WO2005065814A1 - Modified molecular arrays - Google Patents
Modified molecular arrays Download PDFInfo
- Publication number
- WO2005065814A1 WO2005065814A1 PCT/GB2005/000033 GB2005000033W WO2005065814A1 WO 2005065814 A1 WO2005065814 A1 WO 2005065814A1 GB 2005000033 W GB2005000033 W GB 2005000033W WO 2005065814 A1 WO2005065814 A1 WO 2005065814A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogel
- molecules
- array
- polynucleotides
- arrays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/36—Amides or imides
- C08F222/38—Amides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/04—Libraries containing only organic compounds
- C40B40/06—Libraries containing nucleotides or polynucleotides, or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B50/00—Methods of creating libraries, e.g. combinatorial synthesis
- C40B50/14—Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
- C40B50/18—Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support using a particular method of attachment to the solid support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00351—Means for dispensing and evacuation of reagents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
- B01J2219/00527—Sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
- B01J2219/00527—Sheets
- B01J2219/00529—DNA chips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00585—Parallel processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00596—Solid-phase processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00608—DNA chips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/0061—The surface being organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00612—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00614—Delimitation of the attachment areas
- B01J2219/00617—Delimitation of the attachment areas by chemical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00623—Immobilisation or binding
- B01J2219/00626—Covalent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00632—Introduction of reactive groups to the surface
- B01J2219/00637—Introduction of reactive groups to the surface by coating it with another layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00639—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00639—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
- B01J2219/00641—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium the porous medium being continuous, e.g. porous oxide substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00709—Type of synthesis
- B01J2219/00716—Heat activated synthesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00722—Nucleotides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
Definitions
- This invention relates to the construction of arrays of molecules.
- the invention relates to the preparation of a hydrogel surface useful in the formation and manipulation of arrays of molecules, particularly polynucleotides and to the chemical modification of these and other arrays .
- nucleic acids such as DNA and RNA
- other large biological molecules such as proteins
- technologies used for sequence analysis and the study of hybridisation events have benefited from developing technologies used for sequence analysis and the study of hybridisation events.
- An example of the technologies that have improved the study of nucleic acids is the development of fabricated arrays of immobilised nucleic acids. These arrays typically consist of a high-density matrix of polynucleotides immobilised onto a solid support material. Fodor et al .
- nucleic acid arrays using a chemically sensitised glass surface protected by a mask, but exposed at defined areas to allow attachment of suitably modified nucleotides.
- these arrays may be described as "many molecule" arrays, as distinct regions are formed on the solid support comprising a high density of one specific type of polynucleotide .
- An alternative approach is described by Schena et al . , Science (1995) 270:467-470, where samples of DNA are positioned at predetermined sites on a glass microscope slide by robotic micropipetting techniques.
- arrays of this type are disclosed in O00/06770.
- the advantage of these arrays is that reactions can be monitored at the single molecule level and information on large numbers of single molecules can be collated from a single reaction.
- these arrays offer particular advantages in sequencing experiments, the preparation of arrays at the single molecule level is more difficult than at the multi- molecule level, where losses of target polynucleotide can be tolerated due to the multiplicity of the array.
- silica-based substrates such as glass or plastics or metals
- underpins modern microarray and biosensor technologies employed for genotyping, gene expression analysis and biological detection.
- the attachment chemistry is designed around the support.
- silanes e.g. functionalised silanes such as chloro- or alkoxy-silanes
- thiols are often used to modify the surface of gold.
- a potential problem here is that the agents used to modify one surface are often unsuitable for modifying the surface of another support.
- thiols cannot be used to modify glass, nor can silanes be used to modify gold.
- Silica-based substrates such as silica or glass are often employed as supports on which molecular arrays are constructed. It would be desirable to be able to use chemistry useful in modifying such supports with other supports .
- the support surface Prior to the construction of any silica-based solid- supported arrays, the support surface is generally thoroughly cleaned. With silica-based substrates, the resultant cleaned surface possesses hydroxyl groups which are either neutral and/or deprotonated and thus negatively charged. As a result there is a degree of resistance to non-specific binding of nucleotides used in sequencing experiments. Either the neutral hydroxyl groups do not attract the negatively charged nucleotides, or the deprotonated groups' negative charge serves to repel the nucleotides.
- the effect of the surface towards the non-specific, and undesired, binding of nucleotides is not high and it is desirable to lessen the extent of nonspecific binding in sequencing experiments. This serves to reduce background "noise” during the detection of each individual nucleotide in each step in sequencing experiments.
- Another way in which polynucleotides (and other molecules) have been displayed previously on the surface of solid support is through the use of hydrogels.
- Molecular arrays e.g. microarrays, of molecules, particularly polynucleotides, are of use in techniques including nucleic acid amplification and sequencing methods. In preparing hydrogel-based solid-supported molecular arrays, a hydrogel is formed and molecules displayed from it.
- hydrogel formation of the hydrogel and construction of the array - may be effected sequentially or simultaneously.
- the hydrogel is formed prior to formation of the array, it is typically produced by allowing a mixture of comonomers to polymerise.
- the mixture of comonomers contain acrylamide and one or more comonomers, the latter of which permit, in part, subsequent immobilisation of molecules of interest so as to form the molecular array.
- the comonomers used to create the hydrogel typically contain a functionality that serves to participate in crosslinking of the hydrogel and/or immobilise the hydrogel to the solid support and facilitate association with the target molecules of interest .
- polyacrylamide hydrogels are produced as thin sheets upon polymerisation of aqueous solutions of acrylamide solution.
- a multiply unsaturated (polyunsaturated) crosslinking agent such as Jbisacrylamide
- Jbisacrylamide is generally present; the ratio of acrylamide to bisacrylamide is generally about 19:1.
- Such casting methods are well known in the art (see for example Sambrook et al . , 2001, Molecular Cloning, A Labora tory Manual , 3rd Ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory Press, NY) and need not be discussed in detail here .
- the use of polyelectrolyte multilayers the use of polyelectrolyte multilayers
- PEMs has been reported (E. P. Kartov et al . , Biotechniques (March 2003) , 34 : 505-510; and I . Braslavsky et al . , Proct Nat . Acad . Sci (1 April 2003) , 100 (7) , 3960-3964) to allow sequencing experiments to be conducted in which fluorescently labelled molecules are incorporated into DNA strands and then identified by fluorescence microscopy.
- a mixture of comonomers comprising at least one hydrophilic monomer and a functionalised comonomer (functionalised to the extent that the monomer once incorporated into the polymer is capable of binding the molecule of interest to the surface of the hydrogel) may be polymerised so as to form a hydrogel capable of being immobilised on a solid supported, preferably a silica-based, substrate.
- the invention provides a method of preparing a hydrogel immobilised to a solid support comprising polymerising on said support a mixture of : (i) a first comonomer which is acrylamide, methacrylamide, hydroxyethyl methacrylate or N-vinyl pyrrolidinone; and (ii) a second comonomer which is a functionalised acrylamide or acrylate of formula (I) :
- the invention provides a solid-supported hydrogel obtainable according to the method of the first invention.
- the invention provides a method of preparing a solid-supported hydrogel-based molecular array by attaching one or more molecules of interest to reactive sites present in the solid-supported hydrogel according to the invention.
- the invention provides a method of preparing a solid-supported hydrogel-based molecular array which is a clustered array by attaching oligonucleotide primers to reactive sites present in the solid-supported hydrogel and performing nucleic acid amplification of a template using the bound primers.
- the invention provides a solid-supported hydrogel -based molecular array obtainable according to the third aspect of the invention.
- the invention provides the use of a molecular array according to the fourth aspect of the invention in any method of analysis which requires interrogation of the molecules of interest or molecules bound thereto.
- the use of solid-supported hydrogel arrays in single molecule array applications has not been conducted previously.
- A is NR or 0, wherein R is hydrogen or an optionally substituted saturated hydrocarbyl group comprising 1 to 5 carbon atoms ;
- the invention also provides the use of, and methods of using, arrays, preferably single molecule arrays according to invention, in the interrogation of the molecules in said array.
- arrays preferably single molecule arrays according to invention.
- hydrogels are used to construct arrays, such as microarrays, and preferably clustered arrays or SMAs, to be used in sequencing reactions.
- arrays such as microarrays, and preferably clustered arrays or SMAs
- the hydrogels of this invention have functionality used in forming, or reacting with, the molecules which are arrayed. Consequentially, these hydrogels suffer too, albeit to a more limited extent than prior art hydrogels supported upon a functionally modified support, from a degree of aspecific nucleotide binding during sequencing.
- the solid-supported hydrogel -based molecular arrays of the invention may be still further improved by effecting certain modifications to these arrays after their formation but before initiation of any manipulation of, e.g. interrogation of, the molecules in the array.
- These arrays are of even greater advantageousness in, for example, polynucleotide sequencing reactions because the surfaces of the arrays may be rendered more passive, and thus less reactive, towards molecules such as optionally labelled nucleotides.
- the method according to the third aspect of the invention preferably contains the additional step of applying to the array so produced polyelectrolyte or neutral polymers.
- This improvement is of corresponding benefit to the other aspects of the invention directed to the arrays themselves, and the uses, and methods of using, such arrays.
- the improvement to the solid-supported hydrogel-based molecular arrays, and uses of the arrays, of the invention is of general utility in the preparation and use of molecular arrays. It will be appreciated from the foregoing discussion that, in the preparation of arrays of molecules to date, particularly in the preparation of arrays of polynucleotides, these have invariably been assembled by initial preparation of the support, whether this be achieved by modification of a silica-based substrate, or formation of a PEM on a glass substrate, or formation of a hydrogel on glass or other solid supports.
- the invention provides a method of modifying a molecular array, which molecular array comprises a plurality of molecules of interest, preferably biomolecules, immobilised to a surface of a support, said method comprising the step of applying to the array polyelectrolyte or neutral polymers.
- the invention provides a molecular array obtainable according to the immediately preceding aspect of the invention.
- the invention provides the use of a molecular array according to the immediately preceding aspect of the invention in any method of analysis which requires interrogation of the immobilised biomolecules, or of molecules bound thereto.
- the present invention will now be further described. In the following passages different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
- FIG. 1 Figure 1 shows images which show the detection of fluorescence from oligonucleotides immobilised on substrates both according to and not according to the invention, in accordance with Example 11. The improved binding of phosphorothioate-terminated DNA (PS-DNA) over hydroxyl -terminated DNA may be seen;
- FIG. 2 Figure 2 shows the relative levels of positive signal due to PS-DNA binding versus negative noise from OH- DNA binding resultant from coupling of 1 ⁇ M PS-DNA and 1 ⁇ M OH-DNA to plastic and fused silica (SPECTRASIL ® glass) detected on the surfaces whose preparation is described in Example 10;
- PS-DNA phosphorothioate-terminated DNA
- SPECTRASIL ® glass fused silica
- Figure 3 shows the apparent stability of the specifically adsorbed PS-DNA (in 50 mM phosphate buffer (pH7, 65°C) ) for various plastics materials is approximately the same as that for SPECTRASILTM glass;
- FIG. 4 Figure 4 shows images of the detection of fluorescence from oligonucleotides immobilised on substrates both according to and not according to the invention, in accordance with Example 13. The improved binding of phosphorothioate-terminated DNA (PS-DNA) over hydroxyl - terminated DNA may be seen.
- Fig. 5 Figure 5 is a schematic illustration of a prior art method of solid-phase amplification in which a mixture of oligonucleotide primers and template strands are simultaneously grafted onto a solid support.
- Fig. 6 Figure 6 is a schematic illustration of a method of solid-phase amplification according to the invention in which oligonucleotide primers are first grafted onto a solid support and then hybridised to template strands .
- FIG. 7 Figure 7 illustrates the use of spacer nucleotides to improve efficiency of hybridisation between an immobilised polynucleotide primer and a labelled target, according to Example 14.
- FIG. 8 Figure 8 shows the results of hybridisation experiments carried out in microtiter plates between various concentrations of immobilised primers - with and without spacer nucleotides - and target oligonucleotides labelled with Texas red (TXR) .
- TXR Texas red
- FIG 8 (a) the identity of the immobilised primer is indicated along the top of the plate. Templates were added in groups of four wells, as shown in the key. Hybridisation was carried out in two different buffers - a PCR buffer (PCR) and 5xSSC (SSC) .
- PCR PCR buffer
- SSC 5xSSC
- Figure 10 illustrates experimental set-up and results of hybridisation experiments using various immobilised oligonucleotide primers, with and without spacer nucleotides, and complementary labelled target oligonucleotides .
- FIG. 11 Figure 11 graphically represents the results of typical hybridisation experiments according to Figure 13 and Example 14.
- FIG. 12 Figure 12 illustrates the results of hybridisation experiments using immobilised oligonucleotide primers containing varying numbers of spacer nucleotides and complementary labelled target oligonucleotides.
- Figure 12(a) shows experimental set-up and results.
- Figure 12(b) provides a graphical representation of the results of typical hybridisation experiments.
- the invention as described and claimed herein, provides an improved method for displaying molecules of interest, and particularly biomolecules (biological molecules) such as polynucleotides and proteins (preferably polynucleotides) displayed on the surface of a solid support, preferably a solid-supported hydrogel.
- the solid upon which the hydrogel is supported is not limited to a particular matrix or substrate. Indeed, this is one of the advantages of the invention: the same chemistry used to modify silica-based substrates can be applied to other solid supports and allows the solid support to be adapted to suit any particular application to which it is desired to be put rather than being constrained by the surface chemistry it is possible to perform on any given support.
- Solids which may be of use in the practise of this invention thus include silica-based substrates, such as glass, fused silica and other silica-containing materials; they may also be silicone hydrides or plastic materials such as polyethylene, polystyrene, poly (vinyl chloride), polypropylene, nylons, polyesters, polycarbonates and poly (methyl methacrylate).
- Preferred plastics material are poly (methyl methacrylate), polystyrene and cyclic olefin polymer substrates.
- other solid supports may be used such as gold, titanium dioxide, or silicon supports.
- the support is a silica-based material or plastics material such as discussed herein.
- Advantages in using plastics-based substrates in the preparation and use of molecular arrays include cost : the preparation of appropriate plastics-based substrates by, for example injection-moulding, is generally cheaper than the preparation, e.g. by etching and bonding, of silica-based substrates.
- the support is silica-based but the shape of the support employed may be varied in accordance with the application for which the invention is practiced. Generally, however, slides of support material, such as silica, e.g.
- fused silica are of particular utility in the preparation and subsequent interrogration of molecules.
- fused silica slides sold under the trade name SPECTRASILTM.
- SPECTRASILTM solid support
- the genesis of the invention is the recognition by the inventors that the surface of the support need not be covalently modified in order for a hydrogel to be immobilised thereto.
- the step of covalent surface modification may be omitted when the comonomer mixture described and claimed herein is used to produce a hydrogel . If it is desired to display molecules of interest, e.g.
- biomolecules these may be any biological molecule which it is desired to analyse.
- polypeptides or proteins including enzymes
- polynucleotides are particularly preferred.
- polynucleotide refers to nucleic acids in general, including DNA (e.g. genomic DNA cDNA) , RNA (e.g. mRNA), synthetic oligonucleotides and synthetic nucleic acid analogs.
- Polynucleotides may include natural or non-natural bases, or combinations thereof and natural or non-natural backbone linkages, e.g. phosphorothioates, PNA or 2 ' -O-methyl-RNA, or combinations thereof.
- the solid-supported hydrogels of the invention are useful for the presentation of many different types of molecules, the hydrogels are of particular use in the formation of arrays of polynucleotides and their subsequent analysis. For this reason, the majority of the subsequent discussion will focus upon the utility of the supported hydrogels of the invention in the preparation of polynucleotide arrays (both single molecule arrays and microarrays, such as clustered arrays formed by nucleic acid amplification) although it is to be understood that such applications in no way limit the invention. Moreover, since silica-based supports are typically used to support hydrogels and hydrogel arrays, the subsequent discussion will focus on the use of silica-based supports.
- WO00/31148 discloses polyacrylamide hydrogels and polyacrylamide hydrogel-based arrays in which a so-called polyacrylamide prepolymer is formed, preferably from acrylamide and an acrylic acid or an acrylic acid derivative containing a vinyl group. Crosslinking of the prepolymer may then be effected.
- the hydrogels so produced are solid- supported, preferably on glass. Functionalisation of the solid- supported hydrogel may also be effected.
- WO01/01143 describes technology similar to WO00/31148 but differing in that the hydrogel bears functionality capable of participating in a [2+2] photocycloaddition reaction with a biomolecule so as to form immobilised arrays of such biomolecules.
- Dimethylmaleimide (DMI) is a particularly preferred functionality.
- the use of [2+2] photocycloaddition reactions, in the context of polyacrylamide-based microarray technology is also described in WO02/12566 and WO03/014392.
- US Patent No. 6,465,178 discloses the use of reagent compositions in providing activated slides for use in preparing microarrays of nucleic acids; the reagent compositions include acrylamide copolymers .
- the activated slides are stated to be particularly well suited to replace conventional (e.g. silylated) glass slides in the preparation of microarrays.
- WO00/53812 discloses the preparation of polyacrylamide- based hydrogel arrays of DNA and the use of these arrays in replica amplification. None of the prior art described herein discloses the preparation of a solid-supported hydrogel wherein the solid support is not covalently modified. Once hydrogels have been formed, molecules may then be attached to them so as to produce molecular arrays, if desired. Attachment has been effected in different ways in the prior art. For example, US Patent No.
- 6,372,813 teaches immobilisation of polynucleotides bearing dimethylmaleimide groups to the hydrogels produced which bear dimethylmaleimide groups by conducting a [2+2] photocycloaddition step between two dimethylmaleimide groups - one attached to the polynucleotide to be immobilised and one pendant from the hydrogel .
- the hydrogel may be modified chemically after it is produced. Problems with this approach include an overall low efficiency in the preparation of the array and the low stability relating to the attachment chemistry, particularly upon exposure to high temperatures, ionic solutions and multiple wash steps.
- a more common alternative is to effect polymerisation with a comonomer having a functionality primed or pre- activated to react with the molecules to be arrayed.
- Alternatives to initial formation of hydrogels followed by subsequent arraying of molecules thereto have been described in the prior art where the array is formed at the same time as the hydrogel is produced. This may be effected by, for example, direct copolymerisation of acrylamide- derivatized polynucleotides.
- An example of this approach is described in WO01/62982 in which acrylamide-derivatized polynucleotides are mixed with solutions of acrylamide and polymerisation is effected directly.
- the hydrogel is generated simultaneously with the array by introduction of appropriate comonomers bearing the molecules of interest, suffer from problems including damage to the molecules of interest during polymerisation.
- a variety of solid supports have been used in the prior art to generate hydrogel-based solid-supported molecular arrays. These include those supports discussed earlier.
- the preferred solid support comprises a silica- based substrate. Examples of silica-based substrates include fused silica and glass.
- the silica is chemically modified in some way so as to attach covalently a chemically reactive group capable of reacting with either the hydrogel or a partially formed hydrogel (e.g.
- the surface-activating agent is typically an organosilicon (organosilane) compound. Most commonly, it is ⁇ -methacryloxypropyltrimethoxysilane, known as "Bind Silane” or “Crosslink Silane” and commercially available from Pharmacia, although other silicon-based surface-activating agents are also known, such as monoethoxydimethylsilylbutanal , 3 -mercaptopropyl- trimethoxysilane and 3-aminopropyltrimethoxysilane (all available from Aldrich) .
- pendant functional groups such as amine groups, sulfhydryl groups, aldehydo groups or polymerisable groups (e.g. olefins) may be attached to the silica.
- the invention is particularly useful when the solid support used is silica-based since the silca-based support need not be covalently modified by its preactivation with a silylating agent as described above in order to immobilise the hydrogel thereto.
- the polymers described herein may still be (in certain aspects of the invention) attached to silica-based supports which have been surface-activated, e.g.
- organosilane molecule as described above; the full advantages of the invention will, however, not be obtained in this way. They may also be, of course, attached to the other solid supports disclosed herein, in particular plastics such as poly (methyl methacrylate) and polyolefins. Such plastics are readily available commercially, e.g. from Arnic, Corning, Zeon Chemical Ltd and others.
- plastics such as poly (methyl methacrylate) and polyolefins.
- Such plastics are readily available commercially, e.g. from Arnic, Corning, Zeon Chemical Ltd and others.
- the surface-modification of silica-based solid supports by means other than covalent attachment of an organosilicon moiety is not excluded from the scope of this invention. Preferably, however, no activation of the silica - by covalent modification of a surface thereof or by any other means - is effected prior to effecting polymerisation thereon.
- Silica-based supports may be also cleaned by contact with a detergent, solution (e.g. Decon 90). These various cleaning steps may be conducted individually or in combination, e.g. sequentially. Drying may be effected, for example, by heating of silica slides at temperatures of from 40°C to 200°C, preferably 80°C to 150°C for between 5 minutes to 24 hours, preferably at temperatures of around 120°C, and preferably for 1 to 2 hours.
- the cleaning and drying steps described above will be and are understood by those skilled in the art not to constitute any form of covalent surface modification (and in particular no form of covalent surface modification in which an organosilicon (organosilane) moiety is attached) . Such steps serve to effect removal of surface contamination (e.g.
- silica-based materials will generally be conducted prior to use of silica-based materials in most scientific applications. Heating of glass to very high temperatures (e.g. 1000°C or higher or even 300°C or higher) or by contact with materials known to dissolve, or etch glass (such as hydrofluoric acid) , whilst unlikely to be conducted in the cleaning of sil-ica-based substrates in advance of practice of this invention, is not to be considered as constituting a form of surface modification.
- substrates that are not silica-based other cleaning techniques may be appropriate, as will be apparent to those skilled in the art.
- plastic substrates may be cleaned by contact with (e.g.
- a polyunsaturated crosslinking agent such as .foisacrylamide or pentaerythritol tetraacrylate
- the mixture to be polymerised does not comprise such a polyunsaturated crosslinking agent and that the monomers to be polymerised consist essentially of those defined in claim 1 (i.e. no polyunsaturated crosslinking monomer is included in the mixture) .
- the monomers to be polymerised consist essentially of those defined in claim 1 (i.e. no polyunsaturated crosslinking monomer is included in the mixture) .
- only one compound of formulae (I) or (II) will be used.
- Biradical A may be oxygen or N(R) wherein R is hydrogen or a C ⁇ - 5 alkyl group.
- R is hydrogen or methyl, particularly hydrogen.
- R is a C ⁇ - 5 alkyl group, this may contain one or more, e.g. one to three substituents.
- the alkyl group is unsubstituted.
- Biradical B is a predominantly hydrophobic linking moiety, connecting A to C and may be an alkylene biradical of formula -(CH 2 ) n -, wherein n is from 1 to 50.
- n is 2 or more, e.g. 3 or more.
- n is 2 to 25, particularly 2 to 15, more particularly 4 to 12, for example 5 to 10.
- one or more biradicals -CH 2 CH 2 - (-ethylene-) may be replaced with ethenylene or ethynylene biradicals.
- the biradical B does not contain such unsaturation.
- one or more methylene radicals -CH 2 - in B may be replaced with a mono- or polycyclic biradical which preferably comprises 5 to 10 carbon atoms e.g. 5 or 6 carbon atoms.
- cyclic biradicals may be, for example, 1,4-, 1,3- or 1, 2-cyclohexyl biradicals.
- Bicylic radicals such as napthyl or decahydronaphthyl may also be employed.
- cyclic biradicals to those homocyclic biradicals may also be employed, for example pyridyl, piperidinyl , quinolinyl and decahydroquinolinyl .
- -B- is thus not particularly restricted.
- -B- is a simple, unsubstituted, unsaturated alkylene biradical such as a C 3 -C 10 alkylene group, optimally C 5 -C 8 , such as n- pentylene: - (CH 2 ) 5 - .
- substituents may be selected from the group comprising hydroxyl, halo (i.e. bromo, chloro, fluoro or iodo) , carboxyl, aldehydo, amine and the like.
- the biradical -B- is preferably unsubstituted or substituted by fewer than 10, preferably fewer than 5, e.g. by 1, 2 or 3 such substituents.
- Group C serves to permit attachment of molecules of interest after formation of the hydrogel . The nature of Group C is thus essentially unlimited provided that it contains a functionality allowing reaction between the hydrogel and molecules of interest.
- such a functionality will not require modification prior to reaction with the molecule of interest and thus the C group is ready for direct reaction upon formation of the hydrogel.
- a functionality is a hydroxyl, thiol, amine, acid (e.g. carboxylic acid), ester and haloacetamido, haloacetamido and in particular bromoacetamido being particularly preferred.
- Other appropriate C groups will be evident to those skilled in the art and include groups comprising a single carbon-carbon double bond which is either terminal (i.e. where a C group has an extremity terminating in a carbon-carbon double bond) or where the carbon-carbon double bond is not at a terminal extremity.
- C group comprises a carbon-carbon double bond
- the C moiety may thus comprise, for example, a dimethylmaleimide moiety as disclosed in US 6,372,813, WO01/01143, WO02/12566 and WO03/014394.
- the (meth) acrylamide or (meth) acrylate of formula (I) or (II) which is copolymerised with acrylamide, methacrylamide, hydroxyethyl methacrylate or N-vinyl pyrrolidinone is preferably an acrylamide or acrylate, i.e. of formula (I) . More preferably it is an acrylamide and still more preferably it is an acrylamide in which A is NH.
- Control of the proportion of monomer of formula (I) or (II) to that of the first comonomer allows adjustment of the physical properties of the hydrogel obtained on polymerisation.
- the comonomer of formula (I) or (II) is present in an amount of ⁇ l mol%, preferably ⁇ 2 mol% (relative to the total molar quantity of comonomers) in order for the hydrogel to have optimum thermal and chemical stability under conditions typically encountered during the preparation, and subsequent manipulation, of the molecular arrays produced from the hydrogels.
- the amount of comonomer of formula (I) or (II) is less than or equal to about 5 mol%, more preferably less than or equal to about 4 mol%.
- Typical amounts of comonomer of formula (I) or (II) used are 1.5-3.5 mol%, exemplified herein by about 2% and about 3%.
- the amounts of acrylamide or methacrylamide from which the hydrogels are primarily constructed are those typically used to form hydrogels, e.g. about 1 to about 10% w/v, preferably less than 5 or 6% w/v, e.g. about 1 to about 2% w/v.
- acrylamide or methacrylamide may be dissolved in water and mixed with a solution of a comonomer of formula (I) or (II) .
- a comonomer of formula (I) or (II) may be conveniently dissolved in a water-miscible solvent, such as dimethylformamide (DMF) , or water itself.
- DMF dimethylformamide
- the most appropriate solvent may be selected by the skilled person and shall depend upon the structure of the comonomer of formula (I) or (II) .
- the methods by which the monomers of formula (I) or (II) are synthesised will be evident to those skilled in the art.
- the hydrogels according to this invention are of particular utility in the preparation of arrays of molecules, particularly single molecule arrays (SMAs) or clustered arrays and in particular SMAs or clustered arrays of polynucleotides. It is noted above that it is a surprising feature of relevant aspects this invention that it is possible to omit the inclusion of a polyunsaturated crosslinking agent.
- crosslinking agent is omitted, as is preferable, it is possible to make thinner hydrogels than have been achievable heretofore.
- omission of such crosslinking agents allows preparation of hydrogels having thicknesses of less than about 100 nm, for example less than 75 nm; the hydrogels may be less than about 50 nm thick.
- Such hydrogels are of particular use where they are used to generate arrays, in particular single molecule arrays or clustered arrays, particularly of nucleotides, and in the interrogation of such arrays wherein fluorescently labelled nucleotides are incorporated into a nascent polynucleotide and then detected. Such techniques are described in greater detail hereinafter.
- the invention allows the avoidance of the covalent chemical modification (especially with silicon-containing agents) of the silica-based substrate in order for the hydrogels produced on the support be immobilised thereto.
- immobilisation of a hydrogel on a support is meant that the supported hydrogels are associated with the support in such a way so as to remain as a layer upon the support under conditions encountered during preparing and manipulating (e.g. interrogating) molecular arrays.
- a further advantage of the supported hydrogels of the invention is avoidance of the need for chemical modification of the hydrogel (i.e. post polymerisation) in order to attach of molecules of interest.
