[go: up one dir, main page]

WO2005092470A1 - Elimination de matiere particulaire dans un flux - Google Patents

Elimination de matiere particulaire dans un flux Download PDF

Info

Publication number
WO2005092470A1
WO2005092470A1 PCT/IB2004/004367 IB2004004367W WO2005092470A1 WO 2005092470 A1 WO2005092470 A1 WO 2005092470A1 IB 2004004367 W IB2004004367 W IB 2004004367W WO 2005092470 A1 WO2005092470 A1 WO 2005092470A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow stream
particulate matter
stream
concentrated phase
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2004/004367
Other languages
English (en)
Inventor
Johnny Karbo
Jon Liverud
Lars Bugge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fjords Processing AS
Original Assignee
Kvaerner Process Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0404510A external-priority patent/GB0404510D0/en
Priority claimed from GB0404673A external-priority patent/GB0404673D0/en
Application filed by Kvaerner Process Systems AS filed Critical Kvaerner Process Systems AS
Priority to GB0621085A priority Critical patent/GB2427573B/en
Publication of WO2005092470A1 publication Critical patent/WO2005092470A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0012Settling tanks making use of filters, e.g. by floating layers of particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/262Separation of sediment aided by centrifugal force or centripetal force by using a centrifuge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to a system and method for removing particulate matter from a flow stream. More particularly the invention relates to removal of particulate matter from a liquid hydrate inhibitor flow stream.
  • Hydrate inhibitors such as mono-ethylene glycol (MEG) are used in hydrocarbon gas and/or condensate pipelines to absorb moisture and prevent hydrate forming in the pipe, which can lead to blockage and corrosion.
  • MEG mono-ethylene glycol
  • the MEG or other inhibitor
  • the separated MEG is regenerated by a water removal process to produce "lean MEG” for re-use.
  • hydrate inhibitors such as MEG also tend to become polluted by other components in the pipeline.
  • Some of the pollutants for example pipeline corrosion products and scale are present as particles in the flow stream.
  • Others, such as hydrocarbons, salts from formation water or production chemicals are present in solution, but may precipitate as small particles during the MEG regeneration process.
  • Removal of these particles is important for the performance of the MEG regeneration process, because the particles tend to accumulate in the regeneration process, and to clog process equipment.
  • One known solution to this problem is to separate the particles by introducing a solids separation unit and a desalination unit (reclaimer) into the process.
  • a problem with this approach is that significant quantities of the particles are very fine and difficult to separate. Separation processes and equipment for handling these particles are large, expensive, operator intensive and prone to failure due to clogging.
  • MEG reclamation may be carried out on offshore platforms where space is at a premium. Also, depending on operating conditions, which may change over the operational life of the plant, the distribution of particle size may vary significantly. This makes it difficult to design a system that can perform reliably for all operating conditions over the life of the plant.
  • an apparatus for removing particulate matter from a flow stream including: an evaporator for creating a concentrated phase from said flow stream, said concentrated phase containing particulate matter; a separator including means for introducing a flocculant into said concentrated phase so as to agglomerate particulate matter by flocculation, and means for separating the agglomerated particulate matter from the concentrated phase; means for returning said concentrated phase, absent said separated particulate matter, to said evaporator; and means for removing said flow stream absent said particulate matter from said evaporator.
  • the flow stream may be a side-stream of a main process flow stream, the apparatus further including: means for removing said side-stream from said main process flow stream; and means for returning said side-stream absent said particulate matter from said evaporator to said main process flow stream.
  • the side-stream is a desalination process side-stream.
  • flocculation even the smallest particles agglomerate to form larger particles, which can then easily be separated.
  • the flocculant may be introduced and the particles removed at any required location in the process (in the main stream and/or a sidestream), allowing flexibility for designing a system that can operate reliably over a wide range of conditions.
  • the apparatus may be employed in a hydrate inhibitor recovery process.
  • the fluid comprises mono-ethylene glycol (MEG).
  • the hydrate inhibitor fluid may comprise other fluids such as other glycols or amines.
  • the flow stream may comprise is an amine solution used for gas sweetening (removal of acid components from natural gas).
  • the composition of the flocculant may be adjusted to suit the composition of the flow stream.
  • the means for separating the agglomerated particles comprises a settling tank. It is an advantage that most known MEG reclamation plants already employ storage tanks for both rich and lean MEG, and so the provision of a settling tank in place of the storage tank represents an insignificant increase in equipment size/complexity. This means, for example, that the system is ideal for use on off-shore platform installations.
  • the means for separating the agglomerated particles may be a centrifuge. It is an advantage that many MEG reclamation plants already employ a centrifuge as part of a desalination process, so that the use of a flocculant at this stage of the process does not represent a significant increase in plant size/complexity.
  • the means for introducing the flocculant is situated upstream of the separating means such that the flocculation process agglomerates the particles before entering the separating means.
  • the means for introducing the flocculant may be an injection quill that penetrates the flow stream at a suitably adapted injection location in a pipeline.
  • a method for removing particulate matter from a flow stream comprising: creating a concentrated phase from said flow stream in an evaporator, said concentrated phase containing particulate matter; introducing a flocculant into the concentrated phase so as to agglomerate particulate matter by flocculation; separating the agglomerated particulate matter from said concentrated phase; returning said concentrated phase, absent said separated particulate matter, to said evaporator; and removing said flow stream, absent said separated particulate matter, from said evaporator.
  • the flow stream may be a side-stream of a main process flow stream, the method including: removing said side-stream from a main process flow stream; and returning to said side-stream, absent said separated particulate matter, from said evaporator to said main process flow stream.
