WO2005025419A1 - Systeme de surveillance de contractions de travail a disque de relais multifonctions - Google Patents
Systeme de surveillance de contractions de travail a disque de relais multifonctions Download PDFInfo
- Publication number
- WO2005025419A1 WO2005025419A1 PCT/US2004/029365 US2004029365W WO2005025419A1 WO 2005025419 A1 WO2005025419 A1 WO 2005025419A1 US 2004029365 W US2004029365 W US 2004029365W WO 2005025419 A1 WO2005025419 A1 WO 2005025419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- disk
- sensor
- relay disk
- labor
- labor contraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/43—Detecting, measuring or recording for evaluating the reproductive systems
- A61B5/4306—Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
- A61B5/4343—Pregnancy and labour monitoring, e.g. for labour onset detection
- A61B5/4356—Assessing uterine contractions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/03—Measuring fluid pressure within the body other than blood pressure, e.g. cerebral pressure ; Measuring pressure in body tissues or organs
- A61B5/033—Uterine pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0406—Constructional details of apparatus specially shaped apparatus housings
- A61B2560/0412—Low-profile patch shaped housings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0443—Modular apparatus
- A61B2560/045—Modular apparatus with a separable interface unit, e.g. for communication
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/344—Foetal cardiography
Definitions
- This invention relates generally to labor contraction monitoring systems, and more particularly to a labor contraction monitoring system having a multifunction relay disk for receiving a plurality of signals indicative of maternal labor contractions, fetal heartbeats, and fetal electrocardiograms and relaying those signals to a monitor for display.
- a labor contraction sensor is used in conjunction with either an ultrasound sensor for indirect measurement of fetal heart rate or a fetal ECG sensor for direct measurement of fetal heart rate.
- the present invention solves the foregoing problems in the art by providing a wireless, multi-function relay disk for receiving and sending biological data and vital signs, such as labor contraction signals, ultrasound fetal heartbeat signals, and fetal ECG signals from respective sensors placed on or in the mother and wirelessly relaying those signals to a computer processor for display on a monitor.
- the multi-function relay disk is in communication with biological data/vital signs monitors, and is in further communication with a monitoring device, such as a computer, video monitor, or printer.
- the relay disk also preferably provides a plurality of programmable controllers, such as buttons and dials, for enabling the mother to set and adjust environmental devices, media devices, and drug delivery devices.
- the mother is thus able to control a wide variety of equipment in the labor and delivery room, such as temperature, lights, bed position, television, radio or stereo equipment, patient administered anesthetics, and the like.
- the relay disk also preferably includes at least one dedicated non-programmable controller, such as a button, for issuing call-alerts, enabling the patient to alert medical personnel when the patient requires assistance.
- Figure 1 is a schematic top view of a labor contraction monitoring system in accordance with the present invention having a multi-function relay disk in communication with a labor contraction sensor, a fetal heartbeat sensor, and a fetal ECG sensor.
- Figure 2 is a side view of the multi-function relay disk of Figure 1.
- Figure 3 is a front view of a display monitor with the multi-function relay disk of Figure 1 docked thereto.
- Figure 4 is a perspective view of the fetal ECG sensor of Figure 1.
- Figure 5 is a top view of the fetal heartbeat sensor of Figure 1.
- Figure 6 is a side view of the fetal heartbeat sensor of Figure 1.
- Figure 7 is a sectional view of the fetal heartbeat sensor of Figure 1 taken along line 7-7 of Figure 5.
- Figure 8 is a schematic view showing the fetal heartbeat sensor of Figure 1 placed on the abdomen of a pregnant female.
- Figure 9 is a top perspective view of the labor contraction sensor of Figure 1.
- Figure 10 is a side perspective view of the labor contraction sensor of Figure 1.
- Relay disk 10 is also in communication with a display monitor 46 (see Figure 3) via a computer processor (not shown) for displaying signals representative of labor contractions, fetal heartbeats, and fetal ECGs.