- appropriately functionalised molecules may be attached directly to the hydrogel .
- a further advantage is the passivity, i.e. the essential lack of reactivity, of the surface of the hydrogel towards non-specific adherence of molecules (e.g.
- the solid-supported hydrogel-based molecular arrays of the invention may be treated with polyelectrolyte or neutral polymers to afford arrays, preferably SMAs or clustered arrays, particularly SMAs or clustered arrays of polynucleotides, the surfaces of which have enhanced passivity towards, for example, aspecific binding with nucleotides (e.g. labelled nucleotides) used in sequencing and other interrogative methods of using the arrays.
- nucleotides e.g. labelled nucleotides
- the invention provides an improved method by which molecules of interest (preferably biomolecules such as those identified above) , preferably polynucleotides and proteins (especially preferably polynucleotides) may be displayed by modifying existing, i.e. preprepared, arrays of molecules.
- molecules of interest preferably biomolecules such as those identified above
- polynucleotides and proteins especially preferably polynucleotides
- the nature of the molecular array treated according to the method of the invention is not of any particular importance. This notwithstanding, it is preferred that the arrays treated are in accordance with the fourth aspect of this invention.
- biomolecules arrayed or the eans by which they are arrayed, is of lesser importance than the requirement for the modification step whereby the array is treated with polyelectrolyte or neutral polymers.
- molecular arrays preferably SMAs or clustered arrays, most preferably SMAs or clustered arrays of polynucleotides, in sequence determination methods, the preceding discussion has focussed, and subsequent discussion shall focus, on this utility of the invention although it is to be understood that the invention is not to be considered to be so limited.
- SMAs and clustered arrays are particularly advantageous .
- the term "single molecule array” or "SMA" as used herein refers to a population of polynucleotide molecules, distributed (or arrayed) over a solid support, wherein the spacing of any individual polynucleotide from all others of the population is such that it is possible to effect individual resolution, or interrogation, of the polynucleotides.
- the target nucleic acid molecules immobilised onto the surface of the solid support should thus be capable of being resolved by optical means.
- each molecule is individually resolvable and detectable as a single molecule fluorescent point, and fluorescence from said single molecule fluorescent point also exhibits single step photobleaching.
- Clusters of substantially identical molecules do not exhibit single point photobleaching under standard operating conditions used to detect/analyze molecules on arrays.
- the intensity of a single molecule fluorescence spot is constant for an anticipated period of time after which it disappears in a single step.
- the intensity of a fluorescence spot comprised of two or more molecules, for example, disappears in two or more distinct and observable steps, as appropriate.
- the intensity of a fluorescence spot arising from a cluster consisting of thousands of similar molecules, such as those present on the arrays consisting of thousands of similar molecules at any given point, for example, would disappear in a pattern consistent with an exponential decay.
- the exponential decay pattern reflects the progressive loss of fluorescence by molecules present in the cluster and reveals that, over time, fewer and fewer molecules in the spot retain their fluorescence.
- clustered array refers to an array wherein distinct regions or sites on the array comprise multiple polynucleotide molecules that are not individually resolvable by optical means. Depending on how the array is formed each region or site on the array may comprise multiple copies of one individual polynucleotide molecule or even multiple copies of a small number of different polynucleotide molecules (e.g. multiple copies of two complementary nucleic acid strands) .
- the term “clustered array” refers to an array produced by solid-phase amplification of a target or template polynucleotide, wherein amplified copies of the target or template become covalently bound to the solid support during amplification.
- Clustered arrays of nucleic acid molecules may be produced using techniques generally known in the art.
- WO 98/44151 and WO 00/18957 both describe methods of nucleic acid amplification which allow amplification products to be immobilised on a solid support in order to form arrays comprised of clusters or "colonies" of immobilised nucleic acid molecules.
- a further method for the preparation of clustered arrays on a solid-support bound hydrogel is described in further detail below and in the accompanying examples. It will be appreciated that the arrays of the invention, in all aspects, may be arrays of clusters of molecules. Such arrays are a preferred embodiment of all aspects of the invention.
- the support for the molecular array which may be modified according to the invention is not limited to a particular matrix or substrate. Supports which may be of use in the practise of this invention are as described above. Some supports to which biomolecules, such as polynucleotides, are attached are silica-based supports themselves. In certain embodiments of the invention these may be covalently modified in some way so as to allow covalent attachment of either polynucleotides, or to immobilise a chemically reactive group hydrogel or a partially formed hydrogel (e.g. a prepolymer) .
- the surface- activating agent is typically an organosilicon (organosilane) compound such as those listed above.
- Arrays in which polynucleotides have been directly attached to silica-based supports are those for example disclosed in WO 97/04131, wherein hairpin polynucleotides are immobilised on a glass support by reaction between a pendant epoxide group on the glass with an internal amino group held within the loop.
- Zhao et al . disclose the formation of a hairpin polynucleotide which contains multiple phosphorothioate moieties in the loop. The moieties are used to anchor, in more than one position, the hairpin DNA to glass slides pre-activated with bromoacetamidopropylsilane .
- the sulfur-based nucleophile may be directly attached to the hairpin although it is preferably indirectly attached through a linker. Attachment is by way of an internal nucleotide within the hairpin, that is to say that the sulfur-based nucleophile is not connected directly or through a linker to a nucleotide at either terminus of the hairpin.
- arrays are those in which biomolecules, preferably polynucleotides, are attached to hydrogels supported upon silica-based or other solid supports. Silica-based supports are typically used to support hydrogels and hydrogel arrays as described in WO00/31148, WO01/01143, WO02/12566, WO03/014392, US Patent No.
- the solid supports for such hydrogels are preferably silica-based since the silca-based support need not be covalently modified by preactivation with a silylating agent as described above in order to immobilise the hydrogel thereto.
- Such hydrogels may still be attached to silica-based supports which have been surface- activated, e.g. with an organosilane molecule as described above .
- a further type of molecular array which may be treated according to this invention are PEM-supported molecular arrays of the type described by Braslavsky et al . ( infra) , and Kartlov et al . ( infra) .
- molecular array there are thus three main types of molecular array which may be treated according to this invention: (1) arrays directly supported onto silica-based - supports; (2) hydrogel -based molecular arrays; and (3) PEM-supported molecular arrays.
- hydrogel -based molecular arrays are most preferred, and in particular hydrogel -based arrays according to the fourth aspect of the invention primarily because of the simplicity with which these may be constructed. Whilst, such hydrogels are advantageous on account of the passivity of the surface, we have found that the surface treatment of this invention leads to still greater passivity, and thus utility in sequencing reactions and the like, of the resultant molecular arrays.
- the surface of an existing array of biomolecules is modified by treatment with a mixture comprising polyelectrolyte a mixture comprising neutral polymers, or a mixture comprising both polyelectrolytes and neutral polymers .
- Polyelectrolytes are large, generally polymeric, molecules containing a plurality of ionisable groups. Examples include polyallylamine (PAL) , commercially available as polyallylamine hydrochloride (PAL. HCl) , polyacrylic acid (PAA) , poly(styrene sulfonate) (PSS) and polyethyleneimine (PEI) .
- PAL polyallylamine
- PAA polyacrylic acid
- PSS poly(styrene sulfonate)
- PEI polyethyleneimine
- the degree to which they are ionised is dependent upon the pH of the medium in which they are present .
- a combination of more than one polyelectrolyte is particularly advantageous when modifying molecular arrays.
- the sequential application of PAL.HCl followed by PAA to be particularly preferred.
- the conditions under which the arrays may be treated include exposing them to solutions, or suspensions of polyelectrolyte or neutral polymer.
- these solutions or suspensions are aqueous.
- the pH of the solution or suspension is higher than 6 and less than 8.5, more preferably from 6.5 to 8, still more preferably from 6.5 to 7.5, more preferably approximately neutral, or about pH 7.
- neutral polymers e.g. polyethylene glycols, such as those commercially available, e.g. PEG 8000 available from Sigma, may be used.
- PEG 8000 commercially available
- both polyelectrolyte and neutral polymers may be used.
- the treatment of molecular arrays according to this invention shall generally, particularly in the case of planar arrays, serve to deposit layers of polyelectrolyte and/or polymers.
- these are preferably hairpin polynucleotides comprising a polynucleotide duplex which may be used to retain a primer and a target polynucleotide in spatial relationship.
- the target polynucleotide is present at the 5 ' end and the primer is present at the 3 ' end although hairpin polynucleotides where the primer is present at the 5' end and the target polynucleotide is present at the 3' end are also embraced by this invention.
- the term "interrogate” can refer to any interaction of a molecule on the array with any other chemical or molecule and may also refer to any analysis of a detectable signal from a molecule on the array or any other molecule which is bound thereto or associated therewith.
- “interrogation” encompasses a target polynucleotide on the array functioning as a template upon which DNA polymerase acts.
- "interrogating” can encompass contacting the target polynucleotides with another molecule, e.g., a polymerase, a nucleoside triphosphate, a complementary nucleic acid sequence, wherein the physical interaction provides information regarding a characteristic of the arrayed target polynucleotide.
- the contacting can involve covalent or non-covalent interactions with the other molecule.
- "information regarding a characteristic” means information about the identity or sequence of one or more nucleotides in the target polynucleotide, the length of the polynucleotide, the base composition of the polynucleotide, the T m of the polynucleotide, the presence of a specific binding site for a polypeptide, a complementary nucleic acid or other molecule, the presence of an adduct or modified nucleotide, or the three-dimensional structure of the polynucleotide.
- the spatial relationship between primer and target polynucleotide present in hairpin polynucleotides permits improved sequence analysis procedures to be conducted.
- a preferred method is to form a first molecule (which may contain a non-backbone sulfur-based nucleophile attached through a linker) capable of forming a hairpin structure, and ligate the target polynucleotide to this.
- any desired target polynucleotide may be ligated to the hairpin construct before or after arraying the hairpins on the solid support.
- a first polynucleotide may be ligated before arraying and a second ligated after arraying.
- a nucleophile preferably a sulfur-based nucleophile
- a target polynucleotide is a double-stranded DNA, this may be attached to the stem of the hairpin by ligating one strand to the hairpin polynucleotide and removing the other strand after the ligation.
- the target polynucleotide may be genomic DNA purified using conventional methods.
- the genomic DNA may be PCR- amplified or used directly to generate fragments of DNA using either restriction endonucleases, other suitable enzymes, a mechanical form of fragmentation or a non- enzymatic chemical fragmentation method.
- restriction endonucleases hairpin structures bearing a complementary restriction site at the end of the first hairpin may be used, and selective ligation of one strand of the DNA sample fragments may be achieved by one of two methods .
- Method 1 uses a hairpin containing a phosphorylated 5 ' end. Using this method, it may be necessary to first de- phosphorylate the restriction-cleaved genomic or other DNA fragments prior to ligation such that only one sample strand is covalently ligated to the hairpin.
- Method 2 in the design of the hairpin, a single (or more) base gap can be incorporated at the 3 ' end (the receded strand) such that upon ligation of the DNA fragments only one strand is covalently joined to the hairpin.
- the base gap can be formed by hybridising a further separate polynucleotide to the 5' -end of the first hairpin structure. On ligation, the DNA fragment has one strand joined to the 5 '-end of the first hairpin, and the other strand joined to the 3 ' -end of the further polynucleotide. The further polynucleotide (and the other stand of the fragment) may then be removed by disrupting hybridisation.
- the net result should be covalent ligation of only one strand of a DNA fragment of genomic or other DNA to the hairpin.
- ligation reactions may be carried out in solution at optimised concentrations based on conventional ligation chemistry, for example, carried out by DNA ligases or non-enzymatic chemical ligation.
- the ends can be filled in with Klenow fragment to generate blunt-ended fragments which may be blunt-end-ligated onto blunt-ended hairpins.
- the blunt-ended DNA fragments may be ligated to polynucleotide adapters which are designed to allow compatible ligation with the sticky-end hairpins, in the manner described hereinbefore.
- Polynucleotides may be bound directly to the "C" groups of hydrogels, if present, by, for example, immobilising them through a covalent bond between each polynucleotide (by way of a nucleophile, preferably sulfur-based nucleophile) and the "C" group.
- a nucleophile preferably sulfur-based nucleophile
- SMAs preferably SMAs
- the precise density of the arrays is not critical. For single molecule resolution, in fact, the higher the density of hairpin polynucleotide molecules arrayed the better since more information may be obtained from any one experiment.
- the density of sample molecules is at least 10 7 /cm 2 , typically it is approximately 10 8 -10 9 /cm 2 .
- Such "high density" arrays are in contrast to those arrays such as those so described in the prior art which are not necessarily as high or, e.g.
- arrays of -Fodor et al which comprise clusters of polynucleotides comprising a plurality of tightly packed polynucleotides that are resolvable at the level of the cluster, not at the level of the polynucleotides, are too high to allow single molecule resolution.
- arraying the polynucleotides at a density that they can be considered to be single molecules, i.e. each can be individually resolved a SMA is created.
- the terms "individually resolved” and “individual resolution” are used herein to specify that, when visualised, it is possible to distinguish one molecule on the array from its neighbouring molecules.
- Separation between individual molecules on the array will be determined, in part, by the particular technique used to resolve the individual molecules. It will usually be the target polynucleotide portion that is individually resolved, as it is this component which is intended to be interrogated, e.g. by the incorporation of detectable bases.
- Covalent bonding, where present, between the "C" groups in the hydrogel and polynucleotides may be effected by any convenient means.
- polynucleotides bearing sulfur-containing nucleophilic groups are used.
- sulfur nucleophile-containing polynucleotides are disclosed in Zhao et al (Nucleic Acids Research, 2001, 29(4), 955-959) and Pirrung et al (Langmuir, 2000, 16, 2185-2191) .
- the preferred class of sulfur-based nucleophiles pendant from the polynucleotides for reaction with the reactive groups on the hydrogels are not particularly restricted.
- the sulfur-based nucleophile may thus be a simple thiol ( ⁇ SH wherein ⁇ denotes the bond or linker connecting the thiol to the remainder of the polynucleotide) .
- sulfur-based nucleophiles include a moiety of the formula (III) :
- ⁇ denotes the bond or linker connecting the sulfur- based nucleophile to the remainder of the polynucleotide;
- X represents an oxygen atom, a sulfur atom or a group NR, in which R is hydrogen or an optionally substituted C ⁇ _ 10 alkyl;
- Y represents an oxygen or a sulfur atom; and
- Z represents an oxygen atom, a sulfur atom or an optionally substituted C ⁇ - ⁇ 0 alkyl group
- Preferred moieties of formula (III) are those in which X is oxygen or sulfur, preferably oxygen. Where X is a group NR, R is preferably hydrogen. Y is preferably oxygen.
- Z is preferably an oxygen or sulfur atom or a methyl group, particularly preferably an oxygen atom.
- the preferred sulfur-based nucleophile is thiophosphate although other sulfur-based nucleophiles described are also of utility, for example thiophosphoramidates .
- the sulfur-containing nucleophiles described herein are connected to the polynucleotide through a linker group.
- the linker may be a carbon-containing chain such as those of formula (CH 2 ) n wherein "n" is from 1 to about 1500, for example less than about 1000, preferably less than 100, e.g. from 2-50, particularly 5-25.
- linkers may be employed with the only restriction placed on their structures being that the linkers are stable under conditions under which the polynucleotides are intended to be used subsequently, e.g. conditions used in DNA sequencing.
- - Linkers which do not consist of only carbon atoms may also be used.
- Such linkers include polyethylene glycol (PEG) having a general formula of (CH 2 -CH 2 -0) m , wherein m is from about 1 to 600, preferably less than about 500.
- Linkers formed primarily from chains of carbon atoms and from PEG may be modified so as to contain functional groups which interrupt the chains.
- Examples of such groups include ketones, esters, amines, amides, ethers, thioethers, sulfoxides, sulfones.
- Cyclohexyl or phenyl rings may, for example, be connected to a PEG or (CH 2 ) n chain through their 1- and 4-positions.
- Examples of appropriately modified linkers are those of formula (CH 2 ) n (wherein n is as defined above) and in which one or more CH 2 units are replaced with functional groups) .
- one or more CH 2 units may be exchanged for an oxygen to form an ether, or for a S0 2 to form a sulfone etc.
- One or more CH 2 units may be exchanged for an amide moiety or alkene or alkyne unit.
- one or more functional groups may be present; these functional groups may or may not be the same as each other.
- Linkers of particular interest contain the propargylamino unit attached to the base (e.g. uracil) in a modified nucleotide.
- nucleotides contain the following unit : Base
- Modified nucleotides are commercially available, e.g. from the DNA synthesis company Oswel (now Eurogentec Group) . Such nucleotides include 3 'OH capped nucleotides which may be abasic where a capped linker is attached at the 1' carbon atom or contain a base to which a capped linker is attached. Two such modified nucleotides are Oswel products OSW428 and OSW421:
- those containing a chain or more than 100 atoms, particularly those in excess of 500 or even 1000 atoms) serve to position the polynucleotide further away from the solid support.
- the "linker” may comprise one or more nucleotides which form part of the polynucleotide but which do not participate in any reaction carried out on or with the polynucleotide (e.g. a hybridisation or amplification reaction) .
- Such nucleotides may be referred to herein as "spacer" polynucleotides.
- spacer polynucleotides typically from 1 to 20, more preferably from 1 to 15 or from 1 to 10, and more particularly 2, 3, 4, 5, 6, 7, 8, 9 or 10 spacer nucleotides may be included.
- the polynucleotide will include 10 spacer nucleotides.
- polyT spacers it is preferred to use polyT spacers, although other nucleotides and combinations thereof can be used.
- the polynucleotide will include 10T spacer nucleotides.
- Spacer nucleotides are typically included at the 5 ' ends of polynucleotides which are attached to a suitable support, for example a solid-supported hydrogel, via a linkage with the 5' end of the polynucleotide. Attachment can be achieved through a sulphur-containing nucleophile, such as phosphorothioate, present at the 5' end of the polynucleotide.
- this nucleophile is bound to a "C" group present in the hydrogel .
- the one or more spacer nucleotides function to space the portions of the polynucleotide that will be "interrogated” and/or subject to further manipulations, such as hybridisation to a second polynucleotide, away from the site of attachment to the solid support.
- the present inventors have observed that inclusion of spacer nucleotides at the 5 ' end can markedly improve the performance of hybridisation of complementary polynucleotides to target regions of the immobilised polynucleotides downstream (3') of the spacer nucleotides.
- Hybridisation yield is observed to increase sharply with polyT spacers of from 2 to 10T nucleotides.
- spacer length is increased from 10T up to 20T hybridisation yield begins to decrease.
- the polynucleotide will include 10T spacer nucleotides and a 5' phosphorothioate group.
- sulfur nucleophile-containing polynucleotides particularly thiophosphate-containing
- nd haloacetamide C groups are preferred to effect attachment of polynucleotides in all aspects of the invention, the skilled person will be able to envisage many other combinations of functionality which will facilitate immobilisation of polynucleotides to the hydrogels described herein.
- the C group may comprise an activated ester and the polynucleotide may bear an amino group or an oxygen-based nucleophile.
- the invention provides a method of forming a clustered array on a solid-supported hydrogel by means of a nucleic acid amplification reaction.
- the invention provides a method of preparing a solid supported hydrogel -based molecular array which is a clustered array of molecules of interest, the method comprising: (i) reacting polynucleotide molecules with reactive sites present in a solid-supported hydrogel, wherein said polynucleotide molecules are first and second oligonucleotide primers capable of hybridising to a template to be amplified;
- step (ii) contacting the first oligonucleotide primers attached to the solid-supported hydrogel in step (i) with one or more templates to be amplified under conditions which permit hybridisation of the templates to the oligonucleotide primers, each template comprising at the 3' end a sequence capable of hybridising to the first oligonucleotide primer and at the 5' end a sequence the complement of which is capable of hybridising to a second oligonucleotide primer; and
- the oligonucleotide primers are preferably attached to the hydrogel via covalent linkage their 5 ' ends leaving the 3 ' end of the molecule free to participate in hybridisation to a template polynucleotide and subsequent primer extension by addition of further nucleotides to the free 3' end of the primer. Attachment could also be effected via an internal nucleotide in the primer, provided that this does not prevent the primer from hybridising to a template and subsequent primer extension. The most preferred means of attachment is via 5' phosphorothioate to a hydrogel comprised of polymerised acrylamide and BRAPA. The precise sequence of the primer oligonucleotides will be dependent on the nature of the template it is intended to amplify.
- the first and second primers may be of different or identical sequence.
- the primers can include natural and non-natural bases or any combination thereof, and may also include non-natural backbone linkages such as phosphorothioate.
- the primer may advantageously include spacer nucleotides, as described above, in order to optimise the efficiency of subsequent hybridisation to the template polynucleotide.
- the primer may contain from 1 to 20, more preferably from 1 to 15 or from 1 to 10, and more particularly 2, 3, 4, 5, 6, 7, 8, 9 or 10 spacer nucleotides. Most preferably the primer will include 10 spacer nucleotides. It is preferred to use polyT spacers, although other nucleotides and combinations thereof can be used. In the most preferred embodiment the primer will include 10T spacer nucleotides.
- the primer oligonucleotides are grafted onto the surface of the solid-supported hydrogel, effectively forming a surface that is ready to be used for nucleic acid amplification.
- This approach contrasts with prior art methods for amplification on solid supports, such as that described in WO 98/44151 (schematically illustrated in Figure 5) , wherein a mixture of primers and templates are grafted to the solid surface simultaneously in a single grafting step.
- a specific grafting mixture of primers and templates has to be used for each specific template to be amplified.
- grafting of long template nucleic acid fragments >300bp
- the inventors' approach avoids this problem by removing the need to graft primers and templates simultaneously.
- primers are grafted in the absence of template to form a surface that is ready for hybridisation to the template and subsequent amplification.
- the solid support is contacted with the template to be amplified under conditions which permit hybridisation between the template and the bound primers.
- the template is generally added in free solution and suitable hybridisation conditions will be apparent to the skilled reader. Typically hybridisation conditions are 5xSSC at 40 °C, following an initial denaturation step.
- the template polynucleotide (or a denatured single strand thereof if referring to a template duplex) will include at the 3 ' end a sequence which permits hybridisation to a first oligonucleotide primer and at the 5' end of the same strand a sequence, the complement of which permits hybridisation to a second oligonucleotide primer (i.e. the sequence of the second primer may be substantially identical to the sequence at the 5' end of the template) .
- the remainder of the template can be any polynucleotide molecule that it is desired to amplify to form a clustered array. Templates may be, for example, fragments of genomic DNA or cDNA that it is desired to sequence.
- hybridisation encompasses sequence-specific binding between primer and template. Binding of the primer to its cognate sequence in the template can occur under typical conditions used for primer-template annealing in standard PCR.
- a nucleic acid amplification reaction can be carried out using the bound primers and the hybridised template.
- the first step of the amplification reaction will be a primer extension step, in which nucleotides are added to the free 3 ' ends of the bound primers in order to synthesise complementary strands corresponding to the full length of the template (illustrated schematically in Figure 6) .
- the primers are both copolymerized while coating the beads and the template is introduced by hybridization later on.
- One of the major drawbacks of both methods is the lack' of versatility of the surface because of the introduction of the primers with or without the template during preparation of the surface.
- the primers or the template can be potentially damaged by the free radicals generated during the polyacrylamide polymerization.
- WO 98/44151 describes the use of a hybridisation technique of a template to a primer followed by a chain extension and then replication by PCR to generate colonies or clusters of immobilised nucleic acids on a solid support.
- the cluster technology as described in WO 98/44151 involves a grafting step that consists of immobilizing simultaneously both primers and templates on a carboxylated surface using standard coupling (EDC) chemistry.
- EDC standard coupling
- This attachment is covalent and has to be done using a specific reaction mixture for every template used.
- the strategy used is illustrated in Figure 5.
- the inventors' approach involves an initial step of preparing the surface of the solid support, followed by covalent attachment (grafting) of primers to generate a surface ready for use in PCR.
- the PCR template may then be hybridised to attached primers immediately prior to the PCR reaction.
- the PCR reaction thus begins with an initial primer extension step rather than template denaturation. This approach is illustrated in Figure 6.
- arrays prepared according to the invention may be used in essentially any method of analysis which requires interrogation of molecules of interest on the array or of molecules bound to molecules of interest on the array.
- molecules "bound" to molecules of interest on the array includes complementary polynucleotide strands hybridised to polynucleotides bound on the array.
- the arrays may be used to determine the properties or identities of cognate molecules. Typically, interactions between biological or chemical molecules with molecules of interest bound on the arrays are carried out in solution.
- the arrays may be used in procedures to determine the sequence of polynucleotides on the array, and also in the identification and/or scoring of single nucleotide polymorphisms, gene expression analysis, etc.
- the arrays may be used in assays which rely on the detection of fluorescent labels to obtain information on the arrayed molecules, typically arrayed polynucleotides.
- the arrays are particularly suitable for use in multi-step assays.
- the arrays may be used in conventional techniques for obtaining genetic sequence information. Many of these techniques rely on the stepwise identification of suitably labelled nucleotides, referred to in US Patent No. 5,654,413 as "single base” sequencing methods or " sequencing-by-synthesis " .
- the sequence of a target polynucleotide is determined in a similar manner to that described in US Patent No. 5,654,413, by detecting the incorporation of one or more nucleotides into a nascent strand complementary to the target polynucleotide to be sequenced through the detection of fluorescent label (s) attached to the incorporated nucleotide (s) .
- Sequencing of the target polynucleotide is primed with a suitable primer (or prepared as a hairpin construct which will contain the primer as part of the hairpin) , and the nascent chain is extended in a stepwise manner by addition of nucleotides to the 3' end of the primer in a polymerase-catalysed reaction.
- a suitable primer or prepared as a hairpin construct which will contain the primer as part of the hairpin
- the nascent chain is extended in a stepwise manner by addition of nucleotides to the 3' end of the primer in a polymerase-catalysed reaction.
- each of the different nucleotides (A, T, G and C) is labelled with a unique fluorophore which acts as a blocking group at the 3 ' position to prevent uncontrolled polymerisation.
- the polymerase enzyme incorporates a nucleotide into the nascent chain complementary to the target polynucleotide, and the blocking group prevents further incorporation of nucleotides.
- the array surface is then cleared of unincorporated nucleotides and each incorporated nucleotide is "read" optically by suitable means, such as a charge- coupled device using laser excitation and filters.
- the 3'- blocking group is then removed (deprotected) , to expose the nascent chain for further nucleotide incorporation.
- US Patent No. 5,302,509 discloses a method to sequence polynucleotides immobilised on a solid support.
- the method relies on the incorporation of fluorescently- labelled, 3 ' -blocked nucleotides A, G, C and T into a growing strand complementary to the immobilised polynucleotide, in the presence of DNA polymerase.
- the polymerase incorporates a base complementary to the target polynucleotide, but is prevented from further addition by the 3 ' -blocking group.
- the label of the incorporated base can then be determined and the blocking group removed by chemical cleavage to allow further polymerisation to occur.
- each target polynucleotide will generate a series of distinct signals as the fluorescent events are detected.
- the sequence of the target polynucleotide is inferred from the order of addition of nucleotides in the complementary strand following conventional rules of base- pairing.
- the term "individually resolved by optical microscopy" is used herein to indicate that, when visualised, it is possible to distinguish at least one polynucleotide on the array from its neighbouring polynucleotides using optical microscopy methods available in the art. Visualisation may be effected by the use of reporter labels, e.g., fluorophores, the signal of which is individually resolved.
- reporter labels e.g., fluorophores
- Other suitable sequencing procedures will be apparent to the skilled person. In particular, the sequencing method may rely on the degradation of the arrayed polynucleotides, the degradation products being characterised to determine the sequence .
- the recognition sequence of the restriction or other nuclease enzyme will provide 4, 6, 8 bases or more of known sequence (dependent on the enzyme) .
- Further sequencing of between 10 and 20 bases on the array should provide sufficient overall sequence information to place that stretch of DNA into unique context with a total human genome sequence, thus enabling the sequence information to be used for genotyping and more specifically single nucleotide polymorphism (SNP) scoring.
- SNP single nucleotide polymorphism
- the sequencing method that is used to characterise the bound target may be any known in the art that measures the sequential incorporation of bases onto an extending strand. A suitable technique is disclosed in US Patent No.
