WO2005090870A1 - Refroidissement indirect par evaporation d'un gaz au moyen d'un produit commun et d'un gaz de travail a contre-courant partiel - Google Patents
Refroidissement indirect par evaporation d'un gaz au moyen d'un produit commun et d'un gaz de travail a contre-courant partiel Download PDFInfo
- Publication number
- WO2005090870A1 WO2005090870A1 PCT/US2005/008669 US2005008669W WO2005090870A1 WO 2005090870 A1 WO2005090870 A1 WO 2005090870A1 US 2005008669 W US2005008669 W US 2005008669W WO 2005090870 A1 WO2005090870 A1 WO 2005090870A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- input
- perforations
- air
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D5/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
- F28D5/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0059—Indoor units, e.g. fan coil units characterised by heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/0035—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D5/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/54—Free-cooling systems
Definitions
- the present invention relates to indirect evaporative coolers.
- the present invention relates to such coolers configured to utilize common product and working gas, with part of the working gas flowing in a counter-direction to the product gas.
- Indirect evaporative cooling is a method of cooling a fluid stream; usually air, by evaporating a cooling liquid, usually water, into a second air stream while transferring heat from the first air stream to the second.
- the method has certain inherent advantages compared to conventional air conditioning: low electricity requirements, relatively high reliability, and the ability to do away with the need for refrigerants such as R-1 34 and all the disadvantages they entail.
- U.S. Patent No. 6,581 ,402 shows a number of embodiments for indirect evaporative cooling using plate apparatus.
- Figure 1 (Prior art) shows a perspective and schematic representation of two plates showing the wet side channels formed by the wet sides of a first and a second plate opposing each other, with their passages oriented in the same general area and illustrating the working gas entering on the dry side, passing through the passages and into the wet side channels.
- the product fluid is separated from the working gas as they pass along the dry side of the first and second plates.
- Additional plates form a stack, and adjacent plates have their dry sides facing each other. Thus, the stack of plates would have every odd plate oriented with its dry side facing the same direction and opposite of all even plates.
- the invention of Pat. No. 6.581 ,402 provides an indirect evaporative cooler having cross flowing wet and dry channels on opposite sides of a plurality of heat exchange plates which allow heat transfer through the plates
- Heat transfer surface or heat exchange surface has many configurations. All are encompassed within the subject of this disclosed invention with appropriate adjustment to the wetting and flows as are well known in the industry. For illustration we make use of a plate configuration.
- wet side or wet portion of the heat exchange surface means that portion having evaporative liquid on or in its surface, thus enabling evaporative cooling of the surface and the absorption of latent heat from the surface.
- Dry side or dry portion of the heat exchanger means that portion of the heat exchanger surface where there is little or no evaporation into the adjacent gas or fluid. Thus, there is no transfer of vapor and latent heat into adjacent gases.
- Working stream or working gas stream is the gas flow that flows along the heat exchange surface on the dry side, passes through the passages in the surface to the wet side and picks up vapor and by evaporation, taking latent heat from the heat exchange surface and transporting it out into the exhaust.
- the working stream may be disposed of as waste and in others it may be used for special purposes, such as adding humidity or scavenging heat.
- Product stream is the gas flow that passes along the heat exchange surface on the dry side and is cooled by the absorption of heat by the working gas stream on the wet side absorbing latent heat by the evaporation in the wet area.
- the plate also has passageways or perforations or similar transfer means between the dry side of the plate and the wet side in defined areas providing flow from the dry working channels to the working wet channels in which direct evaporative cooling takes place.
- the method of the invention makes use of the separation of a working gas flow (that is used to evaporate liquid in the wet channels and thus to cool the wet surface of the heat exchanger plate) from the product fluid flow, flowing through dry product channels and dry working channels respectively on the same side of the heat exchange plate. Both give up heat to the heat exchange plate that on its obverse surface is being cooled by evaporation in the working wet channels.
- the working gas flow first enters the dry working channel and then through perforations, pores or other suitable means of transfer across the barrier of the plate to the wet side and thence into the wet working channels where evaporation of liquid on the wet channel surface, cools this plate.
- the dry product channels are on the dry side of this plate.
- the plate is of a thin material to allow easy heat transfer across the plate and thus to readily allow heat to transfer from the dry product channel to the wet working channel.
- This is one basic unit or element of the invention illustrating the method of the separation of working gas flows to indirectly cool the separate product fluid by evaporative cooling.
- a heat exchanger plate for use in an indirect evaporative cooling system has a dry side having low permeability to an evaporative liquid and formed to allow an input fluid to flow over its surface from an input end to an output end, and a wet side designed to have its surface wet by an evaporative liquid, and formed to allow a working gas to flow over its surface to evaporate the evaporative liquid.