  • the method may also comprise adjusting the composition of the flocculant to suit the composition of the flow stream.
  • Figure 1 is a simplified schematic flow diagram of a known MEG reclamation process
  • Figure 2 is a schematic flow diagram of part of the MEG reclamation process of Figure 1 adapted in accordance with an embodiment of the present invention
  • Figure 3 is a schematic flow diagram of part of the MEG reclamation process of Figure 1 adapted in accordance with another embodiment of the present invention.
  • a known MEG reclamation process receives a flow from a pipeline into a separation process unit 12.
  • the flow contains a hydrocarbon gas and may also include a condensate.
  • the flow also contains a hydrate inhibitor in the form of MEG.
  • the separation process unit 12 separates MEG from the hydrocarbon gas and condensate, which leave via gas and condensate outlet lines 14 and 15 respectively.
  • the separated MEG contains moisture (water) absorbed from the gas stream in the pipeline and is referred to as rich MEG. This is fed via a further outlet through a feed line 16 to a rich MEG storage tank 18.
  • MEG to be regenerated is fed via a line 20 from the rich MEG storage tank to a regeneration unit 22, where a substantial portion of the moisture is removed from the MEG. After removal of the moisture, the MEG is referred to as lean MEG and is fed via a connecting line 24 to a lean MEG storage tank 26.
  • the lean MEG leaving the regeneration unit 22 may still contain dissolved salts and contaminants in suspension such as precipitated salt crystals.
  • a portion of the lean MEG is taken out of the connecting line 24 into a side-stream line 28 and fed to a desalination unit 32, which separates and removes suspended and dissolved contaminants.
  • the desalinated MEG is then fed to the lean MEG tank 26.
  • the operation of the desalination unit 32 as a side-stream off the connecting line allows this process to be operated and controlled independently of the main regeneration unit according to the degree of separation and desalination required.
  • very small particles, especially those of precipitated carbonates are too small to be easily removed by the centrifuge of the desalination unit 32.
  • Lean MEG in the lean MEG storage tank 26 is ready for re-use.
  • a pump 34 pumps lean MEG back into a . hydrocarbon gas pipeline via a return line 36.
  • FIG 2 shows a system for separating particles in the process of Figure 1.
  • An injector 50 is inserted into the feed line 16 upstream of the rich MEG storage tank 18
  • the injector is supplied with a flocculant (also known as a flocculating agent) by means of a pump 52 from a flocculant storage tank 54.
  • the flocculant mixes with the rich MEG flow stream in the downstream portion of the feed line 16' between the injector 50 and the rich MEG storage tank 18
  • the injector 50 employs an injection quill of known design to ensure good distribution of the flocculant in the rich MEG flow stream.
  • Suitable flocculants include solutions of anionic and cationic polymers and currently preferred flocculants include "Hydro Sepco DC 4002" and “Hydro Sepco AE6230 H” available from Hydro Gas and Chemicals, Postboks 23, Haugenstua, 0915 Oslo, Norway.
  • the flocculant causes flocculation whereby the particles carried by the rich MEG are agglomerated.
  • the flocculation process ensures that the agglomerated particles are large enough to settle due to gravity and the particulate material gathers at the bottom 56 of the rich MEG storage tank 18
  • the injector 50 is situated at a sufficient distance upstream of the rich MEG tank 18 s , the reaction time for flocculation is sufficient without any need to provide additional reaction/retention vessels.
  • this may be speeded up by heating the rich MEG in the rich MEG storage tank 18
  • the particulate matter that collects at the bottom 56 of the rich MEG storage tank IS" does not typically occupy a large volume, and so can be removed at relatively infrequent intervals, for example as a routine (e.g. biannual) maintenance operation. After removal, the particles are treated as a special waste.
  • the rich MEG storage tank 18" therefore has the dual purpose of storing rich MEG and acting as a settling tank for separating the agglomerated particles from the rich MEG. This means that the filter process described above for the system of Figure 1 is not required.
  • FIG 3 shows another arrangement in which fine particles are removed using flocculation together with a separation process.
  • fine particles are removed from the side-stream 28 that flows through the desalination unit 32 (as shown in figure 1).
  • the process includes a flash evaporator 29 and a centrifuge 30. Separation of the MEG in the flash evaporator 29 leaves the salts and solids to crystallise and accumulate in a concentrated phase. A stream 31 from this phase is fed to the centrifuge 30 for separation of the solids.
  • the system for separating fine particles is inserted into this stream 31.
  • the particles at this stage of the process may be predominantly carbonates that have precipitated out of the MEG.
  • Flocculant from a storage tank 64 is injected by means of an injector 60 and a pump 62 into the stream 31 to the centrifuge 30.
  • the flocculation process agglomerates the particles as the MEG flows between the injector 60 and the centrifuge 30.
  • the agglomerated particles are separated from the MEG due to their greater density.
  • the separated particles may be fed to a dissolver (not shown), to be mixed with water and sent to a waste water treatment plant.
  • the recovered MEG from the centrifuge is fed back to the flash evaporator 29.
  • the MEG leaving the flash evaporator is "clean" lean MEG which is fed back into the connecting line 24 to the lean MEG storage tank 26 (as shown in figure 1).
  • the systems described above relate to MEG reclamation. However, the same principles of the apparatus and method may be applied to other processes that require solids removal.
  • One example is in the reclamation of amines used for gas sweetening.
  • Gas sweetening is the removal of acids from natural gas.
  • the systems described above for removing particulate matter by flocculation and separation of agglomerated particles have numerous advantages over known particulate removal systems.
  • the size of the plant required is smaller and simpler to construct and operate. Less energy is required than for comparable filtration/removal systems and very limited operator attendance is required. This provides significant benefits in terms of space, capital cost and operating cost savings.
  • the systems are ideally suited for inclusion on off-shore platform installations as well as at on-shore treatment plants.
  • the flocculation process provides a reliable method of removing even the smallest particles, and so can be used to provide reliable performance over a wide range of operating conditions, and over die entire life cycle of the plant.
  • the flocculation process can also be operated intermittently if so required - providing greater flexibility in controlling the removal of particulate matter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