- the devices into which the arrays of this invention may be incorporated include, for example, a sequencing machine or genetic analysis machine.
- the single polynucleotides immobilised onto the surface of a solid support should be capable of being resolved by optical means. This means that, within the resolvable area of the particular imaging device used, there must be one or more distinct signals, each representing one polynucleotide.
- the polynucleotides of the array are resolved using a single molecule fluorescence microscope equipped with a sensitive detector, e.g., a charge-coupled device (CCD) .
- a sensitive detector e.g., a charge-coupled device (CCD)
- CCD charge-coupled device
- Each polynucleotide of the array may be imaged simultaneously or, by scanning the array, a fast sequential analysis can be performed.
- the extent of separation between the individual polynucleotides on the array will be determined, in part, by the particular technique used to resolve the individual polynucleotide. Apparatus used to image molecular arrays are known to those skilled in the art.
- a confocal scanning microscope may be used to scan the surface of the array with a laser to image directly a fluorophore incorporated on the individual polynucleotide by fluorescence.
- a sensitive 2-D detector such as a charge-coupled device, can be used to provide a 2-D image representing the individual polynucleotides on the array .
- "Resolving" single polynucleotides on the array with a 2-D detector can be done if, at 100 x magnification, adjacent polynucleotides are separated by a distance of approximately at least 250 nm, preferably at lest 300 nm and more preferably at least 350 nm.
- SNOM scanning near- field optical microscopy
- adjacent polynucleotides may be separated by a distance of less than 100 nm, e.g., 10 nm.
- TIRFM surface-specific total internal reflection fluorescence microscopy
- microscopy Other devices which do not rely on microscopy may also be used, provided that they are capable of imaging within discrete areas on a solid support. Once sequenced, the spatially addressed arrays may be used in a variety of procedures which require the characterisation of individual molecules from heterogeneous populations .
- Polynucleotides bound on clustered arrays may also be used as templates for "sequencing-by-synthesis" reactions in which one or more nucleotides are successively incorporated into growing strands complementary to the target polynucleotides to be sequenced and the identity of the base(s) added in one or more of the nucleotide incorporation steps is determined.
- sequencing requires a suitable primer complementary to the template which can serve as an initiation point for the addition of further nucleotides in the sequencing reaction.
- the sequence of the bound polynucleotide is inferred from the identity of the incorporated nucleotides following conventional base-pairing rules.
- Product 2 (2.56g, 10 mmol) was dissolved in trifluoroacetic acid: dichloromethane (1:9, 100 ml) and stirred at room temperature. The progress of the reaction was monitored by TLC (dichloromethane : methanol 9:1) . On completion, the reaction mixture was evaporated to dryness, the residue co- evaporated three times with toluene and then purified by flash chromatography (neat dichloromethane followed by a gradient of methanol up to 20%) . Product 3 was obtained as a white powder (2.43 g, 9 mmol, 90%).
- A Cleaning of glass slides -
- the glass slides used for the preparation of the hydrogel surfaces were cleaned using the following in-house protocol: the slides were sequentially incubated in Decon TM, 1M aqueous sodium hydroxide and finally 0.1 M hydrochloric acid (aq) . After each step, the slides were sonicated in MilliQ H 2 0. The cleaned slides were stored in ethanol .
- Preparation 3 Preparation of the polymerisation mixture Acrylamide (Purity 99 +%, 0.4 g) was dissolved in MilliQ H 2 0 (10 mis) (Solution I) . Potassium or ammonium persulfate (0.25 g) was dissolved in MilliQ H 2 0 (5 ml) (Solution II).
- Solution I was degassed 10 minutes with argon.
- Solution III was added to solution I.
- N, N, N',N'- tetramethylethylenediamine (TEMED) 23 ⁇ l was added to the mixture.
- solution II 200 ⁇ l was added.
- the polymerisation mixture was rapidly reacted with the (optionally) silanized slides according to one of the following protocols.
- the ratio of BRAPA to acrylamide was 2 mol % .
- Method I Two slides (optionally silanised) were assembled with a silicon gasket in between to form a polymerisation cell. The slides and the gasket were held together with binder clips. Polymerisation mixture (800 ⁇ l) was injected in each polymerisation cell. The polymerisation proceeded at room temperature for 1.5 hr. The polymerisation cells were then disassembled and the slides washed thoroughly under running MilliQ H 2 0. The slides were then dried and stored under argon.
- the slides were then introduced in clean plastic vials containing MilliQ H 2 0 and vortexed for 20 seconds. The slides were rinsed with running MilliQ H 2 0, dried and stored under argon.
- Oligos with a 3 ' - fluorescent label are typically used for appraising fundamental surface characteristics.
- Polynucleotide (1 ⁇ M) in the printing buffer (potassium phosphate 100 mM, pH 7) was applied to the surface as 1 ⁇ l drops.
- the slide was then placed in a humid chamber at room temperature for 1 hour.
- the printed slide was then rinsed with MilliQ H 2 0 and vortexed in hot washing buffer (Tris HCl 10 mM, EDTA 10 mM, pH 8 (at 80-90°C) ) .
- the printed slide was finally rinsed with MilliQ H 2 0, dried under a flow of argon and stored in the dark before imaging.
- a gasket was placed onto the slide, the polynucleotide solution injected into the chamber formed and a cover slip placed over the gasket. The slide was then incubated for 1 h at room temperature in a humid chamber and processed as described above.
- the coated slide was fitted into a custom-made flow cell.
- Polynucleotide (400 ⁇ l , 0.1 to 10 nM) in the printing buffer was injected into the cell.
- the concentration of polynucleotide is chosen to achieve a precise single molecule density of polynucleotides on the surface.
- the cell was incubated in the dark at room temperature for 1 h.
- the printed surface was then washed by sequentially injecting printing buffer (20 ml), hot washing buffer (20 ml, 80-90°C) and finally MilliQ H 2 0 (20 ml) .
- a printed slide was imaged with a fluorescence scanner in the presence of a fluorescence reference control slide containing attached Cy3 dye. The printed slide was then incubated in a jar containing printing buffer at a preset temperature in the dark. The slide was imaged at regular intervals and the fluorescence intensity recorded. The fluorescence intensity of a spot is proportional to the amount of polynucleotide immobilised on that area. A plot of the variation of the fluorescence intensity with time gave a stability profile for attached polynucleotide on the polyacrylamide surface.
- a coated slide was fitted into a custom-made flow cell.
- the cell was flushed with MilliQ H 2 0 (10 ml) then phosphate printing buffer (0.1 M, pH 7.0) and then incubated for 30 minutes at room temperature. This procedure constituted a mock DNA couple to the surface.
- the cell was flushed with MilliQ H 2 0 (10 ml), hot TE buffer (10 ml, 10 mM Tris.HCl, 10 mM EDTA, pH 8.0) then MilliQ H 2 0 (10 ml) .
- the slide was then imaged using a custom-made total internal reflection fluorimeter instrument to give a fluorescent background reading.
- the cell was then flushed with enzymology buffer (10 ml, 50 mM Tris.HCl, 4mM MgS0 4 , 0.2 mM MnCl 2 , 0.05% Tween 20, pH 8.0).
- enzymology buffer 10 ml, 50 mM Tris.HCl, 4mM MgS0 4 , 0.2 mM MnCl 2 , 0.05% Tween 20, pH 8.0.
- a solution of fluorescently-labelled nucleotide 400 ⁇ l, 0.2 to 2 ⁇ M in enzymology buffer
- the cell was flushed with wash buffer (10 ml, 50 mM Tris.HCl, 4 mM MgS0 4 , 0.05% Tween 20, pH 8.0), high salt buffer (10 ml, 50 mM Tris.HCl, 1M NaCl, 4 mM MgCl , 0.05% Tween 20, pH 8.0), TE buffer (10 ml, composition as above) and MilliQ H 2 0 (10 ml) .
- wash buffer (10 ml, 50 mM Tris.HCl, 4 mM MgS0 4 , 0.05% Tween 20, pH 8.0
- high salt buffer (10 ml, 50 mM Tris.HCl, 1M NaCl, 4 mM MgCl , 0.05% Tween 20, pH 8.0
- TE buffer 10 ml, composition as above
- MilliQ H 2 0 10 ml
- a coated slide was fitted into a custom-made flow cell.
- a solution of self- priming DNA hairpin 200 ⁇ l, 1 nM, 0.1M KPi, pH 7.0 was then injected into the flow cell and the cell incubated for 1 hr at room temperature.
- the cell was then flushed with boiling TE buffer (20 ml, 10 mM Tris.HCl, 10 mM EDTA, pH 8.0) and milliQ H 2 0 (20 ml) .
- the slide was then imaged using a custom-made total internal reflection fluorimeter instrument to give a fluorescent background reading.
- the flow cell was then flushed with wash buffer (20 ml, 50 mM Tris.HCl, 4 mM MgS0 4 , 0.05% Tween 20, pH 8.0) and then enzymology mix (2 x 100 ⁇ l , 0.2 ⁇ M fluorescently-labelled nucleotide, 5 ⁇ g/ml DNA polymerase, 50 mM Tris.HCl, 4 mM MgS0 , 0.4 mM MnCl 2 , 0.05% Tween 20, pH 8.0) was injected into the flow cell. The flow cell was incubated at 45°C for 30 minutes.
- the flow cell was then flushed at a flow rate of 0.5 ml/s with wash buffer (20 ml, 50 mM Tris.HCl, 4 mM MgS0 4 , 0.05% Tween 20, pH 8.0), high salt wash buffer (20 ml, 50 mM Tris.HCl, 1 M NaCl, 4 mM MgS0 4 , 0.05% Tween 20, pH 8.0), TE buffer (20 ml, 10 mM Tris.HCl, 10 mM EDTA, pH 8.0) and milliQ H 2 0 (20 ml) .
- wash buffer (20 ml, 50 mM Tris.HCl, 4 mM MgS0 4 , 0.05% Tween 20, pH 8.0
- high salt wash buffer (20 ml, 50 mM Tris.HCl, 1 M NaCl, 4 mM MgS0 4 , 0.05% Tween 20, pH 8.0
- TE buffer 20 ml, 10 m
- Example 6 Preparation of a polyelectrolyte-treated fused silica-supported hydrogel and a demonstration that it is more passive towards functionalised labelled nucleotides when compared to a non-treated control
- a polyacrylamide-based glass-supported hydrogel is prepared as described in Example 1.
- Treatment of a polyacrylamide hydrogel comprising 1 mol % BRAPA, as described in Part A, is effected by contacting the hydrogel with a solution of polyallylamine hydrochloride (2 mg/ml) MilliQ H 2 0 at pH 8. Contacting is effected for 30 min at room temperature after which the solution is treated with polyacrylic acid (2 mg/ml MilliQ H 2 0 at pH 8.2) . The solution is incubated for 30 min at room temperature followed by treatment with MilliQ H 2 0.
- the surface treated with the two layers of polyelectrolyte demonstrates a reduction in sticking of fluorescently functionalised nucleotides when compared to a control hydrogel surface not treated with the polyelectrolytes.
- Example 7 Demonstration that of a poly (ethylene glycol) - treated fused silica-supported hydrogel is more passive towards functionalised labelled nucleotides when compared to a non-treated control
- Example 6 was repeated except that instead of treatment with polyallylamine hydrochloride following by polyacrylic acid, the hydrogel prepared as in example 1 is treated with poly (ethylene glycol) 8000 (Sigma).
- the surface treated with the poly (ethylene glycol) 8000 demonstrates a reduction in sticking of fluorescently functionalised nucleotides when compared to a control hydrogel surface not treated with the poly (ethylene glycol) 8000.
- Example 8 Demonstration that treatment of a polyelectrolyte- or poly (ethylene glycol) -treated fused silica-supported hydrogel-based molecular array is more passive towards functionalised labelled nucleotides when compared to a non-treated control
- Examples 6 and 7 are repeated except that instead of applying the polyelectrolytes or poly (ethylene glycol) to a fused silica-supported hydrogel as such, instead an array of polynucleotides is treated and the arrays so modified used in sequencing reactions with fluorescently labelled nucleotides.
- Plastic substrates were obtained from Amic and were cleaned with Decon 90 overnight. These were poly (methyl methacrylate) (Amic PMMA) , and cyclic olefin 1060 and 1420 plastics (Amic (COP) 1060 and Amic (COP) 1420) . The next day they were rinsed extensively with MilliQ water and dried. A 2% w/v acrylamide solution was made up by dissolving 1.3 g acrylamide in 65 ml of MilliQ water. This solution was then purged with argon for 15 minutes to remove oxygen, which may inhibit the polymerisation reaction. BRAPA (107 mg) was then dissolved with 1.07 ml of dimethylformamide (DMF) and added to the degassed acrylamide solution.
- DMF dimethylformamide
- Fluorescence scanning was performed on a Typhoon 8600 imager at 550V, 100 ⁇ m resolution in the Cy3 channel (532 laser excitation) .
- the graph shown in Figure 3 shows that the apparent stability of the specifically adsorbed phosphorothioate DNA in 50 mM phosphate buffer pH 7 at 65°C is essentially the same as that for glass. Approximately 40% of the starting signal is left after 7 days incubation in 50 mM phosphate pH 7 at 65°C. This value is slightly lower than expected for both glass and plastic substrates and is attributed to the fact that the samples were always scanned dry after briefly rinsing with MilliQ water. When dry, the fluorescent dye is greatly affected by environmental conditions, particularly ozone levels.
- Example 12 Further preparation of plastics-supported hydrogels
- plastics e.g. polystyrene
- plastics of the same type but from different suppliers were also tested and hybridisation studies attempted as follows:
- DNA negative, control DNA
- 1 ⁇ M unlabelled P5 primer with a 10T spacer and 1 ⁇ M unlabelled P7 primer with a 10T spacer were coupled to substrates as prepared in Example 12, and cleaned but not treated with SFA. Scanning was then performed as described in Example 12. Following scanning hybridisation was carried out using a Texas Red labelled complementary target to the P5 primer (P5') by attaching a square silicone gasket to the substrate then placing another clean (uncoated glass) slide on top to form a cell. An injection of 0.5 ⁇ M complementary target in 5X sodium citrate (SSC), 0.1 % Tween 20 buffer pH 7 was then made into the space created by the gasket and the cell heated in an oven to 95°C for 30 minutes.
- SSC 5X sodium citrate
- 0.1 % Tween 20 buffer pH 7 was then made into the space created by the gasket and the cell heated in an oven to 95°C for 30 minutes.
- the oven temperature was then switched to 50°C and the cell allowed to cool for 2 hours. Afterwards the cell was removed and allowed to cool at room temperature for 10 minutes in the dark.
- the complementary target solution was then removed with a syringe and fresh 5XSSC, 0.1% Tween 20 buffer at room temperature injected, then removed. This washing procedure was repeated 5 further times.
- the cell was then dismantled and the substate agitated in a beaker of fresh 5XSSC, 0.1% Tween 20 for 2 minutes.
- the substrate was then transferred to a beaker containing higher stringency (0.1XSSC, 0.1% Tween 20) and agitated for 2 minutes. This was repeated once more then the substrate dried with argon.
- the samples were then scanned again this time at 700 V in the Rox channel using 633 nm excitation (100 ⁇ m resolution) .
- Example 13 formation of clustered arrays by template hybridisation and PCR
- the inventors' approach involves an initial step of preparing the surface of the solid support, followed by covalent attachment (grafting) of primers to generate a surface ready for use in PCR.
- the PCR template may then be hybridised to attached primers immediately prior to the PCR reaction.
- the PCR reaction thus begins with an initial primer extension step rather than template denaturation. This approach is illustrated in Figure 6.
- the solid supports used in this experiment were 8-channel glass chips such as those provided by Micronit (Twente, Nederland) or IMT (Neuchatel, Switzerland). However, the experimental conditions and procedures are readily applicable to other solid supports.
- Chips were washed as follows: neat Decon for 30 min, milliQ H 2 0 for 30 min, NaOH IN for 15 min, milliQ H 2 0 for 30 min, HCl 0.1N for 15 min, milliQ H 2 0 for 30 min. Chips were then coated with polyacrylamide hydrogel as described in Example 1.
- 5' -phosphorothioate oligonucleotides were grafted onto the surface of the hydrogel in 10 mM phosphate buffer pH7 for lh at RT.
- the following exemplary primers were used :
- the template used was a fragment of pBluescript T246 containing sequences complementary to the P7/P5 primers shown above.
- the hybridization procedure began with a heating step in a stringent buffer (95°C for 5 minutes in TE) to ensure complete denaturation prior to hybridisation of the template. Hybridization was then carried out in 5x SSC, using template diluted to a final concentration of 5 nM. After the hybridization, the chip was washed for 5 minutes with milliQ water to remove salts.
- thermocycled PCR was carried out by thermocycled PCR in an MJ Research thermocycler .
- a typical PCR program is as follows
- the first step in the amplification reaction is extension of the primers bound to template in the initial hybridisation step the first denaturation and annealing steps of this program were omitted (i.e. the chip was placed on the heating block only when the PCR mix was pumped through the channels and the temperature was 73 °C) .
- the annealing temperature (X°C , step 2) depends on the primer pair that is used. Experiments have determined an optimal annealing temperature of 57°C for P5/P7 primers. For other primer-pairs the optimum annealing temperature can be determined by experiment . The number of PCR cycles may be varied if required.
- PCR was carried out in a reaction solution comprising lx PCR reaction buffer (supplied with the enzyme) 1M betain, 1.3% DMSO, 200 ⁇ M dNTPs and 0.025 U/ ⁇ L Taq polymerase.
- DNA microarrays may be used to carry out thousands of heterogeneous (solid-liquid interface) hybridisations simultaneously to determine gene expression patterns or to identify genotype. Hybridisation on these arrays depends on a number of factors including probe density (Peterson, A.W. et al . (2001) Nucl. Acids Res. 29, 5163-5168) while kinetic rates and equilibrium binding constants may differ markedly from the solution phase. Due to steric hindrance and a reduced degree of freedom the proximity to the support surface is a key criterion affecting hybridisation yield (Weiler, J et al . (1997) Nucl. Acids Res. 25, No. 14, 2792-2799). Shchepinov et al .
- a 96 well, glass bottom, polystyrene microplate was placed into Decon 90 overnight. The next day the microplate was rinsed extensively with MilliQ water, then dried with Argon. The glass surface of each well of the microplate was then coated with silane-free acrylamide (SFA) . Briefly, acrylamide was dissolved in water to give a 2% w/v solution and argon then bubbled through this solution for 15 minutes. 82.5 mg of BRAPA (the active monomer) was dissolved in 0.825 ml dimethylformamide (DMF) . This solution was then added to 50 ml of acrylamide solution to give a 2 mol% BRAPA solution with respect to acrylamide.
- SFA silane-free acrylamide
- TEMED acrylamide/BRAPA solution
- a potassium persulfate solution was then prepared by dissolving 0.1 g in 2 ml MilliQ water.
- 0.5 ml of the initiator solution was then added to the degassed acrylamide/BRAPA/TEMED solution and, after mixing, 0.4 ml of the polymerisation mixture was pipetted into each well of the microplate. Polymerisation was allowed to proceed for 1.5 hours, then the microplate was washed on an automated microplate washer with program AHPEM160. Following washing the plate was dried under argon and stored overnight under vacuum.
- the following 4 primers were coupled to the surface at 2.0 ⁇ M, 1.0 ⁇ M, 0.5 ⁇ M and 0.1 ⁇ M concentrations from 10 mM phosphate buffer pH 7 :
- P5 primer without polyT spacer 5 ' hosphorothioate-AATGATACGGCGACCACCGA -3 ' 4) P5 primer with polyT spacer:
- Coupling was carried out using 0.1 ml oligonucleotide solution for 1 hour in a humid environment at room temperature. Afterwards the microplate was washed with 0.10 M phosphate buffer pH 7 on an automated microplate washer.
- P5' complementary target to P5 sequence 5 ' Texas Red-TCGGTGGTCGCCGTATCATT-3 '
- P7' complementary target to P7 sequence 5 ' Texas Red-TCGTATGCCGTCTTCTGCTTG-3 '
- the target volume was 0.1 ml and the concentration was 0.5 ⁇ M.
- the target was made up in two different hybridisation buffers and tested.
- the composition of the TAQ PCR buffer was 1M betaine, 1.3% DMSO, 10 mM Tris, 1.5 mM MgCl2 and 50 mM KC1 (pH 9) .
- the other buffer contained 5XSSC (diluted from a 20X stock) and 0.1% (v/v) Tween 20 (pH 7) .
- a special PCR film was used to seal the wells of the microplate and prevent evaporation on heating. The plate was then placed on a PCR block with lid and submitted to the following conditions : 1 ) 0 . 5 °/s to 97 . 5 °C 2) 97.5 °C for 2 mins 30 sees 3) 97.5 °C for 2 sees - 0.1 °C per cycle 4) Goto 3, 574 times 5) 40.0 °C for 15 mins 6) End
- the plate was washed 15 times using the microplate washer (modified program " -AHPEM170') with 5XSSC, 0.1% v/v Tween 20 pH 7, then 6 times using the same program but with 0.1XSSC, 0.1% v/v Tween 20 pH 7. Following washing the plate was scanned wet under on a Typhoon 9600 imager at 700V with the ROX filter, 633 nm excitation, 200 ⁇ m pixel size.
- Coupling was carried out for 1 hour by spotting 7 ⁇ l of each oligo into one or more wells created by sticking a Grace Biolab CultureWell coverglass gasket (gasket 1, Figure 9) onto a Typhoon slide previously modified with 2% acrylamide, 2 mol% BRAPA silane- free acrylamide.
- gasket 1 a Grace Biolab CultureWell coverglass gasket
- Typhoon slide previously modified with 2% acrylamide, 2 mol% BRAPA silane- free acrylamide.
- the slides were kept in the dark in a humidity chamber. After coupling the slides were rinsed with 250 ml of 0.1 M phosphate buffer pH 7 from a wash bottle. Then each slide was vortexed 20 seconds in lOmM/lOmM Tris/EDTA pH 8 buffer, then rinsed with MilliQ water and dried.
- P5' complementary target to P5 sequence 5 'Texas Red-TCGGTGGTCGCCGTATCATT-3 '
- a silicone gasket (gasket 2, Figure 9) was attached to the primer modified slide and a clean glass slide placed on top to create a sealed chamber. Clips were used to ensure sealing. The space created by the gasket was then filled with one of the complementary targets (P5' or P7') then the primer-modified side was placed in contact with an aluminium heating block. A box was placed on top to prevent access of light. The temperature of the aluminium block was increased from room temperature to 95 °C (required 15 minutes) . The temperature of the heater was then turned down to 40 °C and the slides allowed to cool to 50 °C (required 2 hours) .
- the slide was allowed to cool to room temperature during 10 minutes.
- the complementary target solution was then removed with a syringe and the inside washed by injection 6X with 5XSSC, 0.1 % Tween 20.
- the gasket, clips and slides were then dismantled and the primer-modified slide rinsed with agitation in a tube containing 5XSSC, 0.1 % Tween 20 for 2 minutes. This was repeated then the primer- modified slide was rinsed with 0.1XSSC, 0.1 % Tween 20, twice for 2 minutes with agitation.
- the slide was then dried with Argon and scanned dry at 700V as above.
- Coupling was carried out for 1 hour by spotting 7 ⁇ l of each oligonucleotide into one or more wells created by sticking a Grace Biolab CultureWell coverglass gasket (gasket 1, scheme 2) onto a Typhoon slide previously modified with 2% acrylamide, 2 mol% BRAPA silane- free acrylamide.
- gasket 1 Gasket 2
- Typhoon slide previously modified with 2% acrylamide, 2 mol% BRAPA silane- free acrylamide.
- the slides were kept in the dark in a humidity chamber. After coupling the slides were rinsed with 250 ml of 0.1 M phosphate buffer pH 7 from a wash bottle. Then each slide was vortexed 20 seconds in lOmM/lOmM Tris/EDTA pH 8 buffer, then rinsed with MilliQ water and dried.
- Hybridisation was carried out as above.
- a silicone gasket (gasket 2, Figure 9) was attached to the primer modified slide and a clean glass slide placed on top to create a sealed chamber. Clips were used to ensure sealing.
- the space created by the gasket was then filled with one of the complementary targets (P5' or P7') then the primer-modified side was placed in contact with an aluminium heating block.
- a box was placed on top to prevent access of light.
- the temperature of the aluminium block was increased from room temperature to 95 °C (required 15 minutes) .
- the temperature of the heater was then turned down to 40 °C and the slides allowed to cool to 50 °C (required 2 hours) . Once at 50 °C the slide was allowed to cool to room temperature during 10 minutes.
- the complementary target solution was then removed with a syringe and the inside washed by injection 6X with 5XSSC, 0.1 % Tween 20.
- the gasket, clips and slides were then dismantled and the primer-modified slide rinsed with agitation in a tube containing 5XSSC, 0.1 % Tween 20 for 2 minutes. This was repeated then the primer-modified slide was rinsed with 0.1XSSC, 0.1 % Tween 20, twice for 2 minutes with agitation.