- Labor contraction sensor 12 is preferably a beltless fiber optic labor contraction sensor as described in U.S. Patent No. 6,607,486, which is incorporated herein by reference.
- Fetal heartbeat sensor 14 is preferably a beltless ultrasound sensor as described below in connection with Figures 5-8.
- Fetal ECG sensor 16 is preferably a fetal ECG strip electrode sensor as described in U.S. Patent No. 6,594,515, which is incorporated herein by reference, except that fetal
- ECG sensor 16 preferably has an electronic signal transmitter embedded therein as described further below.
- Labor contraction sensor 12, fetal heartbeat sensor 14, and fetal ECG sensor 16 are preferably in wireless communication (such as by radio frequency signals) with relay disk 10 as indicated by arrows 13, 15, and 17, respectively, but the communication between sensors 12, 14, 16 and relay disk 10 may be facilitated by electrical wires connected to jacks 38, 40, 42, respectively, as shown in Figure 2.
- relay disk 10 is preferably in wireless communication with display monitor 46 (see Figure 3), but relay disk 10 may communicate with monitor 46 via electrical wires.
- relay disk 10 preferably has an electrical interface 44 for mating with a docking station 48 on monitor 46.
- fetal ECG sensor 16 preferably comprises a thin, flexible strip 52 having an electrode 54 for picking up the electrical activity of the heart of an unborn child as described in U.S. Patent No. 6,594,515. Fetal ECG sensor 16 is placed between the head of the fetus and the uterine wall of the mother. Additionally, fetal ECG sensor 16 preferably has a wireless signal transmitter 56 embedded in one end of strip 52 for sending the resulting ECG signal to relay disk 10.
- fetal heartbeat sensor 14 preferably comprises a flexible patch 58 having a recess or pouch for containing an ultrasound sensor 60.
- Patch 58 is preferably made of soft, flexible plastic or another suitable material with adhesive on its underside surface 62 for securing sensor 14 to the abdomen 74 of a pregnant female.
- Patch 58 preferably has a generally elliptical shape to help conform patch 58 to the contour of the abdomen 74, but other shapes are also possible.
- Ultrasound sensor 60 preferably has a power source 64, a signal processor 66, one or multiple ultrasound transducers 68, a signal transmitter 70, and a gel pad 72 for contacting the skin of the abdomen 74.
- Gel pad 72 which may be made from def ⁇ brillator pads such as stock number 2346N available from 3MTM, helps to facilitate the operation of ultrasound transducer 68, which produces a signal representative of the fetal heartbeat in cooperation with signal processor 66 according to methods known in the art.
- Signal transmitter 70 transmits the resulting signal to relay disk 10.
- labor contraction sensor 12 is preferably a beltless fiber optic labor contraction sensor as described in U.S. Patent No.
- Labor contraction sensor 12 preferably includes a fiber optic strain sensor 82 with a fiber optic cable or other suitable optical transmission line (not shown) embedded within a sensor cover 84 on an adhesive pad 80, which preferably has a generally elliptical shape to enhance conformance to the contour of the mother's abdomen.
- the fiber optic cable is connected by signal line 86 to an electronics box 78, which houses the necessary electronics (preferably including a power supply, a light source, a light detector, a signal decoder, and a signal transceiver, not shown) for generating a contraction signal in response to a labor contraction and transmitting the contraction signal to relay disk 10.
- labor contraction sensor 12 is fastened to the mother's abdomen with adhesive pad 80 much like fetal heartbeat sensor 14 as discussed above.
- labor contraction sensor 12 may embody any of a number of different configurations.
- relay disk 10 receives the contraction signals from contraction sensor 12, the ultrasound signals from fetal heartbeat sensor 14, and the ECG signals from fetal ECG sensor 16 and transmits all of those signals to a computer processor (not shown) for display on display monitor 46 (see Figure 3), which is connected to the computer processor.
- the contraction signals, ultrasound signals, and ECG signals are all transmitted from their respective sensors to relay disk 10 wirelessly, and relay disk 10 in turn wirelessly transmits all of the signals to the computer processor.
- relay disk 10 is located on or nearby the mother and is therefore in close proximity to the sensors 12, 14, 16, very little power is required to transmit the respective signals from sensors 12, 14, 16 to relay disk 10.
- Such a completely wireless embodiment is very lightweight and provides the most freedom of ambulatory movement to the mother because none of the sensors are physically tethered to any equipment.
- relay disk 10 may be connected by wires to contraction sensor 12, fetal heartbeat sensor 14, and fetal ECG sensor 16 but be in wireless communication with the computer processor.
- This alternative embodiment also provides the mother with freedom of ambulatory movement but may be somewhat less desirable due to the presence of the connecting wires between the sensors 12, 14, 16 and the relay disk 10.
- relay disk 10 Another alternative is to have relay disk 10 connected by wires to both the sensors 12, 14, 16 and the computer processor, but this alternative embodiment limits the mother's ambulatory movement because the relay disk 10 is physically tethered to the computer processor in this embodiment.
- the preferable sensors in communication with relay disk 10 are contraction sensor 12, ultrasound sensor 14, and ECG sensor 16, it will be appreciated that other sensors may be placed in communication with relay disk 10 either in addition to or in lieu of sensors 12, 14, 16.
- other sensors for monitoring the vital signs of the mother could be used, such as maternal body temperature, heart rate, blood pressure, and blood oxygen saturation (SAO2) sensors as known in the art.
- SAO2 blood oxygen saturation
- relay disk 10 could also be used to relay SAO2 signals from an infant warming and sensor mat on which the infant is placed as described in my U.S. Provisional Patent Application entitled “Infant Warming and Sensor Mat,” which is filed contemporaneously herewith and incorporated herein by reference.
- relay disk 10 preferably comprises a plurality of programmable buttons 18, 20, 24, a non-programmable dedicated button 28, a visual display 26 (such as an LCD, LED, or other suitable display), and a programming dial 22, which is preferably a potentiometer or similar regulating device.
- Buttons 18, 20, 24, 28 preferably have different surface features 30, 34, 36, 32, respectively, to help a user readily distinguish the various buttons by tactile feel, which is particularly useful in darkened conditions.
- Dedicated button 28 preferably serves as an alert button to summon medical personnel, but dedicated button 28 may serve any other predetermined function.
- dedicated button 28 may serve as an event marker to indicate, for instance, the occurrence of a contraction felt by the patient.
- alert and event marker functions could also be assigned to one of the programmable buttons 18, 20, 24.
- three programmable buttons are shown, but persons of skill in the art will recognize that fewer or more programmable buttons may be provided, depending on the number of functions desired and the acceptable size limitations. Similarly, more than one dedicated button may be provided.
- buttons 18, 20, 24, 28 may be any suitable type of activation switch.
- the programmable buttons 18, 20, 24 of relay disk 10 may also be programmed to allow the patient to control a variety of other electrical or electronic equipment, such as anesthetic administering devices (for example, an epidural anesthetic), televisions, radio or stereo equipment, thermostats for controlling room temperature, lights, and the like.
- anesthetic administering devices for example, an epidural anesthetic
- televisions for example, radio or stereo equipment
- thermostats for controlling room temperature, lights, and the like.
- the programming dial 22 is used to control, or modulate, the operating level of the particular piece of equipment assigned to a particular button when that button is selected by the patient.
- dial 22 may serve to increase or decrease the temperature if that button is selected.
- dial 22 may serve to increase or decrease the channel, the volume, or both if that button is selected.
- dial 22 may serve to brighten or dim the lights, as desired. It will be appreciated that the programmable buttons could be programmed to control virtually any piece of equipment for which patient control is desirable.
- Relay disk 10 thereby serves as a central control unit giving the patient control over a wide variety of equipment functions.
- Such remote control is preferably provided by means of a computer processor (not shown) with which relay disk 10 is in communication, preferably wireless communication, and the computer processor communicates with the equipment being controlled.
- Display 26 is preferably used to display information associated with a particular button selected by the patient. For example, display 26 could display a bar graph or a numerical value indicative of the operating level (e.g., light intensity, sound level, channel, temperature, or the like) of the equipment associated with the selected button. Alternatively, display 26 may indicate the time elapsed since the last occurrence of a particular event, such as a labor contraction, or the time until a next event is due, such as an injection of medication. Display 26 may also be used for providing instructions to the patient, such as an appropriate time to push during labor.
- Display 26 may also be used to display information associated with one or more of the sensors being used on the mother or the infant, such as heart rate, oxygen saturation level, temperature, blood pressure, or the like.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Reproductive Health (AREA)
- Pregnancy & Childbirth (AREA)
- Gynecology & Obstetrics (AREA)
- Hematology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
L'invention concerne un système de surveillance de travail et d'accouchement comprenant un disque relais (11) destiné à recevoir des signaux de contraction de travail, des signaux de rythme cardiaque foetal ultrasonores et des signaux d'ECG foetal provenant de capteurs respectifs (12, 14, 16) placés sur ou dans la mère, et relayant ces signaux vers un processeur informatique afin d'effectuer un affichage sur un moniteur. La communication entre les capteurs respectifs (12, 14, 16) et le disque relais (11) est, de préférence, sans fil tout comme la communication entre le disque relais (11) et le processeur informatique. Ledit disque relais (11) comprend, de préférence, une pluralité de touches programmables (18, 20, 24) permettant à la mère de commander une grande variété d'équipements dans la chambre de travail et d'accouchement, tels qu'un équipement de température, de télévision, de radio ou stéréo, des lumières, des agents anesthésiques et analogues. Le disque relais (11) comprend également, de préférence, au moins une touche dédiée non programmable (28) permettant à la patiente d'alerter le personnel médical lorsqu'elle a besoin d'assistance.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US50187203P | 2003-09-10 | 2003-09-10 | |
| US60/501,872 | 2003-09-10 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2005025419A1 true WO2005025419A1 (fr) | 2005-03-24 |
Family
ID=34312313
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/029365 Ceased WO2005025419A1 (fr) | 2003-09-10 | 2004-09-09 | Systeme de surveillance de contractions de travail a disque de relais multifonctions |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2005025419A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2487127A (en) * | 2011-01-07 | 2012-07-11 | Gen Electric | Foetal scalp doppler heart rate monitor |
| GB2487126A (en) * | 2011-01-07 | 2012-07-11 | Gen Electric | Wireless ultrasound monitoring of foetal heart rate and uterine activity |
| WO2015170950A1 (fr) * | 2014-05-08 | 2015-11-12 | Universite Mohammed V De Rabat | Système électronique de télésurveillance des grossesses |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010027088A1 (en) * | 2000-01-15 | 2001-10-04 | Andreas Boos | Telemetry system with transmitter holding position assignment |
| US6302849B1 (en) * | 1998-10-14 | 2001-10-16 | Ge Medical Systems Information Technologies, Inc. | Maternal and fetal monitor |
| US6398727B1 (en) * | 1998-12-23 | 2002-06-04 | Baxter International Inc. | Method and apparatus for providing patient care |
| US6419630B1 (en) * | 2001-03-05 | 2002-07-16 | Stanley A. Taylor, Jr. | Vital signs monitoring system |
-
2004
- 2004-09-09 WO PCT/US2004/029365 patent/WO2005025419A1/fr not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6302849B1 (en) * | 1998-10-14 | 2001-10-16 | Ge Medical Systems Information Technologies, Inc. | Maternal and fetal monitor |
| US6398727B1 (en) * | 1998-12-23 | 2002-06-04 | Baxter International Inc. | Method and apparatus for providing patient care |
| US20010027088A1 (en) * | 2000-01-15 | 2001-10-04 | Andreas Boos | Telemetry system with transmitter holding position assignment |
| US6419630B1 (en) * | 2001-03-05 | 2002-07-16 | Stanley A. Taylor, Jr. | Vital signs monitoring system |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2487127A (en) * | 2011-01-07 | 2012-07-11 | Gen Electric | Foetal scalp doppler heart rate monitor |
| GB2487126A (en) * | 2011-01-07 | 2012-07-11 | Gen Electric | Wireless ultrasound monitoring of foetal heart rate and uterine activity |
| GB2487127B (en) * | 2011-01-07 | 2015-02-25 | Gen Electric | Fetal scalp doppler device and system |
| US9168022B2 (en) | 2011-01-07 | 2015-10-27 | General Electric Company | Abdominal sonar system and apparatus |
| GB2487126B (en) * | 2011-01-07 | 2015-12-09 | Gen Electric | Abdominal sonar system and apparatus |
| US9597055B2 (en) | 2011-01-07 | 2017-03-21 | General Electric Company | Fetal scalp doppler device and system |
| WO2015170950A1 (fr) * | 2014-05-08 | 2015-11-12 | Universite Mohammed V De Rabat | Système électronique de télésurveillance des grossesses |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20070191728A1 (en) | Intrapartum monitor patch | |
| US20070255184A1 (en) | Disposable labor detection patch | |
| US20090143650A1 (en) | Miniaturized, dermal-adhesive-based device for position-independent, non-invasive fetal monitoring | |
| US4705048A (en) | Vital signs monitoring system | |
| AU2014304991B2 (en) | Wireless pregnancy monitor | |
| US6917293B2 (en) | Integral, flexible, electronic patient sensing and monitoring system | |
| US5373852A (en) | Monitoring uterine contractions by radiotelemetric transmission | |
| KR20160031518A (ko) | 태아 심박동수 모니터링 조립체 | |
| US20090264714A1 (en) | Non-invasive vital sign monitoring method, apparatus and system | |
| US20130261464A1 (en) | Conformal fetal heart monitor and system for use therewith | |
| WO2005110236A1 (fr) | Appareil mobile de surveillance des contractions de travail et de la frequence cardiaque | |
| US20090254096A1 (en) | Vacuum delivery extractor | |
| MX2014013947A (es) | Sistema de monitoreo de pacientes configurable, portatil. | |
| WO2018207935A1 (fr) | Appareil d'acquisition d'informations relatives à la déglutition, procédé d'analyse d'informations, et programme | |
| US20130060259A1 (en) | Vacuum delivery extractor | |
| WO2005025419A1 (fr) | Systeme de surveillance de contractions de travail a disque de relais multifonctions | |
| US11207020B2 (en) | Fetal monitoring hub | |
| CN214956033U (zh) | 数据采集模块、数据采集设备和医疗装置监测系统 | |
| CN114903448A (zh) | 一种睡眠呼吸监测装置及睡眠呼吸监测方法 | |
| CN102438513A (zh) | 帮助分娩和/或生育的可充气腰带 | |
| EP4041339B1 (fr) | Dispositif à commande manuelle permettant à un patient de contrôler le niveau de sédation, à ajuster autour d'un poignet et ayant un commutateur | |
| CN210383887U (zh) | 一种新生儿生命体征监测设备 | |
| CN213371945U (zh) | 一种心内科护士护理用护理记录仪 | |
| US20220054026A1 (en) | Mobile pulse oximetry and ecg electrode telemetry device, system and method of use | |
| JPH01129831A (ja) | 生存徴候モニタシステム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
| 122 | Ep: pct application non-entry in european phase |