L'invention concerne un dispositif et un procédé associé permettant d'éliminer une matière particulaire dans un flux. Le dispositif comprend un évaporateur (29) qui crée une phase concentrée à partir du flux, cette phase concentrée contenant la matière particulaire. Un séparateur comprend un système (60) qui permet d'introduire un floculant dans la phase concentrée, aux fins d'agglomération de matière particulaire par floculation. La matière agglomérée est séparée de la phase concentrée dans le séparateur (30). Un système retourne la phase concentrée, sans la matière particulaire séparée, à l'évaporateur (29), et évacue le flux, sans la matière particulaire séparée, de l'évaporateur (29).
PCT/IB2004/004367 2004-03-01 2004-12-17 Elimination de matiere particulaire dans un flux Ceased WO2005092470A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0621085A GB2427573B (en) 2004-03-01 2004-12-17 Removal of particulate matter from a flow stream

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0404510.0 2004-03-01
GB0404510A GB0404510D0 (en) 2004-03-01 2004-03-01 Removal of particulate matter from a flow stream
GB0404673A GB0404673D0 (en) 2004-03-03 2004-03-03 Removal of particulate matter from a flow stream
GB0404673.6 2004-03-03

Publications (1)

Publication Number Publication Date
WO2005092470A1 true WO2005092470A1 (fr) 2005-10-06