- the slide was then dried with Argon and scanned dry at 700V as above.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Structural Engineering (AREA)
- Polymers & Plastics (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Noodles (AREA)
- Optical Head (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
Claims
Priority Applications (12)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/585,373 US20110059865A1 (en) | 2004-01-07 | 2005-01-07 | Modified Molecular Arrays |
| EP14164003.7A EP2789383B1 (en) | 2004-01-07 | 2005-01-07 | Molecular arrays |
| EP05701804A EP1701785A1 (en) | 2004-01-07 | 2005-01-07 | Modified molecular arrays |
| EP20151474.2A EP3673986A1 (en) | 2004-01-07 | 2005-01-07 | Improvements in or relating to molecular arrays |
| JP2006548380A JP2007525571A (en) | 2004-01-07 | 2005-01-07 | Modified molecular array |
| US13/548,558 US8563477B2 (en) | 2004-01-07 | 2012-07-13 | Modified molecular arrays |
| US14/053,333 US8969258B2 (en) | 2004-01-07 | 2013-10-14 | Methods of localizing nucleic acids to arrays |
| US14/592,766 US9376710B2 (en) | 2004-01-07 | 2015-01-08 | Methods of localizing nucleic acids to arrays |
| US15/162,304 US9889422B2 (en) | 2004-01-07 | 2016-05-23 | Methods of localizing nucleic acids to arrays |
| US15/864,384 US10525437B2 (en) | 2004-01-07 | 2018-01-08 | Methods and compositions of localizing nucleic acids to arrays |
| US16/707,527 US10953379B2 (en) | 2004-01-07 | 2019-12-09 | Methods and compositions of localizing nucleic acids to arrays |
| US17/205,263 US11654411B2 (en) | 2004-01-07 | 2021-03-18 | Methods and compositions of localizing nucleic acids to arrays |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB0400253.1 | 2004-01-07 | ||
| GB0400253A GB0400253D0 (en) | 2004-01-07 | 2004-01-07 | Improvements in or relating to molecular arrays |
| EP04254726A EP1655069A1 (en) | 2004-08-05 | 2004-08-05 | Modified molecular arrays |
| EP04254726.5 | 2004-08-05 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/585,373 A-371-Of-International US20110059865A1 (en) | 2004-01-07 | 2005-01-07 | Modified Molecular Arrays |
| US13/548,558 Continuation US8563477B2 (en) | 2004-01-07 | 2012-07-13 | Modified molecular arrays |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2005065814A1 true WO2005065814A1 (en) | 2005-07-21 |
Family
ID=34751704
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2005/000033 Ceased WO2005065814A1 (en) | 2004-01-07 | 2005-01-07 | Modified molecular arrays |
Country Status (5)
| Country | Link |
|---|---|
| US (8) | US20110059865A1 (en) |
| EP (4) | EP3175914A1 (en) |
| JP (1) | JP2007525571A (en) |
| ES (1) | ES2949821T3 (en) |
| WO (1) | WO2005065814A1 (en) |
Cited By (416)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007018760A3 (en) * | 2005-08-08 | 2007-04-12 | Univ Chicago | Preparation of plastic supports for biochips |
| WO2007111937A1 (en) * | 2006-03-23 | 2007-10-04 | Applera Corporation | Directed enrichment of genomic dna for high-throughput sequencing |
| WO2007114693A3 (en) * | 2006-04-04 | 2007-12-21 | Keygene Nv | High throughput detection of molecular markers based on aflp and high throughput sequencing |
| FR2903120A1 (en) * | 2006-02-22 | 2008-01-04 | Inst Molekulyarnoi Biolog Im V | METHOD FOR IMMOBILIZATION OF HYDROGELS ON NON-MODIFIED POLYMERIC MATERIALS, BIOPUCE BASED ON NON-MODIFIED POLYMERIC MATERIALS AND METHOD OF MANUFACTURING THE SAME |
| WO2009116863A2 (en) | 2008-03-17 | 2009-09-24 | Expressive Research B.V. | Expression-linked gene discovery |
| EP2182079A1 (en) | 2006-07-12 | 2010-05-05 | Keygene N.V. | High throughput physical mapping using AFLP |
| WO2010062775A2 (en) | 2008-11-03 | 2010-06-03 | The Regents Of The University Of California | Methods for detecting modification resistant nucleic acids |
| WO2010082815A1 (en) | 2009-01-13 | 2010-07-22 | Keygene N.V. | Novel genome sequencing strategies |
| EP2298930A1 (en) * | 2005-07-20 | 2011-03-23 | Illumina Cambridge Limited | Preparation of templates for nucleic acid sequencing |
| WO2011053845A2 (en) | 2009-10-30 | 2011-05-05 | Illumina, Inc. | Microvessels, microparticles, and methods of manufacturing and using the same |
| WO2011106368A2 (en) | 2010-02-23 | 2011-09-01 | Illumina, Inc. | Amplification methods to minimise sequence specific bias |
| US8039817B2 (en) | 2008-05-05 | 2011-10-18 | Illumina, Inc. | Compensator for multiple surface imaging |
| WO2012025250A1 (en) | 2010-08-27 | 2012-03-01 | Illumina Cambridge Ltd. | Methods for paired - end sequencing of polynucleotides |
| WO2012034007A2 (en) | 2010-09-10 | 2012-03-15 | Bio-Rad Laboratories, Inc. | Size selection of dna for chromatin analysis |
| WO2012050920A1 (en) | 2010-09-29 | 2012-04-19 | Illumina, Inc. | Compositions and methods for sequencing nucleic acids |
| WO2012055929A1 (en) | 2010-10-26 | 2012-05-03 | Illumina, Inc. | Sequencing methods |
| WO2012058096A1 (en) | 2010-10-27 | 2012-05-03 | Illumina, Inc. | Microdevices and biosensor cartridges for biological or chemical analysis and systems and methods for the same |
| WO2012061832A1 (en) | 2010-11-05 | 2012-05-10 | Illumina, Inc. | Linking sequence reads using paired code tags |
| WO2012061036A1 (en) | 2010-11-03 | 2012-05-10 | Illumina, Inc. | Reducing adapter dimer formation |
| US8198028B2 (en) | 2008-07-02 | 2012-06-12 | Illumina Cambridge Limited | Using populations of beads for the fabrication of arrays on surfaces |
| US8236532B2 (en) | 2008-12-23 | 2012-08-07 | Illumina, Inc. | Multibase delivery for long reads in sequencing by synthesis protocols |
| WO2013009175A1 (en) | 2011-07-08 | 2013-01-17 | Keygene N.V. | Sequence based genotyping based on oligonucleotide ligation assays |
| WO2013045939A1 (en) | 2011-09-29 | 2013-04-04 | Illumina, Inc. | Continuous extension and deblocking in reactions for nucleic acid synthesis and sequencing |
| WO2013049135A1 (en) | 2011-09-26 | 2013-04-04 | Gen-Probe Incorporated | Algorithms for sequence determinations |
| WO2013070627A2 (en) | 2011-11-07 | 2013-05-16 | Illumina, Inc. | Integrated sequencing apparatuses and methods of use |
| WO2013085710A2 (en) | 2011-12-09 | 2013-06-13 | Illumina, Inc. | Expanded radix for polymeric tags |
| US8483969B2 (en) | 2010-09-17 | 2013-07-09 | Illuminia, Inc. | Variation analysis for multiple templates on a solid support |
| WO2013117595A2 (en) | 2012-02-07 | 2013-08-15 | Illumina Cambridge Limited | Targeted enrichment and amplification of nucleic acids on a support |
| WO2013131962A1 (en) | 2012-03-06 | 2013-09-12 | Illumina Cambridge Limited | Improved methods of nucleic acid sequencing |
| WO2014008448A1 (en) | 2012-07-03 | 2014-01-09 | Sloan Kettering Institute For Cancer Research | Quantitative assessment of human t-cell repertoire recovery after allogeneic hematopoietic stem cell transplantation |
| WO2014108810A2 (en) | 2013-01-09 | 2014-07-17 | Lumina Cambridge Limited | Sample preparation on a solid support |
| WO2014116851A2 (en) | 2013-01-25 | 2014-07-31 | Illumina, Inc. | Methods and systems for using a cloud computing environment to share biological related data |
| WO2014133905A1 (en) | 2013-02-26 | 2014-09-04 | Illumina, Inc. | Gel patterned surfaces |
| WO2014135221A1 (en) | 2013-03-08 | 2014-09-12 | Illumina Cambridge Ltd | Polymethine compounds and their use as fluorescent labels |
| WO2014135223A1 (en) | 2013-03-08 | 2014-09-12 | Illumina Cambridge Ltd | Rhodamine compounds and their use as fluorescent labels |
| WO2014135669A1 (en) | 2013-03-08 | 2014-09-12 | Roche Diagnostics Gmbh | Egfr mutation blood testing |
| WO2014144569A1 (en) | 2013-03-15 | 2014-09-18 | Illumina, Inc. | Super resolution imaging |
| WO2014142850A1 (en) | 2013-03-13 | 2014-09-18 | Illumina, Inc. | Methods and compositions for nucleic acid sequencing |
| US8911945B2 (en) | 2005-12-22 | 2014-12-16 | Keygene N.V. | Method for high-throughput AFLP-based polymorphism detection |
| WO2015002789A1 (en) | 2013-07-03 | 2015-01-08 | Illumina, Inc. | Sequencing by orthogonal synthesis |
| WO2015084985A2 (en) | 2013-12-03 | 2015-06-11 | Illumina, Inc. | Methods and systems for analyzing image data |
| WO2015095226A2 (en) | 2013-12-20 | 2015-06-25 | Illumina, Inc. | Preserving genomic connectivity information in fragmented genomic dna samples |
| WO2015100373A2 (en) | 2013-12-23 | 2015-07-02 | Illumina, Inc. | Structured substrates for improving detection of light emissions and methods relating to the same |
| WO2015103225A1 (en) | 2013-12-31 | 2015-07-09 | Illumina, Inc. | Addressable flow cell using patterned electrodes |
| WO2015106941A1 (en) | 2014-01-16 | 2015-07-23 | Illumina Cambridge Limited | Polynucleotide modification on solid support |
| US9092401B2 (en) | 2012-10-31 | 2015-07-28 | Counsyl, Inc. | System and methods for detecting genetic variation |
| WO2015123444A2 (en) | 2014-02-13 | 2015-08-20 | Illumina, Inc. | Integrated consumer genomic services |
| US9116139B2 (en) | 2012-11-05 | 2015-08-25 | Illumina, Inc. | Sequence scheduling and sample distribution techniques |
| EP2918686A1 (en) | 2005-11-25 | 2015-09-16 | Illumina Cambridge Limited | Preparation of nucleic acid templates for solid phase amplification |
| WO2015175832A1 (en) | 2014-05-16 | 2015-11-19 | Illumina, Inc. | Nucleic acid synthesis techniques |
| WO2015183871A1 (en) | 2014-05-27 | 2015-12-03 | Illumina, Inc. | Systems and methods for biochemical analysis including a base instrument and a removable cartridge |
| WO2016003814A1 (en) | 2014-06-30 | 2016-01-07 | Illumina, Inc. | Methods and compositions using one-sided transposition |
| US9279154B2 (en) | 2011-12-21 | 2016-03-08 | Illumina, Inc. | Apparatus and methods for kinetic analysis and determination of nucleic acid sequences |
| US9284604B2 (en) | 2010-11-22 | 2016-03-15 | The Regents Of The University Of California | Methods of identifying a cellular nascent RNA transcript |
| WO2016040602A1 (en) | 2014-09-11 | 2016-03-17 | Epicentre Technologies Corporation | Reduced representation bisulfite sequencing using uracil n-glycosylase (ung) and endonuclease iv |
| WO2016040607A1 (en) | 2014-09-12 | 2016-03-17 | Illumina, Inc. | Compositions, systems, and methods for detecting the presence of polymer subunits using chemiluminescence |
| WO2016061484A2 (en) | 2014-10-16 | 2016-04-21 | Illumina, Inc. | Optical scanning systems for in situ genetic analysis |
| WO2016073237A1 (en) | 2014-11-05 | 2016-05-12 | Illumina Cambridge Limited | Reducing dna damage during sample preparation and sequencing using siderophore chelators |
| JP2016513468A (en) * | 2013-03-14 | 2016-05-16 | ライフ テクノロジーズ コーポレーション | Matrix array and method for manufacturing the same |
| US9444880B2 (en) | 2012-04-11 | 2016-09-13 | Illumina, Inc. | Cloud computing environment for biological data |
| WO2016168386A1 (en) | 2015-04-14 | 2016-10-20 | Illumina, Inc. | Structured substrates for improving detection of light emissions and methods relating to the same |
| WO2016196358A1 (en) | 2015-05-29 | 2016-12-08 | Epicentre Technologies Corporation | Methods of analyzing nucleic acids |
| WO2017019278A1 (en) | 2015-07-30 | 2017-02-02 | Illumina, Inc. | Orthogonal deblocking of nucleotides |
| WO2017019456A2 (en) | 2015-07-27 | 2017-02-02 | Illumina, Inc. | Spatial mapping of nucleic acid sequence information |
| WO2017177017A1 (en) | 2016-04-07 | 2017-10-12 | Omniome, Inc. | Methods of quantifying target nucleic acids and identifying sequence variants |
| EP3243937A1 (en) | 2012-07-17 | 2017-11-15 | Counsyl, Inc. | System and methods for detecting genetic variation |
| WO2018018008A1 (en) | 2016-07-22 | 2018-01-25 | Oregon Health & Science University | Single cell whole genome libraries and combinatorial indexing methods of making thereof |
| US9898576B2 (en) | 2005-06-23 | 2018-02-20 | Keygene N.V. | Strategies for high throughput identification and detection of polymorphisms |
| WO2018035134A1 (en) | 2016-08-15 | 2018-02-22 | Omniome, Inc. | Method and system for sequencing nucleic acids |
| WO2018057770A1 (en) | 2016-09-22 | 2018-03-29 | Illumina, Inc. | Somatic copy number variation detection |
| WO2018060482A1 (en) | 2016-09-30 | 2018-04-05 | Illumina Cambridge Limited | New fluorescent dyes and their uses as biomarkers |
| EP3308860A1 (en) | 2016-10-14 | 2018-04-18 | Illumina, Inc. | Cartridge assembly |
| US9951385B1 (en) | 2017-04-25 | 2018-04-24 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| WO2018114710A1 (en) | 2016-12-22 | 2018-06-28 | Illumina Cambridge Limited | Coumarin compounds and their uses as fluorescent labels |
| WO2018125759A1 (en) | 2016-12-30 | 2018-07-05 | Omniome, Inc. | Method and system employing distinguishable polymerases for detecting ternary complexes and identifying cognate nucleotides |
| WO2018121587A1 (en) | 2016-12-27 | 2018-07-05 | 深圳华大生命科学研究院 | Single fluorescent dye based sequencing method |
| WO2018129314A1 (en) | 2017-01-06 | 2018-07-12 | Illumina, Inc. | Phasing correction |
| WO2018132389A1 (en) | 2017-01-10 | 2018-07-19 | Omniome, Inc. | Polymerases engineered to reduce nucleotide-independent dna binding |
| WO2018136416A1 (en) | 2017-01-17 | 2018-07-26 | Illumina, Inc. | Oncogenic splice variant determination |
| WO2018136118A1 (en) | 2017-01-20 | 2018-07-26 | Omniome, Inc. | Genotyping by polymerase binding |
| WO2018136117A1 (en) | 2017-01-20 | 2018-07-26 | Omniome, Inc. | Allele-specific capture of nucleic acids |
| WO2018136487A1 (en) | 2017-01-20 | 2018-07-26 | Omniome, Inc. | Process for cognate nucleotide detection in a nucleic acid sequencing workflow |
| WO2018152162A1 (en) | 2017-02-15 | 2018-08-23 | Omniome, Inc. | Distinguishing sequences by detecting polymerase dissociation |
| WO2018156519A1 (en) | 2017-02-21 | 2018-08-30 | Illumina Inc. | Tagmentation using immobilized transposomes with linkers |
| EP3373174A1 (en) | 2006-03-31 | 2018-09-12 | Illumina, Inc. | Systems and devices for sequence by synthesis analysis |
| WO2018175798A1 (en) | 2017-03-24 | 2018-09-27 | Life Technologies Corporation | Polynucleotide adapters and methods of use thereof |
| WO2018200380A1 (en) | 2017-04-23 | 2018-11-01 | Illumina, Inc. | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| WO2018200709A1 (en) | 2017-04-25 | 2018-11-01 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| WO2018197945A1 (en) | 2017-04-23 | 2018-11-01 | Illumina Cambridge Limited | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| WO2018197950A1 (en) | 2017-04-23 | 2018-11-01 | Illumina Cambridge Limited | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| WO2018200386A1 (en) | 2017-04-23 | 2018-11-01 | Illumina, Inc. | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| WO2018204423A1 (en) | 2017-05-01 | 2018-11-08 | Illumina, Inc. | Optimal index sequences for multiplex massively parallel sequencing |
| WO2018208699A1 (en) | 2017-05-08 | 2018-11-15 | Illumina, Inc. | Universal short adapters for indexing of polynucleotide samples |
| WO2018226708A1 (en) | 2017-06-07 | 2018-12-13 | Oregon Health & Science University | Single cell whole genome libraries for methylation sequencing |
| WO2018236631A1 (en) | 2017-06-20 | 2018-12-27 | Illumina, Inc. | Methods and compositions for addressing inefficiencies in amplification reactions |
| WO2019018366A1 (en) | 2017-07-18 | 2019-01-24 | Omniome, Inc. | Method of chemically modifying plastic surfaces |
| WO2019023924A1 (en) | 2017-08-01 | 2019-02-07 | Helitec Limited | Methods of enriching and determining target nucleotide sequences |
| WO2019028047A1 (en) | 2017-08-01 | 2019-02-07 | Illumina, Inc | Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells |
| WO2019027767A1 (en) | 2017-07-31 | 2019-02-07 | Illumina Inc. | Sequencing system with multiplexed biological sample aggregation |
| WO2019035897A1 (en) | 2017-08-15 | 2019-02-21 | Omniome, Inc. | Scanning apparatus and methods useful for detection of chemical and biological analytes |
| US10227585B2 (en) | 2008-09-12 | 2019-03-12 | University Of Washington | Sequence tag directed subassembly of short sequencing reads into long sequencing reads |
| US10227647B2 (en) | 2015-02-17 | 2019-03-12 | Complete Genomics, Inc. | DNA sequencing using controlled strand displacement |
| US10233494B2 (en) | 2005-09-29 | 2019-03-19 | Keygene N.V. | High throughput screening of populations carrying naturally occurring mutations |
| WO2019055715A1 (en) | 2017-09-15 | 2019-03-21 | Illumina, Inc. | Universal short adapters with variable length non-random unique molecular identifiers |
| US10239909B2 (en) | 2015-05-22 | 2019-03-26 | Illumina Cambridge Limited | Polymethine compounds with long stokes shifts and their use as fluorescent labels |
| US10246705B2 (en) | 2011-02-10 | 2019-04-02 | Ilumina, Inc. | Linking sequence reads using paired code tags |
| US10253352B2 (en) | 2015-11-17 | 2019-04-09 | Omniome, Inc. | Methods for determining sequence profiles |
| WO2019079593A1 (en) | 2017-10-19 | 2019-04-25 | Omniome, Inc. | Simultaneous background reduction and complex stabilization in binding assay workflows |
| WO2019090251A2 (en) | 2017-11-06 | 2019-05-09 | Illumina, Inc. | Nucleic acid indexing techniques |
| WO2019099529A1 (en) | 2017-11-16 | 2019-05-23 | Illumina, Inc. | Systems and methods for determining microsatellite instability |
| WO2019108972A1 (en) | 2017-11-30 | 2019-06-06 | Illumina, Inc. | Validation methods and systems for sequence variant calls |
| US10316364B2 (en) | 2005-09-29 | 2019-06-11 | Keygene N.V. | Method for identifying the source of an amplicon |
| WO2019136388A1 (en) | 2018-01-08 | 2019-07-11 | Illumina, Inc. | Systems and devices for high-throughput sequencing with semiconductor-based detection |
| US10350570B2 (en) | 2014-12-15 | 2019-07-16 | Illumina, Inc. | Compositions and methods for single molecular placement on a substrate |
| US10392655B2 (en) | 2014-06-02 | 2019-08-27 | Illumina Cambridge Limited | Methods of reducing density-dependent GC bias in amplification |
| WO2019195225A1 (en) | 2018-04-02 | 2019-10-10 | Illumina, Inc. | Compositions and methods for making controls for sequence-based genetic testing |
| US10450598B2 (en) | 2015-09-11 | 2019-10-22 | Illumina, Inc. | Systems and methods for obtaining a droplet having a designated concentration of a substance-of-interest |
| WO2019203986A1 (en) | 2018-04-19 | 2019-10-24 | Omniome, Inc. | Improving accuracy of base calls in nucleic acid sequencing methods |
| US10457936B2 (en) | 2011-02-02 | 2019-10-29 | University Of Washington Through Its Center For Commercialization | Massively parallel contiguity mapping |
| WO2019209426A1 (en) | 2018-04-26 | 2019-10-31 | Omniome, Inc. | Methods and compositions for stabilizing nucleic acid-nucleotide-polymerase complexes |
| US10465232B1 (en) | 2015-10-08 | 2019-11-05 | Trace Genomics, Inc. | Methods for quantifying efficiency of nucleic acid extraction and detection |
| WO2019222688A1 (en) | 2018-05-17 | 2019-11-21 | Illumina, Inc. | High-throughput single-cell sequencing with reduced amplification bias |
| US10486153B2 (en) | 2013-09-27 | 2019-11-26 | Illumina, Inc. | Method to produce chemical pattern in micro-fluidic structure |
| WO2019231568A1 (en) | 2018-05-31 | 2019-12-05 | Omniome, Inc. | Increased signal to noise in nucleic acid sequencing |
| US10526648B2 (en) | 2017-07-12 | 2020-01-07 | Illumina Cambridge Limited | Short pendant arm linkers for nucleotides in sequencing applications |
| US10540783B2 (en) | 2013-11-01 | 2020-01-21 | Illumina, Inc. | Image analysis useful for patterned objects |
| WO2020023362A1 (en) | 2018-07-24 | 2020-01-30 | Omniome, Inc. | Serial formation of ternary complex species |
| WO2020036991A1 (en) | 2018-08-15 | 2020-02-20 | Illumina, Inc. | Compositions and methods for improving library enrichment |
| US10576471B2 (en) | 2015-03-20 | 2020-03-03 | Illumina, Inc. | Fluidics cartridge for use in the vertical or substantially vertical position |
| WO2020047010A2 (en) | 2018-08-28 | 2020-03-05 | 10X Genomics, Inc. | Increasing spatial array resolution |
| WO2020047005A1 (en) | 2018-08-28 | 2020-03-05 | 10X Genomics, Inc. | Resolving spatial arrays |
| US10590464B2 (en) | 2015-05-29 | 2020-03-17 | Illumina Cambridge Limited | Enhanced utilization of surface primers in clusters |
| DE202019106694U1 (en) | 2019-12-02 | 2020-03-19 | Omniome, Inc. | System for sequencing nucleic acids in fluid foam |
| DE202019106695U1 (en) | 2019-12-02 | 2020-03-19 | Omniome, Inc. | System for sequencing nucleic acids in fluid foam |
| WO2020060811A1 (en) | 2018-09-17 | 2020-03-26 | Omniome, Inc. | Engineered polymerases for improved sequencing |
| US10619204B2 (en) | 2014-11-11 | 2020-04-14 | Illumina Cambridge Limited | Methods and arrays for producing and sequencing monoclonal clusters of nucleic acid |
| US10656368B1 (en) | 2019-07-24 | 2020-05-19 | Omniome, Inc. | Method and system for biological imaging using a wide field objective lens |
| WO2020104851A1 (en) | 2018-11-21 | 2020-05-28 | Akershus Universitetssykehus Hf | Tagmentation-associated multiplex pcr enrichment sequencing |
| EP3663290A1 (en) | 2015-09-25 | 2020-06-10 | Illumina Cambridge Limited | Polymethine compounds and their use as fluorescent labels |
| WO2020114918A1 (en) | 2018-12-05 | 2020-06-11 | Illumina Cambridge Limited | Methods and compositions for cluster generation by bridge amplification |
| WO2020117653A1 (en) | 2018-12-04 | 2020-06-11 | Omniome, Inc. | Mixed-phase fluids for nucleic acid sequencing and other analytical assays |
| WO2020123320A2 (en) | 2018-12-10 | 2020-06-18 | 10X Genomics, Inc. | Imaging system hardware |
| EP3670672A1 (en) | 2006-10-06 | 2020-06-24 | Illumina Cambridge Limited | Method for sequencing a polynucleotide template |
| WO2020126602A1 (en) | 2018-12-18 | 2020-06-25 | Illumina Cambridge Limited | Methods and compositions for paired end sequencing using a single surface primer |
| WO2020132350A2 (en) | 2018-12-20 | 2020-06-25 | Omniome, Inc. | Temperature control for analysis of nucleic acids and other analytes |
| WO2020132103A1 (en) | 2018-12-19 | 2020-06-25 | Illumina, Inc. | Methods for improving polynucleotide cluster clonality priority |
| WO2020136170A2 (en) | 2018-12-26 | 2020-07-02 | Illumina Cambridge Limited | Nucleosides and nucleotides with 3'-hydroxy blocking groups |
| WO2020144373A1 (en) | 2019-01-11 | 2020-07-16 | Illumina Cambridge Limited | Complex surface-bound transposome complexes |
| US10737267B2 (en) | 2017-04-04 | 2020-08-11 | Omniome, Inc. | Fluidic apparatus and methods useful for chemical and biological reactions |
| WO2020167574A1 (en) | 2019-02-14 | 2020-08-20 | Omniome, Inc. | Mitigating adverse impacts of detection systems on nucleic acids and other biological analytes |
| EP3699289A1 (en) | 2014-06-09 | 2020-08-26 | Illumina Cambridge Limited | Sample preparation for nucleic acid amplification |
| EP3698874A1 (en) | 2014-03-11 | 2020-08-26 | Illumina, Inc. | Disposable, integrated microfluidic cartridge and methods of making the same |
| WO2020176788A1 (en) | 2019-02-28 | 2020-09-03 | 10X Genomics, Inc. | Profiling of biological analytes with spatially barcoded oligonucleotide arrays |
| WO2020178165A1 (en) | 2019-03-01 | 2020-09-10 | Illumina Cambridge Limited | Tertiary amine substituted coumarin compounds and their uses as fluorescent labels |
| WO2020178162A1 (en) | 2019-03-01 | 2020-09-10 | Illumina Cambridge Limited | Exocyclic amine-substituted coumarin compounds and their uses as fluorescent labels |
| WO2020178231A1 (en) | 2019-03-01 | 2020-09-10 | Illumina, Inc. | Multiplexed fluorescent detection of analytes |
| WO2020180778A1 (en) | 2019-03-01 | 2020-09-10 | Illumina, Inc. | High-throughput single-nuclei and single-cell libraries and methods of making and of using |
| NL2023327B1 (en) | 2019-03-01 | 2020-09-17 | Illumina Inc | Multiplexed fluorescent detection of analytes |
| WO2020191391A2 (en) | 2019-03-21 | 2020-09-24 | Illumina, Inc. | Artificial intelligence-based sequencing |
| WO2020190509A1 (en) | 2019-03-15 | 2020-09-24 | 10X Genomics, Inc. | Methods for using spatial arrays for single cell sequencing |
| NL2023312B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based base calling |
| NL2023314B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based quality scoring |
| NL2023316B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based sequencing |
| NL2023310B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Training data generation for artificial intelligence-based sequencing |
| NL2023311B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based generation of sequencing metadata |
| WO2020198071A1 (en) | 2019-03-22 | 2020-10-01 | 10X Genomics, Inc. | Three-dimensional spatial analysis |
| WO2020193765A1 (en) | 2019-03-28 | 2020-10-01 | Illumina Cambridge Limited | Methods and compositions for nucleic acid sequencing using photoswitchable labels |
| EP3725893A1 (en) | 2015-02-10 | 2020-10-21 | Illumina, Inc. | Compositions for analyzing cellular components |
| WO2020227953A1 (en) | 2019-05-15 | 2020-11-19 | 深圳华大智造极创科技有限公司 | Single-channel sequencing method based on self-luminescence |
| US10844429B2 (en) | 2017-01-18 | 2020-11-24 | Illumina, Inc. | Methods and systems for generation and error-correction of unique molecular index sets with heterogeneous molecular lengths |
| US10844428B2 (en) | 2015-04-28 | 2020-11-24 | Illumina, Inc. | Error suppression in sequenced DNA fragments using redundant reads with unique molecular indices (UMIS) |
| WO2020243579A1 (en) | 2019-05-30 | 2020-12-03 | 10X Genomics, Inc. | Methods of detecting spatial heterogeneity of a biological sample |
| WO2020252186A1 (en) | 2019-06-11 | 2020-12-17 | Omniome, Inc. | Calibrated focus sensing |
| US10894981B2 (en) | 2015-10-13 | 2021-01-19 | Japan Agency For Marine-Earth Science And Technology | Method for fragmenting double-stranded RNA and use of the same |
| WO2021009494A1 (en) | 2019-07-12 | 2021-01-21 | Illumina Cambridge Limited | Nucleic acid library preparation using electrophoresis |
| WO2021008805A1 (en) | 2019-07-12 | 2021-01-21 | Illumina Cambridge Limited | Compositions and methods for preparing nucleic acid sequencing libraries using crispr/cas9 immobilized on a solid support |
| EP3783109A1 (en) | 2015-03-31 | 2021-02-24 | Illumina Cambridge Limited | Surface concatamerization of templates |
| WO2021031109A1 (en) | 2019-08-20 | 2021-02-25 | 深圳华大智造极创科技有限公司 | Method for sequencing polynucleotides on basis of optical signal dynamics of luminescent label and secondary luminescent signal |
| WO2021050681A1 (en) | 2019-09-10 | 2021-03-18 | Omniome, Inc. | Reversible modification of nucleotides |
| EP3798319A1 (en) | 2019-09-30 | 2021-03-31 | Diagenode S.A. | An improved diagnostic and/or sequencing method and kit |
| US10976334B2 (en) | 2015-08-24 | 2021-04-13 | Illumina, Inc. | In-line pressure accumulator and flow-control system for biological or chemical assays |
| WO2021076152A1 (en) | 2019-10-18 | 2021-04-22 | Omniome, Inc. | Methods and compositions for capping nucleic acids |
| WO2021092431A1 (en) | 2019-11-08 | 2021-05-14 | Omniome, Inc. | Engineered polymerases for improved sequencing by binding |
| WO2021091611A1 (en) | 2019-11-08 | 2021-05-14 | 10X Genomics, Inc. | Spatially-tagged analyte capture agents for analyte multiplexing |
| WO2021097255A1 (en) | 2019-11-13 | 2021-05-20 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
| WO2021102039A1 (en) | 2019-11-21 | 2021-05-27 | 10X Genomics, Inc, | Spatial analysis of analytes |
| WO2021102003A1 (en) | 2019-11-18 | 2021-05-27 | 10X Genomics, Inc. | Systems and methods for tissue classification |
| WO2021102005A1 (en) | 2019-11-22 | 2021-05-27 | 10X Genomics, Inc. | Systems and methods for spatial analysis of analytes using fiducial alignment |
| EP3828283A1 (en) | 2019-11-28 | 2021-06-02 | Diagenode S.A. | An improved sequencing method and kit |
| EP3828167A1 (en) | 2014-05-07 | 2021-06-02 | Illumina Cambridge Limited | Polymethine compounds and their use as fluorescent labels |
| WO2021104845A1 (en) | 2019-11-27 | 2021-06-03 | Illumina Cambridge Limited | Cyclooctatetraene containing dyes and compositions |
| WO2021127436A2 (en) | 2019-12-19 | 2021-06-24 | Illumina, Inc. | High-throughput single-cell libraries and methods of making and of using |
| WO2021123074A1 (en) | 2019-12-18 | 2021-06-24 | F. Hoffmann-La Roche Ag | Methods of sequencing by synthesis using a consecutive labeling scheme |
| WO2021128441A1 (en) | 2019-12-23 | 2021-07-01 | Mgi Tech Co.,Ltd. | Controlled strand-displacement for paired-end sequencing |
| US11060130B2 (en) | 2014-06-11 | 2021-07-13 | Illumina Cambridge Limited | Methods for estimating cluster numbers |
| EP3854884A1 (en) | 2015-08-14 | 2021-07-28 | Illumina, Inc. | Systems and methods using magnetically-responsive sensors for determining a genetic characteristic |
| WO2021148809A1 (en) | 2020-01-22 | 2021-07-29 | Nuclera Nucleics Ltd | Methods of nucleic acid synthesis |
| WO2021158964A1 (en) | 2020-02-07 | 2021-08-12 | University Of Rochester | Ribozyme-mediated rna assembly and expression |
| WO2021168353A2 (en) | 2020-02-20 | 2021-08-26 | Illumina, Inc. | Artificial intelligence-based many-to-many base calling |
| WO2021168014A1 (en) | 2020-02-20 | 2021-08-26 | Illumina, Inc. | Knowledge distillation and gradient pruning-based compression of artificial intelligence-based base caller |
| WO2021168287A1 (en) | 2020-02-21 | 2021-08-26 | 10X Genomics, Inc. | Methods and compositions for integrated in situ spatial assay |
| WO2021168018A1 (en) | 2020-02-20 | 2021-08-26 | Illumina, Inc. | Hardware execution and acceleration of artificial intelligence-based base caller |
| WO2021178467A1 (en) | 2020-03-03 | 2021-09-10 | Omniome, Inc. | Methods and compositions for sequencing double stranded nucleic acids |
| EP3878974A1 (en) | 2015-07-06 | 2021-09-15 | Illumina Cambridge Limited | Sample preparation for nucleic acid amplification |
| US11162132B2 (en) | 2015-04-10 | 2021-11-02 | Spatial Transcriptomics Ab | Spatially distinguished, multiplex nucleic acid analysis of biological specimens |
| WO2021226522A1 (en) | 2020-05-08 | 2021-11-11 | Illumina, Inc. | Genome sequencing and detection techniques |
| WO2021225886A1 (en) | 2020-05-05 | 2021-11-11 | Omniome, Inc. | Compositions and methods for modifying polymerase-nucleic acid complexes |
| EP3910069A1 (en) | 2014-02-18 | 2021-11-17 | Illumina, Inc. | Methods and composition for dna profiling |
| WO2021231477A2 (en) | 2020-05-12 | 2021-11-18 | Illumina, Inc. | Generating nucleic acids with modified bases using recombinant terminal deoxynucleotidyl transferase |
| US11180794B2 (en) | 2018-05-31 | 2021-11-23 | Omniome, Inc. | Methods and compositions for capping nucleic acids |
| US11181478B2 (en) | 2013-12-10 | 2021-11-23 | Illumina, Inc. | Biosensors for biological or chemical analysis and methods of manufacturing the same |
| EP3913358A1 (en) | 2018-01-08 | 2021-11-24 | Illumina Inc | High-throughput sequencing with semiconductor-based detection |
| WO2021252375A1 (en) | 2020-06-08 | 2021-12-16 | The Broad Institute, Inc. | Single cell combinatorial indexing from amplified nucleic acids |
| WO2021252617A1 (en) | 2020-06-09 | 2021-12-16 | Illumina, Inc. | Methods for increasing yield of sequencing libraries |
| WO2021259881A1 (en) | 2020-06-22 | 2021-12-30 | Illumina Cambridge Limited | Nucleosides and nucleotides with 3' acetal blocking group |
| WO2022006081A1 (en) | 2020-06-30 | 2022-01-06 | Illumina, Inc. | Catalytically controlled sequencing by synthesis to produce scarless dna |
| WO2022010965A1 (en) | 2020-07-08 | 2022-01-13 | Illumina, Inc. | Beads as transposome carriers |
| EP3940083A1 (en) | 2015-10-07 | 2022-01-19 | Illumina, Inc. | Off-target capture reduction in sequencing techniques |
| WO2022023353A1 (en) | 2020-07-28 | 2022-02-03 | Illumina Cambridge Limited | Substituted coumarin dyes and uses as fluorescent labels |
| WO2022031955A1 (en) | 2020-08-06 | 2022-02-10 | Illumina, Inc. | Preparation of rna and dna sequencing libraries using bead-linked transposomes |
| WO2022038386A1 (en) | 2020-08-21 | 2022-02-24 | Nuclera Nucleics Ltd | Polyacrilamide type solid-supported nucleic acid synthesis |
| WO2022040176A1 (en) | 2020-08-18 | 2022-02-24 | Illumina, Inc. | Sequence-specific targeted transposition and selection and sorting of nucleic acids |
| EP3974538A1 (en) | 2014-11-05 | 2022-03-30 | Illumina Cambridge Limited | Sequencing from multiple primers to increase data rate and density |
| WO2022087150A2 (en) | 2020-10-21 | 2022-04-28 | Illumina, Inc. | Sequencing templates comprising multiple inserts and compositions and methods for improving sequencing throughput |
| WO2022103887A1 (en) | 2020-11-11 | 2022-05-19 | Nautilus Biotechnology, Inc. | Affinity reagents having enhanced binding and detection characteristics |
| US11352659B2 (en) | 2011-04-13 | 2022-06-07 | Spatial Transcriptomics Ab | Methods of detecting analytes |
| WO2022119812A1 (en) | 2020-12-02 | 2022-06-09 | Illumina Software, Inc. | System and method for detection of genetic alterations |
| WO2022129437A1 (en) | 2020-12-17 | 2022-06-23 | Illumina Cambridge Limited | Long stokes shift chromenoquinoline dyes and uses in sequencing applications |
| WO2022129930A1 (en) | 2020-12-17 | 2022-06-23 | Illumina Cambridge Limited | Alkylpyridinium coumarin dyes and uses in sequencing applications |
| WO2022129439A1 (en) | 2020-12-17 | 2022-06-23 | Illumina Cambridge Limited | Methods, systems and compositions for nucleic acid sequencing |
| WO2022136402A1 (en) | 2020-12-22 | 2022-06-30 | Illumina Cambridge Limited | Methods and compositions for nucleic acid sequencing |
| US11377655B2 (en) | 2019-07-16 | 2022-07-05 | Pacific Biosciences Of California, Inc. | Synthetic nucleic acids having non-natural structures |
| US11390619B2 (en) | 2017-10-16 | 2022-07-19 | Illumina Cambridge Limited | Secondary amine-substituted coumarin compounds and their uses as fluorescent labels |
| WO2022159663A1 (en) | 2021-01-21 | 2022-07-28 | Nautilus Biotechnology, Inc. | Systems and methods for biomolecule preparation |
| WO2022192591A1 (en) | 2021-03-11 | 2022-09-15 | Nautilus Biotechnology, Inc. | Systems and methods for biomolecule retention |
| WO2022197752A1 (en) | 2021-03-16 | 2022-09-22 | Illumina, Inc. | Tile location and/or cycle based weight set selection for base calling |
| US11455487B1 (en) | 2021-10-26 | 2022-09-27 | Illumina Software, Inc. | Intensity extraction and crosstalk attenuation using interpolation and adaptation for base calling |
| WO2022204032A1 (en) | 2021-03-22 | 2022-09-29 | Illumina Cambridge Limited | Methods for improving nucleic acid cluster clonality |
| US11458469B2 (en) | 2016-10-14 | 2022-10-04 | Illumina, Inc. | Cartridge assembly |
| WO2022207804A1 (en) | 2021-03-31 | 2022-10-06 | Illumina Cambridge Limited | Nucleic acid library sequencing techniques with adapter dimer detection |
| WO2022212402A1 (en) | 2021-03-31 | 2022-10-06 | Illumina, Inc. | Methods of preparing directional tagmentation sequencing libraries using transposon-based technology with unique molecular identifiers for error correction |
| WO2022212330A1 (en) | 2021-03-30 | 2022-10-06 | Illumina, Inc. | Improved methods of isothermal complementary dna and library preparation |
| WO2022212269A1 (en) | 2021-03-29 | 2022-10-06 | Illumina, Inc. | Improved methods of library preparation |
| WO2022213027A1 (en) | 2021-04-02 | 2022-10-06 | Illumina, Inc. | Machine-learning model for detecting a bubble within a nucleotide-sample slide for sequencing |
| WO2022232425A2 (en) | 2021-04-29 | 2022-11-03 | Illumina, Inc. | Amplification techniques for nucleic acid characterization |
| WO2022233795A1 (en) | 2021-05-05 | 2022-11-10 | Illumina Cambridge Limited | Fluorescent dyes containing bis-boron fused heterocycles and uses in sequencing |
| WO2022240764A1 (en) | 2021-05-10 | 2022-11-17 | Pacific Biosciences Of California, Inc. | Single-molecule seeding and amplification on a surface |
| WO2022240766A1 (en) | 2021-05-10 | 2022-11-17 | Pacific Biosciences Of California, Inc. | Dna amplification buffer replenishment during rolling circle amplification |
| WO2022243480A1 (en) | 2021-05-20 | 2022-11-24 | Illumina, Inc. | Compositions and methods for sequencing by synthesis |
| US11515010B2 (en) | 2021-04-15 | 2022-11-29 | Illumina, Inc. | Deep convolutional neural networks to predict variant pathogenicity using three-dimensional (3D) protein structures |
| US11514575B2 (en) | 2019-10-01 | 2022-11-29 | 10X Genomics, Inc. | Systems and methods for identifying morphological patterns in tissue samples |
| WO2022251510A2 (en) | 2021-05-28 | 2022-12-01 | Illumina, Inc. | Oligo-modified nucleotide analogues for nucleic acid preparation |
| US11519033B2 (en) | 2018-08-28 | 2022-12-06 | 10X Genomics, Inc. | Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample |
| WO2022256229A1 (en) | 2021-06-03 | 2022-12-08 | Illumina Cambridge Limited | Systems and methods for sequencing nucleotides using two optical channels |
| WO2022271983A1 (en) | 2021-06-24 | 2022-12-29 | Nautilus Biotechnology, Inc. | Methods and systems for assay refinement |
| WO2022271954A1 (en) | 2021-06-24 | 2022-12-29 | Illumina, Inc. | Methods and compositions for combinatorial indexing of bead-based nucleic acids |
| WO2022272260A1 (en) | 2021-06-23 | 2022-12-29 | Illumina, Inc. | Compositions, methods, kits, cartridges, and systems for sequencing reagents |
| WO2023278788A1 (en) | 2021-07-01 | 2023-01-05 | Illumina, Inc. | Efficient artificial intelligence-based base calling of index sequences |
| WO2023278609A1 (en) | 2021-06-29 | 2023-01-05 | Illumina, Inc. | Self-learned base caller, trained using organism sequences |
| WO2023278927A1 (en) | 2021-06-29 | 2023-01-05 | Illumina Software, Inc. | Signal-to-noise-ratio metric for determining nucleotide-base calls and base-call quality |
| WO2023278184A1 (en) | 2021-06-29 | 2023-01-05 | Illumina, Inc. | Methods and systems to correct crosstalk in illumination emitted from reaction sites |
| WO2023278966A1 (en) | 2021-06-29 | 2023-01-05 | Illumina, Inc. | Machine-learning model for generating confidence classifications for genomic coordinates |
| WO2023287617A1 (en) | 2021-07-13 | 2023-01-19 | Illumina, Inc. | Methods and systems for real time extraction of crosstalk in illumination emitted from reaction sites |
| WO2023004323A1 (en) | 2021-07-23 | 2023-01-26 | Illumina Software, Inc. | Machine-learning model for recalibrating nucleotide-base calls |
| WO2023003757A1 (en) | 2021-07-19 | 2023-01-26 | Illumina Software, Inc. | Intensity extraction with interpolation and adaptation for base calling |
| WO2023009758A1 (en) | 2021-07-28 | 2023-02-02 | Illumina, Inc. | Quality score calibration of basecalling systems |
| WO2023014741A1 (en) | 2021-08-03 | 2023-02-09 | Illumina Software, Inc. | Base calling using multiple base caller models |
| US11593649B2 (en) | 2019-05-16 | 2023-02-28 | Illumina, Inc. | Base calling using convolutions |
| WO2023034079A1 (en) | 2021-09-01 | 2023-03-09 | Illumina Software, Inc. | Amplitude modulation for accelerated base calling |
| US11603383B2 (en) | 2018-04-04 | 2023-03-14 | Nautilus Biotechnology, Inc. | Methods of generating nanoarrays and microarrays |
| WO2023044229A1 (en) | 2021-09-17 | 2023-03-23 | Illumina, Inc. | Automatically identifying failure sources in nucleotide sequencing from base-call-error patterns |
| WO2023049215A1 (en) | 2021-09-22 | 2023-03-30 | Illumina, Inc. | Compressed state-based base calling |
| WO2023049558A1 (en) | 2021-09-21 | 2023-03-30 | Illumina, Inc. | A graph reference genome and base-calling approach using imputed haplotypes |
| WO2023060527A1 (en) | 2021-10-11 | 2023-04-20 | 深圳华大智造科技股份有限公司 | Use of saponin compound in nucleic acid sequencing |
| WO2023081485A1 (en) | 2021-11-08 | 2023-05-11 | Pacific Biosciences Of California, Inc. | Stepwise sequencing of a polynucleotide with a homogenous reaction mixture |
| US11649485B2 (en) | 2019-01-06 | 2023-05-16 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
| WO2023102336A1 (en) | 2021-11-30 | 2023-06-08 | Nautilus Subsidiary, Inc. | Particle-based isolation of proteins and other analytes |
| WO2023102118A2 (en) | 2021-12-01 | 2023-06-08 | 10X Genomics, Inc. | Methods, compositions, and systems for improved in situ detection of analytes and spatial analysis |
| WO2023102354A1 (en) | 2021-12-02 | 2023-06-08 | Illumina Software, Inc. | Generating cluster-specific-signal corrections for determining nucleotide-base calls |
| US11676685B2 (en) | 2019-03-21 | 2023-06-13 | Illumina, Inc. | Artificial intelligence-based quality scoring |
| WO2023107622A1 (en) | 2021-12-10 | 2023-06-15 | Illumina, Inc. | Parallel sample and index sequencing |
| US11680950B2 (en) | 2019-02-20 | 2023-06-20 | Pacific Biosciences Of California, Inc. | Scanning apparatus and methods for detecting chemical and biological analytes |
| WO2023114896A1 (en) | 2021-12-16 | 2023-06-22 | Illumina Cambridge Limited | Methods for metal directed cleavage of surface-bound polynucleotides |
| WO2023122362A1 (en) | 2021-12-23 | 2023-06-29 | Illumina Software, Inc. | Facilitating secure execution of external workflows for genomic sequencing diagnostics |
| WO2023122363A1 (en) | 2021-12-23 | 2023-06-29 | Illumina Software, Inc. | Dynamic graphical status summaries for nucelotide sequencing |
| WO2023122499A1 (en) | 2021-12-20 | 2023-06-29 | Illumina Cambridge Limited | Periodate compositions and methods for chemical cleavage of surface-bound polynucleotides |
| WO2023122491A1 (en) | 2021-12-20 | 2023-06-29 | Illumina Cambridge Limited | Periodate compositions and methods for chemical cleavage of surface-bound polynucleotides |
| US11694309B2 (en) | 2020-05-05 | 2023-07-04 | Illumina, Inc. | Equalizer-based intensity correction for base calling |
| WO2023129896A1 (en) | 2021-12-28 | 2023-07-06 | Illumina Software, Inc. | Machine learning model for recalibrating nucleotide base calls corresponding to target variants |
| WO2023126457A1 (en) | 2021-12-29 | 2023-07-06 | Illumina Cambridge Ltd. | Methods of nucleic acid sequencing using surface-bound primers |
| WO2023129764A1 (en) | 2021-12-29 | 2023-07-06 | Illumina Software, Inc. | Automatically switching variant analysis model versions for genomic analysis applications |
| US11697847B2 (en) | 2013-03-15 | 2023-07-11 | Illumina, Inc. | Super resolution imaging |
| WO2023164660A1 (en) | 2022-02-25 | 2023-08-31 | Illumina, Inc. | Calibration sequences for nucelotide sequencing |
| WO2023164492A1 (en) | 2022-02-25 | 2023-08-31 | Illumina, Inc. | Machine-learning models for detecting and adjusting values for nucleotide methylation levels |
| WO2023175043A1 (en) | 2022-03-15 | 2023-09-21 | Illumina, Inc. | Methods of base calling nucleobases |
| WO2023183937A1 (en) | 2022-03-25 | 2023-09-28 | Illumina, Inc. | Sequence-to-sequence base calling |
| WO2023186982A1 (en) | 2022-03-31 | 2023-10-05 | Illumina, Inc. | Compositions and methods for improving sequencing signals |
| WO2023192163A1 (en) | 2022-03-29 | 2023-10-05 | Illumina Cambridge Limited | Systems and methods of sequencing polynucleotides |
| WO2023186872A1 (en) | 2022-03-30 | 2023-10-05 | Illumina Cambridge Limited | Methods for chemical cleavage of surface-bound polynucleotides |
| WO2023192616A1 (en) | 2022-04-01 | 2023-10-05 | 10X Genomics, Inc. | Compositions and methods for targeted masking of autofluorescence |
| WO2023192900A1 (en) | 2022-03-31 | 2023-10-05 | Illumina Singapore Pte. Ltd. | Nucleosides and nucleotides with 3' vinyl blocking group useful in sequencing by synthesis |
| WO2023186815A1 (en) | 2022-03-28 | 2023-10-05 | Illumina Cambridge Limited | Labeled avidin and methods for sequencing |
| WO2023196528A1 (en) | 2022-04-08 | 2023-10-12 | Illumina, Inc. | Aptamer dynamic range compression and detection techniques |
| WO2023196526A1 (en) | 2022-04-06 | 2023-10-12 | 10X Genomics, Inc. | Methods for multiplex cell analysis |
| WO2023196572A1 (en) | 2022-04-07 | 2023-10-12 | Illumina Singapore Pte. Ltd. | Altered cytidine deaminases and methods of use |
| US11795504B2 (en) | 2020-01-17 | 2023-10-24 | Element Biosciences, Inc. | High performance fluorescence imaging module for genomic testing assay |
| EP4269618A2 (en) | 2018-06-04 | 2023-11-01 | Illumina, Inc. | Methods of making high-throughput single-cell transcriptome libraries |
| WO2023212601A1 (en) | 2022-04-26 | 2023-11-02 | Illumina, Inc. | Machine-learning models for selecting oligonucleotide probes for array technologies |
| WO2023209606A1 (en) | 2022-04-29 | 2023-11-02 | Illumina Cambridge Limited | Methods and systems for encapsulating lyophilised microspheres |
| EP4276769A2 (en) | 2019-03-21 | 2023-11-15 | Illumina, Inc. | Training data generation for artificial intelligence-based sequencing |
| WO2023220627A1 (en) | 2022-05-10 | 2023-11-16 | Illumina Software, Inc. | Adaptive neural network for nucelotide sequencing |
| US11821035B1 (en) | 2020-01-29 | 2023-11-21 | 10X Genomics, Inc. | Compositions and methods of making gene expression libraries |
| WO2023225095A1 (en) | 2022-05-18 | 2023-11-23 | Illumina Cambridge Limited | Preparation of size-controlled nucleic acid fragments |
| WO2023232829A1 (en) | 2022-05-31 | 2023-12-07 | Illumina, Inc | Compositions and methods for nucleic acid sequencing |
| WO2023250504A1 (en) | 2022-06-24 | 2023-12-28 | Illumina Software, Inc. | Improving split-read alignment by intelligently identifying and scoring candidate split groups |
| WO2024006779A1 (en) | 2022-06-27 | 2024-01-04 | Illumina, Inc. | Accelerators for a genotype imputation model |
| WO2024003087A1 (en) | 2022-06-28 | 2024-01-04 | Illumina, Inc. | Fluorescent dyes containing fused tetracyclic bis-boron heterocycle and uses in sequencing |
| WO2024006705A1 (en) | 2022-06-27 | 2024-01-04 | Illumina Software, Inc. | Improved human leukocyte antigen (hla) genotyping |
| US11866780B2 (en) | 2008-10-02 | 2024-01-09 | Illumina Cambridge Limited | Nucleic acid sample enrichment for sequencing applications |
| US11873480B2 (en) | 2014-10-17 | 2024-01-16 | Illumina Cambridge Limited | Contiguity preserving transposition |
| WO2024026356A1 (en) | 2022-07-26 | 2024-02-01 | Illumina, Inc. | Rapid single-cell multiomics processing using an executable file |
| WO2024039516A1 (en) | 2022-08-19 | 2024-02-22 | Illumina, Inc. | Third dna base pair site-specific dna detection |
| US11926867B2 (en) | 2019-01-06 | 2024-03-12 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
| WO2024050815A1 (en) | 2022-09-09 | 2024-03-14 | 深圳华大生命科学研究院 | Use of heteroaromatic ring compounds in nucleic acid tests |
| WO2024059852A1 (en) | 2022-09-16 | 2024-03-21 | Illumina, Inc. | Cluster segmentation and conditional base calling |
| WO2024073519A1 (en) | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Machine-learning model for refining structural variant calls |
| WO2024068889A2 (en) | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Compositions and methods for reducing photo damage during sequencing |
| WO2024073516A1 (en) | 2022-09-29 | 2024-04-04 | Illumina, Inc. | A target-variant-reference panel for imputing target variants |
| WO2024073043A1 (en) | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Methods of using cpg binding proteins in mapping modified cytosine nucleotides |
| WO2024069581A1 (en) | 2022-09-30 | 2024-04-04 | Illumina Singapore Pte. Ltd. | Helicase-cytidine deaminase complexes and methods of use |
| WO2024073047A1 (en) | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Cytidine deaminases and methods of use in mapping modified cytosine nucleotides |
| WO2024077096A1 (en) | 2022-10-05 | 2024-04-11 | Illumina, Inc. | Integrating variant calls from multiple sequencing pipelines utilizing a machine learning architecture |
| WO2024081649A1 (en) | 2022-10-11 | 2024-04-18 | Illumina, Inc. | Detecting and correcting methylation values from methylation sequencing assays |
| WO2024118903A1 (en) | 2022-11-30 | 2024-06-06 | Illumina, Inc. | Chemoenzymatic correction of false positive uracil transformations |
| WO2024118791A1 (en) | 2022-11-30 | 2024-06-06 | Illumina, Inc. | Accurately predicting variants from methylation sequencing data |
| WO2024123866A1 (en) | 2022-12-09 | 2024-06-13 | Illumina, Inc. | Nucleosides and nucleotides with 3´ blocking groups and cleavable linkers |
| WO2024130031A1 (en) | 2022-12-16 | 2024-06-20 | Illumina, Inc. | Boranes on solid supports |
| WO2024137774A1 (en) | 2022-12-22 | 2024-06-27 | Illumina, Inc. | Palladium catalyst compositions and methods for sequencing by synthesis |
| WO2024137765A1 (en) | 2022-12-22 | 2024-06-27 | Illumina, Inc. | Transition-metal catalyst compositions and methods for sequencing by synthesis |
| WO2024137886A1 (en) | 2022-12-21 | 2024-06-27 | Illumina, Inc. | Context-dependent base calling |
| WO2024137826A1 (en) | 2022-12-21 | 2024-06-27 | 10X Genomics, Inc. | Analysis of analytes and spatial gene expression |
| WO2024145154A1 (en) | 2022-12-27 | 2024-07-04 | Illumina, Inc. | Methods of sequencing using 3´ allyl blocked nucleotides |
| WO2024147904A1 (en) | 2023-01-06 | 2024-07-11 | Illumina, Inc. | Reducing uracils by polymerase |
| WO2024167954A1 (en) | 2023-02-06 | 2024-08-15 | Illumina, Inc. | Determining and removing inter-cluster light interference |
| US12071667B2 (en) | 2020-11-04 | 2024-08-27 | 10X Genomics, Inc. | Sequence analysis using meta-stable nucleic acid molecules |
| US12076701B2 (en) | 2020-01-31 | 2024-09-03 | 10X Genomics, Inc. | Capturing oligonucleotides in spatial transcriptomics |
| US12083514B2 (en) | 2018-07-03 | 2024-09-10 | Illumina, Inc. | Interposer with first and second adhesive layers |
| WO2024191806A1 (en) | 2023-03-10 | 2024-09-19 | Illumina, Inc. | Aptamer detection techniques |
| WO2024196855A2 (en) | 2023-03-17 | 2024-09-26 | University Of Rochester | Ribozyme-mediated rna assembly and expression |
| US12106828B2 (en) | 2019-05-16 | 2024-10-01 | Illumina, Inc. | Systems and devices for signal corrections in pixel-based sequencing |
| WO2024206394A1 (en) | 2023-03-30 | 2024-10-03 | Illumina, Inc. | Compositions and methods for nucleic acid sequencing |
| WO2024206848A1 (en) | 2023-03-30 | 2024-10-03 | Illumina, Inc. | Tandem repeat genotyping |
| WO2024206407A2 (en) | 2023-03-29 | 2024-10-03 | Illumina, Inc. | Naphthalimide dyes and uses in nucleic acid sequencing |
| US12112833B2 (en) | 2020-02-04 | 2024-10-08 | 10X Genomics, Inc. | Systems and methods for index hopping filtering |
| WO2024229396A1 (en) | 2023-05-03 | 2024-11-07 | Illumina, Inc. | Machine learning model for recalibrating genotype calls from existing sequencing data files |
| US12146190B2 (en) | 2021-07-21 | 2024-11-19 | Element Biosciences, Inc. | Optical systems for nucleic acid sequencing and methods thereof |
| EP4263868A4 (en) * | 2021-03-12 | 2024-11-27 | Singular Genomics Systems, Inc. | NANOARRAYS AND METHODS OF USE THEREOF |
| WO2024249591A1 (en) | 2023-05-31 | 2024-12-05 | Illumina, Inc. | Methods for double-stranded sequencing by synthesis |
| WO2024249466A1 (en) | 2023-05-31 | 2024-12-05 | Illumina, Inc. | False positive reduction by translesion polymerase repair |
| WO2024249940A1 (en) | 2023-05-31 | 2024-12-05 | Illumina, Inc. | Improving structural variant alignment and variant calling by utilizing a structural-variant reference genome |
| WO2024249973A2 (en) | 2023-06-02 | 2024-12-05 | Illumina, Inc. | Linking human genes to clinical phenotypes using graph neural networks |
| WO2024249200A1 (en) | 2023-05-26 | 2024-12-05 | Illumina, Inc. | Methods for preserving methylation status during clustering |
| WO2024254003A1 (en) | 2023-06-05 | 2024-12-12 | Illumina, Inc. | Identification and mapping of methylation sites |
| US12168801B1 (en) | 2020-07-02 | 2024-12-17 | 10X Genomics, Inc. | Hybrid/capture probe designs for full-length cDNA |
| WO2025006460A1 (en) | 2023-06-30 | 2025-01-02 | Illumina, Inc. | Systems and methods of sequencing polynucleotides with modified bases |
| WO2025006464A1 (en) | 2023-06-30 | 2025-01-02 | Illumina, Inc. | Systems and methods of sequencing polynucleotides with alternative scatterplots |
| WO2025006874A1 (en) | 2023-06-30 | 2025-01-02 | Illumina, Inc. | Machine-learning model for recalibrating genotype calls corresponding to germline variants and somatic mosaic variants |
| WO2025006565A1 (en) | 2023-06-27 | 2025-01-02 | Illumina, Inc. | Variant calling with methylation-level estimation |
| WO2025006466A1 (en) | 2023-06-30 | 2025-01-02 | Illumina, Inc. | Systems and methods of sequencing polynucleotides with four labeled nucleotides |
| WO2025003434A1 (en) | 2023-06-30 | 2025-01-02 | Dna Script | Nucleic acid synthesis on reusable support |
| US12188085B2 (en) | 2020-03-05 | 2025-01-07 | 10X Genomics, Inc. | Three-dimensional spatial transcriptomics with sequencing readout |
| WO2025010160A1 (en) | 2023-07-06 | 2025-01-09 | Pacific Biosciences Of California, Inc. | Methods and compositions for stabilizing concatemers |
| US12215379B2 (en) | 2020-02-17 | 2025-02-04 | 10X Genomics, Inc. | In situ analysis of chromatin interaction |
| WO2025049331A2 (en) | 2023-08-31 | 2025-03-06 | Illumina, Inc. | Aptamer detection techniques |
| WO2025049720A2 (en) | 2023-08-31 | 2025-03-06 | Illumina, Inc. | Aptamer dynamic range compression and detection techniques |
| WO2025049700A1 (en) | 2023-08-31 | 2025-03-06 | Illumina, Inc. | Compositions and methods for nucleic acid sequencing |
| EP4520821A1 (en) | 2023-09-08 | 2025-03-12 | The Regents Of The University Of Michigan | Microrna-derived rnas and polypeptides and uses thereof |
| WO2025054389A1 (en) | 2023-09-07 | 2025-03-13 | Illumina, Inc. | Identification of methylated cytosine using landmarks |
| WO2025061942A1 (en) | 2023-09-20 | 2025-03-27 | Illumina, Inc. | Sequencing error identification and correction |
| WO2025061922A1 (en) | 2023-09-20 | 2025-03-27 | Illumina, Inc. | Methods for sequencing |
| WO2025072870A1 (en) | 2023-09-29 | 2025-04-03 | Illumina, Inc. | Tracking and modifying cluster location on nucleotide-sample slides in real time |
| WO2025072783A1 (en) | 2023-09-28 | 2025-04-03 | Illumina, Inc. | Altered cytidine deaminases and methods of use |
| WO2025072833A1 (en) | 2023-09-29 | 2025-04-03 | Illumina, Inc. | Predicting insert lengths using primary analysis metrics |
| WO2025081064A2 (en) | 2023-10-11 | 2025-04-17 | Illumina, Inc. | Thermophilic deaminase and methods for identifying modified cytosine |
| WO2025080780A1 (en) | 2023-10-10 | 2025-04-17 | University Of Rochester | Delivery and expression of prime editing crispr systems |
| WO2025090596A1 (en) | 2023-10-26 | 2025-05-01 | Illumina, Inc. | 4,5-substituted naphthalimide dyes and uses in nucleic acid sequencing |
| WO2025090883A1 (en) | 2023-10-27 | 2025-05-01 | Illumina, Inc. | Detecting variants in nucleotide sequences based on haplotype diversity |
| US12306093B2 (en) | 2019-04-29 | 2025-05-20 | Nautilus Subsidiary, Inc. | Methods and systems for integrated on-chip single-molecule detection |
| WO2025106715A1 (en) | 2023-11-17 | 2025-05-22 | Illumina, Inc. | Conjugated polymers or polymer dots as fluorescent labels |
| WO2025117738A1 (en) | 2023-11-28 | 2025-06-05 | Illumina, Inc. | Methods of improving unique molecular index ligation efficiency |
| WO2025123005A2 (en) | 2023-12-07 | 2025-06-12 | Illumina, Inc. | Preparation and compositions of cot-1 nucleic acid |
| WO2025129133A1 (en) | 2023-12-15 | 2025-06-19 | Illumina, Inc. | Minimal residual disease (mrd) models for determining likelihoods or probabilities of a subject comprising cancer |
| WO2025137222A1 (en) | 2023-12-19 | 2025-06-26 | Illumina, Inc. | Methylation detection assay |
| WO2025137341A1 (en) | 2023-12-20 | 2025-06-26 | Illumina, Inc. | Directly determining signal-to-noise-ratio metrics for accelerated convergence in determining nucleotide-base calls and base-call quality |
| WO2025136998A1 (en) | 2023-12-18 | 2025-06-26 | Illumina, Inc. | Using machine learning models for detecting minimum residual disease (mrd) in a subject |
| WO2025137647A1 (en) | 2023-12-21 | 2025-06-26 | Illumina, Inc. | Enhanced mapping and alignment of nucleotide reads utilizing an improved haplotype data structure with allele-variant differences |
| WO2025136890A1 (en) | 2023-12-18 | 2025-06-26 | Illumina, Inc. | Hydrogel nanoparticles as labeling scaffold in sequencing |
| WO2025137268A1 (en) | 2023-12-20 | 2025-06-26 | Pacific Biosciences Of California, Inc. | Methods and compositions for reducing gc bias |
| WO2025144716A1 (en) | 2023-12-28 | 2025-07-03 | Illumina, Inc. | Nucleotides with enzymatically cleavable 3'-o-glycoside blocking groups for sequencing |
| WO2025144711A1 (en) | 2023-12-29 | 2025-07-03 | Illumina, Inc. | Tricyclic polymethine dyes for nucleic acid sequencing |
| WO2025160089A1 (en) | 2024-01-26 | 2025-07-31 | Illumina, Inc. | Custom multigenome reference construction for improved sequencing analysis of genomic samples |
| US12377635B2 (en) | 2019-10-30 | 2025-08-05 | Nautilus Subsidiary, Inc. | Flow cell systems and methods |
| WO2025174708A1 (en) | 2024-02-13 | 2025-08-21 | Illumina, Inc. | Design and method for cross-sequencing platform compatibility of flow cells |
| WO2025174774A1 (en) | 2024-02-12 | 2025-08-21 | Illumina, Inc. | Determining offline corrections for sequence specific errors caused by low complexity nucleotide sequences |
| WO2025178951A1 (en) | 2024-02-22 | 2025-08-28 | Illumina, Inc. | Techniques for dynamic range compression grouping in analyte assays |
| WO2025184234A1 (en) | 2024-02-28 | 2025-09-04 | Illumina, Inc. | A personalized haplotype database for improved mapping and alignment of nucleotide reads and improved genotype calling |
| WO2025184226A1 (en) | 2024-02-28 | 2025-09-04 | Illumina, Inc. | Nucleotides with terminal phosphate capping |
| WO2025188906A1 (en) | 2024-03-08 | 2025-09-12 | Illumina, Inc. | Modified adenosine nucleotides |
| WO2025193747A1 (en) | 2024-03-12 | 2025-09-18 | Illumina, Inc. | Machine-learning models for ordering and expediting sequencing tasks or corresponding nucleotide-sample slides |
| US12421558B2 (en) | 2020-02-13 | 2025-09-23 | 10X Genomics, Inc. | Systems and methods for joint interactive visualization of gene expression and DNA chromatin accessibility |
| US12443849B2 (en) | 2020-02-20 | 2025-10-14 | Illumina, Inc. | Bus network for artificial intelligence-based base caller |
| US12444482B2 (en) | 2021-04-15 | 2025-10-14 | Illumina, Inc. | Multi-channel protein voxelization to predict variant pathogenicity using deep convolutional neural networks |
| WO2025217057A1 (en) | 2024-04-08 | 2025-10-16 | Illumina, Inc. | Variant detection using improved sequence data alignments |
| WO2025221895A1 (en) | 2024-04-19 | 2025-10-23 | Illumina, Inc. | Water soluble polymer scaffolds for dye labeling |
| WO2025230914A1 (en) | 2024-04-29 | 2025-11-06 | Illumina, Inc. | Nucleotides with enzyme-triggered self-immolative linkers for sequencing by synthesis |
| WO2025240924A1 (en) | 2024-05-17 | 2025-11-20 | Illumina, Inc. | Blind equalization systems for base calling applications |
Families Citing this family (195)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3175914A1 (en) | 2004-01-07 | 2017-06-07 | Illumina Cambridge Limited | Improvements in or relating to molecular arrays |
| US7709197B2 (en) | 2005-06-15 | 2010-05-04 | Callida Genomics, Inc. | Nucleic acid analysis by random mixtures of non-overlapping fragments |
| US8592150B2 (en) | 2007-12-05 | 2013-11-26 | Complete Genomics, Inc. | Methods and compositions for long fragment read sequencing |
| US10787701B2 (en) | 2010-04-05 | 2020-09-29 | Prognosys Biosciences, Inc. | Spatially encoded biological assays |
| CA2794522C (en) | 2010-04-05 | 2019-11-26 | Prognosys Biosciences, Inc. | Spatially encoded biological assays |
| US20190300945A1 (en) | 2010-04-05 | 2019-10-03 | Prognosys Biosciences, Inc. | Spatially Encoded Biological Assays |
| US8778848B2 (en) | 2011-06-09 | 2014-07-15 | Illumina, Inc. | Patterned flow-cells useful for nucleic acid analysis |
| CA3003082C (en) | 2011-10-28 | 2020-12-15 | Illumina, Inc. | Microarray fabrication system and method |
| JP6159391B2 (en) | 2012-04-03 | 2017-07-05 | イラミーナ インコーポレーテッド | Integrated read head and fluid cartridge useful for nucleic acid sequencing |
| US9012022B2 (en) | 2012-06-08 | 2015-04-21 | Illumina, Inc. | Polymer coatings |
| US8895249B2 (en) | 2012-06-15 | 2014-11-25 | Illumina, Inc. | Kinetic exclusion amplification of nucleic acid libraries |
| DK3511423T4 (en) | 2012-10-17 | 2024-07-29 | Spatial Transcriptomics Ab | METHODS AND PRODUCT FOR OPTIMIZING LOCALIZED OR SPATIAL DETECTION OF GENE EXPRESSION IN A TISSUE SAMPLE |
| CA2898453C (en) | 2013-03-13 | 2021-07-27 | Illumina, Inc. | Multilayer fluidic devices and methods for their fabrication |
| US9868979B2 (en) | 2013-06-25 | 2018-01-16 | Prognosys Biosciences, Inc. | Spatially encoded biological assays using a microfluidic device |
| CN105431554B (en) * | 2013-07-01 | 2019-02-15 | Illumina公司 | Catalyst-free surface functionalization and polymer grafting |
| EP4610368A3 (en) | 2013-08-05 | 2025-11-05 | Twist Bioscience Corporation | De novo synthesized gene libraries |
| WO2015031596A1 (en) | 2013-08-28 | 2015-03-05 | Illumina, Inc. | Optical alignment tool |
| JP2016539343A (en) | 2013-08-30 | 2016-12-15 | イルミナ インコーポレイテッド | Manipulating droplets on hydrophilic or mottled hydrophilic surfaces |
| AU2014364180B2 (en) | 2013-12-09 | 2021-03-04 | Illumina, Inc. | Methods and compositions for targeted nucleic acid sequencing |
| US11286519B2 (en) | 2013-12-11 | 2022-03-29 | Accuragen Holdings Limited | Methods and compositions for enrichment of amplification products |
| US11859246B2 (en) | 2013-12-11 | 2024-01-02 | Accuragen Holdings Limited | Methods and compositions for enrichment of amplification products |
| WO2017062863A1 (en) | 2015-10-09 | 2017-04-13 | Accuragen Holdings Limited | Methods and compositions for enrichment of amplification products |
| IL300974A (en) | 2013-12-11 | 2023-04-01 | Accuragen Holdings Ltd | Compositions and methods for detecting rare sequence variants |
| CN114089597B (en) | 2013-12-19 | 2025-03-14 | Illumina公司 | Substrate comprising a nano-patterned surface and method for preparing the same |
| DK3151964T3 (en) | 2014-06-05 | 2020-04-14 | Illumina Inc | Systems and methods including a rotary valve for at least one sample preparation or sample analysis |
| CA3172086A1 (en) | 2014-06-13 | 2015-12-17 | Illumina Cambridge Limited | Methods and compositions for preparing sequencing libraries |
| US10392671B2 (en) * | 2014-06-30 | 2019-08-27 | Dow Global Technologies Llc | Method and reagents for detecting water contamination |
| CN107076739B (en) | 2014-08-21 | 2018-12-25 | 伊卢米纳剑桥有限公司 | Reversible surface functionalization |
| EP3204148B1 (en) | 2014-10-09 | 2020-07-08 | Illumina, Inc. | Method and device for separating immiscible liquids to effectively isolate at least one of the liquids |
| DK3212684T3 (en) | 2014-10-31 | 2020-03-02 | Illumina Cambridge Ltd | Polymers and DNA copolymer coatings |
| WO2016126882A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Methods and devices for de novo oligonucleic acid assembly |
| WO2016172377A1 (en) | 2015-04-21 | 2016-10-27 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
| CA2983932C (en) | 2015-05-11 | 2023-07-25 | Illumina, Inc. | Platform for discovery and analysis of therapeutic agents |
| CN107924121B (en) | 2015-07-07 | 2021-06-08 | 亿明达股份有限公司 | Selective Surface Patterning via Nanoimprinting |
| EP3325648B1 (en) | 2015-07-17 | 2023-03-29 | Illumina, Inc. | Polymer sheets for sequencing applications |
| JP6982362B2 (en) | 2015-09-18 | 2021-12-17 | ツイスト バイオサイエンス コーポレーション | Oligonucleic acid mutant library and its synthesis |
| KR20250053972A (en) | 2015-09-22 | 2025-04-22 | 트위스트 바이오사이언스 코포레이션 | Flexible substrates for nucleic acid synthesis |
| WO2017095958A1 (en) | 2015-12-01 | 2017-06-08 | Twist Bioscience Corporation | Functionalized surfaces and preparation thereof |
| EP3383994A4 (en) | 2015-12-03 | 2019-08-28 | Accuragen Holdings Limited | METHODS AND COMPOSITIONS FOR FORMING LIGATURE PRODUCTS |
| DE202017100081U1 (en) | 2016-01-11 | 2017-03-19 | Illumina, Inc. | Detection device with a microfluorometer, a fluidic system and a flow cell detent module |
| CN110702652A (en) | 2016-03-24 | 2020-01-17 | 伊鲁米那股份有限公司 | Apparatus and compositions for use in luminescence imaging and methods of use thereof |
| ES2861350T3 (en) | 2016-03-28 | 2021-10-06 | Illumina Inc | Multi-plane microarrays |
| IL301735A (en) | 2016-04-22 | 2023-05-01 | Illumina Inc | Photonic structure-based devices and compositions for use in luminescent imaging of sites in a pixel and methods of using the devices and compositions |
| WO2017201102A1 (en) | 2016-05-16 | 2017-11-23 | Accuragen Holdings Limited | Method of improved sequencing by strand identification |
| EP3458913B1 (en) | 2016-05-18 | 2020-12-23 | Illumina, Inc. | Self assembled patterning using patterned hydrophobic surfaces |
| JP6966052B2 (en) | 2016-08-15 | 2021-11-10 | アキュラーゲン ホールディングス リミテッド | Compositions and Methods for Detecting Rare Sequence Variants |
| CN109996876A (en) | 2016-08-22 | 2019-07-09 | 特韦斯特生物科学公司 | The nucleic acid library of de novo formation |
| US10417457B2 (en) | 2016-09-21 | 2019-09-17 | Twist Bioscience Corporation | Nucleic acid based data storage |
| WO2018067472A1 (en) | 2016-10-03 | 2018-04-12 | Illumina, Inc. | Fluorescent detection of amines and hydrazines and assaying methods thereof |
| JP7169975B2 (en) | 2016-12-16 | 2022-11-11 | ツイスト バイオサイエンス コーポレーション | Immune synapse mutant library and its synthesis |
| KR102512186B1 (en) | 2016-12-22 | 2023-03-20 | 일루미나, 인코포레이티드 | Array comprising a resin film and a patterned polymer layer |
| JP7084402B2 (en) | 2016-12-22 | 2022-06-14 | イラミーナ インコーポレーテッド | Imprint device |
| MX2019006753A (en) | 2016-12-22 | 2020-01-30 | Illumina Inc | Flow cell package and method for making the same. |
| JP7051869B2 (en) | 2016-12-22 | 2022-04-11 | イラミーナ インコーポレーテッド | Array containing sequencing primers and non-sequencing entities |
| EP3559262B1 (en) * | 2016-12-22 | 2025-04-09 | Illumina, Inc. | Arrays with quality control tracers |
| GB201704754D0 (en) | 2017-01-05 | 2017-05-10 | Illumina Inc | Kinetic exclusion amplification of nucleic acid libraries |
| GB201701689D0 (en) | 2017-02-01 | 2017-03-15 | Illumia Inc | System and method with fiducials of non-closed shapes |
| CN109414673B (en) | 2017-02-01 | 2021-09-07 | 伊鲁米那股份有限公司 | System and method having a reference responsive to multiple excitation frequencies |
| GB201701686D0 (en) | 2017-02-01 | 2017-03-15 | Illunina Inc | System & method with fiducials having offset layouts |
| GB201701688D0 (en) | 2017-02-01 | 2017-03-15 | Illumia Inc | System and method with fiducials in non-recliner layouts |
| EP3586255B1 (en) | 2017-02-22 | 2025-01-15 | Twist Bioscience Corporation | Nucleic acid based data storage |
| EP3595674A4 (en) | 2017-03-15 | 2020-12-16 | Twist Bioscience Corporation | VARIANT LIBRARIES OF THE IMMUNOLOGICAL SYNAPSE AND SYNTHESIS THEREOF |
| AU2018284227B2 (en) | 2017-06-12 | 2024-05-02 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
| WO2018231864A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
| JP2020536504A (en) | 2017-09-11 | 2020-12-17 | ツイスト バイオサイエンス コーポレーション | GPCR-coupled protein and its synthesis |
| US10894242B2 (en) | 2017-10-20 | 2021-01-19 | Twist Bioscience Corporation | Heated nanowells for polynucleotide synthesis |
| KR20210133298A (en) * | 2017-12-21 | 2021-11-05 | 일루미나, 인코포레이티드 | Flow cells with hydrogel coating |
| CN120485344A (en) | 2018-01-04 | 2025-08-15 | 特韦斯特生物科学公司 | DNA-based digital information storage |
| EP4306532A3 (en) | 2018-05-15 | 2024-04-10 | Illumina, Inc. | Chemical cleavage and deprotection |
| JP2021526366A (en) | 2018-05-18 | 2021-10-07 | ツイスト バイオサイエンス コーポレーション | Polynucleotides, Reagents, and Methods for Nucleic Acid Hybridization |
| US12049665B2 (en) | 2018-06-12 | 2024-07-30 | Accuragen Holdings Limited | Methods and compositions for forming ligation products |
| US10704094B1 (en) | 2018-11-14 | 2020-07-07 | Element Biosciences, Inc. | Multipart reagents having increased avidity for polymerase binding |
| US10876148B2 (en) * | 2018-11-14 | 2020-12-29 | Element Biosciences, Inc. | De novo surface preparation and uses thereof |
| GB2613480B (en) | 2018-11-15 | 2023-11-22 | Element Biosciences Inc | Methods for generating circular nucleic acid molecules |
| EP4477758A3 (en) | 2018-11-30 | 2025-01-15 | Illumina, Inc. | Analysis of multiple analytes using a single assay |
| EP3899028A1 (en) | 2018-12-17 | 2021-10-27 | Illumina, Inc. | Methods and means for preparing a library for sequencing |
| KR20210104556A (en) | 2018-12-18 | 2021-08-25 | 일루미나 케임브리지 리미티드 | Heterocyclic azide units and their use in polymer coatings |
| WO2020139871A1 (en) | 2018-12-26 | 2020-07-02 | Twist Bioscience Corporation | Highly accurate de novo polynucleotide synthesis |
| SG11202109322TA (en) | 2019-02-26 | 2021-09-29 | Twist Bioscience Corp | Variant nucleic acid libraries for glp1 receptor |
| WO2020176680A1 (en) | 2019-02-26 | 2020-09-03 | Twist Bioscience Corporation | Variant nucleic acid libraries for antibody optimization |
| WO2020219901A1 (en) | 2019-04-26 | 2020-10-29 | 10X Genomics, Inc. | Imaging support devices |
| CN112313750B (en) | 2019-05-16 | 2023-11-17 | 因美纳有限公司 | Base recognition using convolution |
| CA3144644A1 (en) | 2019-06-21 | 2020-12-24 | Twist Bioscience Corporation | Barcode-based nucleic acid sequence assembly |
| AU2020356471A1 (en) | 2019-09-23 | 2022-04-21 | Twist Bioscience Corporation | Variant nucleic acid libraries for CRTH2 |
| CA3155630A1 (en) | 2019-09-23 | 2021-04-01 | Twist Bioscience Corporation | Variant nucleic acid libraries for single domain antibodies |
| WO2021126503A1 (en) | 2019-12-16 | 2021-06-24 | Illumina, Inc. | Kits and flow cells |
| US11498078B2 (en) | 2019-12-23 | 2022-11-15 | Singular Genomics Systems, Inc. | Flow cell receiver and methods of use |
| US11747262B2 (en) | 2019-12-23 | 2023-09-05 | Singular Genomics Systems, Inc. | Flow cell carrier and methods of use |
| US12110541B2 (en) | 2020-02-03 | 2024-10-08 | 10X Genomics, Inc. | Methods for preparing high-resolution spatial arrays |
| US12110548B2 (en) | 2020-02-03 | 2024-10-08 | 10X Genomics, Inc. | Bi-directional in situ analysis |
| US12281357B1 (en) | 2020-02-14 | 2025-04-22 | 10X Genomics, Inc. | In situ spatial barcoding |
| CN115997030A (en) | 2020-04-30 | 2023-04-21 | 德迈逊科技有限公司 | Apparatus and methods for macromolecular manipulation |
| WO2021224677A1 (en) | 2020-05-05 | 2021-11-11 | Akershus Universitetssykehus Hf | Compositions and methods for characterizing bowel cancer |
| US20230321653A1 (en) | 2020-06-01 | 2023-10-12 | Dimensiongen | Devices and methods for cytogenetic analysis |
| US12031177B1 (en) | 2020-06-04 | 2024-07-09 | 10X Genomics, Inc. | Methods of enhancing spatial resolution of transcripts |
| US12209273B2 (en) | 2020-06-12 | 2025-01-28 | 10X Genomics, Inc. | Nucleic acid assays using click chemistry bioconjugation |
| US12469162B2 (en) | 2020-08-31 | 2025-11-11 | Element Biosciences, Inc. | Primary analysis in next generation sequencing |
| US12371743B2 (en) | 2022-03-04 | 2025-07-29 | Element Biosciences, Inc. | Double-stranded splint adaptors and methods of use |
| US12359193B2 (en) | 2022-03-04 | 2025-07-15 | Element Biosciences, Inc. | Single-stranded splint strands and methods of use |
| JP2023541449A (en) | 2020-09-14 | 2023-10-02 | シンギュラー・ゲノミクス・システムズ・インコーポレイテッド | Methods and systems for multidimensional imaging |
| WO2022098810A1 (en) | 2020-11-06 | 2022-05-12 | 10X Genomics, Inc. | Assay support devices |
| KR20230111207A (en) * | 2020-11-16 | 2023-07-25 | 일루미나 케임브리지 리미티드 | Functionalized plasmonic nanostructures |
| US20220186300A1 (en) | 2020-12-11 | 2022-06-16 | 10X Genomics, Inc. | Methods and compositions for multimodal in situ analysis |
| EP4267760A1 (en) | 2020-12-23 | 2023-11-01 | 10X Genomics, Inc. | Methods and compositions for analyte detection |
| WO2022147134A1 (en) | 2020-12-30 | 2022-07-07 | 10X Genomics, Inc. | Molecular arrays and methods for generating and using the arrays |
| ES2993714T3 (en) | 2020-12-30 | 2025-01-07 | 10X Genomics Inc | Molecular array generation using photoresist |
| US12060603B2 (en) | 2021-01-19 | 2024-08-13 | 10X Genomics, Inc. | Methods for internally controlled in situ assays using padlock probes |
| CN116724125A (en) | 2021-01-26 | 2023-09-08 | 10X基因组学有限公司 | Nucleic acid analogue probes for in situ analysis |
| US20240117416A1 (en) | 2021-01-29 | 2024-04-11 | Illumina, Inc. | Methods, compositions and kits to improve seeding efficiency of flow cells with polynucleotides |
| US11486001B2 (en) | 2021-02-08 | 2022-11-01 | Singular Genomics Systems, Inc. | Methods and compositions for sequencing complementary polynucleotides |
| EP4421491A3 (en) | 2021-02-19 | 2024-11-27 | 10X Genomics, Inc. | Method of using a modular assay support device |
| US12275984B2 (en) | 2021-03-02 | 2025-04-15 | 10X Genomics, Inc. | Sequential hybridization and quenching |
| WO2022187366A1 (en) | 2021-03-03 | 2022-09-09 | 10X Genomics, Inc. | Analyte detection in situ using nucleic acid origami |
| EP4305203A4 (en) * | 2021-03-12 | 2025-01-29 | University of Washington | HIGH-RESOLUTION SPATIAL TRANSCRIPTOME |
| US11884977B2 (en) | 2021-03-12 | 2024-01-30 | Singular Genomics Systems, Inc. | Nanoarrays and methods of use thereof |
| EP4334706A4 (en) | 2021-05-05 | 2025-08-06 | Singular Genomics Systems Inc | Multiomic analysis device and methods of use thereof |
| WO2022256324A1 (en) | 2021-06-01 | 2022-12-08 | 10X Genomics, Inc. | Methods and compositions for analyte detection and probe resolution |
| EP4347880A1 (en) | 2021-06-02 | 2024-04-10 | 10X Genomics, Inc. | Sample analysis using asymmetric circularizable probes |
| EP4355476A1 (en) | 2021-06-15 | 2024-04-24 | Illumina, Inc. | Hydrogel-free surface functionalization for sequencing |
| EP4359122A1 (en) | 2021-06-25 | 2024-05-01 | Illumina, Inc. | Fiducials for use in registration of a patterned surface |
| WO2022269033A1 (en) | 2021-06-25 | 2022-12-29 | Illumina Cambridge Limited | Linear fourier fiducial |
| WO2023283442A1 (en) | 2021-07-09 | 2023-01-12 | 10X Genomics, Inc. | Methods for detecting analytes using sparse labelling |