- Perforations are formed in the plate to allow a portion of the input fluid to pass from the dry side to the wet side, the perforations placed both toward the input end of the plate and toward the output end of the plate.
- the channels are generally perpendicular to the flow of input air.
- the barriers are elongated, and are oriented generally perpendicular to the input airflow. Generally the barriers cause the working gas at the output end of the plate to flow in a circuitous route.
- the dry side forms channels to guide the input air from the input end toward the output end.
- the output-end perforations include output-end side-perforations (along a side parallel to product air flow) and output-end edge-perforations (along the edge where the product air exits).
- Figure 1 is an isometric illustrating a conventional indirect evaporative cooler configuration.
- Figure 2 is a plan view of the dry side of a heat transfer plate used in an evaporative cooler according to the present invention.
- Figure 3 is a plan view of the wet side of a heat transfer plate used in an evaporative cooler according to the present invention.
- Figure 4 is a side view of three heat transfer plates of Figures 3 and 4, in parallel configuration.
- Figures 2-4 illustrate one embodiment of an indirect evaporative cooler wherein part of the product gas is used as working gas. Note that while the term "air” is frequently used in the following description, others types of gas may be used as well, so long as the same kind of gas is used for the product gas and the working gas.
- air is frequently used in the following description, others types of gas may be used as well, so long as the same kind of gas is used for the product gas and the working gas.
- Figure 2 is a plan view of the dry side 9 of a heat transfer plate 6 used in an evaporative cooler according to the present invention.
- Combined product and working air 1 2 enters dry side channels 4 from the left of the figure.
- Channels 4 are generally formed with a series of parallel channel guides 7.
- a portion of input gas 12 exits as cooled product gas 1 , at the right of the figure.
- the rest passes through perforations 1 1 , 1 3, and 14 and operates as working air on the wet side 1 0 of the plate 6.
- Perforations 1 1 are formed on the input side of the plates, along the side of the plate between 1 /4 to 1 /2 the length of the plate.
- Perforations 13 are formed on the product output side of the plates in areas that best allow air flow distribution across and in counter flow on the wet side.
- Perforations 14 are formed on the product output edge of the plate.
- FIG 3 is a plan view of the wet side 10 of heat transfer plate, working air 2 from the dry side of plate 6 comes through perforations 1 1 , 13, and 14.
- An evaporative fluid (not shown) is evaporated into working air 2, cooling heat transfer plate 6. This, in turn, cools product air 1 .
- a wicking material 8 (see Figure 4) is used to thoroughly distribute the evaporative fluid on wet side 10.
- Channels 5 are generally formed by channel guides 7.
- the portion of working air coming through output-end side-perforations 1 3 and output-end edge-perforations 1 5 follow more circuitous paths 3, but generally move in a direction counter to the product flow.
- Barriers 1 5 are short channel guides that provide airflow direction and separation of plates. Barriers 1 5 are scattered on this portion of the plate to force working air 2 to wind its way among them in a direction generally counter to the product air flow and to provide structure to the heat exchanger.
- barriers 1 5 are elongated generally parallel to wet side channel guides 7, as this provides structural strength (because barriers 1 5 are then perpendicular to dry side channel guides 7). However, the configuration and orientation of the barriers may be varied.
- Figure 4 is a side view of three heat transfer plates 6, in parallel configuration.
- Figure 4 illustrates a very small evaporative cooler, though generally many more plates will be used.
- 80 plates are stacked in a 10 inch high stack.
- the dimensions of the plates are 20 inches by 1 8 inches.
- the plate material is polyethylene coating on cellulose fiber paper (the paper acts as a wicking material).
- the spacing between the plates is 0.1 25 inches.
- Each plate 6 has a wet side 10 and a dry side 9.
- the dry sides of adjacent plates face each other.
- wicking material 8 is used to distribute the wet side evaporative fluid .
- Input combined product and working air 1 2 enters between two dry sides 9.
- the portion of input air 1 2 that comes out the other end of the plates as product air 1 remains dry.
- the rest of input air 1 2 passes through perforations 1 1 , 1 3, 14 as shown in Figures 2 and 4 to become working air 2.
- the portion of working air 2 coming through input-end side-perforations 1 1 is guided by channel guides 7 straight across plates 6. This portion of working air 2 in is crossflow to the product air 1 .
- the portion of working air 2 coming though output-end side- perforations 1 3 and output-end edge-perforations 14 passes among barriers 1 5. This portion of working air 2 is in counterflow to product air 1 .
- the partial counterflow configuration of the present invention requires a larger exhaust pressure drop than a pure crossflow configuration, but less than a pure counterflow configuration.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US55387504P | 2004-03-17 | 2004-03-17 | |
| US60/553,875 | 2004-03-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2005090870A1 true WO2005090870A1 (fr) | 2005-09-29 |
Family
ID=34963462
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2005/008669 Ceased WO2005090870A1 (fr) | 2004-03-17 | 2005-03-16 | Refroidissement indirect par evaporation d'un gaz au moyen d'un produit commun et d'un gaz de travail a contre-courant partiel |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20050210907A1 (fr) |
| WO (1) | WO2005090870A1 (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106595355A (zh) * | 2016-12-08 | 2017-04-26 | 澳蓝(福建)实业有限公司 | 一种间接蒸发冷却器 |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL1030538C1 (nl) * | 2005-11-28 | 2007-05-30 | Eurocore Trading & Consultancy | Inrichting voor het indirect door verdamping koelen van een luchtstroom. |
| US7644983B2 (en) * | 2007-10-18 | 2010-01-12 | Delphi Technologies, Inc. | Evaporatively pre-cooled seat assembly |
| US8769971B2 (en) | 2008-01-25 | 2014-07-08 | Alliance For Sustainable Energy, Llc | Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification |
| DE102010011707A1 (de) * | 2010-03-12 | 2011-09-15 | Donald Herbst | Klimagerät und Verfahren zum Betreiben eines Klimageräts |
| EP3591303A1 (fr) | 2010-05-25 | 2020-01-08 | 7AC Technologies, Inc. | Procédés et systèmes utilisant des déshydratants liquides pour le conditionnement d'air et d'autres procédés |
| EP3686538A1 (fr) | 2012-06-11 | 2020-07-29 | 7AC Technologies, Inc. | Procédés et systèmes pour échangeurs de chaleur à écoulement turbulent résistants à la corrosion |
| WO2014089164A1 (fr) | 2012-12-04 | 2014-06-12 | 7Ac Technologies, Inc. | Méthodes et systèmes de refroidissement de bâtiments avec des charges thermiques élevées grâce à des refroidisseurs à dessiccant |
| EP3428549B1 (fr) | 2013-03-01 | 2020-06-03 | 7AC Technologies, Inc. | Systèmes de climatisation à absorbeur d'humidité |
| US9140471B2 (en) | 2013-03-13 | 2015-09-22 | Alliance For Sustainable Energy, Llc | Indirect evaporative coolers with enhanced heat transfer |
| US9140460B2 (en) | 2013-03-13 | 2015-09-22 | Alliance For Sustainable Energy, Llc | Control methods and systems for indirect evaporative coolers |
| CN105121979B (zh) | 2013-03-14 | 2017-06-16 | 7Ac技术公司 | 用于微分体液体干燥剂空气调节的方法和系统 |
| JP6395801B2 (ja) | 2013-03-14 | 2018-09-26 | 7エーシー テクノロジーズ,インコーポレイテッド | 液体デシカント空調システム後付けのための方法及びシステム |
| KR102223241B1 (ko) | 2013-06-12 | 2021-03-05 | 7에이씨 테크놀로지스, 아이엔씨. | 천장형 액체 흡습제 공조 시스템 |
| JP6674382B2 (ja) | 2014-03-20 | 2020-04-01 | 7エーシー テクノロジーズ,インコーポレイテッド | 屋上型液体乾燥剤システム及び方法 |
| EP3221648B1 (fr) | 2014-11-21 | 2020-01-08 | 7AC Technologies, Inc. | Système de climatisation à déshydratant liquide |
| AT518082B1 (de) * | 2016-03-31 | 2017-07-15 | Gerhard Kunze Dr | Klimatisierung durch Mehrphasen-Plattenwärmetauscher |
| WO2018211483A1 (fr) * | 2017-05-19 | 2018-11-22 | Vishal Singhal | Refroidissement d'air et d'autres gaz |
| EP3704415A4 (fr) | 2017-11-01 | 2021-11-03 | 7AC Technologies, Inc. | Système de réservoir pour système de conditionnement d'air à déshydratant liquide |
| US10921001B2 (en) | 2017-11-01 | 2021-02-16 | 7Ac Technologies, Inc. | Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems |
| US11022330B2 (en) | 2018-05-18 | 2021-06-01 | Emerson Climate Technologies, Inc. | Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture |
| EP3860754A4 (fr) | 2018-10-02 | 2022-06-15 | President and Fellows of Harvard College | Couche barrière hydrophobe pour systèmes de refroidissement par évaporation indirecte en céramique |
| KR102310820B1 (ko) * | 2020-04-21 | 2021-10-08 | 한국생산기술연구원 | 간접증발 냉방기 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030033821A1 (en) * | 2001-08-20 | 2003-02-20 | Valeriy Maisotsenko | Method of evaporative cooling of a fluid and apparatus therefor |
| US20030126876A1 (en) * | 2000-02-07 | 2003-07-10 | Valeriy Maisotsenko | Method and apparatus for dew point evaporative product cooling |
| US20030209017A1 (en) * | 2000-09-27 | 2003-11-13 | Valeriy Maisotsenko | Method and plate apparatus for dew point evaporative cooler |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4594855A (en) * | 1985-04-24 | 1986-06-17 | Arnold Gunther | Process and apparatus for ventilation with heat exchange |
| RU1778453C (ru) * | 1987-05-12 | 1992-11-30 | Одесский Инженерно-Строительный Институт | Способ обработки воздуха в помещении |
| US5187946A (en) * | 1991-09-24 | 1993-02-23 | Yefim Rotenberg | Apparatus & Method for indirect evaporative cooling of a fluid |
| US5315843A (en) * | 1992-08-13 | 1994-05-31 | Acma Limited | Evaporative air conditioner unit |
| US6523604B1 (en) * | 1998-11-06 | 2003-02-25 | Barry R. Brooks | Indirect evaporative cooling apparatus |
| EP1257349B1 (fr) * | 2000-02-23 | 2008-08-13 | Schlom, Leslie | Echangeur thermique de refroidissement ou d'un prerefroidisseur pour le conditionnement d'air d'admission d'une turbine |
| US6497107B2 (en) * | 2000-07-27 | 2002-12-24 | Idalex Technologies, Inc. | Method and apparatus of indirect-evaporation cooling |
| PT1334325E (pt) * | 2000-09-27 | 2009-05-05 | Idalex Technologies Inc | Método e aparelho de placas para um refrigerador evaporativo de ponto de orvalho |
| US6931883B2 (en) * | 2003-12-18 | 2005-08-23 | Davis Energy Group, Inc. | Two stage indirect evaporative cooling system |
-
2005
- 2005-03-16 US US11/081,397 patent/US20050210907A1/en not_active Abandoned
- 2005-03-16 WO PCT/US2005/008669 patent/WO2005090870A1/fr not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030126876A1 (en) * | 2000-02-07 | 2003-07-10 | Valeriy Maisotsenko | Method and apparatus for dew point evaporative product cooling |
| US20030209017A1 (en) * | 2000-09-27 | 2003-11-13 | Valeriy Maisotsenko | Method and plate apparatus for dew point evaporative cooler |
| US20030033821A1 (en) * | 2001-08-20 | 2003-02-20 | Valeriy Maisotsenko | Method of evaporative cooling of a fluid and apparatus therefor |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106595355A (zh) * | 2016-12-08 | 2017-04-26 | 澳蓝(福建)实业有限公司 | 一种间接蒸发冷却器 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20050210907A1 (en) | 2005-09-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2005090870A1 (fr) | Refroidissement indirect par evaporation d'un gaz au moyen d'un produit commun et d'un gaz de travail a contre-courant partiel | |
| CN101636630B (zh) | 高效率热交换器和除湿器 | |
| US5187946A (en) | Apparatus & Method for indirect evaporative cooling of a fluid | |
| EP0861403B1 (fr) | Echangeur thermique air-air a ecoulement transversal de type a plaques, a refroidissement a double passage | |
| RU2423656C2 (ru) | Устройство испарительного охлаждения | |
| EP0723644B1 (fr) | Humidificateur, procede pour humidifier de l'air et procede de refroidissement de l'air dans un refroidisseur a evaporation | |
| CN101102888B (zh) | 改进蒸发式热交换器的方法和材料 | |
| KR20180129858A (ko) | 다상 판형 열교환기에 의한 공조 | |
| CN104081148B (zh) | 热交换基体 | |
| US9389025B2 (en) | Heat and mass exchangers having extruded plates | |
| US20090178426A1 (en) | Evaporative heat exchanger for cooling a refrigerant | |
| AU2005215644B2 (en) | Plate heat and mass exchanger with edge extension | |
| WO2010011687A2 (fr) | Matériaux et techniques de fabrication pour échangeurs thermiques à plaques et échangeurs de masse pour refroidisseurs à évaporation indirecte | |
| JP2007181812A (ja) | 気体乾燥システム | |
| US10247483B2 (en) | Evaporative cooling device | |
| WO2007082901A1 (fr) | Echangeur de chaleur a ailettes | |
| US11378289B2 (en) | Energy exchange apparatus for sensible and latent heat | |
| JP7552103B2 (ja) | 気化式熱交換器 | |
| JP7516923B2 (ja) | 気化式熱交換器 | |
| AU696886B2 (en) | Intensification of evaporation and heat transfer | |
| JP2009524792A (ja) | 蒸発冷却装置 | |
| AU2010201392A1 (en) | Method and Means for Operating Evaporative Coolers | |
| MXPA06009404A (en) | Plate heat and mass exchanger with edge extension |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
| 122 | Ep: pct application non-entry in european phase |