Family

ID=34960265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2004/004367 Ceased WO2005092470A1 (fr) 2004-03-01 2004-12-17 Elimination de matiere particulaire dans un flux

Country Status (2)

Country Link
GB (1) GB2427573B (fr)
WO (1) WO2005092470A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008041051A1 (de) * 2008-08-06 2010-02-11 Leibniz-Institut Für Polymerforschung Dresden E.V. Verfahren zur Fest-Flüssig-Trennung von überwiegend nichtwässrigen Suspensionen
WO2013179236A1 (fr) * 2012-05-30 2013-12-05 Aker Process Systems As Système et procédé pour l'élimination d'ions de métaux lourds à partir d'un flux d'inhibiteurs d'hydrate riche
FR3013710A1 (fr) * 2013-11-22 2015-05-29 Prosernat Procede flexible pour le traitement de solvant, tel que le monoethylene glycol, utilise dans l'extraction du gaz naturel
US9284244B2 (en) 2012-05-11 2016-03-15 Fjords Processing As Carboxylic acid salt removal during hydrate inhibitor recovery
US20170217861A1 (en) * 2014-07-24 2017-08-03 Reliance Industries Limited Method and Apparatus for Separation of Colloidal Suspension from a Solution of Organic Compound, such as Monoethylene Glycol
WO2017136663A1 (fr) * 2016-02-04 2017-08-10 Ecolab Usa Inc. Élimination d'inhibiteurs d'hydrates dans des courants de déchets
US10124330B2 (en) * 2011-06-14 2018-11-13 Equinor Energy As Method and apparatus for the removal of polyvalent cations from mono ethylene glycol
US12359113B2 (en) 2017-06-02 2025-07-15 Championx Llc Method for dispersing kinetic hydrate inhibitors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790104B2 (en) 2012-02-17 2017-10-17 Hydrafact Limited Water treatment
GB201202743D0 (en) * 2012-02-17 2012-04-04 Hydrafact Ltd Water treatment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309291A (en) * 1974-02-28 1982-01-05 Massachusetts Institute Of Technology Method of and apparatus for continuous flow flocculation and clarification
US4697426A (en) * 1986-05-29 1987-10-06 Shell Western E&P Inc. Choke cooling waxy oil
GB2316425A (en) * 1996-08-15 1998-02-25 Kvaerner Oil & Gas Ltd Downhole valve actuation
US5882524A (en) * 1997-05-28 1999-03-16 Aquasol International, Inc. Treatment of oil-contaminated particulate materials
US20010025820A1 (en) * 1999-10-13 2001-10-04 Morse Dwain E. System and method to treat livestock waste
US6444095B1 (en) * 1998-01-13 2002-09-03 Reading & Bates Development Co. System for recovering glycol from glycol/brine streams
US6635182B1 (en) * 2001-05-04 2003-10-21 Industrial Waste Water Services, Llp Floatation process for removal of heavy metal waste and associated apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309291A (en) * 1974-02-28 1982-01-05 Massachusetts Institute Of Technology Method of and apparatus for continuous flow flocculation and clarification
US4697426A (en) * 1986-05-29 1987-10-06 Shell Western E&P Inc. Choke cooling waxy oil
GB2316425A (en) * 1996-08-15 1998-02-25 Kvaerner Oil & Gas Ltd Downhole valve actuation
US5882524A (en) * 1997-05-28 1999-03-16 Aquasol International, Inc. Treatment of oil-contaminated particulate materials
US6444095B1 (en) * 1998-01-13 2002-09-03 Reading & Bates Development Co. System for recovering glycol from glycol/brine streams
US20010025820A1 (en) * 1999-10-13 2001-10-04 Morse Dwain E. System and method to treat livestock waste
US6635182B1 (en) * 2001-05-04 2003-10-21 Industrial Waste Water Services, Llp Floatation process for removal of heavy metal waste and associated apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008041051B4 (de) 2008-08-06 2023-04-06 Leibniz-Institut Für Polymerforschung Dresden E.V. Verfahren zur Fest-Flüssig-Trennung von Feststoffen aus überwiegend nichtwässrigen Flüssigkeiten
DE102008041051A1 (de) * 2008-08-06 2010-02-11 Leibniz-Institut Für Polymerforschung Dresden E.V. Verfahren zur Fest-Flüssig-Trennung von überwiegend nichtwässrigen Suspensionen
US10124330B2 (en) * 2011-06-14 2018-11-13 Equinor Energy As Method and apparatus for the removal of polyvalent cations from mono ethylene glycol
US9284244B2 (en) 2012-05-11 2016-03-15 Fjords Processing As Carboxylic acid salt removal during hydrate inhibitor recovery
WO2013179236A1 (fr) * 2012-05-30 2013-12-05 Aker Process Systems As Système et procédé pour l'élimination d'ions de métaux lourds à partir d'un flux d'inhibiteurs d'hydrate riche
US9376358B2 (en) 2012-05-30 2016-06-28 Fjords Processing As System and method for removal of heavy metal ions from a rich hydrate inhibitor stream
AP3781A (en) * 2012-05-30 2016-08-31 Fjords Proc As System and method for removal of heavy metal ions from a rich hydrate inhibitor stream
EP2878589A1 (fr) * 2013-11-22 2015-06-03 Prosernat Procédé flexible pour le traitement de solvant, tel que le monoéthylène glycol, utilise dans l'extraction du gaz naturel
US9943775B2 (en) 2013-11-22 2018-04-17 Prosernat Flexible process for treating solvent, such as monoethylene glycol, used in natural gas extraction
FR3013710A1 (fr) * 2013-11-22 2015-05-29 Prosernat Procede flexible pour le traitement de solvant, tel que le monoethylene glycol, utilise dans l'extraction du gaz naturel
US20170217861A1 (en) * 2014-07-24 2017-08-03 Reliance Industries Limited Method and Apparatus for Separation of Colloidal Suspension from a Solution of Organic Compound, such as Monoethylene Glycol
WO2017136663A1 (fr) * 2016-02-04 2017-08-10 Ecolab Usa Inc. Élimination d'inhibiteurs d'hydrates dans des courants de déchets
GB2562425A (en) * 2016-02-04 2018-11-14 Ecolab Usa Inc Removal of hydrate inhibitors from waste streams
GB2562425B (en) * 2016-02-04 2022-03-09 Championx Usa Inc Removal of hydrate inhibitors from waste streams
US12359113B2 (en) 2017-06-02 2025-07-15 Championx Llc Method for dispersing kinetic hydrate inhibitors

Also Published As

Publication number Publication date
GB2427573A (en) 2007-01-03
GB0621085D0 (en) 2006-12-13
GB2427573B (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US8329963B2 (en) Removing solids in monoethylene glycol reclamation
US20080121585A1 (en) Water treatment using de-supersaturation
US4370236A (en) Purification of hydrocarbon streams
AU2021202151A1 (en) Treating water
US20170129835A1 (en) A system for regenerating mono ethylene glycol and a method thereof
EP3018100B1 (fr) Système et procédé de traitement d'eau
KR20160140761A (ko) 삼투 분리 시스템 및 방법
US9656894B2 (en) Wastewater hydrocarbon extraction and environmental treatment method and system
US10131561B2 (en) Treatment of produced water concentrate
RS61764B1 (sr) Proces za regeneraciju obrađivane tečnosti
EP2852557A1 (fr) Méthodes et systèmes de récupération d'eau
WO2017102910A1 (fr) Procédé de traitement d'eau produite à partir d'un champ de pétrole & de gaz
WO2005092470A1 (fr) Elimination de matiere particulaire dans un flux
US20250012181A1 (en) Removal of Crude Oil from Water in a Gas Oil Separation Plant (GOSP)
CN110770174A (zh) 采出水的处理系统和用于从采出水回收有机化合物的方法
US20130206690A1 (en) Water Treatment Via Ultrafiltration
WO2009029653A1 (fr) Procédé pour éliminer la silice lors de la récupération de pétrole lourd
MX2014011783A (es) Sistema y metodo para tratamiento de agua.
CN104837776A (zh) 对被油污染的水的净化以及对此合适的装置
NO20180851A1 (en) Processes and systems for zinc waste reduction
US8808547B2 (en) Apparatus and processes for removing boron from liquids
EA016877B1 (ru) Способ удаления неполярных соединений из воды
US10280102B1 (en) Methods to properly condition feed water for steam generators in oil-fields and the like
CN113056318B (zh) 水合物抑制剂回收系统
CN104135904A (zh) 用于在水力旋流器上游分离大的堵塞颗粒的沉降室

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 0621085.0

Country of ref document: GB

Ref document number: 0621085

Country of ref document: GB

122 Ep: pct application non-entry in european phase