| US20230026886A1 (en) | 2021-07-13 | 2023-01-26 | 10X Genomics, Inc. | Methods for preparing polymerized matrix with controllable thickness |
| CN117813391A (en) | 2021-07-23 | 2024-04-02 | 因美纳有限公司 | Method for preparing substrate surface for DNA sequencing |
| US12139751B2 (en) | 2021-07-30 | 2024-11-12 | 10X Genomics, Inc. | Circularizable probes for in situ analysis |
| ES2988400T3 (en) | 2021-07-30 | 2024-11-20 | 10X Genomics Inc | Methods and compositions for synchronizing reactions in situ |
| US12460251B2 (en) | 2021-08-03 | 2025-11-04 | 10X Genomics, Inc. | Stabilization and/or compaction of nucleic acid molecules |
| US20230057571A1 (en) | 2021-08-03 | 2023-02-23 | 10X Genomics, Inc. | Nucleic acid concatemers and methods for stabilizing and/or compacting the same |
| US12391984B2 (en) | 2021-08-03 | 2025-08-19 | 10X Genomics, Inc. | Compositions and methods for rolling circle amplification |
| EP4446426A3 (en) | 2021-08-16 | 2024-11-13 | 10x Genomics, Inc. | Probes comprising a split barcode region and methods of use |
| WO2023023638A1 (en) | 2021-08-20 | 2023-02-23 | Singular Genomics Systems, Inc. | Chemical and thermal assisted nucleic acid amplification methods |
| CN118103750A (en) | 2021-08-31 | 2024-05-28 | 伊鲁米纳公司 | Flow cell with enhanced aperture imaging resolution |
| US20240378734A1 (en) | 2021-09-17 | 2024-11-14 | 10X Genomics, Inc. | Systems and methods for image registration or alignment |
| US20240392344A1 (en) | 2021-09-29 | 2024-11-28 | Dimension Genomics Inc | Devices and methods for targeted polynucleotide applications |
| EP4413578A1 (en) | 2021-10-06 | 2024-08-14 | 10X Genomics, Inc. | Systems and methods for evaluating biological samples |
| EP4419705A1 (en) | 2021-10-20 | 2024-08-28 | Illumina, Inc. | Methods for capturing library dna for sequencing |
| WO2023076832A1 (en) | 2021-10-25 | 2023-05-04 | Singular Genomics Systems, Inc. | Manipulating and detecting biological samples |
| WO2023076833A1 (en) | 2021-10-26 | 2023-05-04 | Singular Genomics Systems, Inc. | Multiplexed targeted amplification of polynucleotides |
| US20230167495A1 (en) | 2021-11-30 | 2023-06-01 | 10X Genomics, Inc. | Systems and methods for identifying regions of aneuploidy in a tissue |
| US20230242974A1 (en) | 2021-12-27 | 2023-08-03 | 10X Genomics, Inc. | Methods and compositions for rolling circle amplification |
| EP4466376A1 (en) | 2022-01-21 | 2024-11-27 | 10X Genomics, Inc. | Multiple readout signals for analyzing a sample |
| US12406364B2 (en) | 2022-02-15 | 2025-09-02 | 10X Genomics, Inc. | Systems and methods for spatial analysis of analytes using fiducial alignment |
| WO2023164570A1 (en) | 2022-02-23 | 2023-08-31 | Insitro, Inc. | Pooled optical screening and transcriptional measurements of cells comprising barcoded genetic perturbations |
| US20250188521A1 (en) | 2022-03-10 | 2025-06-12 | Singular Genomics Systems, Inc. | Nucleic acid delivery scaffolds |
| WO2023183764A1 (en) | 2022-03-22 | 2023-09-28 | Illumina Cambridge Limited | Substrate with orthogonally functional nanodomains |
| US20250272996A1 (en) | 2022-04-26 | 2025-08-28 | 10X Genomics, Inc. | Systems and methods for evaluating biological samples |
| WO2023215603A1 (en) | 2022-05-06 | 2023-11-09 | 10X Genomics, Inc. | Methods and compositions for in situ analysis of v(d)j sequences |
| EP4519674A1 (en) | 2022-05-06 | 2025-03-12 | 10X Genomics, Inc. | Analysis of antigen and antigen receptor interactions |
| WO2023220300A1 (en) | 2022-05-11 | 2023-11-16 | 10X Genomics, Inc. | Compositions and methods for in situ sequencing |
| JP2025526537A (en) | 2022-06-09 | 2025-08-15 | イルミナ インコーポレイテッド | Dependence of base calling on flow cell tilt |
| WO2023245190A1 (en) | 2022-06-17 | 2023-12-21 | 10X Genomics, Inc. | Catalytic de-crosslinking of samples for in situ analysis |
| US20240084359A1 (en) | 2022-06-29 | 2024-03-14 | 10X Genomics, Inc. | Methods and compositions for patterned molecular array generation by directed bead delivery |
| EP4547387A1 (en) | 2022-06-29 | 2025-05-07 | 10X Genomics, Inc. | Compositions and methods for oligonucleotide inversion on arrays |
| EP4376998B1 (en) | 2022-06-29 | 2024-12-04 | 10X Genomics, Inc. | Methods and compositions for refining feature boundaries in molecular arrays |
| WO2024006814A1 (en) | 2022-06-29 | 2024-01-04 | 10X Genomics, Inc. | Method of generating arrays using microfluidics and photolithography |
| US20240002932A1 (en) | 2022-06-29 | 2024-01-04 | 10X Genomics, Inc. | Click chemistry-based dna photo-ligation for manufacturing of high-resolution dna arrays |
| US20240076656A1 (en) | 2022-06-29 | 2024-03-07 | 10X Genomics, Inc. | High definition molecular array feature generation using photoresist |
| US20240026444A1 (en) | 2022-06-29 | 2024-01-25 | 10X Genomics, Inc. | Compositions and methods for generating molecular arrays using oligonucleotide printing and photolithography |
| US20240060127A1 (en) | 2022-06-29 | 2024-02-22 | 10X Genomics, Inc. | Methods and systems for light-controlled surface patterning using photomasks |
| WO2024006799A1 (en) | 2022-06-29 | 2024-01-04 | 10X Genomics, Inc. | Covalent attachment of splint oligonucleotides for molecular array generation using ligation |
| US20240052404A1 (en) | 2022-08-05 | 2024-02-15 | 10X Genomics, Inc. | Systems and methods for immunofluorescence quantification |
| WO2024036191A1 (en) | 2022-08-10 | 2024-02-15 | 10X Genomics, Inc. | Systems and methods for colocalization |
| EP4511510A1 (en) | 2022-08-16 | 2025-02-26 | 10X Genomics, Inc. | Ap50 polymerases and uses thereof |
| AU2023343187A1 (en) | 2022-09-12 | 2025-03-13 | Element Biosciences, Inc. | Double-stranded splint adaptors with universal long splint strands and methods of use |
| CN118974114A (en) | 2022-09-19 | 2024-11-15 | 伊路米纳有限公司 | Bifunctional and temperature-responsive nanogel particles for particle aggregation in nucleic acid sequencing systems |
| US20240150508A1 (en) | 2022-10-10 | 2024-05-09 | Illumina, Inc. | Photo-switchable chemistry for reversible hydrogels and reusable flow cells |
| WO2024081869A1 (en) | 2022-10-14 | 2024-04-18 | 10X Genomics, Inc. | Methods for analysis of biological samples |
| WO2024102736A1 (en) | 2022-11-08 | 2024-05-16 | 10X Genomics, Inc. | Immobilization methods and compositions for in situ detection |
| US20240158852A1 (en) | 2022-11-16 | 2024-05-16 | 10X Genomics, Inc. | Methods and compositions for assessing performance of in situ assays |
| US12372771B2 (en) | 2022-11-18 | 2025-07-29 | 10X Genomics, Inc. | Systems and methods for actively mitigating vibrations |
| US20240219835A1 (en) | 2022-12-07 | 2024-07-04 | Illumina, Inc. | Etch-free photoresist patterning in multi-depth nanowells |
| US20240218437A1 (en) | 2022-12-16 | 2024-07-04 | 10X Genomics, Inc. | Methods and compositions for assessing performance |
| US20240218424A1 (en) | 2022-12-21 | 2024-07-04 | 10X Genomics, Inc. | Methods for tethering ribonucleic acids in biological samples |
| WO2024145224A1 (en) | 2022-12-29 | 2024-07-04 | 10X Genomics, Inc. | Compositions, methods, and systems for high resolution spatial analysis |
| EP4646492A1 (en) | 2023-01-06 | 2025-11-12 | 10X Genomics, Inc. | Methods and compositions for in situ analysis of variant sequences |
| WO2024158538A1 (en) | 2023-01-27 | 2024-08-02 | Illumina, Inc. | Jitter correction image analysis |
| WO2024163948A2 (en) | 2023-02-03 | 2024-08-08 | 10X Genomics, Inc. | In situ analysis of variant sequences in biological samples |
| US20240368678A1 (en) | 2023-05-03 | 2024-11-07 | 10X Genomics, Inc. | Methods and compositions for spatial assay |
| EP4461816A1 (en) | 2023-05-10 | 2024-11-13 | 10X Genomics, Inc. | Boronic acid compositions and methods for tethering ribonucleic acids in biological samples |
| WO2024238625A1 (en) | 2023-05-15 | 2024-11-21 | 10X Genomics, Inc. | Spatial antibody data normalization |
| WO2024254367A1 (en) | 2023-06-09 | 2024-12-12 | Illumina, Inc | Method for polishing a substrate |
| US20250010291A1 (en) | 2023-06-28 | 2025-01-09 | Illumina, Inc. | Photoresist patterning in multi-depth nanowells |
| US12319956B2 (en) | 2023-07-31 | 2025-06-03 | 10X Genomics, Inc. | Methods and systems for targeted RNA cleavage and target RNA-primed rolling circle amplification |
| WO2025101377A1 (en) | 2023-11-09 | 2025-05-15 | 10X Genomics, Inc. | Matrix-assisted spatial analysis of biological samples |
| WO2025101864A1 (en) | 2023-11-09 | 2025-05-15 | 10X Genomics, Inc. | Methods, compositions, and kits for reducing mislocalization of analytes in spatial analysis assays |
| WO2025111463A1 (en) | 2023-11-22 | 2025-05-30 | 10X Genomics, Inc. | Methods for processing ribonucleic acids in biological samples |
| EP4567128A1 (en) | 2023-12-07 | 2025-06-11 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft | Improved method and means for spatial nucleic acid detection in-situ |
| WO2025129074A2 (en) | 2023-12-14 | 2025-06-19 | Illumina, Inc. | Indexing techniques for tagmented dna libraries |
| EP4578960A1 (en) | 2023-12-20 | 2025-07-02 | 10x Genomics, Inc. | In situ detection of copy number variations in biological samples |
| WO2025179163A1 (en) | 2024-02-22 | 2025-08-28 | 10X Genomics, Inc. | Systems and methods for thermal, evaporation and volume control in a flow cell |
| WO2025189105A1 (en) | 2024-03-08 | 2025-09-12 | Illumina, Inc. | Size thresholding of dna fragments |
| WO2025207535A1 (en) | 2024-03-26 | 2025-10-02 | Illumina, Inc. | Photo-switchable surfaces |
| WO2025207886A1 (en) | 2024-03-28 | 2025-10-02 | Illumina, Inc. | Kits and methods for on-flow cell library preparation and methylation detection |
| WO2025240905A1 (en) | 2024-05-17 | 2025-11-20 | The Broad Institute, Inc. | Imaging-free high-resolution spatial macromolecule abundance reconstruction |
| WO2025240918A1 (en) | 2024-05-17 | 2025-11-20 | 10X Genomics, Inc. | Systems and methods for generating codebooks |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5858653A (en) * | 1997-09-30 | 1999-01-12 | Surmodics, Inc. | Reagent and method for attaching target molecules to a surface |
| US5948621A (en) * | 1997-09-30 | 1999-09-07 | The United States Of America As Represented By The Secretary Of The Navy | Direct molecular patterning using a micro-stamp gel |
| WO1999061653A2 (en) * | 1998-05-27 | 1999-12-02 | Syntrix Biochip | Light-mediated regional analysis of biologic material |
| WO2000031148A2 (en) * | 1998-11-25 | 2000-06-02 | Motorola, Inc. | Polyacrylamide hydrogels and hydrogel arrays made from polyacrylamide reactive prepolymers |
| US6077674A (en) * | 1999-10-27 | 2000-06-20 | Agilent Technologies Inc. | Method of producing oligonucleotide arrays with features of high purity |
| WO2001001143A2 (en) * | 1999-06-25 | 2001-01-04 | Motorola Inc. | Attachment of biomolecule to a polymeric solid support by cycloaddition of a linker |
| WO2001023082A2 (en) * | 1999-09-30 | 2001-04-05 | Nanogen, Inc. | Biomolecular attachment sites on microelectronic arrays |
| WO2002059372A2 (en) * | 2000-10-26 | 2002-08-01 | Biocept, Inc. | Three dimensional biochip |
| WO2004073843A1 (en) * | 2003-02-19 | 2004-09-02 | Mcmaster University | Composite materials comprising supported porous gels |
Family Cites Families (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5212253A (en) * | 1989-04-18 | 1993-05-18 | Eastman Kodak Company | Electrophoresis element comprising a polymer containing a haloacetamido group |
| US5302509A (en) | 1989-08-14 | 1994-04-12 | Beckman Instruments, Inc. | Method for sequencing polynucleotides |
| GB9401200D0 (en) | 1994-01-21 | 1994-03-16 | Medical Res Council | Sequencing of nucleic acids |
| US5604097A (en) | 1994-10-13 | 1997-02-18 | Spectragen, Inc. | Methods for sorting polynucleotides using oligonucleotide tags |
| WO1997004131A1 (en) | 1995-07-21 | 1997-02-06 | Forsyth Dental Infirmary For Children | Single primer amplification of polynucleotide hairpins |
| US5932711A (en) * | 1997-03-05 | 1999-08-03 | Mosaic Technologies, Inc. | Nucleic acid-containing polymerizable complex |
| JP2002503954A (en) | 1997-04-01 | 2002-02-05 | グラクソ、グループ、リミテッド | Nucleic acid amplification method |
| ATE269908T1 (en) | 1997-04-01 | 2004-07-15 | Manteia S A | METHOD FOR SEQUENCING NUCLEIC ACIDS |
| US6465178B2 (en) | 1997-09-30 | 2002-10-15 | Surmodics, Inc. | Target molecule attachment to surfaces |
| US6485944B1 (en) | 1997-10-10 | 2002-11-26 | President And Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
| IL141148A0 (en) | 1998-07-30 | 2002-02-10 | Solexa Ltd | Arrayed biomolecules and their use in sequencing |
| AR021833A1 (en) | 1998-09-30 | 2002-08-07 | Applied Research Systems | METHODS OF AMPLIFICATION AND SEQUENCING OF NUCLEIC ACID |
| AU1831700A (en) | 1998-12-01 | 2000-06-19 | Syntrix Biochip, Inc. | Methods and compositions for performing an array of chemical reactions on a support surface |
| US6177613B1 (en) * | 1999-01-08 | 2001-01-23 | Pioneer Hi-Bred International, Inc. | Seed-preferred promoter |
| JP2000344835A (en) * | 1999-06-08 | 2000-12-12 | Amersham Pharmacia Biotech Kk | Stimulus-responsive polymeric material and its preparation |
| EP1591462A3 (en) | 1999-01-29 | 2006-05-03 | Amersham Biosciences KK | Temperature-responsive polymer compound and process for producing the same |
| US6221635B1 (en) | 1999-05-06 | 2001-04-24 | The Wistar Institute | Methods for solid-phase amplification of DNA template (SPADT) using multiarrays |
| US6664061B2 (en) | 1999-06-25 | 2003-12-16 | Amersham Biosciences Ab | Use and evaluation of a [2+2] photoaddition in immobilization of oligonucleotides on a three-dimensional hydrogel matrix |
| US6198292B1 (en) | 1999-07-20 | 2001-03-06 | Agilent Technologies, Inc. | Crosstalk test unit and method of calibration |
| WO2001062982A2 (en) | 2000-02-25 | 2001-08-30 | Mosaic Technologies, Inc. | Methods for multi-stage solid phase amplification of nucleic acids |
| US6410643B1 (en) * | 2000-03-09 | 2002-06-25 | Surmodics, Inc. | Solid phase synthesis method and reagent |
| EP1307414A2 (en) | 2000-08-09 | 2003-05-07 | Amersham Biosciences AB | The use and evaluation of a 2+2] photocycloaddition in immobilization of oligonucleotides on a three-dimensional hydrogel matrix |
| USH2191H1 (en) * | 2000-10-24 | 2007-06-05 | Snp Consortium | Identification and mapping of single nucleotide polymorphisms in the human genome |
| DK1370690T3 (en) * | 2001-03-16 | 2012-07-09 | Kalim Mir | Arrays and methods for using them |
| US6989267B2 (en) * | 2001-07-02 | 2006-01-24 | Agilent Technologies, Inc. | Methods of making microarrays with substrate surfaces having covalently bound polyelectrolyte films |
| US20030044389A1 (en) * | 2001-07-02 | 2003-03-06 | Brown Patrick O. | Microarrays for cell phenotyping and manipulation |
| WO2003014394A1 (en) | 2001-08-03 | 2003-02-20 | Asahi Medical Co., Ltd. | Method of evaluating biocompatibility |
| US20030099949A1 (en) | 2001-10-05 | 2003-05-29 | Surmodics, Inc. | Arrays having clustered arrangements and methods of making and using |
| WO2003035278A1 (en) * | 2001-10-25 | 2003-05-01 | Massachusetts Institute Of Technology | Method of depositing polyelectrolyte multilayers and articles coated thereby |
| JP4051251B2 (en) * | 2001-12-26 | 2008-02-20 | キッコーマン株式会社 | Prolidase, its gene and method for producing prolidase |
| AU2003208480A1 (en) | 2002-03-05 | 2003-09-16 | Lynx Therapeutics INC. | Methods for detecting genome-wide sequence variations associated with a phenotype |
| DE60331235D1 (en) | 2002-08-29 | 2010-03-25 | Kawakami Sangyo Co Ltd | DOUBLE-WALLED FILM WITH A PLASTIC FOIL WITH A LARGE NUMBER OF SECONDS AND PRESENT PARTS AND ITS MANUFACTURING PROCESS |
| ATE546525T1 (en) * | 2003-01-29 | 2012-03-15 | 454 Life Sciences Corp | NUCLEIC ACID AMPLIFICATION BASED ON BEAD EMULSION |
| US20050064431A1 (en) | 2003-09-09 | 2005-03-24 | Eastman Kodak Company | Biological microarray comprising polymer particles and method of use |
| GB0326073D0 (en) | 2003-11-07 | 2003-12-10 | Solexa Ltd | Improvements in or relating to polynucleotide arrays |
| EP3175914A1 (en) * | 2004-01-07 | 2017-06-07 | Illumina Cambridge Limited | Improvements in or relating to molecular arrays |
| EP1828412B2 (en) * | 2004-12-13 | 2019-01-09 | Illumina Cambridge Limited | Improved method of nucleotide detection |
| GB0427236D0 (en) | 2004-12-13 | 2005-01-12 | Solexa Ltd | Improved method of nucleotide detection |
-
2005
- 2005-01-07 EP EP17150990.4A patent/EP3175914A1/en not_active Withdrawn
- 2005-01-07 EP EP14164003.7A patent/EP2789383B1/en not_active Expired - Lifetime
- 2005-01-07 WO PCT/GB2005/000033 patent/WO2005065814A1/en not_active Ceased
- 2005-01-07 US US10/585,373 patent/US20110059865A1/en not_active Abandoned
- 2005-01-07 ES ES14164003T patent/ES2949821T3/en not_active Expired - Lifetime
- 2005-01-07 EP EP05701804A patent/EP1701785A1/en not_active Withdrawn
- 2005-01-07 EP EP20151474.2A patent/EP3673986A1/en not_active Withdrawn
- 2005-01-07 JP JP2006548380A patent/JP2007525571A/en active Pending
-
2012
- 2012-07-13 US US13/548,558 patent/US8563477B2/en not_active Expired - Fee Related
-
2013
- 2013-10-14 US US14/053,333 patent/US8969258B2/en not_active Expired - Lifetime
-
2015
- 2015-01-08 US US14/592,766 patent/US9376710B2/en not_active Expired - Lifetime
-
2016
- 2016-05-23 US US15/162,304 patent/US9889422B2/en not_active Expired - Lifetime
-
2018
- 2018-01-08 US US15/864,384 patent/US10525437B2/en not_active Expired - Lifetime
-
2019
- 2019-12-09 US US16/707,527 patent/US10953379B2/en not_active Expired - Fee Related
-
2021
- 2021-03-18 US US17/205,263 patent/US11654411B2/en not_active Expired - Lifetime
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5858653A (en) * | 1997-09-30 | 1999-01-12 | Surmodics, Inc. | Reagent and method for attaching target molecules to a surface |
| US5948621A (en) * | 1997-09-30 | 1999-09-07 | The United States Of America As Represented By The Secretary Of The Navy | Direct molecular patterning using a micro-stamp gel |
| WO1999061653A2 (en) * | 1998-05-27 | 1999-12-02 | Syntrix Biochip | Light-mediated regional analysis of biologic material |
| WO2000031148A2 (en) * | 1998-11-25 | 2000-06-02 | Motorola, Inc. | Polyacrylamide hydrogels and hydrogel arrays made from polyacrylamide reactive prepolymers |
| WO2001001143A2 (en) * | 1999-06-25 | 2001-01-04 | Motorola Inc. | Attachment of biomolecule to a polymeric solid support by cycloaddition of a linker |
| WO2001023082A2 (en) * | 1999-09-30 | 2001-04-05 | Nanogen, Inc. | Biomolecular attachment sites on microelectronic arrays |
| US6077674A (en) * | 1999-10-27 | 2000-06-20 | Agilent Technologies Inc. | Method of producing oligonucleotide arrays with features of high purity |
| WO2002059372A2 (en) * | 2000-10-26 | 2002-08-01 | Biocept, Inc. | Three dimensional biochip |
| WO2004073843A1 (en) * | 2003-02-19 | 2004-09-02 | Mcmaster University | Composite materials comprising supported porous gels |
Non-Patent Citations (1)
| Title |
|---|
| KARTALOV ET AL.: "Polyelectrolyte Surface Interface for Single-Molecule Fluorescence Studies of DNA Polymerase", BIOTECHNIQUES, vol. 34, no. 3, 2003, pages 505 - 510, XP002310467 * |
Cited By (754)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10978175B2 (en) | 2005-06-23 | 2021-04-13 | Keygene N.V. | Strategies for high throughput identification and detection of polymorphisms |
| US10235494B2 (en) | 2005-06-23 | 2019-03-19 | Keygene N.V. | Strategies for high throughput identification and detection of polymorphisms |
| US10095832B2 (en) | 2005-06-23 | 2018-10-09 | Keygene N.V. | Strategies for high throughput identification and detection of polymorphisms |
| US9898576B2 (en) | 2005-06-23 | 2018-02-20 | Keygene N.V. | Strategies for high throughput identification and detection of polymorphisms |
| US9896721B2 (en) | 2005-06-23 | 2018-02-20 | Keygene N.V. | Strategies for high throughput identification and detection of polymorphisms |
| US9898577B2 (en) | 2005-06-23 | 2018-02-20 | Keygene N.V. | Strategies for high throughput identification and detection of polymorphisms |
| US9498763B2 (en) | 2005-07-20 | 2016-11-22 | Illumina Cambridge Limited | Preparation of templates for nucleic acid sequencing |
| US20120208194A1 (en) * | 2005-07-20 | 2012-08-16 | Illumina Cambridge Limited | Preparation of Templates for Nucleic Acid Sequencing |
| US8715966B2 (en) | 2005-07-20 | 2014-05-06 | Illumina Cambridge Limited | Preparation of templates for nucleic acid sequencing |
| EP2298930A1 (en) * | 2005-07-20 | 2011-03-23 | Illumina Cambridge Limited | Preparation of templates for nucleic acid sequencing |
| US10710046B2 (en) | 2005-07-20 | 2020-07-14 | Illumina Cambridge Limited | Preparation of templates for nucleic acid sequencing |
| US9999866B2 (en) | 2005-07-20 | 2018-06-19 | Illumina Cambridge Limited | Preparation of templates for nucleic acid sequencing |
| US9085802B2 (en) | 2005-07-20 | 2015-07-21 | Illumina Cambridge Limited | Preparation of templates for nucleic acid sequencing |
| WO2007018760A3 (en) * | 2005-08-08 | 2007-04-12 | Univ Chicago | Preparation of plastic supports for biochips |
| US10538806B2 (en) | 2005-09-29 | 2020-01-21 | Keygene N.V. | High throughput screening of populations carrying naturally occurring mutations |
| US10316364B2 (en) | 2005-09-29 | 2019-06-11 | Keygene N.V. | Method for identifying the source of an amplicon |
| US10233494B2 (en) | 2005-09-29 | 2019-03-19 | Keygene N.V. | High throughput screening of populations carrying naturally occurring mutations |
| US11649494B2 (en) | 2005-09-29 | 2023-05-16 | Keygene N.V. | High throughput screening of populations carrying naturally occurring mutations |
| EP2918686A1 (en) | 2005-11-25 | 2015-09-16 | Illumina Cambridge Limited | Preparation of nucleic acid templates for solid phase amplification |
| US9702004B2 (en) | 2005-12-22 | 2017-07-11 | Keygene N.V. | Method for high-throughput AFLP-based polymorphism detection |
| US9328383B2 (en) | 2005-12-22 | 2016-05-03 | Keygene N.V. | Method for high-throughput AFLP-based polymorphism detection |
| US9777324B2 (en) | 2005-12-22 | 2017-10-03 | Keygene N.V. | Method for high-throughput AFLP-based polymorphism detection |
| US10106850B2 (en) | 2005-12-22 | 2018-10-23 | Keygene N.V. | Method for high-throughput AFLP-based polymorphism detection |
| US8911945B2 (en) | 2005-12-22 | 2014-12-16 | Keygene N.V. | Method for high-throughput AFLP-based polymorphism detection |
| US9334536B2 (en) | 2005-12-22 | 2016-05-10 | Keygene N.V. | Method for high-throughput AFLP-based polymorphism detection |
| US9062348B1 (en) | 2005-12-22 | 2015-06-23 | Keygene N.V. | Method for high-throughput AFLP-based polymorphism detection |
| US11008615B2 (en) | 2005-12-22 | 2021-05-18 | Keygene N.V. | Method for high-throughput AFLP-based polymorphism detection |
| FR2903120A1 (en) * | 2006-02-22 | 2008-01-04 | Inst Molekulyarnoi Biolog Im V | METHOD FOR IMMOBILIZATION OF HYDROGELS ON NON-MODIFIED POLYMERIC MATERIALS, BIOPUCE BASED ON NON-MODIFIED POLYMERIC MATERIALS AND METHOD OF MANUFACTURING THE SAME |
| US7993842B2 (en) | 2006-03-23 | 2011-08-09 | Life Technologies Corporation | Directed enrichment of genomic DNA for high-throughput sequencing |
| WO2007111937A1 (en) * | 2006-03-23 | 2007-10-04 | Applera Corporation | Directed enrichment of genomic dna for high-throughput sequencing |
| EP3373174A1 (en) | 2006-03-31 | 2018-09-12 | Illumina, Inc. | Systems and devices for sequence by synthesis analysis |
| EP3722409A1 (en) | 2006-03-31 | 2020-10-14 | Illumina, Inc. | Systems and devices for sequence by synthesis analysis |
| EP4105644A2 (en) | 2006-03-31 | 2022-12-21 | Illumina, Inc. | Systems and devices for sequence by synthesis analysis |
| JP2009536817A (en) * | 2006-04-04 | 2009-10-22 | キージーン ナムローゼ フェンノートシャップ | High-throughput detection of molecular markers based on restriction fragments |
| EP2963127A1 (en) | 2006-04-04 | 2016-01-06 | Keygene N.V. | High throughput detection of molecular markers based on restriction fragments |
| WO2007114693A3 (en) * | 2006-04-04 | 2007-12-21 | Keygene Nv | High throughput detection of molecular markers based on aflp and high throughput sequencing |
| US10023907B2 (en) | 2006-04-04 | 2018-07-17 | Keygene N.V. | High throughput detection of molecular markers based on AFLP and high through-put sequencing |
| EP2821506A1 (en) | 2006-07-12 | 2015-01-07 | Keygene N.V. | Identification of clones by sequencing of pool-specific adapters |
| EP2275576A1 (en) | 2006-07-12 | 2011-01-19 | Keygene N.V. | High throughput physical mapping using AFLP |
| EP2182079A1 (en) | 2006-07-12 | 2010-05-05 | Keygene N.V. | High throughput physical mapping using AFLP |
| EP3670672A1 (en) | 2006-10-06 | 2020-06-24 | Illumina Cambridge Limited | Method for sequencing a polynucleotide template |
| WO2009116863A2 (en) | 2008-03-17 | 2009-09-24 | Expressive Research B.V. | Expression-linked gene discovery |
| US8698102B2 (en) | 2008-05-05 | 2014-04-15 | Illumina, Inc. | Compensator for multiple surface imaging |
| US8586947B1 (en) | 2008-05-05 | 2013-11-19 | Illumina, Inc. | Compensator for multiple surface imaging |
| US8039817B2 (en) | 2008-05-05 | 2011-10-18 | Illumina, Inc. | Compensator for multiple surface imaging |
| US8071962B1 (en) | 2008-05-05 | 2011-12-06 | Illumina, Inc. | Compensator for multiple surface imaging |
| US8242463B2 (en) | 2008-05-05 | 2012-08-14 | Illumina, Inc. | Compensator for multiple surface imaging |
| US9068220B2 (en) | 2008-05-05 | 2015-06-30 | Illumina, Inc. | Compensator for multiple surface imaging |
| US8143599B2 (en) | 2008-05-05 | 2012-03-27 | Illumina, Inc. | Compensator for multiple surface imaging |
| US9365898B2 (en) | 2008-05-05 | 2016-06-14 | Illumina, Inc. | Compensator for multiple surface imaging |
| USRE49884E1 (en) | 2008-05-05 | 2024-03-26 | Illumina, Inc. | Compensator for multiple surface imaging |
| US8546772B2 (en) | 2008-05-05 | 2013-10-01 | Illumina, Inc. | Compensator for multiple surface imaging |
| US8278630B1 (en) | 2008-05-05 | 2012-10-02 | Illumina, Inc. | Compensator for multiple surface imaging |
| USRE48219E1 (en) | 2008-05-05 | 2020-09-22 | Illumina, Inc. | Compensator for multiple surface imaging |
| USRE48561E1 (en) | 2008-05-05 | 2021-05-18 | Illumina, Inc. | Compensator for multiple surface imaging |
| US9079148B2 (en) | 2008-07-02 | 2015-07-14 | Illumina Cambridge Limited | Using populations of beads for the fabrication of arrays on surfaces |
| US8198028B2 (en) | 2008-07-02 | 2012-06-12 | Illumina Cambridge Limited | Using populations of beads for the fabrication of arrays on surfaces |
| US8399192B2 (en) | 2008-07-02 | 2013-03-19 | Illumina Cambridge Limited | Using populations of beads for the fabrication of arrays on surfaces |
| US10287577B2 (en) | 2008-07-02 | 2019-05-14 | Illumina Cambridge Ltd. | Nucleic acid arrays of spatially discrete features on a surface |
| US9677069B2 (en) | 2008-07-02 | 2017-06-13 | Illumina Cambridge Limited | Nucleic acid arrays of spatially discrete features on a surface |
| US8741571B2 (en) | 2008-07-02 | 2014-06-03 | Illumina Cambridge Limited | Using populations of beads for the fabrication of arrays on surfaces |
| US10227585B2 (en) | 2008-09-12 | 2019-03-12 | University Of Washington | Sequence tag directed subassembly of short sequencing reads into long sequencing reads |
| US10577601B2 (en) | 2008-09-12 | 2020-03-03 | University Of Washington | Error detection in sequence tag directed subassemblies of short sequencing reads |
| US11505795B2 (en) | 2008-09-12 | 2022-11-22 | University Of Washington | Error detection in sequence tag directed sequencing reads |
| US12152236B2 (en) | 2008-09-12 | 2024-11-26 | University Of Washington | Sequence tag directed subassembly of short sequencing reads into long sequencing reads |
| US11866780B2 (en) | 2008-10-02 | 2024-01-09 | Illumina Cambridge Limited | Nucleic acid sample enrichment for sequencing applications |
| US9284547B2 (en) | 2008-11-03 | 2016-03-15 | The Regents Of The University Of California | Methods for detecting modification resistant nucleic acids |
| US8486865B2 (en) | 2008-11-03 | 2013-07-16 | The Regents Of The University Of California | Methods for detecting modification resistant nucleic acids |
| US9677068B2 (en) | 2008-11-03 | 2017-06-13 | The Regents Of The University Of California | Methods for detecting modification resistant nucleic acids |
| WO2010062775A2 (en) | 2008-11-03 | 2010-06-03 | The Regents Of The University Of California | Methods for detecting modification resistant nucleic acids |
| US9416415B2 (en) | 2008-12-23 | 2016-08-16 | Illumina, Inc. | Method of sequencing nucleic acid colonies formed on a surface by re-seeding |
| US8709729B2 (en) | 2008-12-23 | 2014-04-29 | Illumina, Inc. | Method of making an array of nucleic acid colonies |
| EP2607496A1 (en) | 2008-12-23 | 2013-06-26 | Illumina, Inc. | Methods useful in nucleic acid sequencing protocols |
| US8476022B2 (en) | 2008-12-23 | 2013-07-02 | Illumina, Inc. | Method of making an array of nucleic acid colonies |
| US9005929B2 (en) | 2008-12-23 | 2015-04-14 | Illumina, Inc. | Multibase delivery for long reads in sequencing by synthesis protocols |
| US8236532B2 (en) | 2008-12-23 | 2012-08-07 | Illumina, Inc. | Multibase delivery for long reads in sequencing by synthesis protocols |
| US10167506B2 (en) | 2008-12-23 | 2019-01-01 | Illumina, Inc. | Method of sequencing nucleic acid colonies formed on a patterned surface by re-seeding |
| WO2010082815A1 (en) | 2009-01-13 | 2010-07-22 | Keygene N.V. | Novel genome sequencing strategies |
| WO2011053845A2 (en) | 2009-10-30 | 2011-05-05 | Illumina, Inc. | Microvessels, microparticles, and methods of manufacturing and using the same |
| WO2011106368A2 (en) | 2010-02-23 | 2011-09-01 | Illumina, Inc. | Amplification methods to minimise sequence specific bias |
| US9469872B2 (en) | 2010-02-23 | 2016-10-18 | Illumina Cambridge Limited | Amplification methods to minimise sequence specific bias |
| US8759037B2 (en) | 2010-02-23 | 2014-06-24 | Illumina Cambridge Limited | Amplification methods to minimise sequence specific bias |
| US10428363B2 (en) | 2010-02-23 | 2019-10-01 | Illumina Cambridge Limited | Amplification methods to minimise sequence specific bias |
| US11279975B2 (en) | 2010-08-27 | 2022-03-22 | Illumina Cambridge Limited | Methods for sequencing polynucleotides |
| US10329613B2 (en) | 2010-08-27 | 2019-06-25 | Illumina Cambridge Limited | Methods for sequencing polynucleotides |
| EP3205730A1 (en) | 2010-08-27 | 2017-08-16 | Illumina Cambridge Limited | Methods for paired-end sequencing of polynucleotides |
| WO2012025250A1 (en) | 2010-08-27 | 2012-03-01 | Illumina Cambridge Ltd. | Methods for paired - end sequencing of polynucleotides |
| EP2801623A1 (en) | 2010-08-27 | 2014-11-12 | Illumina Cambridge Limited | Methods for paired-end sequencing of polynucleotides |
| US9029103B2 (en) | 2010-08-27 | 2015-05-12 | Illumina Cambridge Limited | Methods for sequencing polynucleotides |
| US12319962B2 (en) | 2010-08-27 | 2025-06-03 | Illumina Cambridge Limited | Methods for sequencing polynucleotides |
| WO2012034007A2 (en) | 2010-09-10 | 2012-03-15 | Bio-Rad Laboratories, Inc. | Size selection of dna for chromatin analysis |
| US9222134B2 (en) | 2010-09-17 | 2015-12-29 | Illumina, Inc. | Molecule detection system on a solid support |
| US8483969B2 (en) | 2010-09-17 | 2013-07-09 | Illuminia, Inc. | Variation analysis for multiple templates on a solid support |
| WO2012050920A1 (en) | 2010-09-29 | 2012-04-19 | Illumina, Inc. | Compositions and methods for sequencing nucleic acids |
| WO2012055929A1 (en) | 2010-10-26 | 2012-05-03 | Illumina, Inc. | Sequencing methods |
| WO2012058096A1 (en) | 2010-10-27 | 2012-05-03 | Illumina, Inc. | Microdevices and biosensor cartridges for biological or chemical analysis and systems and methods for the same |
| EP3928867A1 (en) | 2010-10-27 | 2021-12-29 | Illumina, Inc. | Microdevices and biosensor cartridges for biological or chemical analysis and systems and methods for the same |
| US9506055B2 (en) | 2010-11-03 | 2016-11-29 | Illumina, Inc. | Reducing adapter dimer formation |
| US8575071B2 (en) | 2010-11-03 | 2013-11-05 | Illumina, Inc. | Reducing adapter dimer formation |
| WO2012061036A1 (en) | 2010-11-03 | 2012-05-10 | Illumina, Inc. | Reducing adapter dimer formation |
| US10233443B2 (en) | 2010-11-03 | 2019-03-19 | Illumina, Inc. | Reducing adapter dimer formation |
| WO2012061832A1 (en) | 2010-11-05 | 2012-05-10 | Illumina, Inc. | Linking sequence reads using paired code tags |
| US9284604B2 (en) | 2010-11-22 | 2016-03-15 | The Regents Of The University Of California | Methods of identifying a cellular nascent RNA transcript |
| US11999951B2 (en) | 2011-02-02 | 2024-06-04 | University Of Washington Through Its Center For Commercialization | Massively parallel contiguity mapping |
| US10457936B2 (en) | 2011-02-02 | 2019-10-29 | University Of Washington Through Its Center For Commercialization | Massively parallel contiguity mapping |
| US11299730B2 (en) | 2011-02-02 | 2022-04-12 | University Of Washington Through Its Center For Commercialization | Massively parallel contiguity mapping |
| US10246705B2 (en) | 2011-02-10 | 2019-04-02 | Ilumina, Inc. | Linking sequence reads using paired code tags |
| US11993772B2 (en) | 2011-02-10 | 2024-05-28 | Illumina, Inc. | Linking sequence reads using paired code tags |
| US11788122B2 (en) | 2011-04-13 | 2023-10-17 | 10X Genomics Sweden Ab | Methods of detecting analytes |
| US11352659B2 (en) | 2011-04-13 | 2022-06-07 | Spatial Transcriptomics Ab | Methods of detecting analytes |
| US11479809B2 (en) | 2011-04-13 | 2022-10-25 | Spatial Transcriptomics Ab | Methods of detecting analytes |
| US11795498B2 (en) | 2011-04-13 | 2023-10-24 | 10X Genomics Sweden Ab | Methods of detecting analytes |
| WO2013009175A1 (en) | 2011-07-08 | 2013-01-17 | Keygene N.V. | Sequence based genotyping based on oligonucleotide ligation assays |
| EP2980226A1 (en) | 2011-07-08 | 2016-02-03 | Keygene N.V. | Sequence based genotyping based on oligonucleotide ligation assays |
| WO2013049135A1 (en) | 2011-09-26 | 2013-04-04 | Gen-Probe Incorporated | Algorithms for sequence determinations |
| EP3293272A1 (en) | 2011-09-29 | 2018-03-14 | Illumina, Inc. | Continuous extension and deblocking in reactions for nucleic acid synthesis and sequencing |
| US10378051B2 (en) | 2011-09-29 | 2019-08-13 | Illumina Cambridge Limited | Continuous extension and deblocking in reactions for nucleic acids synthesis and sequencing |
| WO2013045939A1 (en) | 2011-09-29 | 2013-04-04 | Illumina, Inc. | Continuous extension and deblocking in reactions for nucleic acid synthesis and sequencing |
| US9309571B2 (en) | 2011-11-07 | 2016-04-12 | Illumina, Inc. | Integrated sequencing apparatuses and methods of use |
| US8637242B2 (en) | 2011-11-07 | 2014-01-28 | Illumina, Inc. | Integrated sequencing apparatuses and methods of use |
| WO2013070627A2 (en) | 2011-11-07 | 2013-05-16 | Illumina, Inc. | Integrated sequencing apparatuses and methods of use |
| US10167505B2 (en) | 2011-11-07 | 2019-01-01 | Illumina, Inc. | Integrated sequencing apparatuses and methods of use |
| WO2013085710A2 (en) | 2011-12-09 | 2013-06-13 | Illumina, Inc. | Expanded radix for polymeric tags |
| US11242560B2 (en) | 2011-12-21 | 2022-02-08 | Illumina, Inc. | Apparatus and methods for kinetic analysis and determination of nucleic acid sequences |
| US9279154B2 (en) | 2011-12-21 | 2016-03-08 | Illumina, Inc. | Apparatus and methods for kinetic analysis and determination of nucleic acid sequences |
| WO2013117595A2 (en) | 2012-02-07 | 2013-08-15 | Illumina Cambridge Limited | Targeted enrichment and amplification of nucleic acids on a support |
| EP3037552A1 (en) | 2012-03-06 | 2016-06-29 | Illumina Cambridge Limited | Improved methods of nucleic acid sequencing |
| WO2013131962A1 (en) | 2012-03-06 | 2013-09-12 | Illumina Cambridge Limited | Improved methods of nucleic acid sequencing |
| US11894135B2 (en) | 2012-04-11 | 2024-02-06 | Illumina, Inc. | Cloud computing environment for biological data |
| US11031132B2 (en) | 2012-04-11 | 2021-06-08 | Illumina, Inc. | Cloud computing environment for biological data |
| US9444880B2 (en) | 2012-04-11 | 2016-09-13 | Illumina, Inc. | Cloud computing environment for biological data |
| US10223502B2 (en) | 2012-04-11 | 2019-03-05 | Illumina, Inc. | Cloud computing environment for biological data |
| WO2014008448A1 (en) | 2012-07-03 | 2014-01-09 | Sloan Kettering Institute For Cancer Research | Quantitative assessment of human t-cell repertoire recovery after allogeneic hematopoietic stem cell transplantation |
| EP3243937A1 (en) | 2012-07-17 | 2017-11-15 | Counsyl, Inc. | System and methods for detecting genetic variation |
| US9092401B2 (en) | 2012-10-31 | 2015-07-28 | Counsyl, Inc. | System and methods for detecting genetic variation |
| US9989544B2 (en) | 2012-11-05 | 2018-06-05 | Illumina, Inc. | Sequence scheduling and sample distribution techniques |
| US9116139B2 (en) | 2012-11-05 | 2015-08-25 | Illumina, Inc. | Sequence scheduling and sample distribution techniques |
| US10041066B2 (en) | 2013-01-09 | 2018-08-07 | Illumina Cambridge Limited | Sample preparation on a solid support |
| EP3486331A1 (en) | 2013-01-09 | 2019-05-22 | Illumina Cambridge Limited | Sample preparation on a solid support |
| WO2014108810A2 (en) | 2013-01-09 | 2014-07-17 | Lumina Cambridge Limited | Sample preparation on a solid support |
| US11970695B2 (en) | 2013-01-09 | 2024-04-30 | Illumina Cambridge Limited | Sample preparation on a solid support |
| EP4417692A2 (en) | 2013-01-09 | 2024-08-21 | Illumina Cambridge Limited | Sample preparation on a solid support |
| US10988760B2 (en) | 2013-01-09 | 2021-04-27 | Illumina Cambridge Limited | Sample preparation on a solid support |
| WO2014116851A2 (en) | 2013-01-25 | 2014-07-31 | Illumina, Inc. | Methods and systems for using a cloud computing environment to share biological related data |
| US9805407B2 (en) | 2013-01-25 | 2017-10-31 | Illumina, Inc. | Methods and systems for using a cloud computing environment to configure and sell a biological sample preparation cartridge and share related data |
| US10217156B2 (en) | 2013-01-25 | 2019-02-26 | Illumina, Inc. | Methods and systems for using a cloud computing environment to share biological related data |
| EP4527925A3 (en) * | 2013-02-26 | 2025-05-14 | Illumina Inc | Gel patterned surfaces |
| US10668444B2 (en) | 2013-02-26 | 2020-06-02 | Illumina, Inc. | Gel patterned surfaces |
| WO2014133905A1 (en) | 2013-02-26 | 2014-09-04 | Illumina, Inc. | Gel patterned surfaces |
| CN107557269A (en) * | 2013-02-26 | 2018-01-09 | 伊鲁米那股份有限公司 | The surface of gel medelling |
| EP3603794A1 (en) | 2013-02-26 | 2020-02-05 | Illumina, Inc. | Gel patterned surfaces |
| EP3834924A1 (en) | 2013-02-26 | 2021-06-16 | Illumina Inc | Gel patterned surfaces |
| EP4527925A2 (en) | 2013-02-26 | 2025-03-26 | Illumina Inc | Gel patterned surfaces |
| US9512422B2 (en) | 2013-02-26 | 2016-12-06 | Illumina, Inc. | Gel patterned surfaces |
| US11173466B2 (en) | 2013-02-26 | 2021-11-16 | Illumina, Inc. | Gel patterned surfaces |
| WO2014135221A1 (en) | 2013-03-08 | 2014-09-12 | Illumina Cambridge Ltd | Polymethine compounds and their use as fluorescent labels |
| WO2014135223A1 (en) | 2013-03-08 | 2014-09-12 | Illumina Cambridge Ltd | Rhodamine compounds and their use as fluorescent labels |
| WO2014135669A1 (en) | 2013-03-08 | 2014-09-12 | Roche Diagnostics Gmbh | Egfr mutation blood testing |
| US10557133B2 (en) | 2013-03-13 | 2020-02-11 | Illumina, Inc. | Methods and compositions for nucleic acid sequencing |
| US11319534B2 (en) | 2013-03-13 | 2022-05-03 | Illumina, Inc. | Methods and compositions for nucleic acid sequencing |
| EP3919617A1 (en) | 2013-03-13 | 2021-12-08 | Illumina, Inc. | Methods and compositions for nucleic acid sequencing |
| WO2014142850A1 (en) | 2013-03-13 | 2014-09-18 | Illumina, Inc. | Methods and compositions for nucleic acid sequencing |
| EP3553175A1 (en) | 2013-03-13 | 2019-10-16 | Illumina, Inc. | Methods and compositions for nucleic acid sequencing |
| US11578356B2 (en) | 2013-03-14 | 2023-02-14 | Life Technologies Corporation | Matrix arrays and methods for making same |
| JP2016513468A (en) * | 2013-03-14 | 2016-05-16 | ライフ テクノロジーズ コーポレーション | Matrix array and method for manufacturing the same |
| US11697847B2 (en) | 2013-03-15 | 2023-07-11 | Illumina, Inc. | Super resolution imaging |
| WO2014144569A1 (en) | 2013-03-15 | 2014-09-18 | Illumina, Inc. | Super resolution imaging |
| US9193998B2 (en) | 2013-03-15 | 2015-11-24 | Illumina, Inc. | Super resolution imaging |
| WO2015002789A1 (en) | 2013-07-03 | 2015-01-08 | Illumina, Inc. | Sequencing by orthogonal synthesis |
| US9574235B2 (en) | 2013-07-03 | 2017-02-21 | Illumina, Inc. | Sequencing by orthogonal synthesis |
| US9193999B2 (en) | 2013-07-03 | 2015-11-24 | Illumina, Inc. | Sequencing by orthogonal synthesis |
| EP3241913A1 (en) | 2013-07-03 | 2017-11-08 | Illumina, Inc. | System for sequencing by orthogonal synthesis |
| US12303888B2 (en) | 2013-09-27 | 2025-05-20 | Illumina, Inc. | Method to produce chemical pattern in micro-fluidic structure |
| US11298697B2 (en) | 2013-09-27 | 2022-04-12 | Illumina, Inc. | Method to produce chemical pattern in micro-fluidic structure |
| US10486153B2 (en) | 2013-09-27 | 2019-11-26 | Illumina, Inc. | Method to produce chemical pattern in micro-fluidic structure |
| US10540783B2 (en) | 2013-11-01 | 2020-01-21 | Illumina, Inc. | Image analysis useful for patterned objects |
| US11308640B2 (en) | 2013-11-01 | 2022-04-19 | Illumina, Inc. | Image analysis useful for patterned objects |
| EP3715467A1 (en) | 2013-12-03 | 2020-09-30 | Illumina, Inc. | Methods and systems for analyzing image data |
| EP3940082A1 (en) | 2013-12-03 | 2022-01-19 | Illumina, Inc. | Methods and systems for analyzing image data |
| WO2015084985A2 (en) | 2013-12-03 | 2015-06-11 | Illumina, Inc. | Methods and systems for analyzing image data |
| EP4220137A1 (en) | 2013-12-10 | 2023-08-02 | Illumina, Inc. | Biosensors for biological or chemical analysis and methods of manufacturing the same |
| US11181478B2 (en) | 2013-12-10 | 2021-11-23 | Illumina, Inc. | Biosensors for biological or chemical analysis and methods of manufacturing the same |
| US12140543B2 (en) | 2013-12-10 | 2024-11-12 | Illumina, Inc. | Biosensors for biological or chemical analysis and methods of manufacturing the same |
| US11719637B2 (en) | 2013-12-10 | 2023-08-08 | Illumina, Inc. | Biosensors for biological or chemical analysis and methods of manufacturing the same |
| US11149310B2 (en) | 2013-12-20 | 2021-10-19 | Illumina, Inc. | Preserving genomic connectivity information in fragmented genomic DNA samples |
| EP4527942A2 (en) | 2013-12-20 | 2025-03-26 | Illumina, Inc. | Preserving genomic connectivity information in fragmented genomic dna samples |
| US10246746B2 (en) | 2013-12-20 | 2019-04-02 | Illumina, Inc. | Preserving genomic connectivity information in fragmented genomic DNA samples |
| WO2015095226A2 (en) | 2013-12-20 | 2015-06-25 | Illumina, Inc. | Preserving genomic connectivity information in fragmented genomic dna samples |
| EP3957750A1 (en) | 2013-12-20 | 2022-02-23 | Illumina, Inc. | Preserving genomic connectivity information in fragmented genomic dna samples |
| EP3778890A1 (en) | 2013-12-23 | 2021-02-17 | Illumina, Inc. | Structured substrates for improving detection of light emissions and methods relating to the same |
| WO2015100373A2 (en) | 2013-12-23 | 2015-07-02 | Illumina, Inc. | Structured substrates for improving detection of light emissions and methods relating to the same |
| US10537889B2 (en) | 2013-12-31 | 2020-01-21 | Illumina, Inc. | Addressable flow cell using patterned electrodes |
| WO2015103225A1 (en) | 2013-12-31 | 2015-07-09 | Illumina, Inc. | Addressable flow cell using patterned electrodes |
| WO2015106941A1 (en) | 2014-01-16 | 2015-07-23 | Illumina Cambridge Limited | Polynucleotide modification on solid support |
| WO2015123444A2 (en) | 2014-02-13 | 2015-08-20 | Illumina, Inc. | Integrated consumer genomic services |
| EP3910069A1 (en) | 2014-02-18 | 2021-11-17 | Illumina, Inc. | Methods and composition for dna profiling |
| EP3698874A1 (en) | 2014-03-11 | 2020-08-26 | Illumina, Inc. | Disposable, integrated microfluidic cartridge and methods of making the same |
| US11174513B2 (en) | 2014-03-11 | 2021-11-16 | Illumina, Inc. | Disposable, integrated microfluidic cartridge and methods of making and using same |
| US10767219B2 (en) | 2014-03-11 | 2020-09-08 | Illumina, Inc. | Disposable, integrated microfluidic cartridge and methods of making and using same |
| EP3828167A1 (en) | 2014-05-07 | 2021-06-02 | Illumina Cambridge Limited | Polymethine compounds and their use as fluorescent labels |
| WO2015175832A1 (en) | 2014-05-16 | 2015-11-19 | Illumina, Inc. | Nucleic acid synthesis techniques |
| US10570447B2 (en) | 2014-05-16 | 2020-02-25 | Illumina, Inc. | Nucleic acid synthesis techniques |
| US12416048B2 (en) | 2014-05-16 | 2025-09-16 | Illumina, Inc. | Nucleic acid synthesis techniques |
| WO2015183871A1 (en) | 2014-05-27 | 2015-12-03 | Illumina, Inc. | Systems and methods for biochemical analysis including a base instrument and a removable cartridge |
| US11590494B2 (en) | 2014-05-27 | 2023-02-28 | Illumina, Inc. | Systems and methods for biochemical analysis including a base instrument and a removable cartridge |
| US12179190B2 (en) | 2014-05-27 | 2024-12-31 | Illumina, Inc. | Systems and methods for biochemical analysis including a base instrument and a removable cartridge |
| US10858696B2 (en) | 2014-06-02 | 2020-12-08 | Illumina Cambridge Limited | Methods of reducing density-dependent GC bias in amplification |
| US10392655B2 (en) | 2014-06-02 | 2019-08-27 | Illumina Cambridge Limited | Methods of reducing density-dependent GC bias in amplification |
| EP3699289A1 (en) | 2014-06-09 | 2020-08-26 | Illumina Cambridge Limited | Sample preparation for nucleic acid amplification |
| EP4039815A1 (en) | 2014-06-09 | 2022-08-10 | Illumina Cambridge Limited | Sample preparation for nucleic acid amplification |
| US11060130B2 (en) | 2014-06-11 | 2021-07-13 | Illumina Cambridge Limited | Methods for estimating cluster numbers |
| US11946096B2 (en) | 2014-06-11 | 2024-04-02 | Illumina Cambridge Limited | Methods for estimating cluster numbers |
| US11965158B2 (en) | 2014-06-30 | 2024-04-23 | Illumina, Inc. | Methods and compositions using one-sided transposition |
| WO2016003814A1 (en) | 2014-06-30 | 2016-01-07 | Illumina, Inc. | Methods and compositions using one-sided transposition |
| US10968448B2 (en) | 2014-06-30 | 2021-04-06 | Illumina, Inc. | Methods and compositions using one-sided transposition |
| US10577603B2 (en) | 2014-06-30 | 2020-03-03 | Illumina, Inc. | Methods and compositions using one-sided transposition |
| US12371690B2 (en) | 2014-06-30 | 2025-07-29 | Illumina, Inc. | Methods and compositions using one-sided transposition |
| WO2016040602A1 (en) | 2014-09-11 | 2016-03-17 | Epicentre Technologies Corporation | Reduced representation bisulfite sequencing using uracil n-glycosylase (ung) and endonuclease iv |
| US11629373B2 (en) | 2014-09-12 | 2023-04-18 | Illumina, Inc. | Compositions, systems, and methods for detecting the presence of polymer subunits using chemiluminescence |
| US10633694B2 (en) | 2014-09-12 | 2020-04-28 | Illumina, Inc. | Compositions, systems, and methods for detecting the presence of polymer subunits using chemiluminescence |
| WO2016040607A1 (en) | 2014-09-12 | 2016-03-17 | Illumina, Inc. | Compositions, systems, and methods for detecting the presence of polymer subunits using chemiluminescence |
| WO2016061484A2 (en) | 2014-10-16 | 2016-04-21 | Illumina, Inc. | Optical scanning systems for in situ genetic analysis |
| US11873480B2 (en) | 2014-10-17 | 2024-01-16 | Illumina Cambridge Limited | Contiguity preserving transposition |
| WO2016073237A1 (en) | 2014-11-05 | 2016-05-12 | Illumina Cambridge Limited | Reducing dna damage during sample preparation and sequencing using siderophore chelators |
| US11555218B2 (en) | 2014-11-05 | 2023-01-17 | Illumina Cambridge Limited | Sequencing from multiple primers to increase data rate and density |
| EP3974538A1 (en) | 2014-11-05 | 2022-03-30 | Illumina Cambridge Limited | Sequencing from multiple primers to increase data rate and density |
| US11692223B2 (en) | 2014-11-11 | 2023-07-04 | Illumina Cambridge Limited | Methods and arrays for producing and sequencing monoclonal clusters of nucleic acid |
| US12385092B2 (en) | 2014-11-11 | 2025-08-12 | Illumina Cambridge Limited | Methods and arrays for producing and sequencing monoclonal clusters of nucleic acid |
| US10619204B2 (en) | 2014-11-11 | 2020-04-14 | Illumina Cambridge Limited | Methods and arrays for producing and sequencing monoclonal clusters of nucleic acid |
| US10960377B2 (en) | 2014-12-15 | 2021-03-30 | Illumina, Inc. | Compositions and methods for single molecular placement on a substrate |
| EP3882356A1 (en) | 2014-12-15 | 2021-09-22 | Illumina, Inc. | Compositions and methods for single molecular placement on a substrate |
| US10350570B2 (en) | 2014-12-15 | 2019-07-16 | Illumina, Inc. | Compositions and methods for single molecular placement on a substrate |
| EP3725893A1 (en) | 2015-02-10 | 2020-10-21 | Illumina, Inc. | Compositions for analyzing cellular components |
| US10227647B2 (en) | 2015-02-17 | 2019-03-12 | Complete Genomics, Inc. | DNA sequencing using controlled strand displacement |
| US11319588B2 (en) | 2015-02-17 | 2022-05-03 | Mgi Tech Co., