that restores the dimensional shape.
  • the posture estimation 'collating means 50 obtains a minimum distance value (or maximum similarity) between the three-dimensional data input from the three-dimensional data input means 10 and the reference image obtained from the reference image storage unit 30. More specifically, the posture candidate determination means 20 generates a posture candidate that is a candidate for the posture of at least one object (the posture of the object is represented by the position and orientation of the object). The comparison image generating means 40 generates a close comparison image as a reference image while projecting the three-dimensional data onto a two-dimensional image according to the posture candidate.
  • the image matching means 55 includes a calculation unit 55a, a selection unit 55b, and a matching unit 55c shown in FIG.
  • the image matching means 55 obtains the distance value between the comparison image and the reference image in the calculation unit 55a, and selects the comparison image having the smallest distance value for each reference image in the selection unit 55b, so that the optimum value is obtained.
  • the posture is estimated and the minimum distance between the 3D data and the reference image is obtained.
  • the collation unit 55c compares the minimum distance value with a threshold to determine whether or not the force is the same object. .
  • the matching unit 55c selects the reference image with the smallest minimum distance value. If the similarity between the comparison image and the reference image is used for the determination, the similar object is determined to be the same if the similarity is equal to or greater than the threshold, and the object is not determined to be the same if the similarity is equal to or less than the threshold. judge.
  • step 100 three-dimensional data is input by the three-dimensional data input means 10 (step 100).
  • a posture candidate group ⁇ e ⁇ is determined by the posture candidate determination means 20 (step 110).
  • the comparison image generation means 40 generates a comparison image close to the reference image R while projecting the three-dimensional data onto a two-dimensional image according to the posture candidate (step 120).
  • the combining unit 55 obtains a distance value between the comparison image and the reference image (Step 130). Further, by selecting the comparison image having the smallest distance value, the optimum posture is estimated, and the minimum distance value between the three-dimensional data and the reference image R is obtained (step 140).
  • the posture candidate having the smallest distance value is selected from the group of posture candidates determined in advance.
  • the distance candidate is selected. May be searched for.
  • the posture estimating / comparing means 50 compares the minimum distance value with the threshold to determine whether or not the objects are the same (step 155).
  • step 100 three-dimensional data is input by the three-dimensional data input means 10 (step 100).
  • the posture estimating / collating means 50 increments the image number k by 1 (step 151), compares the image number k with the number of images M (the number of reference images), (step 152), If k is equal to or less than the number M of images, the process returns to step 110 to perform the same processing, and calculates the minimum distance value of the next reference image. Finally, when the image number k becomes equal to or more than the number M of images in step 152, the reference image R having the smallest minimum distance value is set as the comparison result (step 153).
  • the reference image storage unit 30 stores a reference image R (r) of the object k (r is an index of a pixel or a feature).
  • each image is not always the same (differences regarding lighting conditions are not shown).
  • one reference image is used for each object, a plurality of reference images may be used.
  • the three-dimensional data as shown in FIG. 6 is input from the three-dimensional data input means 10 (step 100 in FIG. 4).
  • the three-dimensional data consists of the shape P (X, y, z) in the three-dimensional space (X, y, z) of the object surface and the
  • a learning CG image is generated in advance by computer graphics under various lighting conditions with three-dimensional data power, and a base image group is obtained by performing principal component analysis on the learning CG image. deep.
  • a posture candidate group ⁇ e ⁇ is determined by the posture candidate determination means 20 (step 110).
  • the posture candidate group may be set in advance irrespective of the reference image.
  • the reference points such as eyes, nose, mouth, etc. are manually or automatically extracted from the reference image and the three-dimensional data.
  • an approximate posture may be estimated and stored in advance by collating with a reference image using representative three-dimensional data (model) prepared in advance instead of using the input three-dimensional data. ,.
  • the comparative image generation means 40 generates the comparative image G (r) while projecting the three-dimensional data on the two-dimensional image in accordance with the posture candidate e and approaching the illumination condition of the reference image R (step 120
  • the image matching means 55 obtains a distance value between the comparison image and the reference image (Step 130). For example, when using the Euclidean distance,
  • the posture estimating / collating means 50 estimates the optimal posture by selecting a comparison image having the smallest distance value, and calculates the minimum k distance value D between the three-dimensional data and the reference image R.
  • Step 140 In the case of FIG. 7, for example, G is selected.
  • the image number k is incremented by 1 (step 151), and the image number k is compared with the number M of images (step 152). At this time, if the image number k is equal to or less than the image number M, the process returns to step 110 to perform the same processing, and calculates the minimum distance value of the next reference image. Finally, when the image number k becomes equal to or more than the image number M in step 152, the reference image R having the smallest minimum distance value is set as the comparison result (step 153). In the case of the three-dimensional data of FIG. 6, for example, if the minimum distance value to the reference image R k is found to be ⁇ 20, 50, 25 ⁇ , the reference image R of FIG.
  • the distance value between the comparison image and the reference image is determined, but a similarity may be used instead of the distance value.
  • the similarity can be obtained by the above-described calculation method as an example.
  • the reference image having the largest maximum similarity is used as the comparison result.
  • the reference image of each object is compared with the posture. Even when images are captured under different conditions such as lighting and lighting, it is possible to perform a collation 'search with high accuracy.
  • the 3D data of the object is measured, and the 3D data and the reference image are compared and compared. Since the configuration is such that the three-dimensional object model of each object can be obtained in advance, or even when only one or several reference images exist, the matching and searching can be performed with high accuracy.
  • FIG. 8 is a block diagram showing a second embodiment of the present invention.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the posture estimating / collating means 51 includes a posture candidate determining means 20, a comparative image generating means 40, an image comparing means 55, and a score correcting means 60.
  • the difference from FIG. 1 is that a score correction unit 60 and a reference correction coefficient storage unit 65 are added.
  • each of these means operates as follows. First, the three-dimensional data input unit 10, the reference image storage unit 30, the posture candidate determination unit 20, the comparison image generation unit 40, and the image matching unit 55 are the same as those of the first embodiment shown in FIG. Is performed.
  • the reference correction coefficient storage unit 65 a coefficient for correcting the matching score (distance value or similarity) corresponding to the reference image is stored in advance.
  • the posture estimation 'matching means 51 obtains a minimum distance value (or maximum similarity) between the three-dimensional data input from the three-dimensional data input means 10 and the reference image obtained from the reference image storage unit 30.
  • the minimum distance value is corrected using the correction coefficient obtained from the reference correction coefficient storage unit 65.
  • the posture candidate determination means 20 generates at least one posture candidate.
  • the comparative image generation means 40 generates a comparative image close to the reference image while projecting the three-dimensional data onto a two-dimensional image according to the posture candidate.
  • the image matching means 55 calculates the distance value between the comparison image and the reference image, and selects the smallest distance value for each reference image! ⁇ By selecting the comparison image, the optimal posture is estimated and the three-dimensional data is obtained. Find the minimum distance between the image and the reference image.
  • the score correcting means 60 corrects the minimum distance value using a correction coefficient corresponding to the reference image. Furthermore, in the case of a matching process (one-to-one matching) with one object (reference image), the corrected minimum distance is compared with a threshold to determine whether or not the force is the same object. In the case of a process of searching for an object (reference image) closest to the input 3D data from a plurality of objects (one-to-N matching), a reference image having the smallest corrected minimum distance value is selected.
  • step 100 three-dimensional data is input by the three-dimensional data input means 10 (step 100).
  • the score correction means 60 uses a correction coefficient corresponding to the reference image R,
  • the posture estimating / comparing means 51 increments the image number k by 1 (step 151), compares the image number k with the number of images M (step 152), and determines that the image number k is less than or equal to the number of images M. In this case, the process returns to step 110 to perform the same processing, calculate the minimum distance value of the next reference image, and correct the minimum distance value using the correction coefficient corresponding to the reference image.
  • the reference image R having the smallest corrected minimum distance value is set as the comparison result (step 153).
  • steps 100, 110, 120, 130, 140, and 160 in FIG. 9 are performed in the same manner as in the first embodiment. Perform processing.
  • the reference image storage unit 30 stores the reference image R (r) as shown in FIG.
  • the reference correction coefficient storage unit 65 stores correction coefficients as shown in Table 1.
  • the correction coefficient A is, for example, a representative 3D data (a representative
  • k A is as shown in Table 1. This is because, for example, the reference image R has poor shooting conditions and the average distance k 1
  • the posture candidate determining means 20, the comparative image generating means 40, and the image matching means 55 estimate the optimal posture and simultaneously determine the minimum distance value between the three-dimensional data and the reference image R. (Steps 110—140).
  • the score correction means 60 uses the correction coefficient corresponding to the reference image R to calculate the minimum k
  • the minimum distance value D is D k k k
  • the posture estimating / collating means 51 increases the image number k by 1 (s k k
  • Step 151 The image number k is compared with the image number M (Step 152). At this time, if the image number k is equal to or less than the number M of images, the process returns to step 110 to perform the same processing, calculate the minimum distance value of the next reference image, and similarly correspond to the reference image. The minimum distance value obtained using the correction coefficient is corrected. Finally, when the image number k becomes equal to or larger than the number M of images in step 152, the reference image R having the smallest corrected minimum distance value is set as the comparison result (k
  • Step 153 For example, the minimum distance value for the reference image R is ⁇ 40, 60, 25 ⁇ .
  • the corrected minimum distance value is ⁇ 16, 30, 25 ⁇ , and the reference image R
  • the three-dimensional data of the object is measured, the three-dimensional data is compared with the reference image while correcting the posture and the lighting conditions, and the reference image is collated. Even when images are captured under different conditions such as lighting and lighting, it is possible to perform a collation 'search with high accuracy.
  • the 3D data of the object is measured at the time of matching, and the 3D data and the reference image are compared and compared, so that a 3D object model of each object cannot be obtained in advance. Even when there is only one or several reference images, it is possible to perform a collation search with high accuracy.
  • the matching is corrected by correcting the change in the matching score caused by the shooting conditions of the reference image, even if the shooting conditions of each reference image are different or there is a reference image with poor image quality, the matching is performed with high accuracy. Can be.
  • the correction coefficient A is stored, and the distance value is multiplied by the correction coefficient A to compensate.
  • the minimum distance value D h may be stored in its entirety.
  • the parameters may be stored. For example, assuming a normal distribution, the average value E
  • FIG. 10 is a block diagram showing a third embodiment of the present invention.
  • the same parts as those in FIG. 1 are given the same reference numerals.
  • the three-dimensional data input unit 10, the reference image storage unit 30, the posture estimation / collation unit 52, the three-dimensional reference point extraction unit 12, the standard three-dimensional reference point storage unit 72, and the standard three-dimensional It is composed of a dimension weighting coefficient storage unit 75 and a reference weighting coefficient storage unit 77.
  • the posture estimating / collating means 52 includes the posture candidate determining means 20, the comparative image generating means 40, the image comparing means 56, and the input weight coefficient converting means 70.
  • each of these means operates roughly as follows. First, the three-dimensional data input unit 10, the reference image storage unit 30, the posture candidate determination unit 20, and the comparison image generation unit 40 perform the same processing as that of the first embodiment.
  • the standard three-dimensional reference point storage unit 72 stores standard three-dimensional reference points corresponding to the standard three-dimensional object model.
  • the standard three-dimensional weight coefficient storage unit 75 stores standard three-dimensional weight coefficients.
  • the reference weight coefficient storage unit 77 stores a weight coefficient corresponding to the reference image.
  • the three-dimensional reference point extracting means 12 manually or automatically extracts three-dimensional reference points from the three-dimensional data obtained from the three-dimensional data input means 10.
  • the posture estimation 'matching means 52 calculates the minimum distance value (or maximum similarity) between the three-dimensional data obtained from the three-dimensional data input means 10 and the reference image obtained from the reference image storage unit 30, It is obtained using a weight coefficient corresponding to the input data obtained from the input weight coefficient conversion means 70 and a weight coefficient corresponding to the reference image obtained from the reference weight coefficient storage unit 77.
  • the posture candidate determination means 20 generates at least one posture candidate.
  • the comparison image generation means 40 generates a comparison image close to the reference image while projecting the three-dimensional data onto a two-dimensional image according to the posture candidate.
  • the input weighting factor conversion means 70 uses the standard three-dimensional reference points obtained from the standard three-dimensional reference point storage part 72 and the three-dimensional reference points of the three-dimensional data obtained from the three-dimensional reference point extracting means 12 to generate standard three-dimensional data.
  • the correspondence between the coordinates of the standard three-dimensional weight coefficient obtained from the weight coefficient storage unit 75 and the three-dimensional data obtained from the three-dimensional data input means 10 is obtained.
  • the dimension weighting factor is converted into a two-dimensional weighting factor.
  • the image matching means 56 includes a calculation unit 56a, a selection unit 56b, and a matching unit 56c shown in FIG.
  • the image matching means 56 calculates the distance value between the comparison image and the reference image in the arithmetic section 56a by using a weight coefficient corresponding to the input three-dimensional data obtained from the input weight coefficient conversion means 70 and a reference weight coefficient storage section 77.
  • the selection unit 56b selects the comparison image with the smallest distance value for each reference image, thereby estimating the optimal posture and combining the three-dimensional data. Find the minimum distance value from the reference image.
  • the collation unit 56c compares the minimum distance with the threshold to determine whether or not they are the same object. In the process of searching for an object (reference image) closest to the input 3D data from a plurality of objects (one-to-N matching), the matching unit 56c selects the reference image having the smallest minimum distance value. I do.
  • three-dimensional data is input by the three-dimensional data input means 10 (step 100).
  • the three-dimensional reference point extracting means 12 manually or automatically extracts three-dimensional reference points from the three-dimensional data (step 170).
  • a posture candidate group ⁇ e ⁇ is determined by the posture candidate determination means 20 (step 110).
  • the comparison image generation means 40 generates a comparison image close to the reference image R while projecting the three-dimensional data onto a two-dimensional image according to the posture candidate (step 120).
  • the input weight is input by the three-dimensional data input means 10 (step 100).
  • the three-dimensional reference point extracting means 12 manually or automatically extracts three-dimensional reference points from the three-dimensional data (step 170).
  • a posture candidate group ⁇ e ⁇ is determined by the posture candidate determination means 20 (step 110).
  • the number conversion means 70 uses the standard three-dimensional reference point and the three-dimensional reference point of the three-dimensional data, finds the correspondence between the standard three-dimensional weight coefficient and the coordinates of the three-dimensional data, and obtains the standard three-dimensional weight according to the posture candidate.
  • the coefficients are converted into two-dimensional weight coefficients (step 180).
  • the image matching means 56 calculates the distance value between the comparison image and the reference image by using a weight coefficient corresponding to the input three-dimensional data obtained by the input weight coefficient conversion means 70 and a reference weight coefficient storage unit. Using a weighting coefficient corresponding to the reference image obtained from 77 (step 131), and further selecting a comparative image having the smallest distance value for each reference image, an optimal posture is estimated and The minimum distance between the three-dimensional data and the reference image is obtained (step 140).
  • the posture estimation / matching means 52 increments the image number k by 1 (step 151), compares the image number k with the number M of images (step 152), and when the image number k is equal to or less than the number M of images, Returning to step 110, the same processing is performed, and the minimum distance value of the next reference image is calculated. Finally, when the image number k becomes equal to or larger than the number M of images, the reference image R having the smallest minimum distance value is set as the comparison result (step 153).
  • Step 155 is performed.
  • step 155 of FIG. 3 it is determined whether or not the objects are the same by comparing the distance value and the threshold value as described above.
  • the reference image storage unit 30 stores the reference image R (r) as shown in FIG.
  • the standard three-dimensional reference point storage unit 72 stores standard three-dimensional reference points N Q (i is an index of the reference point) corresponding to the standard three-dimensional object model as shown in FIG.
  • the three-dimensional reference point is a point for performing alignment, and in the example of FIG. 13, for example, five points of a left eye middle point, a right eye middle point, a nose tip, a left mouth corner point, and a right mouth corner point are shown. .
  • the three-dimensional reference point may be manually set in advance. For example, September 2002, FIT (Information Science and Technology Forum) 2002, G100, pp. 199-200, Marugame et al., “Shape Information Extraction of facial 3D data features using color and color information together '' May be set automatically.
  • the standard three-dimensional reference point is the average coordinate of each of the three-dimensional reference points of the learning three-dimensional object model prepared in advance, or the standard three-dimensional reference point obtained by averaging the standard three-dimensional object model force of the learning three-dimensional object model. Can be obtained by
  • the standard three-dimensional weight coefficient storage unit 75 stores a standard three-dimensional weight coefficient as shown in FIG.
  • V Q is stored.
  • the number is calculated using the 3D weighting coefficients of the 3D object model for learning prepared in advance, and the 3D weighting factor is adjusted so that the 3D reference point of each 3D object model for learning matches the standard 3D reference point. And then averaging.
  • each point other than the reference point is determined by interpolating or extrapolating the correspondence of the reference point, so that the coordinate values ⁇ s, t ⁇ of the three-dimensional weighting factor and the coordinates of the standard three-dimensional weighting factor are obtained.
  • the original weighting factor can be learned in advance using learning images obtained by shooting the object of the learning 3D object model under various conditions.
  • the learning 3D object model is used as input 3D data, and the learning image is used as a reference image.
  • the error between each pixel of the generated comparison image and the reference image is obtained.
  • the weighting factor is an amount indicating the importance of a pixel in collation. For example, a pixel having a small average error can be set to a large weight.
  • the three-dimensional weighting factor can be set by averaging the error of each pixel of the comparative image and the reference image on the three-dimensional object model based on the correspondence between the pixels of the comparative image and the three-dimensional object model to obtain an average error. .
  • the reference weight coefficient storage unit 77 stores a weight coefficient U (r) corresponding to the reference image as shown in FIG.
  • U (r) l
  • U (1:) 0
  • a hatched area has a value of 0 ⁇ 1; (r) ⁇ l. . K k for the reference image
  • the corresponding weight coefficient is set manually or automatically in advance, for example, by setting the weight of an area other than the face area to 0, or by setting the weight of an area having a large or small luminance value to be small.
  • FIG. 6 shows an example of the three-dimensional reference points extracted from the three-dimensional data of FIG.
  • a posture candidate group ⁇ e ⁇ is determined by the posture candidate determination means 20 (step 110).
  • the comparison image generation means 40 generates a comparison image G (r) close to the reference image R while projecting the three-dimensional data into a two-dimensional image according to the posture candidate (step 120).
  • FIG. 7 shows an example of a comparison image generated for R.
  • the input weight coefficient conversion means 70 uses the standard three-dimensional reference point and the three-dimensional reference point of the three-dimensional data to determine the correspondence between the standard three-dimensional weight coefficient and the coordinates of the three-dimensional data, and determines the correspondence between the standard three-dimensional weight coefficient and the three-dimensional data.
  • the standard three-dimensional weighting factor V Q is converted to a two-dimensional weighting factor W (r) (step 180
  • FIG. 17 shows an example of a two-dimensional weighting factor generated corresponding to the comparison image of FIG.
  • the image matching means 56 calculates a distance value D ′ between the comparison image and the reference image by using a weight coefficient W (r) corresponding to the input data obtained from the input weight kj-only coefficient conversion means 70, Reference weight kj
  • Step 131 and further, by selecting a comparison image having the smallest distance value for each reference image, an optimal posture is estimated, and a minimum distance value between the three-dimensional data and the reference image is obtained (step 140). ).
  • any one of the weight coefficients W (r) and U (r) may be used.
  • the posture estimation 'matching means 52 increments the image number k by 1 (step 151), compares the image number k with the number of images M (step 152), and when the image number k is equal to or less than the number of images M, Returning to step 110, the same processing is performed to calculate the minimum distance value of the next reference image. Finally, when the image number k becomes equal to or more than the image number M in step 152, the minimum distance value V and the reference image R are set as the comparison result (step 153).
  • the three-dimensional data of the object is measured, and the three-dimensional data is compared with the reference image while correcting the posture and lighting conditions. Even when the image is captured under the following conditions, the collation 'search can be performed with high accuracy. Also, at the time of matching, the 3D data of the object is measured, and the 3D data and the reference image are compared and compared.Therefore, a 3D object model of each object cannot be obtained in advance. Even when there are only cards, it is possible to perform a high-precision collation search. Further, since the image matching is performed by the weight matching using the weighting coefficient according to the part, the matching 'search can be performed with higher accuracy.
  • the number of the standard three-dimensional weighting coefficients (and the standard three-dimensional reference points) is described as one, but there may be a plurality.
  • information on which standard three-dimensional weighting factor is used for each reference image is stored in advance.
  • the standard three-dimensional weighting factor is not limited to the force obtained by calculating the average error of pixels between the generated comparison image and the learning image.
  • the weighting distance is used to calculate the weighting distance in the posture estimation.However, in the posture estimation, the distance calculation without using the weighting coefficient is used, the optimal posture is obtained, and the weighting distance may be calculated again. .
  • FIG. 18 is a block diagram showing a fourth embodiment of the present invention.
  • the same parts as those in FIG. 1 of the first embodiment are denoted by the same reference numerals.
  • the three-dimensional data input unit 10 the reference image storage unit 30, the posture estimation and matching unit 53, the representative three-dimensional object model storage unit 36, the three-dimensional matching unit 80, and the group storage unit 85 And reference image selecting means 82.
  • the posture estimating / collating means 53 includes a posture candidate determining means 20, a comparative image generating means 40, and an image comparing means 55.
  • each of these means operates roughly as follows. First, the three-dimensional data input unit 10, the reference image storage unit 30, the posture candidate determination unit 20, the comparison image generation unit 40, and the image matching unit 55 are the same as those of the first embodiment shown in FIG. Is performed.
  • the representative three-dimensional object model storage unit 36 stores a representative three-dimensional object model prepared in advance.
  • the group storage unit 85 stores in advance information related to the representative three-dimensional object model and the reference image (information for associating the representative three-dimensional object model with the reference image).
  • the three-dimensional collation means 80 includes the three-dimensional data obtained from the three-dimensional data input means 10 and the representative three-dimensional data. The matching is performed with each representative 3D object model obtained from the 3D object model storage unit 36, and the most similar representative 3D object model is selected.
  • the reference image selection means 82 selects a reference image group corresponding to the selected representative three-dimensional object model obtained by the three-dimensional collation means 80 from the related information obtained from the group storage part 85.
  • the posture estimation 'matching means 53 obtains the minimum distance value (or maximum similarity) between the three-dimensional data obtained from the three-dimensional data input means 10 and the reference image obtained from the reference image storage unit 30, The reference image having the smallest minimum distance value is selected.
  • the target reference image is a group of reference images obtained by the reference image selecting means 82.
  • three-dimensional data is input by the three-dimensional data input means 10 (step 100 in FIG. 19).
  • the three-dimensional matching means 80 calculates the similarity S between the three-dimensional data and each representative three-dimensional object model C (step 220).
  • the Dell number h is incremented by 1 (step 211), and the model number h is compared with the model number H (step 212). If the model number h is equal to or smaller than the model number H, the process returns to step 210 and the same. And calculate the similarity with the next representative 3D object model.
  • Step 212 When the matching with all the representative 3D object models is completed in Step 212, the model C having the highest similarity is selected (Step 221). Next, the reference image selecting means 82
  • a reference image group corresponding to the selected representative 3D object model is selected from the related information obtained from the loop storage unit 85 (step 230). Note that step 230 in FIG. 19 follows step 150 in FIG.
  • step 240 if the reference image R is included in the selected reference image group,
  • step 151 Proceed to the next step 110, and if not included, proceed to step 151.
  • step 110 the posture candidate determining means 20, the comparison image generating means 40, and the image matching means 55 perform the same processing as in the first embodiment to estimate the optimal posture and to perform The minimum distance value between the image and the reference image R is obtained (steps 110-140).
  • the posture candidate determining means 20 the comparison image generating means 40, and the image matching means 55 perform the same processing as in the first embodiment to estimate the optimal posture and to perform The minimum distance value between the image and the reference image R is obtained (steps 110-140).
  • the estimation 'matching means 53 increments the image number k by 1 (step 151), compares the image number k with the number of images M (step 152), and when the image number k is equal to or less than the number of images M, the step 24 0 And the same processing is performed. Finally, when the image number k is equal to or more than the number M of images, the minimum distance value, ie, the smallest reference value R, is set as the comparison result (step 153).
  • the reference image storage unit 30 stores the reference image R (r) as shown in FIG.
  • the representative three-dimensional object model storage unit 36 stores a representative three-dimensional object model C as shown in FIG. As shown in Table 2,
  • the image number of the top candidate (reference image group) when the reference image is collated using the representative three-dimensional object model is stored. This is because the matching when each representative 3D object model C is input to the image matching system of the first embodiment.
  • step 211 the model number h is incremented by one (step 211), and the model number h is compared with the number of models H (step 212). Return and perform the same process to calculate the similarity with the next representative 3D object model.
  • step 212 the model C having the highest similarity is selected (step 221).
  • the reference image selection means 82 selects a reference image group ⁇ R, R ⁇ corresponding to the selected representative 3D object model C from the list obtained from the group storage unit 85 shown in Table 2.
  • Step 240 if the reference image R is included in the selected reference image group,
  • step 110 proceeds to step 110, and if not included, proceed to step 151.
  • step 110 by performing the same processing as in the first embodiment, the posture candidate determining means 20, the comparative image generating means 40, and the image matching means 55 estimate the optimal posture and Find the minimum distance between the image and the reference image R (steps 110—140) k
  • the posture estimation / matching means 53 increments the image number k by 1 (step 151), compares the image number k with the number of images M (step 152), and when the image number k is equal to or less than the image number H, Returning to step 240, similar processing is performed.
  • R the minimum distance value
  • the three-dimensional data of the object is measured, and the three-dimensional data is compared with the reference image while correcting the posture and lighting conditions. Even when the image is captured under the following conditions, the collation 'search can be performed with high accuracy. Also, at the time of matching, the 3D data of the object is measured, and the 3D data and the reference image are compared and compared.Therefore, a 3D object model of each object cannot be obtained in advance. Even when there are only cards, it is possible to perform a high-precision collation search. In addition, the reference 3D object model Since it is configured to select a reference image in some cases, high-speed search can be performed.
  • one representative three-dimensional object model is described as being selected, but a plurality of representative three-dimensional object models may be selected.
  • the union set of the reference image group corresponding to each representative 3D object model is set as the reference image group.
  • FIG. 22 is a block diagram showing a configuration of the fifth exemplary embodiment of the present invention.
  • the same parts as those in FIGS. 1 and 18 are denoted by the same reference numerals.
  • the three-dimensional data input means 10 the reference image storage unit 30, the posture estimation and matching unit 53, the representative image storage unit 31, and the second posture estimation and matching unit (representative image selection unit) 54, a group storage unit 86, and reference image selecting means 82.
  • Attitude estimation / collation means 50 and 53 include attitude candidate determination means 20, comparative image generation means 40, and image collation means 55.
  • each of these means operates roughly as follows. First, the three-dimensional data input unit 10, the reference image storage unit 30, the posture candidate determination unit 20, the comparison image generation unit 40, and the image matching unit 55 are the same as those of the first embodiment shown in FIG. Is performed.
  • the representative image storage unit 31 stores a representative image prepared in advance! RU
  • This may be a part of the reference image in the reference image storage unit 30, or may be a new image generated by averaging the reference images. If the reference image is a part of the reference image in the reference image storage unit 30, only the image number may be stored, and the reference image in the reference image storage unit 30 may be referred to.
  • the group storage unit 86 information related to the representative image and the reference image (information for associating the representative image with the reference image) is stored in advance.
  • the second posture estimation 'matching means 54 compares the three-dimensional data obtained from the three-dimensional data input means 10 with each representative image obtained from the representative image storage unit 31 and determines the most similar representative image. select.
  • the reference image selection means 82 selects a reference image group corresponding to the selected representative image obtained by the second posture estimation / collation means 54 from the related information obtained from the group storage section 86.
  • the posture estimation 'collating means 53 obtains a minimum distance value (or maximum similarity) between the three-dimensional data obtained from the three-dimensional data input means 10 and the reference image obtained from the reference image storage unit 30, The reference image having the smallest minimum distance value is selected.
  • the target reference image I is a reference image group obtained by the reference image selecting means 82.
  • three-dimensional data is input by the three-dimensional data input means 10 (step 100 in FIG. 23).
  • the similarity S between the three-dimensional data and each representative image R is determined (step 225).
  • the image number h is incremented by 1 (step 211), and the image number h is compared with the image number H.
  • Step 217) If the image number h is equal to or smaller than the image number H, the process returns to Step 225 to perform the same processing and calculate the similarity with the next representative image.
  • the representative image R ′ having the highest similarity is selected (Step 22).
  • the reference image selecting means 82 selects a reference image group corresponding to the selected representative image from the related information obtained from the group storage section 86 (step 235).
  • Step 235 in Figure 23 235 Step 150 in Figure 20 [Continue!
  • Step 240 if the reference image R is included in the selected reference image group, the next step
  • step 110 the posture candidate determining means 20, the comparative image generating means 40, and the image matching means 55 perform the same processing as in the first embodiment to estimate the optimal posture and The minimum distance value between the image and the reference image R is obtained (steps 110-140).
  • the posture candidate determining means 20 the comparative image generating means 40, and the image matching means 55 perform the same processing as in the first embodiment to estimate the optimal posture and The minimum distance value between the image and the reference image R is obtained (steps 110-140).
  • the estimation 'matching means 53 increments the image number k by 1 (step 151), compares the image number k with the number of images M (step 152), and if the image number k is less than the number of images H, Returning to 0, the same processing is performed, and the minimum distance value to the next reference image is obtained. Finally, if the number k of images is equal to or more than the number M of images in step 152, the minimum distance value is the smallest! / And the reference image R is set as the comparison result (step 153).
  • the reference image storage unit 30 stores the reference image R (r) as shown in FIG.
  • the representative image storage unit 31 stores a representative image R ′ force S as shown in FIG. It is remembered.
  • the group storage unit 86 stores the image numbers of the top candidates (reference image group) when the reference image is collated using the representative image as shown in Table 4. For this collation, an existing image collation system described in Patent Documents 1 and 2 and the like can be used.
  • step 217 If the image number h is equal to or less than the number of images H, the process returns to step 215 to perform the same processing and calculate the degree of similarity with the next representative image. .
  • the representative image R having the highest similarity is selected (Step 226). For example, if the similarity to the representative image R is ⁇ 0.7, 0.9 ⁇ and h h
  • the representative image R ' is selected.
  • the reference image selection means 82 is shown in Table 4.
  • a reference image group ⁇ R, R ⁇ is selected (step 235). Thereafter, the processing in FIG. 20 is performed.
  • Step 240 if the reference image R is included in the selected reference image group,
  • step 110 proceeds to step 110, and if not included, proceed to step 151.
  • the posture candidate determining means 20, the comparative image generating means 40, and the image matching means 55 perform the same processing as in the first embodiment to estimate the optimal posture and to perform the 3D data and reference image processing.
  • the minimum distance value from R is obtained (step 110—step 140).
  • the posture estimation 'matching means 53 increments the image number k by 1 (step 151), compares the image number k with the number of images M (step 152), and when the image number k is equal to or less than the number M of images, Returning to step 240, the same processing is performed.
  • the minimum distance value is calculated for R and R
  • Step 153 the reference image R having the smallest minimum distance value is set as the comparison result (Step 153).
  • one representative image is selected, but a plurality of representative images may be selected.
  • a merged set of the reference image group corresponding to each representative image is defined as a reference image group.
  • the three-dimensional data of the object is measured, and the three-dimensional data is compared with the reference image while correcting the posture and lighting conditions. Even when the image is captured under the following conditions, the collation 'search can be performed with high accuracy. Also, at the time of matching, the 3D data of the object is measured, and the 3D data and the reference image are compared and compared.Therefore, a 3D object model of each object cannot be obtained in advance. Even when there are only cards, it is possible to perform a high-precision collation search. Furthermore, since a reference image is selected by matching with a representative image, high-speed search can be performed.
  • the three-dimensional data has the shape and texture in the three-dimensional space (X, y, z) of the object surface as information.
  • the present invention is not limited to this as long as equivalent information can be obtained.
  • a distance image expressing a distance to the object surface with a certain directional force as an image, a texture image captured from the direction, and the like may be used.
  • the image collating system of the present invention executes the functions of the respective units of the above-described first to fifth embodiments, not to mention that the functions of the respective units as the constituent elements can be realized in a hardware manner.
  • This can be realized by loading the image matching program (application) into the memory of the computer processing device and controlling the computer processing device.
  • This image collation program is stored on a magnetic disk, semiconductor memory, or other recording medium, loaded from the recording medium into a computer processing device, and controls the operation of the computer processing device to realize the functions described above. I do.
  • the present invention is suitable for an image collating system for retrieving an image of an object such as a human face in a database, a program for realizing an image collating system by a computer, and other applications. Can be used.
  • the present invention can be applied to a search for an image of an object such as a human face existing on a network or the Internet. Furthermore, when it is determined whether an image such as an identification photograph and the person holding the image are the same person, it can be suitably used for any purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

 物体の3次元データを入力する3次元データ入力手段(10)と、少なくとも1つの物体の参照画像を記憶する参照画像記憶部(30)と、物体の姿勢の候補である姿勢候補を生成する姿勢候補決定手段(20)と、姿勢候補に応じて3次元データを2次元の画像に射影しつつ参照画像に近い比較画像を生成する比較画像生成手段(40)と、参照画像と比較画像との距離値及び類似度のいずれか一方に基づいて照合を行う画像照合手段(55)とを備える。これにより、物体の参照画像が姿勢や照明等異なる条件で撮影されている場合にも、高精度に照合や検索ができる。また、物体の3次元物体モデルが予め得られなかったり、参照画像が1枚乃至少数しか存在しない場合にも、高精度に照合や検索ができる。

Description

明 細 書
画像照合システム及び画像照合方法
技術分野
[0001] 本発明は、画像照合システム、画像照合方法及び画像照合用プログラムに関し、 特に、物体の 3次元モデルを事前に登録することができず、システム内のデータべ一 スゃネットワークにある各物体の参照画像が 1枚乃至少数しか存在せず、且つ、姿勢 や照明等異なる条件で撮影されている場合にも高精度に照合'検索ができる画像照 合システム、画像照合方法及び画像照合用プログラムに関するものである。
背景技術
[0002] 図 25は従来の画像照合システムを示すブロック図である。この従来の画像照合シ ステムは、画像入力手段 115と、画像変換手段 117と、画像照合手段 157と、参照画 像記憶部 130と、標準 3次元物体モデル記憶部 135とから構成されている。
[0003] 参照画像記憶部 130には、物体を撮影した参照画像が予め記憶されている。標準 3次元物体モデル記憶部 135には、標準的な 3次元物体モデルが予め記憶されてい る。画像変換手段 117は画像入力手段 115より入力された入力画像と参照画像記憶 部 130より得られる各参照画像の共通する部分領域に関して、標準 3次元物体モデ ル記憶部 135より得られる 3次元物体モデルを用いて、姿勢条件を同じにするように 当該入力画像と当該参照画像の両方またはいずれかを変換し部分画像を生成する
[0004] 部分領域とは、例えば、目 '鼻'口のような特徴的な部分であり、予め各画像と 3次 元物体モデルに対して特徴点を指定しておくことにより対応をとることができる。画像 照合手段 157は画像変換手段 117より変換された入力画像と各参照画像の部分画 像を比較し、それぞれ平均類似度を計算し、各物体で最も類似度の大きい参照画像 を選出する (例えば、特開 2000-322577号公報 (特許文献 1)を参照)。
[0005] 図 26は他の従来の画像照合システムを示すブロック図である。この従来の画像照 合システムは、画像入力手段 115と、照明変動補正手段 122と、画像変換手段 118 と、画像照合手段 158と、参照画像記憶部 130と、標準 3次元物体モデル記憶部 13 5とから構成されている。
[0006] 参照画像記憶部 130には、物体を撮影した参照画像が予め記憶されて!、る。標準 3次元物体モデル記憶部 135には、標準的な 3次元物体モデルが予め記憶されてい る。照明変動補正手段 122は、標準 3次元物体モデル記憶部 135より得られる 3次元 物体モデルを用いて、画像入力手段 115より入力された入力画像の照明条件 (表面 反射率)を推定する。画像変換手段 118は参照画像の照明条件に合うように 3次元 物体モデルを用いて入力画像を変換した画像を生成する。画像照合手段 158は画 像変換手段 118より変換された入力画像と各参照画像を比較し、それぞれ類似度を 計算し、各物体で最も類似度の大きい参照画像を選出する (例えば、特開 2002-02 4830号公報 (特許文献 2)を参照)。
[0007] 図 27は更に他の従来の画像照合システムを示すブロック図である。この従来の画 像照合システムは、画像入力手段 115と、参照 3次元物体モデル記憶部 137と、姿 勢推定 ·照合手段 150とから構成されている。姿勢推定 ·照合手段 150は、姿勢候補 決定手段 120と、比較画像生成手段 140と、画像照合手段 155とを含んでいる。
[0008] 参照 3次元物体モデル記憶部 137には、物体を計測して生成した参照 3次元物体 モデルが予め記憶されている。姿勢推定'照合手段 150は、画像入力手段 115より 得られる入力画像と、参照 3次元物体モデル記憶部 137より得られる参照 3次元物体 モデルとの最小距離値 (もしくは最大類似度)を求め、当該最小距離値の最も小さい モデルを選出する。
[0009] より具体的には、姿勢候補決定手段 120は少なくとも 1つの姿勢候補を生成する。
次に、比較画像生成手段 140は、姿勢候補に応じて参照 3次元物体モデルを 2次元 の画像に射影しつつ入力画像に近い比較画像を生成する。画像照合手段 155は、 当該比較画像と当該入力画像との距離値を求め、各モデルに対して距離値の最も 小さい比較画像を選出することにより、最適な姿勢を推定すると共に入力画像と参照 3次元物体モデルとの最小距離値を求める。更に、当該最小距離値の最も小さいモ デルを選出する(例えば、特開 2003— 058896号公報 (特許文献 3)を参照)。
発明の開示
発明が解決しょうとする課題 [0010] 特許文献 1、 2の画像照合システムでは、入力画像と参照画像の姿勢や照明条件 が異なると、十分精度良く照合できな力つた。
[0011] その理由は、特許文献 1のものでは、画像に対して姿勢を推定し姿勢条件を合わ せるように画像変換して 、るが、画像に対して正確に姿勢を推定することは難し 、た め、正しく画像を合わせることができないためである。また、観測する物体の 3次元形 状とは異なる標準的な 3次元物体モデルを用いて画像変換しているため、形状が複 雑な部分や姿勢条件が大きく異なった場合に画像変換による歪みが大きくなるため である。
[0012] また、特許文献 2のものでは、観測する物体の 3次元形状とは異なる標準的な 3次 元物体モデルを用いて照明条件を推定し画像変換しているため、大まかには補正で きても細部では誤った補正をしている場合があるためである。
[0013] 更に、特許文献 3のものでは、各物体の 3次元物体モデルが予め登録されていなか つたり、参照画像が少ない場合には、照合できな力つた。
[0014] その理由は、特許文献 3の技術は、予め 3次元物体モデルを登録し入力画像と照 合するためである。また、予め 3次元物体モデルを登録するためには、照合する以前 に各物体を 3次元形状計測装置で計測しておく必要があるが、通常困難な場合が多 い。また、複数の画像から 3次元物体モデルを生成することも可能である力 参照画 像が少ないと 3次元物体モデルを生成することが困難なためであった。
課題を解決するための手段
[0015] 本発明は、上記従来の問題点に鑑みなされたもので、その目的は、各物体の参照 画像が姿勢や照明等異なる条件で撮影されて 、る場合にも、高精度な照合や検索 を可能にすることにある。
[0016] また、本発明の他の目的は、各物体の 3次元物体モデルが予め得られない場合に も、高精度な照合や検索を可能にすることにある。
[0017] また、本発明の他の目的は、各物体の参照画像が 1枚乃至少数しか存在しない場 合にも、高精度な照合や検索を可能にすることにある。
[0018] このような目的を達成するために、本発明に係る画像照合システムは、物体の 3次 元データを入力する入力手段と、少なくとも 1つの物体の参照画像を記憶する参照 画像記憶手段と、物体の姿勢の候補である姿勢候補を生成する姿勢候補生成手段 と、姿勢候補に応じて 3次元データを 2次元の画像に射影しつつ参照画像に近 、比 較画像を生成する比較画像生成手段と、参照画像と比較画像との距離値及び類似 度のいずれか一方に基づいて照合を行う画像照合手段とを備えることを特徴とする。
[0019] また、本発明に係る画像照合システムは、物体の 3次元データを入力するステップ と、物体の姿勢の候補である姿勢候補を生成するステップと、姿勢候補に応じて 3次 元データを 2次元の画像に射影しつつ参照画像に近い比較画像を生成するステップ と、参照画像と比較画像との距離値及び類似度の!、ずれか一方に基づ 、て照合を 行うステップとを備えることを特徴とする。
[0020] また、本発明に係る画像照合用プログラムは、物体の 3次元データを入力する手順 と、物体の姿勢の候補である姿勢候補を生成する手順と、姿勢候補に応じて 3次元 データを 2次元の画像に射影しつつ参照画像に近 ヽ比較画像を生成する手順と、参 照画像と比較画像との距離値及び類似度の!、ずれか一方に基づ 、て照合を行う手 順とをコンピュータに実行させることを特徴とする。
発明の効果
[0021] 本発明の第 1の効果は、各物体の参照画像が姿勢や照明等異なる条件で撮影さ れている場合にも、高精度に照合や検索ができることである。その理由は、物体の 3 次元データを計測し、各参照画像の姿勢や照明等の撮影条件に合った比較画像を 生成し、当該比較画像と参照画像を比較することにより照合するためである。
[0022] また、第 2の効果は、各物体の 3次元物体モデルが予め得られな力つたり、参照画 像が 1枚乃至少数しか存在しない場合にも、高精度に照合や検索ができることである 。その理由は、照合時に物体の 3次元データを計測し、予め存在する参照画像に合 つた比較画像を生成し、当該比較画像と参照画像を比較することにより照合するため である。
図面の簡単な説明
[0023] [図 1]図 1は、本発明による画像照合システムの第 1の実施例の構成を示- 図である。
[図 2]図 2は、第 1の実施例の画像照合手段の構成を示すブロック図である。 図 3]図 3は、第 1の実施例の 1対 1照合における動作を示す流れ図である。
図 4]図 4は、第 1の実施例の 1対 N照合における動作を示す流れ図である c 図 5]図 5は、第 1の実施例の参照画像の具体例を示す図である。
図 6]図 6は、第 1の実施例の 3次元データの具体例を示す図である。
図 7]図 7は、第 1の実施例の比較画像の具体例を示す図である。
図 8]図 8は、本発明の第 2の実施例の構成を示すプロック図である。
図 9]図 9は、第 2の実施例の 1対 N照合における動作を示す流れ図である c 図 10 ']]図 10は、本発明の第 3の実施例の構成を示すブロック図である。
図 11: ]図 11は、第 3の実施例の画像照合手段の構成を示すブロック図である。 図 12] ]図 12は、第 3の実施例の 1対 N照合における動作を示す流れ図である。 図 13 ]図 13は、第 3の実施例の標準 3次元基準点の具体例を示す図である。 図 14: ]図 14は、第 3の実施例の標準 3次元重み係数の具体例を示す図である。 図 15 ]図 15は、第 3の実施例の参照重み係数の具体例を示す図である。
図 16: ]図 16は、第 3の実施例の入力 3次元基準点の具体例を示す図である。 図 17: ]図 17は、第 3の実施例の 2次元重み係数の具体例を示す図である。
図 18: ]図 18は、本発明の第 4の実施例の構成を示すブロック図である。
図 19 ]図 19は、第 4の実施例の動作を示す流れ図である。
図 20 ']図 20は、第 4の実施例の動作を示す流れ図である。
図 21 ]図 21は、第 4の実施例の代表 3次元物体モデルの具体例を示す図である c 図 22 ]図 22は、本発明の第 5の実施例の構成を示すブロック図である。
図 23 ]図 23は、第 5の実施例の動作を示す流れ図である。
図 24: ]図 24は、第 5の実施例の代表画像の具体例を示す図である。
図 25 ]図 25は、従来例の画像照合システムを示すブロック図である。
図 26 ]図 26は、他の従来例の画像照合システムを示すブロック図である。
図 27 ]図 27は、更に他の従来例の画像照合システムを示すブロック図である。 発明を実施するための最良の形態
[0024] 以下、図面を参照し、本発明の実施例について詳細に説明する。
[00251 (第 1の実施例) 図 1は本発明による画像照合システムの第 1の実施例を示すブロック図である。図 1 において、 10は物体の 3次元データを入力する 3次元データ入力手段、 30は参照画 像記憶部、 50は姿勢推定 ·照合手段である。姿勢推定 ·照合手段 50は、姿勢候補 決定手段 20と、比較画像生成手段 40と、画像照合手段 55とを含んでいる。
[0026] これらの手段はそれぞれ概略次のように動作する。まず、参照画像記憶部 30には 、少なくとも 1つの物体をそれぞれ撮影した参照画像が予め記憶されている。参照画 像の姿勢や照明等の撮影条件は限定されない。また、参照画像記憶部 30は、シス テム内にあっても良いし、システム外にあってネットワークで接続して使用しても良い
[0027] 3次元データ入力手段 10は照合すべき物体 (又は検索すべき物体等)の 3次元デ ータを入力する。 3次元データは、例えば、特開 2001— 12925号公報に記載された 3次元形状測定装置を用いたり、或いは特開平 9— 91436号公報に記載の多数の力 メラで撮影された複数画像から 3次元形状を復元する装置を用いることにより生成す ることがでさる。
[0028] 姿勢推定'照合手段 50は、 3次元データ入力手段 10より入力された 3次元データと 、参照画像記憶部 30より得られる参照画像との最小距離値 (もしくは最大類似度)を 求める。より具体的には、姿勢候補決定手段 20は少なくとも 1つの物体の姿勢の候 補である姿勢候補を生成する (物体の姿勢は物体の位置と向きで表される)。比較画 像生成手段 40は、姿勢候補に応じて 3次元データを 2次元の画像に射影しつつ参 照画像に近 ヽ比較画像を生成する。
[0029] 画像照合手段 55は、図 2に示す演算部 55aと、選出部 55bと、照合部 55cとを含ん でいる。画像照合手段 55は、演算部 55aにおいて当該比較画像と当該参照画像と の距離値を求め、選出部 55bにおいて各参照画像に対して距離値の最も小さい比 較画像を選出することにより、最適な姿勢を推定すると共に 3次元データと参照画像 との最小距離値を求める。更に、 1つの物体 (参照画像)との照合処理(1対 1照合)の 場合には、照合部 55cにおいて当該最小距離値としきい値を比較して同一物体であ る力否かを判定する。即ち、しきい値以下であれば同一物体、しきい値以上の場合 は同一物体ではないと判定する。また、複数の物体力も入力 3次元データに最も近 V、物体 (参照画像)を検索する処理(1対 N照合)の場合には、照合部 55cにお ヽて 当該最小距離値の最も小さい参照画像を選出する。なお、比較画像と参照画像との 類似度を用いて判定する場合には、類似度がしきい値以上の場合に同一物体と判 定し、しきい値以下の場合には同一物体ではないと判定する。
[0030] 次に、図 1及び図 3のフローチャートを参照して本実施例の 1対 1照合の場合の全 体動作について詳細に説明する。ここで、入力 3次元データと参照画像 Rとを照合
k
する場合について説明する。
[0031] 図 3において、まず、 3次元データ入力手段 10により 3次元データを入力する (ステ ップ 100)。次に、姿勢候補決定手段 20において姿勢候補群 {e }を決定する (ステツ プ 110)。次に、比較画像生成手段 40は姿勢候補に応じて 3次元データを 2次元の 画像に射影しつつ参照画像 Rに近い比較画像を生成する (ステップ 120)。画像照
k
合手段 55は当該比較画像と当該参照画像との距離値を求める (ステップ 130)。更 に、距離値の最も小さい比較画像を選出することにより、最適な姿勢を推定すると共 に 3次元データと参照画像 Rとの最小距離値を求める (ステップ 140)。
k
[0032] ここで、予め決定した姿勢候補群の中から距離値の最も小さ!、姿勢候補を選択す るとしたが、姿勢候補決定手段 20に戻って順次姿勢候補を変動させながら、距離値 の最も小さい姿勢候補を探索しても良い。次に、姿勢推定,照合手段 50は最小距離 値としきい値を比較して同一物体であるか否かを判定する (ステップ 155)。
[0033] 次に、図 1及び図 4のフローチャートを参照して本実施例の 1対 N照合の場合の全 体動作について詳細に説明する。図 4において、まず、 3次元データ入力手段 10に より 3次元データを入力する (ステップ 100)。次に、姿勢推定'照合手段 50は初めに 参照画像の画像番号を k= lとする(ステップ 150)。その後、ステップ 110— 140の 処理を行うが、これは、図 3のステップ 110— 140と同一処理である。
[0034] 次に、姿勢推定 ·照合手段 50は画像番号 kを 1増やし (ステップ 151)、画像番号 k と画像数 M (参照画像の数)との比較を行 、 (ステップ 152)、画像番号 kが画像数 M 以下の場合には、ステップ 110に戻って同様の処理を行い、次の参照画像の最小距 離値を計算する。最後に、ステップ 152において画像番号 kが画像数 M以上になると 、最小距離値の最も小さい参照画像 Rを照合結果とする (ステップ 153)。
k [0035] 次に、具体的な例を用いて本実施例の動作を更に詳細に説明する。なお、ここで は照合対象として人物の顔を例に挙げて説明するが、本発明は他の物体の照合に も適用できることは勿論である。まず、図 5に示すように参照画像記憶部 30には、物 体 kの参照画像 R (r)が記憶されている (rは画素または特徴のインデックス)。ここで
k
、各画像の姿勢条件は同じとは限らない (照明条件に関する違いは図示していない) 。また、参照画像は各物体に 1枚としているが、複数枚あっても良い。
[0036] ここで、 1対 N照合の場合について説明する。まず、 3次元データ入力手段 10から 図 6に示すような 3次元データが入力されたとする(図 4のステップ 100)。 3次元デー タは図 6に示すように物体表面の 3次元空間(X, y, z)内での形状 P (X, y, z)とテク
Q
スチヤ T (R, G, B)を情報として持っている。 Qは物体表面上の点のインデックスを
Q
表し、例えば、物体の重心を中心とした球体へ物体表面上の点を重心から射影した 点 Q (s, t)の座標に対応している。照合の効率ィ匕のために、予め 3次元データ力も様 々な照明条件による学習用 CG画像をコンピュータグラフィックスにより生成し、当該 学習用 CG画像を主成分分析することにより基底画像群を求めておく。
[0037] 次に、姿勢推定 ·照合手段 50は初めに参照画像の画像番号を k= 1とする (ステツ プ 150)。次に、姿勢候補決定手段 20において姿勢候補群 {e }を決定する (ステップ 110)。姿勢候補群は参照画像に関係なく予め設定しておいても良いが、例えば、参 照画像及び 3次元データから目 ·鼻'口等の基準点を手動または自動で抽出し、特 開 2001— 283229号公報に記載された物体の位置及び向きを計算する方法を用い ることにより、おおよその姿勢を推定し、当該姿勢の近辺で姿勢候補群を生成するこ ともできる。また、入力された 3次元データを用いるのではなぐ予め用意した代表 3 次元データ (モデル)を使用して参照画像と照合することにより、予めおおよその姿勢 を推定し記憶してぉ 、ても良 、。
[0038] 次に、比較画像生成手段 40は姿勢候補 eに応じて 3次元データを 2次元の画像に 射影しつつ参照画像 Rの照明条件に近 、比較画像 G (r)を生成する (ステップ 120
k kj
)。ここで、参照画像の照明条件に近い比較画像を生成するためには、予め求めて お!ヽた基底画像群を各姿勢候補に基づ ヽて座標変換し、当該座標変換した基底画 像の線形和が当該入力画像に近くなるように線形和の係数を最小二乗法により求め ることにより実現できる。参照画像 Rに対して生成した比較画像の例を図 7に示す(
1
濃淡情報は図示していない)。
[0039] 次に、画像照合手段 55は当該比較画像と当該参照画像との距離値を求める (ステ ップ 130)。例えば、ユークリッド距離を用いる場合には、
D =∑ {R (r)-G (r) }2
kj r k kj
により計算できる。類似度 Sを用いる場合には、例えば、
kj
S =exp (-D )
kj kj
により計算できる。この際、姿勢推定 ·照合手段 50は距離値の最も小さい比較画像を 選出することにより最適な姿勢を推定すると共に、 3次元データと参照画像 Rとの最 k 小距離値 Dを、
k
最小距離値 D =minD
k j kj
により求める (ステップ 140)。図 7の場合、例えば、 G が選出される。
11
[0040] 次に、画像番号 kを 1増やし (ステップ 151)、画像番号 kと画像数 Mとの比較を行う( ステップ 152)。この時、画像番号 kが画像数 M以下の場合には、ステップ 110に戻つ て同様の処理を行い、次の参照画像の最小距離値を計算する。最後に、ステップ 15 2で画像番号 kが画像数 M以上になると、最小距離値の最も小さい参照画像 Rを照 k 合結果とする (ステップ 153)。図 6の 3次元データの場合には、例えば、参照画像 R k に対する最小距離値が {20, 50, 25}と求まったとすると、図 5の参照画像 Rが最小
1 距離値の最も小さ 、参照画像として選出される。
[0041] なお、本実施例では、比較画像と参照画像との距離値を求めるとしたが、距離値の 代わりに類似度を用いても良い。類似度は一例として上述のような計算方法で求める ことができる。類似度を用いる場合には、最大類似度が最も大きい参照画像を照合 結果とする。
これは、以下の全ての実施例において同様である。
[0042] 本実施例では、物体の 3次元データを計測し、姿勢や照明条件を補正しながら 3次 元データと参照画像を比較し照合するという構成であるため、各物体の参照画像が 姿勢や照明等異なる条件で撮影されている場合にも、高精度に照合'検索ができる 。また、照合時に物体の 3次元データを計測し、 3次元データと参照画像を比較し照 合するという構成であるため、各物体の 3次元物体モデルが予め得られな力つたり、 参照画像が 1枚乃至数枚しか存在しない場合にも、高精度に照合 '検索ができる。
[0043] (第 2の実施例)
図 8は本発明の第 2の実施例を示すブロック図である。図 8では図 1と同一部分は同 一符号を付している。本実施例では、 3次元データ入力手段 10と、参照画像記憶部 30と、姿勢推定 ·照合手段 51と、参照補正係数記憶部 65とから構成されている。姿 勢推定,照合手段 51は、姿勢候補決定手段 20と、比較画像生成手段 40と、画像照 合手段 55と、スコア補正手段 60とを含んでいる。図 1との違いは、スコア補正手段 60 、参照補正係数記憶部 65が追加されて ヽる点である。
[0044] これらの手段はそれぞれ概略次のように動作する。まず、 3次元データ入力手段 10 と、参照画像記憶部 30と、姿勢候補決定手段 20と、比較画像生成手段 40と、画像 照合手段 55は、図 1に示す第 1の実施例のものと同一の処理を行う。
[0045] また、参照補正係数記憶部 65には、参照画像に対応して照合スコア (距離値や類 似度)を補正するための係数が予め記憶されている。姿勢推定'照合手段 51は、 3次 元データ入力手段 10より入力された 3次元データと、参照画像記憶部 30より得られ る参照画像との最小距離値 (もしくは最大類似度)を求め、更に参照補正係数記憶 部 65より得られる補正係数を用いて当該最小距離値を補正する。
[0046] より具体的には、姿勢候補決定手段 20は少なくとも 1つの姿勢候補を生成する。比 較画像生成手段 40は、姿勢候補に応じて 3次元データを 2次元の画像に射影しつ つ参照画像に近い比較画像を生成する。画像照合手段 55は当該比較画像と当該 参照画像との距離値を求め、各参照画像に対して距離値の最も小さ!ヽ比較画像を 選出することにより、最適な姿勢を推定すると共に 3次元データと参照画像との最小 距離値を求める。
[0047] スコア補正手段 60は参照画像に対応した補正係数を用い、当該最小距離値を補 正する。更に、 1つの物体 (参照画像)との照合処理(1対 1照合)の場合には、当該 補正された最小距離としきい値を比較して、同一物体である力否かを判定する。また 、複数の物体から入力 3次元データに最も近!、物体 (参照画像)を検索する処理( 1 対 N照合)の場合には、当該補正された最小距離値の最も小さい参照画像を選出す る。
[0048] 次に、図 8及び図 9のフローチャートを参照して本実施例の 1対 N照合の場合の全 体動作について詳細に説明する。
[0049] 図 9において、まず、 3次元データ入力手段 10により 3次元データを入力する (ステ ップ 100)。次に、姿勢推定'照合手段 51は初めに参照画像の画像番号を k= lとす る (ステップ 150)。また、第 1の実施例と同様の処理により姿勢候補決定手段 20、比 較画像生成手段 40、画像照合手段 55は、最適な姿勢を推定すると共に 3次元デー タと参照画像 Rとの最小距離値を求める (ステップ 110— 140)。
k
[0050] 次 ヽで、スコア補正手段 60は参照画像 Rに対応した補正係数を用い、当該最小
k
距離値を補正する (ステップ 160)。次に、姿勢推定 ·照合手段 51は画像番号 kを 1増 やし (ステップ 151)、画像番号 kと画像数 Mとの比較を行い (ステップ 152)、画像番 号 kが画像数 M以下の場合には、ステップ 110に戻って同様の処理を行い、次の参 照画像の最小距離値を計算し、その参照画像に対応する補正係数を用いて最小距 離値の補正を行う。ステップ 152で画像番号 kが画像数 M以上になると、補正された 最小距離値の最も小さい参照画像 Rを照合結果とする (ステップ 153)。
k
[0051] また、 1対 1照合の場合には、第 1の実施例と同様に図 9のステップ 100、 110、 120 、 130、 140、 160の処理を行い、その後、図 3のステップ 155の処理を行う。図 3のス テツプ 155では、上述のように距離値としきい値とを比較して同一物体である力否か を判定する。
[0052] 次に、具体的な例を用いて本実施例の動作を更に詳細に説明する。まず、第 1の 実施例の説明と同様に参照画像記憶部 30には、図 5に示すような参照画像 R (r)が
k 記憶されている。また、参照補正係数記憶部 65には、表 1に示すような補正係数が 記憶されている。補正係数 Aは、例えば、予め用意した代表 3次元データ (代表的な
k
3次元物体モデル) C (h= l, · ··, H)を使用して、第 1の実施例の画像照合システム h
により、各モデル Cと参照画像 Rとの最小距離値 D hを求め、当該最小距離値の平
h k k
均値 E =∑ D hZH (または最小距離値の小さい上位候補に関する平均値)を用い k h k
、 A =A/E (Aは予め設定された定数)により求める。例えば、 A= 20とし、各参照 k k
画像に対する最小距離値の平均値 Eが 0, 40, 20}となった場合には、補正係数
k Aは表 1のようになる。これは、例えば、参照画像 Rは撮影条件が悪く平均的に距離 k 1
値が大きくなる傾向があることを示している。
[0053] [表 1]
Figure imgf000014_0001
[0054] ここで、 3次元データ入力手段 10から図 6に示すような 3次元データを入力されたと する(図 9のステップ 100)。姿勢推定'照合手段 51は初めに参照画像の画像番号を k= lとする (ステップ 150)。次に、第 1の実施例と同じ処理により姿勢候補決定手段 20、比較画像生成手段 40、画像照合手段 55は、最適な姿勢を推定すると共に 3次 元データと参照画像 Rとの最小距離値を求める (ステップ 110— 140)。
k
[0055] 次に、スコア補正手段 60は参照画像 Rに対応した補正係数を用いて、当該最小 k
距離値を補正する (ステップ 160)。例えば、補正係数 Aを用い、最小距離値 Dは D k k k
' =A Dにより補正できる。また、姿勢推定 ·照合手段 51は画像番号 kを 1増やし (ス k k
テツプ 151)、画像番号 kと画像数 Mとの比較を行う(ステップ 152)。この時、画像番 号 kが画像数 M以下の場合には、ステップ 110に戻って同様の処理を行い、次の参 照画像の最小距離値を計算し、且つ、同様に参照画像に対応する補正係数を用い て得られた最小距離値の補正を行う。最後に、ステップ 152で画像番号 kが画像数 M以上になると、補正された最小距離値の最も小さい参照画像 Rを照合結果とする( k
ステップ 153)。例えば、参照画像 Rに対する最小距離値が {40, 60, 25}と求まつ k
たとし、表 1に示す補正係数を用いると、補正された最小距離値は { 16, 30, 25}とな り、参照画像 R
1が最小距離値の最も小さい参照画像として選出される。
[0056] 本実施例では、物体の 3次元データを計測し、姿勢や照明条件を補正しながら 3次 元データと参照画像を比較し照合するという構成であるため、各物体の参照画像が 姿勢や照明等異なる条件で撮影されている場合にも、高精度に照合'検索ができる 。また、照合時に物体の 3次元データを計測し、 3次元データと参照画像を比較し照 合するという構成であるため、各物体の 3次元物体モデルが予め得られな力つたり、 参照画像が 1枚乃至数枚しか存在しない場合にも、高精度に照合 '検索ができる。更 に、参照画像の撮影条件に起因する照合スコア変動を補正して照合するため、各参 照画像の撮影条件が異なったり画質の悪い参照画像が存在する場合にも、高精度 に照合 '検索ができる。
[0057] なお、第 2の実施例では、補正係数 Aを記憶し、距離値に補正係数 Aをかけて補
k k
正したが、これに限るものではない。例えば、代表 3次元モデル Cと参照画像 Rとの
h k 最小距離値 D hを全て記憶しておいても良いし、また分布関数を仮定してその関数パ
k
ラメータを記憶しておいても良い。例えば、正規分布を仮定した場合、平均値 E
kと標 準偏差 σ を記憶し、分布を標準正規分布に正規ィ匕するように D ' = (D— Ε ) Ζ σ に
k k k k k よりネ ΐ正することちでさる。
[0058] (第 3の実施例)
図 10は本発明の第 3の実施例を示すブロック図である。図 10では図 1と同一部分 は同一符号を付している。本実施例では、 3次元データ入力手段 10と、参照画像記 憶部 30と、姿勢推定 ·照合手段 52と、 3次元基準点抽出手段 12と、標準 3次元基準 点記憶部 72と、標準 3次元重み係数記憶部 75と、参照重み係数記憶部 77とから構 成されている。姿勢推定 ·照合手段 52は、姿勢候補決定手段 20と、比較画像生成 手段 40と、画像照合手段 56と、入力重み係数変換手段 70とを含んでいる。
[0059] これらの手段はそれぞれ概略次のように動作する。まず、 3次元データ入力手段 10 と、参照画像記憶部 30と、姿勢候補決定手段 20と、比較画像生成手段 40は、第 1 の実施例のものと同様の処理を行う。
[0060] 標準 3次元基準点記憶部 72には、標準 3次元物体モデルに対応した標準 3次元基 準点が記憶されている。標準 3次元重み係数記憶部 75には、標準 3次元重み係数 が記憶されている。参照重み係数記憶部 77には、参照画像に対応した重み係数が 記憶されている。
3次元基準点抽出手段 12は、 3次元データ入力手段 10より得られる 3次元データに 対して、手動または自動的に 3次元基準点を抽出する。
[0061] 姿勢推定'照合手段 52は、 3次元データ入力手段 10より得られる 3次元データと、 参照画像記憶部 30より得られる参照画像との最小距離値 (もしくは最大類似度)を、 入力重み係数変換手段 70より得られる入力データに対応した重み係数や、参照重 み係数記憶部 77より得られる参照画像に対応した重み係数を使用して求める。
[0062] より具体的には、姿勢候補決定手段 20は少なくとも 1つの姿勢候補を生成する。比 較画像生成手段 40は姿勢候補に応じて 3次元データを 2次元の画像に射影しつつ 参照画像に近!ヽ比較画像を生成する。入力重み係数変換手段 70は標準 3次元基 準点記憶部 72より得られる標準 3次元基準点と 3次元基準点抽出手段 12より得られ る 3次元データの 3次元基準点を用い、標準 3次元重み係数記憶部 75より得られる 標準 3次元重み係数と 3次元データ入力手段 10より得られる 3次元データとの座標の 対応を求め、更に姿勢候補決定手段 20より得られる姿勢候補に応じて標準 3次元重 み係数を 2次元の重み係数に変換する。
[0063] 画像照合手段 56は、図 11に示す演算部 56aと、選出部 56bと、照合部 56cとを含 んでいる。画像照合手段 56は、演算部 56aにおいて当該比較画像と当該参照画像 との距離値を、入力重み係数変換手段 70より得られる入力 3次元データに対応した 重み係数や、参照重み係数記憶部 77より得られる参照画像に対応した重み係数を 使用して求め、選出部 56bにおいて各参照画像に対して、距離値の最も小さい比較 画像を選出することにより、最適な姿勢を推定すると共に 3次元データと参照画像と の最小距離値を求める。更に、 1つの物体 (参照画像)との照合処理(1対 1照合)の 場合には、照合部 56cにおいて当該最小距離としきい値を比較して同一物体である か否かを判定する。また、複数の物体から入力 3次元データに最も近い物体 (参照画 像)を検索する処理(1対 N照合)の場合には、照合部 56cにおいて当該最小距離値 の最も小さ 、参照画像を選出する。
[0064] 次に、図 10及び図 12のフローチャートを参照して本実施例の 1対 N照合の場合の 全体動作について詳細に説明する。
[0065] 図 12において、まず、 3次元データ入力手段 10により 3次元データを入力する(ス テツプ 100)。次に、 3次元基準点抽出手段 12は 3次元データに対して手動または自 動的に 3次元基準点を抽出する (ステップ 170)。次に、姿勢推定'照合手段 52は初 めに参照画像の画像番号を k= 1とする (ステップ 150)。姿勢候補決定手段 20にお V、て姿勢候補群 {e }を決定する (ステップ 110)。 [0066] 次に、比較画像生成手段 40は姿勢候補に応じて 3次元データを 2次元の画像に射 影しつつ参照画像 Rに近い比較画像を生成する (ステップ 120)。次に、入力重み係
k
数変換手段 70は標準 3次元基準点と 3次元データの 3次元基準点を用い、標準 3次 元重み係数と 3次元データとの座標の対応を求め、姿勢候補に応じて標準 3次元重 み係数を 2次元の重み係数に変換する (ステップ 180)。
[0067] 次に、画像照合手段 56は当該比較画像と当該参照画像との距離値を、入力重み 係数変換手段 70より得られる入力 3次元データに対応した重み係数や、参照重み係 数記憶部 77より得られる参照画像に対応した重み係数を使用して求め(ステップ 13 1)、更に、各参照画像に対して距離値の最も小さい比較画像を選出することにより、 最適な姿勢を推定すると共に 3次元データと参照画像との最小距離値を求める (ステ ップ 140)。また、姿勢推定'照合手段 52は画像番号 kを 1増やし (ステップ 151)、画 像番号 kと画像数 Mとの比較を行い (ステップ 152)、画像番号 kが画像数 M以下の 場合には、ステップ 110に戻って同様の処理を行い、次の参照画像の最小距離値を 計算する。最後に、画像番号 kが画像数 M以上になると、最小距離値の最も小さい 参照画像 Rを照合結果とする (ステップ 153)。
k
[0068] また、 1対 1照合の場合には、第 1の実施例と同様に図 12のステップ 100、 170、 11 0、 120、 180、 131、 140の処理を行い、その後、図 3のステップ 155の処理を行う。 図 3のステップ 155では、上述のように距離値としきい値を比較して同一物体である か否かを判定する。
[0069] 次に、具体的な例を用いて本実施例の動作を更に詳細に説明する。まず、第 1の 実施例の説明と同様に参照画像記憶部 30には、図 5に示すような参照画像 R (r)が
k 記憶されている。また、標準 3次元基準点記憶部 72には、図 13に示すような標準 3 次元物体モデルに対応した標準 3次元基準点 NQ (iは基準点のインデックス)が記憶 されている。 3次元基準点とは、位置合わせを行うための点であり、図 13の例では、 例えば、左目中点、右目中点、鼻頂点、左口角点、右口角点の 5点を示している。
[0070] 3次元基準点は、予め手動で設定しても良いが、例えば、 2002年 9月、 FIT (情報 科学技術フォーラム) 2002、ト 100、 199頁一 200頁、丸亀ら、「形状情報と色情報 を併用した顔三次元データ力 の特徴部位の抽出」に記載の顔特徴抽出方法を用 いて自動的に設定しても良い。標準 3次元基準点は予め用意した学習用 3次元物体 モデルの 3次元基準点の各点の平均座標、または学習用 3次元物体モデルを平均し た標準 3次元物体モデル力も求めた 3次元基準点により求めることができる。
[0071] また、標準 3次元重み係数記憶部 75には、図 14に示すような標準 3次元重み係数
V Qが記憶されている。ここで、図 14の例では、例えば、黒い領域が V °= 1、白い領
Q Q
域が V °=0、斜線で示す領域は 0く V °< 1の値を持つとする。標準 3次元重み係
Q Q
数は予め用意した学習用 3次元物体モデルの 3次元重み係数を用い、各学習用 3次 元物体モデルの 3次元基準点が標準 3次元基準点に一致するように 3次元重み係数 の位置合わせを行ってから平均することにより求めることができる。
[0072] 基準点以外の各点の位置合わせは、基準点の対応を内挿または外挿して決めるこ とにより、 3次元重み係数の座標値 {s, t}と標準 3次元重み係数の座標値 {s , t }の
0 0 変換式 s =Hs (s, t)、 t =Ht (s, t)を設定できる。学習用 3次元物体モデルの 3次
0 0
元重み係数は学習用 3次元物体モデルの物体を様々な条件で撮影した学習用画像 を用いて予め学習できる。具体的には、第 1の実施例の画像照合システムを使用し、 学習用 3次元物体モデルを入力の 3次元データとし、学習用画像を参照画像として 最適姿勢を求めた際の 3次元データ力 生成された比較画像と参照画像の各画素 の誤差を求める。
[0073] 重み係数は照合における画素の重要度を表す量で、例えば、平均誤差の小さい画 素は重みを大きく設定できる。 3次元重み係数は前記比較画像と 3次元物体モデル との画素の対応に基づいて比較画像と参照画像の各画素の誤差を 3次元物体モデ ル上で平均して平均誤差を求めることにより設定できる。
[0074] また、参照重み係数記憶部 77には、図 15に示すような参照画像に対応した重み 係数 U (r)が記憶されている。図 15の例では、例えば、黒い領域が U (r) = l、白い k k 領域が U (1:) =0、斜線で示す領域は0<1; (r) < lの値を持つとする。参照画像に k k
対応した重み係数は、例えば、顔領域以外の領域の重みを 0に設定したり、輝度値 の大きい領域や小さい領域の重みを小さく設定する等し、予め手動または自動的に 設定しておく。
[0075] ここで、 3次元データ入力手段 10から図 6に示すような 3次元データが入力されたと する(図 12のステップ 100)。 3次元基準点抽出手段 12は 3次元データに対して手動 または自動的に 3次元基準点を抽出する (ステップ 170)。図 6の 3次元データに対し て抽出した 3次元基準点の例を図 16に示す。
[0076] 次に、姿勢推定 ·照合手段 52は初めに参照画像の画像番号を k= 1とする (ステツ プ 150)。姿勢候補決定手段 20において姿勢候補群 {e }を決定する (ステップ 110) 。次に、比較画像生成手段 40は、姿勢候補に応じて 3次元データを 2次元の画像に 射影しつつ参照画像 Rに近い比較画像 G (r)を生成する (ステップ 120)。参照画像
k kj
Rに対して生成した比較画像の例を図 7に示す。
1
[0077] 次に、入力重み係数変換手段 70は標準 3次元基準点と 3次元データの 3次元基準 点を用い、標準 3次元重み係数と 3次元データとの座標の対応を求め、姿勢候補に 応じて標準 3次元重み係数 V Qを 2次元の重み係数 W (r)に変換する (ステップ 180
Q kj
) o図 7の比較画像に対応して生成された 2次元の重み係数の例を図 17に示す。
[0078] 次に、画像照合手段 56は当該比較画像と当該参照画像との距離値 D 'を、入力重 kj み係数変換手段 70より得られる入力データに対応した重み係数 W (r)や、参照重 kj
み係数記憶部 77より得られる参照画像に対応した重み係数 U (r)を使用して求め( k
ステップ 131)、更に各参照画像に対して距離値の最も小さい比較画像を選出するこ とにより、最適な姿勢を推定すると共に 3次元データと参照画像との最小距離値を求 める(ステップ 140)。
[0079] 例えば、重み付きユークリッド距離を用いる場合には、
D ' =∑ W (r) U (r) {R (r) G (r) }2
kj r kj k k kj
により計算する。ここで、重み係数 W (r)、 U (r)は、いずれかのみ使用しても良い。
kj k
次に、姿勢推定'照合手段 52は画像番号 kを 1増やし (ステップ 151)、画像番号 kと 画像数 Mとの比較を行い (ステップ 152)、画像番号 kが画像数 M以下の場合には、 ステップ 110に戻って同様の処理を行い、次の参照画像の最小距離値を計算する。 最後に、ステップ 152で画像番号 kが画像数 M以上になると、最小距離値の最も小さ V、参照画像 Rを照合結果とする (ステップ 153)。
k
[0080] 本実施例では、物体の 3次元データを計測し、姿勢や照明条件を補正しながら 3次 元データと参照画像を比較し照合するため、各物体の参照画像が姿勢や照明等異 なる条件で撮影されている場合にも、高精度に照合'検索ができる。また、照合時に 物体の 3次元データを計測し、 3次元データと参照画像を比較し照合するため、各物 体の 3次元物体モデルが予め得られな力つたり、参照画像が 1枚乃至数枚しか存在 しない場合にも、高精度に照合'検索ができる。更に、部位による重み係数を使用し た重み付け照合により画像照合するという構成であるため、更に高精度な照合'検索 ができる。
[0081] なお、第 3の実施例では、標準 3次元重み係数 (及び標準 3次元基準点)は 1つと説 明したが、複数あっても良い。この際、各参照画像に対応してどの標準 3次元重み係 数を用いるかの情報を予め記憶しておく。また、標準 3次元重み係数は、学習用 3次 元物体モデル力 生成された比較画像と学習用画像との画素の誤差平均により求め るとした力 これに限るものではない。更に、姿勢推定において重み係数を使用し、 重み付け距離を計算すると説明したが、姿勢推定においては重み係数を用いない 距離計算を使用し、最適姿勢を求めて力 再度重み付け距離を計算しても良い。
[0082] (第 4の実施例)
図 18は本発明の第 4の実施例を示すブロック図である。図 18では第 1の実施例の 図 1と同一部分は同一符号を付している。本実施例では、 3次元データ入力手段 10 と、参照画像記憶部 30と、姿勢推定 ·照合手段 53と、代表 3次元物体モデル記憶部 36と、 3次元照合手段 80と、グループ記憶部 85と、参照画像選出手段 82とから構成 されている。更に、姿勢推定'照合手段 53は、姿勢候補決定手段 20と、比較画像生 成手段 40と、画像照合手段 55とを含んでいる。
[0083] これらの手段はそれぞれ概略次のように動作する。まず、 3次元データ入力手段 10 と、参照画像記憶部 30と、姿勢候補決定手段 20と、比較画像生成手段 40と、画像 照合手段 55は、図 1に示す第 1の実施例のものと同一の処理を行う。
[0084] また、代表 3次元物体モデル記憶部 36には、予め用意された代表的な 3次元物体 モデルが記憶されている。グループ記憶部 85には、代表 3次元物体モデルと参照画 像の関連情報 (代表 3次元物体モデルと参照画像とを対応付ける情報)が予め記憶 されている。
[0085] 3次元照合手段 80は 3次元データ入力手段 10より得られる 3次元データと、代表 3 次元物体モデル記憶部 36より得られる各代表 3次元物体モデルとの照合を行 1ヽ、最 も類似した代表 3次元物体モデルを選択する。参照画像選出手段 82は、グループ 記憶部 85より得られる関連情報から、 3次元照合手段 80より得られる選択された代 表 3次元物体モデルに対応する参照画像群を選出する。
[0086] 姿勢推定'照合手段 53は、 3次元データ入力手段 10より得られる 3次元データと、 参照画像記憶部 30より得られる参照画像との最小距離値 (もしくは最大類似度)を求 め、当該最小距離値の最も小さい参照画像を選出する。ここで、対象とする参照画像 は参照画像選出手段 82より得られる参照画像群とする。
[0087] 次に、図 18、図 19及び図 20のフローチャートを参照して本実施例の全体の動作 について詳細に説明する。まず、 3次元データ入力手段 10により 3次元データを入 力する(図 19のステップ 100)。次に、 3次元照合手段 80は初めに代表 3次元物体モ デルのモデル番号を h= lとする (ステップ 210)。次に、 3次元照合手段 80は 3次元 データと各代表 3次元物体モデル Cとの類似度 Sを求める (ステップ 220)。次に、モ
h h
デル番号 hを 1増やし (ステップ 211)、モデル番号 hとモデル数 Hとの比較を行 ヽ(ス テツプ 212)、モデル番号 hがモデル数 H以下の場合には、ステップ 210に戻って同 様の処理を行 、、次の代表 3次元物体モデルとの類似度を計算する。
[0088] ステップ 212において全ての代表 3次元物体モデルとの照合が終わったら、類似度 の最も大きいモデル Cを選択する (ステップ 221)。次に、参照画像選出手段 82はグ
h
ループ記憶部 85より得られる関連情報から、選択された代表 3次元物体モデルに対 応する参照画像群を選出する(ステップ 230)。なお、図 19のステップ 230は図 20の ステップ 150に続 、ている。
[0089] 次に、姿勢推定'照合手段 53は初めに参照画像の画像番号を k= lとする(図 20 のステップ 150)。次に、参照画像 Rが選出された参照画像群 Lに含まれるか否かを
k
判断し (ステップ 240)、参照画像 Rが選出された参照画像群に含まれる場合には、
k
次のステップ 110に進み、含まれない場合には、ステップ 151に進む。
[0090] ステップ 110に進んだ場合には、第 1の実施例と同じ処理により姿勢候補決定手段 20、比較画像生成手段 40、画像照合手段 55は、最適な姿勢を推定すると共に 3次 元データと参照画像 Rとの最小距離値を求める (ステップ 110— 140)。次に、姿勢
k 推定'照合手段 53は画像番号 kを 1増やし (ステップ 151)、画像番号 kと画像数 Mと の比較を行い (ステップ 152)、画像番号 kが画像数 M以下の場合には、ステップ 24 0に戻って同様の処理を行う。最後に、画像番号 kが画像数 M以上になると、最小距 離値の最も小さ ヽ参照画像 Rを照合結果とする (ステップ 153)。
k
[0091] 次に、具体的な例を用いて本実施例の動作を更に詳細に説明する。まず、第 1の 実施例の説明と同様に参照画像記憶部 30には、図 5に示すような参照画像 R (r)が
k 記憶されている。また、代表 3次元物体モデル記憶部 36には、図 21に示すような代 表 3次元物体モデル Cが記憶されている。グループ記憶部 85には、表 2に示すよう
h
な代表 3次元物体モデルに対応して、当該代表 3次元物体モデルを使用して参照画 像を照合した際の上位候補 (参照画像群)の画像番号が記憶されている。これは、各 代表 3次元物体モデル Cを第 1の実施例の画像照合システムの入力とした際の照合
h
結果が、例えば、表 3のようになった場合、距離値 40以下の参照画像候補を残すと、 表 2のようなリストが得られる。
[0092] [表 2]
Figure imgf000022_0001
[0093] [表 3]
Figure imgf000022_0002
[0094] ここで、 3次元データ入力手段 10から図 6に示すような 3次元データが入力されたと する(図 19のステップ 100)。 3次元照合手段 80は初めに代表 3次元物体モデルの モデル番号を h= lとする(ステップ 210)。次に、 3次元データと各代表 3次元物体モ デル Cとの類似度 Sを求める (ステップ 220)。この 3次元データ同士を照合する手段 h h
としては、例えば、特開平 4 - 119475号公報に記載された三次元形状識別装置等 の既存の技術を利用することができる。 [0095] 次に、モデル番号 hを 1増やし (ステップ 211)、モデル番号 hとモデル数 Hとの比較 を行い(ステップ 212)、モデル番号 hがモデル数 H以下の場合には、ステップ 210に 戻って同様の処理を行い、次の代表 3次元物体モデルとの類似度を計算する。ステ ップ 212において全ての代表 3次元物体モデルとの照合が終わったら、類似度の最 も大きいモデル Cを選択する(ステップ 221)。
h
[0096] 例えば、モデル Cとの類似度が {0. 7, 0. 9}となったとすると、モデル Cが選択さ h 2 れる。次に、参照画像選出手段 82は表 2に示すグループ記憶部 85より得られるリスト から、選択された代表 3次元物体モデル Cに対応する参照画像群 {R , R }を選出す
2 1 3 る(ステップ 230)。この後、図 20の処理に移行する。
[0097] 姿勢推定'照合手段 53は初めに参照画像の画像番号を k= lとする(図 20のステツ プ 150)。次に、参照画像 Rが選出された参照画像群 Lに含まれるか否かを判断し( k
ステップ 240)、参照画像 Rが選出された参照画像群に含まれる場合には、次のステ k
ップ 110に進み、含まれない場合にはステップ 151に進む。
[0098] ここでは、 R, Rの場合にはステップ 110に進み、 Rの場合にはステップ 151に進
1 3 2
む。ステップ 110に進んだ場合には、第 1の実施例と同様の処理を行うことにより姿勢 候補決定手段 20、比較画像生成手段 40、画像照合手段 55は、最適な姿勢を推定 すると共に 3次元データと参照画像 Rとの最小距離値を求める (ステップ 110— 140) k
。次に、姿勢推定'照合手段 53は画像番号 kを 1増やし (ステップ 151)、画像番号 k と画像数 Mとの比較を行い (ステップ 152)、画像番号 kが画像数 H以下の場合には 、ステップ 240に戻って同様の処理を行う。ここでは、 R , Rの場合には最小距離値
1 3
が計算される。最後に、ステップ 152で画像番号 kが画像数 M以上になると、最小距 離値の最も小さ ヽ参照画像 Rを照合結果とする (ステップ 153)。
k
[0099] 本実施例では、物体の 3次元データを計測し、姿勢や照明条件を補正しながら 3次 元データと参照画像を比較し照合するため、各物体の参照画像が姿勢や照明等異 なる条件で撮影されている場合にも、高精度に照合'検索ができる。また、照合時に 物体の 3次元データを計測し、 3次元データと参照画像を比較し照合するため、各物 体の 3次元物体モデルが予め得られな力つたり、参照画像が 1枚乃至数枚しか存在 しない場合にも、高精度に照合'検索ができる。更に、代表 3次元物体モデルとの照 合により参照画像を選出するように構成されているため、高速な検索ができる。
[0100] なお、第 4の実施例では、選択する代表 3次元物体モデルは 1つと説明したが、複 数選択しても良い。この場合、各代表 3次元物体モデルに対応する参照画像群の合 併集合を参照画像群とする。
[0101] (第 5の実施例)
図 22は本発明の第 5の実施例の構成を示すブロック図である。図 22では図 1や図 18と同一部分は同一符号を付している。本実施例では、 3次元データ入力手段 10と 、参照画像記憶部 30と、姿勢推定,照合手段 53と、代表画像記憶部 31と、第 2の姿 勢推定,照合手段 (代表画像選択手段) 54と、グループ記憶部 86と、参照画像選出 手段 82とから構成されている。姿勢推定 ·照合手段 50, 53は、姿勢候補決定手段 2 0と、比較画像生成手段 40と、画像照合手段 55とを含んでいる。
[0102] これらの手段はそれぞれ概略次のように動作する。まず、 3次元データ入力手段 10 と、参照画像記憶部 30と、姿勢候補決定手段 20と、比較画像生成手段 40と、画像 照合手段 55は、図 1に示す第 1の実施例のものと同一の処理を行う。
[0103] また、代表画像記憶部 31には、予め用意された代表的な画像が記憶されて!、る。
これは、参照画像記憶部 30における参照画像の一部であっても良いし、当該参照画 像の平均等により生成された新たな画像であっても良い。また、参照画像記憶部 30 における参照画像の一部である場合には、画像番号のみを記憶し、参照画像記憶 部 30における参照画像を参照するようにしても良い。
[0104] グループ記憶部 86には、代表画像と参照画像の関連情報 (代表画像と参照画像と を対応付ける情報)が予め記憶されている。第 2の姿勢推定'照合手段 54は 3次元デ ータ入力手段 10より得られる 3次元データと、代表画像記憶部 31より得られる各代 表画像との照合を行い、最も類似した代表画像を選択する。参照画像選出手段 82 はグループ記憶部 86より得られる関連情報から、第 2の姿勢推定 ·照合手段 54より 得られる選択された代表画像に対応する参照画像群を選出する。
[0105] 姿勢推定'照合手段 53は 3次元データ入力手段 10より得られる 3次元データと、参 照画像記憶部 30より得られる参照画像との最小距離値 (もしくは最大類似度)を求め 、当該最小距離値の最も小さい参照画像を選出する。ここで、対象とする参照画像 は参照画像選出手段 82より得られる参照画像群とする。
[0106] 次に、図 22、図 23及び図 20のフローチャートを参照して本実施例の全体動作に ついて詳細に説明する。まず、図 23に示すように 3次元データ入力手段 10により 3次 元データを入力する(図 23のステップ 100)。第 2の姿勢推定'照合手段 54は初めに 代表画像の画像番号を h= lとする (ステップ 215)。次に、 3次元データと各代表画 像 R,との類似度 Sを求める (ステップ 225)。
h h
[0107] 次に、画像番号 hを 1増やし (ステップ 211)、画像番号 hと画像数 Hとの比較を行い
(ステップ 217)、画像番号 hが画像数 H以下の場合には、ステップ 225に戻って同様 の処理を行い、次の代表画像との類似度を計算する。ステップ 217で全ての代表画 像との照合が終わったら、類似度の最も大きい代表画像 R'を選択する (ステップ 22
h
6)。次に、参照画像選出手段 82はグループ記憶部 86より得られる関連情報から、 選択された代表画像に対応する参照画像群を選出する (ステップ 235)。図 23のステ ップ 235 ίま図 20のステップ 150【こ続!、て!/、る。
[0108] 姿勢推定'照合手段 53は初めに参照画像の画像番号を k= lとする(図 20のステツ プ 150)。次に、参照画像 Rが選出された参照画像群に含まれるかどうかを判断し(
k
ステップ 240)、参照画像 Rが選出された参照画像群に含まれる場合には、次のステ
k
ップ 110に進み、含まれな!/、場合にはステップ 151に進む。
[0109] ステップ 110に進んだ場合には、第 1の実施例と同じ処理により姿勢候補決定手段 20、比較画像生成手段 40、画像照合手段 55は、最適な姿勢を推定すると共に 3次 元データと参照画像 Rとの最小距離値を求める (ステップ 110— 140)。次に、姿勢
k
推定'照合手段 53は、画像番号 kを 1増やし (ステップ 151)、画像番号 kと画像数 M との比較を行い (ステップ 152)、画像番号 kが画像数 H以下の場合には、ステップ 24 0に戻って同様の処理を行い、次の参照画像との最小距離値を求める。最後に、ステ ップ 152で画像数 kが画像数 M以上になった場合には、最小距離値の最も小さ!/、参 照画像 Rを照合結果とする (ステップ 153)。
k
[0110] 次に、具体的な例を用いて本実施例の動作を更に詳細に説明する。まず、第 1の 実施例の説明と同様に参照画像記憶部 30には、図 5に示すような参照画像 R (r)が
k 記憶されている。また、代表画像記憶部 31には、図 24に示すような代表画像 R'力 S 記憶されている。グループ記憶部 86には、表 4に示すような代表画像に対応して当 該代表画像を使用し参照画像を照合した際の上位候補 (参照画像群)の画像番号 が記憶されている。この照合には、上述の特許文献 1、 2等に記載の既存の画像照 合システムを用いることができる。
[0111] [表 4]
Figure imgf000026_0001
[0112] ここで、 3次元データ入力手段 10から図 6に示すような 3次元データが入力されたと する(図 23のステップ 100)。第 2の姿勢推定'照合手段 54は初めに代表画像の画 像番号を h= lとする (ステップ 215)。次に、 3次元データと各代表画像 R'との類似 h 度 Sを求める (ステップ 225)。次に、画像番号 hを 1増やし (ステップ 211)、画像番号 h
hと画像数 Hとの比較を行い (ステップ 217)、画像番号 hが画像数 H以下の場合には 、ステップ 215に戻って同様の処理を行い、次の代表画像との類似度を計算する。
[0113] ステップ 217で全ての代表画像との照合が終わったら、類似度の最も大きい代表画 像 R,を選択する (ステップ 226)。例えば、代表画像 R,との類似度が {0. 7, 0. 9}と h h
なったとすると、代表画像 R' が選択される。次に、参照画像選出手段 82は表 4に示
2
すグループ記憶部 86より得られるリストから、選択された代表画像 R' に対応する参
2
照画像群 {R , R }を選出する (ステップ 235)。この後、図 20の処理を行う。
1 3
[0114] 姿勢推定'照合手段 53は初めに参照画像の画像番号を k= lとする(図 20のステツ プ 150)。次に、参照画像 Rが選出された参照画像群に含まれるかどうかを判断し( k
ステップ 240)、参照画像 Rが選出された参照画像群に含まれる場合には、次のステ k
ップ 110に進み、含まれない場合にはステップ 151に進む。
[0115] ここでは、 R, Rの場合にはステップ 110に進み、 Rの場合にはステップ 151に進
1 3 2
む。ステップ 110に進んだ場合には、第 1の実施例と同じ処理により姿勢候補決定手 段 20、比較画像生成手段 40、画像照合手段 55は、最適な姿勢を推定すると共に 3 次元データと参照画像 Rとの最小距離値を求める (ステップ 110—ステップ 140)。次 k に、姿勢推定'照合手段 53は画像番号 kを 1増やし (ステップ 151)、画像番号 kと画 像数 Mとの比較を行い (ステップ 152)、画像番号 kが画像数 M以下の場合には、ス テツプ 240に戻って同様の処理を行う。ここでは、 R , Rの場合に最小距離値が計算
1 3
される。最後に、ステップ 152で画像番号 kが画像数 M以上になると、最小距離値の 最も小さい参照画像 Rを照合結果とする (ステップ 153)。
k
[0116] なお、第 5の実施例では、選択する代表画像は 1つとしたが、複数選択しても良い。
この場合、各代表画像に対応する参照画像群の合併集合を参照画像群とする。
[0117] 本実施例では、物体の 3次元データを計測し、姿勢や照明条件を補正しながら 3次 元データと参照画像を比較し照合するため、各物体の参照画像が姿勢や照明等異 なる条件で撮影されている場合にも、高精度に照合'検索ができる。また、照合時に 物体の 3次元データを計測し、 3次元データと参照画像を比較し照合するため、各物 体の 3次元物体モデルが予め得られな力つたり、参照画像が 1枚乃至数枚しか存在 しない場合にも、高精度に照合'検索ができる。更に、代表画像との照合により参照 画像を選出するため、高速な検索ができる。
[0118] なお、第 1一第 5の実施例では、 3次元データ(モデル)は物体表面の 3次元空間(X , y, z)内での形状とテクスチャを情報として持っているとしたが、同等の情報が得ら れればこれに限るものではない。例えば、ある方向力 の物体表面への距離を画像 として表現した距離画像と当該方向から撮影したテクスチャ画像等でも良い。
[0119] ここで、本発明の画像照合システムは、構成要素である各手段の機能をハードゥエ ァ的に実現できることは勿論として、上記第 1一第 5の実施例の各手段の機能を実行 する画像照合プログラム (アプリケーション)をコンピュータ処理装置のメモリにロード してコンピュータ処理装置を制御することで実現することができる。この画像照合プロ グラムは磁気ディスク、半導体メモリ、その他の記録媒体に格納し、その記録媒体か らコンピュータ処理装置にロードし、コンピュータ処理装置の動作を制御することによ り上述した各機能を実現する。
産業上の利用可能性
[0120] 本発明は、データベース力 人の顔等の物体の画像を検索する画像照合システム や、画像照合システムをコンピュータで実現するためのプログラムと 、つた用途に適 用できる。
また、ネットワークやインターネット上に存在する人の顔等の物体の画像を検索すると いった用途にも適用可能である。更に、身分証明写真等の画像とそれを保持する人 物が同一人物であるかを判定するといつた用途にも好適に使用することが可能であ る。

Claims

請求の範囲
[1] 物体の 3次元データを入力する 3次元データ入力手段と、
少なくとも 1つの物体の参照画像を記憶する参照画像記憶手段と、
物体の姿勢の候補である姿勢候補を少なくとも 1つ生成する姿勢候補決定手段と、 姿勢候補に応じて 3次元データを 2次元の画像に射影しつつ参照画像に近い比較 画像を少なくとも 1つ生成する比較画像生成手段と、
参照画像と比較画像との距離値及び類似度の!、ずれか一方に基づ 、て照合を行 う画像照合手段と
を備えることを特徴とする画像照合システム。
[2] 請求項 1に記載の画像照合システムにお 、て、
前記画像照合手段は、
参照画像と比較画像との距離値及び類似度のいずれか一方を演算する演算手段 と、
距離値が最も小さ!ヽ最小距離値及び類似度が最も大き!ヽ最大類似度の!ヽずれか 一方を選出する選出手段と、
最小距離値としき!、値との比較結果及び最大類似度としき!、値との比較結果の 、 ずれか一方に基づいて照合を行う照合手段と
を備えることを特徴とする画像照合システム。
[3] 請求項 1に記載の画像照合システムにお 、て、
前記比較画像生成手段は、参照画像毎に参照画像に近!ヽ比較画像を生成し、 前記画像照合手段は、
参照画像毎に参照画像と比較画像との距離値及び類似度のいずれか一方を演算 する演算手段と、
参照画像毎に距離値が最も小さ ヽ最小距離値及び類似度が最も大き ヽ最大類似 度の 、ずれか一方を選出する選出手段と、
最小距離値のうち距離値の最も小さい最小距離値の参照画像及び最大類似度の うち類似度が最も大きい最大類似度の参照画像のいずれか一方を照合結果とする 照合手段と を備えることを特徴とする画像照合システム。
[4] 請求項 1に記載の画像照合システムにお 、て、
参照画像に対応する補正係数を記憶する参照補正係数記憶手段と、
補正係数を用いて最小距離値及び最大類似度の!、ずれか一方を補正する補正手 段と
を更に備えることを特徴とする画像照合システム。
[5] 請求項 1に記載の画像照合システムにお 、て、
参照画像に対応する重み係数を記憶する参照重み係数記憶手段を更に備え、 前記画像照合手段は、参照画像に対応する重み係数を用いて、その参照画像と 比較画像との距離値及び類似度のいずれか一方を演算する演算手段を備えること を特徴とする画像照合システム。
[6] 請求項 1に記載の画像照合システムにお 、て、
標準 3次元物体モデルに対応する標準 3次元基準点を記憶する標準 3次元基準点 記憶手段と、
標準 3次元重み係数を記憶する標準 3次元重み係数記憶手段と、
入力された 3次元データから 3次元基準点を抽出する 3次元基準点抽出手段と、 標準 3次元基準点と 3次元データの 3次元基準点を用いて標準 3次元重み係数と 3 次元データとの座標の対応を求め、姿勢候補に応じて標準 3次元重み係数を 2次元 の重み係数に変換する入力重み係数手段とを更に備え、
前記画像照合手段は、変換された 2次元の重み係数を用いて参照画像と比較画像 との距離値及び類似度のいずれか一方を演算する演算手段を備えることを特徴とす る画像照合システム。
[7] 請求項 1に記載の画像照合システムにお 、て、
代表的な 3次元物体モデルを代表 3次元物体モデルとして記憶する代表 3次元物 体モデル記憶手段と、
代表 3次元物体モデルと参照画像との関連情報を記憶するグループ記憶手段と、 入力された 3次元データと代表 3次元物体モデルとの照合を行 、、 3次元データに 類似した代表 3次元物体モデルを選択する 3次元照合手段と、 関連情報を参照し、選択された代表 3次元物体モデルに対応する参照画像を選出 する参照画像選出手段とを更に備え、
前記画像照合手段は、選出された参照画像に関して、入力された 3次元データとの 照合を行うことを特徴とする画像照合システム。
[8] 請求項 1に記載の画像照合システムにお 、て、
代表的な画像を代表画像として記憶する代表画像記憶手段と、
代表画像と参照画像との関連情報を記憶するグループ記憶手段と、
入力された 3次元データと代表画像との照合を行い、 3次元データに類似した代表 画像を選択する代表画像選択手段と、
関連情報を参照し、選択された代表画像に対応する参照画像を選出する参照画 像選出手段とを更に備え、
前記画像照合手段は、選出された参照画像に関して、入力された 3次元データとの 照合を行うことを特徴とする画像照合システム。
[9] 請求項 4に記載の画像照合システムにお 、て、
補正係数は、代表的な 3次元物体モデルと参照画像との距離値及び類似度の ヽ ずれか一方に基づいて決定されることを特徴とする画像照合システム。
[10] 物体の 3次元データを入力するステップと、
物体の姿勢の候補である姿勢候補を少なくとも 1つ生成するステップと、 姿勢候補に応じて 3次元データを 2次元の画像に射影しつつ参照画像に近い比較 画像を少なくとも 1つ生成するステップと、
参照画像と比較画像との距離値及び類似度の!、ずれか一方に基づ 、て照合を行 うステップと
を備えることを特徴とする画像照合方法。
[11] 請求項 10に記載の画像照合方法において、
前記照合を行うステップは、
参照画像と比較画像との距離値及び類似度のいずれか一方を演算するステップと 距離値が最も小さ!/ヽ最小距離値及び類似度が最も大き!/ヽ最大類似度の!/ヽずれか 一方を選出するステップと、
最小距離値としき!、値との比較結果及び最大類似度としき!、値との比較結果の 、 ずれか一方に基づ!/、て照合を行うステップと
を備えることを特徴とする画像照合方法。
[12] 請求項 10に記載の画像照合方法において、
前記比較画像を生成するステップは、参照画像毎に参照画像に近 、比較画像を 生成するステップを備え、
前記照合を行うステップは、
参照画像毎に参照画像と比較画像との距離値及び類似度のいずれか一方を演算 するステップと、
参照画像毎に距離値が最も小さ ヽ最小距離値及び類似度が最も大き ヽ最大類似 度の 、ずれか一方を選出するステップと、
最小距離値のうち距離値の最も小さい最小距離値の参照画像及び最大類似度の うち類似度が最も大きい最大類似度の参照画像のいずれか一方を照合結果とするス テツプと
を備えることを特徴とする画像照合方法。
[13] 請求項 10に記載の画像照合方法において、
参照画像に対応する補正係数を用いて最小距離値及び最大類似度の!ヽずれか一 方を補正するステップを更に備えることを特徴とする画像照合方法。
[14] 請求項 10に記載の画像照合方法において、
前記照合を行うステップは、参照画像に対応する重み係数を用いて、その参照画 像と比較画像との距離値及び類似度のいずれか一方を演算するステップを備えるこ とを特徴とする画像照合方法。
[15] 請求項 10に記載の画像照合方法において、
入力された 3次元データから 3次元基準点を抽出するステップと、
標準 3次元物体モデルに対応する標準 3次元基準点と 3次元データの 3次元基準 点を用いて標準 3次元重み係数と 3次元データとの座標の対応を求め、姿勢候補に 応じて標準 3次元重み係数を 2次元の重み係数に変換するステップとを更に備え、 前記照合を行うステップは、変換された 2次元の重み係数を用いて参照画像と比較 画像との距離値及び類似度のいずれか一方を演算するステップを備えることを特徴 とする画像照合方法。
[16] 請求項 10に記載の画像照合方法において、
入力された 3次元データと代表的な 3次元物体モデルである代表 3次元物体モデ ルとの照合を行 、、 3次元データに類似した代表 3次元物体モデルを選択するステツ プと、
代表 3次元物体モデルと参照画像との関連を示す情報を参照し、選択された代表 3次元物体モデルに対応する参照画像を選出するステップとを更に備え、
前記照合を行うステップは、選出された参照画像に関して、入力された 3次元デー タとの照合を行うステップを備えることを特徴とする画像照合方法。
[17] 請求項 10に記載の画像照合方法において、
入力された 3次元データと代表的な画像である代表画像との照合を行 ヽ、 3次元デ ータに類似した代表画像を選択するステップと、
代表画像と参照画像との関連を示す情報を参照し、選択された代表画像に対応す る参照画像を選出するステップとを更に備え、
前記照合を行うステップは、選出された参照画像に関して、入力された 3次元デー タとの照合を行うステップを備えることを特徴とする画像照合方法。
[18] 請求項 13に記載の画像照合方法において、
代表的な 3次元物体モデルと参照画像との距離値及び類似度のいずれか一方に 基づいて補正係数を決定するステップを更に備えることを特徴とする画像照合方法。
[19] 物体の 3次元データを入力する手順と、
物体の姿勢の候補である姿勢候補を少なくとも 1つ生成する手順と、
姿勢候補に応じて 3次元データを 2次元の画像に射影しつつ参照画像に近い比較 画像を少なくとも 1つ生成する手順と、
参照画像と比較画像との距離値及び類似度の!、ずれか一方に基づ 、て照合を行 う手順と
をコンピュータに実行させるためのプログラム。
[20] 請求項 19に記載のプログラムにおいて、
前記照合を行う手順の中で、
参照画像と比較画像との距離値及び類似度のいずれか一方を演算する手順と、 距離値が最も小さ!ヽ最小距離値及び類似度が最も大き!ヽ最大類似度の!ヽずれか 一方を選出する手順と、
最小距離値としき!、値との比較結果及び最大類似度としき!、値との比較結果の 、 ずれか一方に基づいて照合を行う手順と
をコンピュータに実行させるためのプログラム。
[21] 請求項 19に記載のプログラムにおいて、
前記比較画像を生成する手順の中で、参照画像毎に参照画像に近 ヽ比較画像を 生成する手順をコンピュータに実行させ、
前記照合を行う手順の中で、
参照画像毎に参照画像と比較画像との距離値及び類似度のいずれか一方を演算 する手順と、
参照画像毎に距離値が最も小さ ヽ最小距離値及び類似度が最も大き ヽ最大類似 度の 、ずれか一方を選出する手順と、
最小距離値のうち距離値の最も小さい最小距離値の参照画像及び最大類似度の うち類似度が最も大きい最大類似度の参照画像のいずれか一方を照合結果とする 手順と
をコンピュータに実行させるためのプログラム。
[22] 請求項 19に記載のプログラムにおいて、
参照画像に対応する補正係数を用いて最小距離値及び最大類似度の!ヽずれか一 方をネ ΐ正する手川頁を更にコンピュータに実行させるためのプログラム。
[23] 請求項 19に記載のプログラムにおいて、
前記照合を行う手順の中で、参照画像に対応する重み係数を用いて、その参照画 像と比較画像との距離値及び類似度のいずれか一方を演算する手順をコンピュータ に実行させるためのプログラム。
[24] 請求項 19に記載のプログラムにおいて、 入力された 3次元データ力 3次元基準点を抽出する手順と、
標準 3次元物体モデルに対応する標準 3次元基準点と 3次元データの 3次元基準 点を用いて標準 3次元重み係数と 3次元データとの座標の対応を求め、姿勢候補に 応じて標準 3次元重み係数を 2次元の重み係数に変換する手順とを更にコンビユー タに実行させ、
前記照合を行う手順の中で、変換された 2次元の重み係数を用いて参照画像と比 較画像との距離値及び類似度のいずれか一方を演算する手順をコンピュータに実 行させるためのプログラム。
[25] 請求項 19に記載のプログラムにおいて、
入力された 3次元データと代表的な 3次元物体モデルである代表 3次元物体モデ ルとの照合を行 ヽ、 3次元データに類似した代表 3次元物体モデルを選択する手順 と、
代表 3次元物体モデルと参照画像との関連を示す情報を参照し、選択された代表 3次元物体モデルに対応する参照画像を選出する手順とを更にコンピュータに実行 させ、
前記照合を行う手順の中で、選出された参照画像に関して、入力された 3次元デー タとの照合を行う手順をコンピュータに実行させるためのプログラム。
[26] 請求項 19に記載のプログラムにおいて、
入力された 3次元データと代表的な画像である代表画像との照合を行 ヽ、 3次元デ ータに類似した代表画像を選択する手順と、
代表画像と参照画像との関連を示す情報を参照し、選択された代表画像に対応す る参照画像を選出する手順とを更にコンピュータに実行させ、
前記照合を行う手順の中で、選出された参照画像に関して、入力された 3次元デー タとの照合を行う手順をコンピュータに実行させるためのプログラム。
[27] 請求項 22に記載のプログラムにおいて、
代表的な 3次元物体モデルと参照画像との距離値及び類似度のいずれか一方に 基づ ヽて補正係数を決定する手順を更にコンピュータに実行させるためのプログラム
PCT/JP2004/015612 2003-10-21 2004-10-21 画像照合システム及び画像照合方法 Ceased WO2005038716A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2004282790A AU2004282790A1 (en) 2003-10-21 2004-10-21 Image collation system and image collation method
CN2004800308445A CN1871622B (zh) 2003-10-21 2004-10-21 图像比较系统和图像比较方法
EP04792761A EP1677250B9 (en) 2003-10-21 2004-10-21 Image collation system and image collation method
JP2005514861A JP4556873B2 (ja) 2003-10-21 2004-10-21 画像照合システム及び画像照合方法
US10/576,498 US7715619B2 (en) 2003-10-21 2004-10-21 Image collation system and image collation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003360713 2003-10-21
JP2003-360713 2003-10-21

Publications (1)

Publication Number Publication Date
WO2005038716A1 true WO2005038716A1 (ja) 2005-04-28

Family

ID=34463419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015612 Ceased WO2005038716A1 (ja) 2003-10-21 2004-10-21 画像照合システム及び画像照合方法

Country Status (7)

Country Link
US (1) US7715619B2 (ja)
EP (2) EP1677250B9 (ja)
JP (1) JP4556873B2 (ja)
KR (1) KR100816607B1 (ja)
CN (1) CN1871622B (ja)
AU (1) AU2004282790A1 (ja)
WO (1) WO2005038716A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338313A (ja) * 2005-06-01 2006-12-14 Nippon Telegr & Teleph Corp <Ntt> 類似画像検索方法,類似画像検索システム,類似画像検索プログラム及び記録媒体
JP2008040774A (ja) * 2006-08-07 2008-02-21 Fujitsu Ltd 形状データ検索プロブラム及び方法
GB2411532B (en) * 2004-02-11 2010-04-28 British Broadcasting Corp Position determination
WO2010122721A1 (ja) * 2009-04-22 2010-10-28 日本電気株式会社 照合装置、照合方法および照合プログラム
JP2014517380A (ja) * 2011-04-28 2014-07-17 コーニンクレッカ フィリップス エヌ ヴェ 顔の位置検出
JP2017120632A (ja) * 2015-12-30 2017-07-06 ダッソー システムズDassault Systemes 探索のための3dから2dへの再画像化
WO2017149755A1 (ja) * 2016-03-04 2017-09-08 楽天株式会社 検索装置、検索方法、プログラム、ならびに、非一時的なコンピュータ読取可能な情報記録媒体

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008392A1 (ja) * 2002-07-10 2004-01-22 Nec Corporation 3次元物体モデルを用いた画像照合システム、画像照合方法及び画像照合プログラム
KR100831187B1 (ko) * 2003-08-29 2008-05-21 닛본 덴끼 가부시끼가이샤 웨이팅 정보를 이용하는 객체 자세 추정/조합 시스템
AU2004212605A1 (en) * 2003-09-26 2005-04-14 Nec Australia Pty Ltd Computation of soft bits for a turbo decoder in a communication receiver
EP1722331B1 (en) * 2004-03-03 2010-12-01 NEC Corporation Image similarity calculation system, image search system, image similarity calculation method, and image similarity calculation program
JP4216824B2 (ja) * 2005-03-07 2009-01-28 株式会社東芝 3次元モデル生成装置、3次元モデル生成方法および3次元モデル生成プログラム
US7720316B2 (en) * 2006-09-05 2010-05-18 Microsoft Corporation Constraint-based correction of handwriting recognition errors
CN101785025B (zh) * 2007-07-12 2013-10-30 汤姆森特许公司 用于从二维图像进行三维对象重构的系统和方法
CN101350016B (zh) * 2007-07-20 2010-11-24 富士通株式会社 三维模型检索装置及方法
JP2009054018A (ja) * 2007-08-28 2009-03-12 Ricoh Co Ltd 画像検索装置、画像検索方法及びプログラム
KR100951890B1 (ko) * 2008-01-25 2010-04-12 성균관대학교산학협력단 상황 모니터링을 적용한 실시간 물체 인식 및 자세 추정 방법
JP5176572B2 (ja) * 2008-02-05 2013-04-03 ソニー株式会社 画像処理装置および方法、並びにプログラム
US8401276B1 (en) * 2008-05-20 2013-03-19 University Of Southern California 3-D reconstruction and registration
US20100118037A1 (en) * 2008-09-08 2010-05-13 Apple Inc. Object-aware transitions
US7721209B2 (en) * 2008-09-08 2010-05-18 Apple Inc. Object-aware transitions
JP4963306B2 (ja) 2008-09-25 2012-06-27 楽天株式会社 前景領域抽出プログラム、前景領域抽出装置、及び前景領域抽出方法
US9495583B2 (en) 2009-01-05 2016-11-15 Apple Inc. Organizing images by correlating faces
US8503720B2 (en) 2009-05-01 2013-08-06 Microsoft Corporation Human body pose estimation
KR101068465B1 (ko) * 2009-11-09 2011-09-28 한국과학기술원 삼차원 물체 인식 시스템 및 방법
JP5560722B2 (ja) * 2010-01-12 2014-07-30 セイコーエプソン株式会社 画像処理装置、画像表示システム、および画像処理方法
JP5434708B2 (ja) * 2010-03-15 2014-03-05 オムロン株式会社 照合装置、デジタル画像処理システム、照合装置制御プログラム、コンピュータ読み取り可能な記録媒体、および照合装置の制御方法
JP5045827B2 (ja) * 2011-02-01 2012-10-10 カシオ計算機株式会社 画像処理装置、画像処理方法、及び、プログラム
US8942917B2 (en) 2011-02-14 2015-01-27 Microsoft Corporation Change invariant scene recognition by an agent
JP5467177B2 (ja) * 2011-05-31 2014-04-09 楽天株式会社 情報提供装置、情報提供方法、情報提供処理プログラム、情報提供処理プログラムを記録した記録媒体、及び情報提供システム
JP6058256B2 (ja) * 2011-06-13 2017-01-11 アルパイン株式会社 車載カメラ姿勢検出装置および方法
US9644942B2 (en) * 2012-11-29 2017-05-09 Mitsubishi Hitachi Power Systems, Ltd. Method and apparatus for laser projection, and machining method
DE102012113009A1 (de) * 2012-12-21 2014-06-26 Jenoptik Robot Gmbh Verfahren zum automatischen Klassifizieren von sich bewegenden Fahrzeugen
US9857470B2 (en) 2012-12-28 2018-01-02 Microsoft Technology Licensing, Llc Using photometric stereo for 3D environment modeling
US9940553B2 (en) * 2013-02-22 2018-04-10 Microsoft Technology Licensing, Llc Camera/object pose from predicted coordinates
GB2536493B (en) * 2015-03-20 2020-11-18 Toshiba Europe Ltd Object pose recognition
CN105654048A (zh) * 2015-12-30 2016-06-08 四川川大智胜软件股份有限公司 一种多视角人脸比对方法
CN107305556A (zh) * 2016-04-20 2017-10-31 索尼公司 用于3d打印的装置及方法
CN106017420B (zh) * 2016-05-24 2019-03-29 武汉轻工大学 焊接衬垫片的姿态识别方法及识别装置
US10089756B2 (en) * 2016-06-30 2018-10-02 Zhiping Mu Systems and methods for generating 2D projection from previously generated 3D dataset
US11443233B2 (en) * 2017-02-21 2022-09-13 Nec Corporation Classification apparatus, classification method, and program
EP3460756B1 (en) * 2017-07-24 2021-02-17 HTC Corporation Tracking system and method thereof
CN108062390B (zh) * 2017-12-15 2021-07-23 广州酷狗计算机科技有限公司 推荐用户的方法、装置和可读存储介质
US11681303B2 (en) * 2018-07-06 2023-06-20 Verity Ag Methods and systems for estimating the orientation of an object
US11521460B2 (en) 2018-07-25 2022-12-06 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same
AU2019208182B2 (en) 2018-07-25 2021-04-08 Konami Gaming, Inc. Casino management system with a patron facial recognition system and methods of operating same
CN109708649B (zh) * 2018-12-07 2021-02-09 中国空间技术研究院 一种遥感卫星的姿态确定方法及系统
US11803585B2 (en) * 2019-09-27 2023-10-31 Boe Technology Group Co., Ltd. Method and apparatus for searching for an image and related storage medium
CN112135121B (zh) * 2020-09-17 2023-04-28 中国信息通信研究院 智能视频监控识别性能评价系统及方法
CN113469134B (zh) * 2021-07-27 2025-06-17 浙江大华技术股份有限公司 动作识别方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232934A (ja) * 1997-02-18 1998-09-02 Toshiba Corp 顔画像登録装置及びその方法
JPH11238135A (ja) * 1998-02-23 1999-08-31 Sony Corp イメージ認識方法およびイメージ認識装置
JP2000306106A (ja) * 1999-02-15 2000-11-02 Medeikku Engineering:Kk 3次元有向体の定位方法及び画像処理装置
JP2001134765A (ja) * 1999-11-09 2001-05-18 Canon Inc 画像検索方法及び装置
JP2001222716A (ja) * 2000-02-08 2001-08-17 Minolta Co Ltd 人物認証方法および同装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119475A (ja) 1990-09-10 1992-04-20 Nippon Telegr & Teleph Corp <Ntt> 三次元形状識別装置
US5555316A (en) * 1992-06-30 1996-09-10 Matsushita Electric Industrial Co., Ltd. Inspecting apparatus of mounting state of component or printing state of cream solder in mounting line of electronic component
KR100201739B1 (ko) * 1995-05-18 1999-06-15 타테이시 요시오 물체 관측 방법 및 그 방법을 이용한 물체 관측장치와,이 장치를 이용한 교통흐름 계측장치 및 주차장 관측장치
JPH0991436A (ja) 1995-09-21 1997-04-04 Toyota Central Res & Dev Lab Inc 画像処理方法及びその装置
US6002782A (en) * 1997-11-12 1999-12-14 Unisys Corporation System and method for recognizing a 3-D object by generating a 2-D image of the object from a transformed 3-D model
JP3417377B2 (ja) 1999-04-30 2003-06-16 日本電気株式会社 三次元形状計測方法及び装置並びに記録媒体
JP3926059B2 (ja) 1999-05-12 2007-06-06 日本電気株式会社 画像照合装置及びその画像照合方法並びにその制御プログラムを記録した記録媒体
JP4341135B2 (ja) * 2000-03-10 2009-10-07 コニカミノルタホールディングス株式会社 物体認識装置
US6956569B1 (en) * 2000-03-30 2005-10-18 Nec Corporation Method for matching a two dimensional image to one of a plurality of three dimensional candidate models contained in a database
US6580821B1 (en) 2000-03-30 2003-06-17 Nec Corporation Method for computing the location and orientation of an object in three dimensional space
JP2001283216A (ja) * 2000-04-03 2001-10-12 Nec Corp 画像照合装置、画像照合方法、及びそのプログラムを記録した記録媒体
JP2002024830A (ja) 2000-07-05 2002-01-25 Nec Corp 画像照合装置、方法及びコンピュータ読み取り可能な記憶媒体
JP4573085B2 (ja) 2001-08-10 2010-11-04 日本電気株式会社 位置姿勢認識装置とその位置姿勢認識方法、及び位置姿勢認識プログラム
JP3880818B2 (ja) 2001-08-30 2007-02-14 シャープ株式会社 メモリ膜、メモリ素子、半導体記憶装置、半導体集積回路および携帯電子機器
US7853085B2 (en) * 2003-03-06 2010-12-14 Animetrics, Inc. Viewpoint-invariant detection and identification of a three-dimensional object from two-dimensional imagery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232934A (ja) * 1997-02-18 1998-09-02 Toshiba Corp 顔画像登録装置及びその方法
JPH11238135A (ja) * 1998-02-23 1999-08-31 Sony Corp イメージ認識方法およびイメージ認識装置
JP2000306106A (ja) * 1999-02-15 2000-11-02 Medeikku Engineering:Kk 3次元有向体の定位方法及び画像処理装置
JP2001134765A (ja) * 1999-11-09 2001-05-18 Canon Inc 画像検索方法及び装置
JP2001222716A (ja) * 2000-02-08 2001-08-17 Minolta Co Ltd 人物認証方法および同装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2411532B (en) * 2004-02-11 2010-04-28 British Broadcasting Corp Position determination
JP2006338313A (ja) * 2005-06-01 2006-12-14 Nippon Telegr & Teleph Corp <Ntt> 類似画像検索方法,類似画像検索システム,類似画像検索プログラム及び記録媒体
JP2008040774A (ja) * 2006-08-07 2008-02-21 Fujitsu Ltd 形状データ検索プロブラム及び方法
WO2010122721A1 (ja) * 2009-04-22 2010-10-28 日本電気株式会社 照合装置、照合方法および照合プログラム
US8958609B2 (en) 2009-04-22 2015-02-17 Nec Corporation Method and device for computing degree of similarly between data sets
JP2014517380A (ja) * 2011-04-28 2014-07-17 コーニンクレッカ フィリップス エヌ ヴェ 顔の位置検出
US9582706B2 (en) 2011-04-28 2017-02-28 Koninklijke Philips N.V. Face location detection
US9740914B2 (en) 2011-04-28 2017-08-22 Koninklijke Philips N.V. Face location detection
JP2017120632A (ja) * 2015-12-30 2017-07-06 ダッソー システムズDassault Systemes 探索のための3dから2dへの再画像化
WO2017149755A1 (ja) * 2016-03-04 2017-09-08 楽天株式会社 検索装置、検索方法、プログラム、ならびに、非一時的なコンピュータ読取可能な情報記録媒体

Also Published As

Publication number Publication date
EP1677250B9 (en) 2012-10-24
CN1871622A (zh) 2006-11-29
JPWO2005038716A1 (ja) 2007-01-25
KR100816607B1 (ko) 2008-03-24
KR20060058147A (ko) 2006-05-29
EP1677250A1 (en) 2006-07-05
EP2479726B9 (en) 2013-10-23
EP2479726A1 (en) 2012-07-25
EP2479726B1 (en) 2013-07-10
US7715619B2 (en) 2010-05-11
EP1677250B1 (en) 2012-07-25
JP4556873B2 (ja) 2010-10-06
EP1677250A4 (en) 2011-03-16
US20070031001A1 (en) 2007-02-08
AU2004282790A1 (en) 2005-04-28
CN1871622B (zh) 2010-07-14

Similar Documents

Publication Publication Date Title
WO2005038716A1 (ja) 画像照合システム及び画像照合方法
JP4553141B2 (ja) 重み情報を用いた物体姿勢推定・照合システム
JP4692773B2 (ja) 物体の姿勢推定及び照合システム、物体の姿勢推定及び照合方法、並びにそのためのプログラム
US7894636B2 (en) Apparatus and method for performing facial recognition from arbitrary viewing angles by texturing a 3D model
JP4466951B2 (ja) 立体結合顔形状の位置合わせ
CN109299643B (zh) 一种基于大姿态对准的人脸识别方法及系统
JP3926059B2 (ja) 画像照合装置及びその画像照合方法並びにその制御プログラムを記録した記録媒体
JP2005339288A (ja) 画像処理装置及びその方法
JP2008176645A (ja) 3次元形状処理装置、3次元形状処理装置の制御方法、および3次元形状処理装置の制御プログラム
US20100098301A1 (en) Method and Device for Recognizing a Face and Face Recognition Module
JP4141090B2 (ja) 画像認識装置、陰影除去装置、陰影除去方法及び記録媒体
CN110990604A (zh) 图像底库生成方法、人脸识别方法和智能门禁系统
JP4816874B2 (ja) パラメータ学習装置、パラメータ学習方法、およびプログラム
JP7643096B2 (ja) 認識装置、ロボット制御システム、認識方法、およびプログラム
González-Jiménez et al. Automatic pose correction for local feature-based face authentication
WO2022190533A1 (ja) テンプレート生成装置、照合システム、照合装置、テンプレート生成方法、照合方法およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030844.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007031001

Country of ref document: US

Ref document number: 2005514861

Country of ref document: JP

Ref document number: 1020067007592

Country of ref document: KR

Ref document number: 10576498

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004792761

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004282790

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004282790

Country of ref document: AU

Date of ref document: 20041021

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004282790

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020067007592

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792761

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10576498

Country of ref document: US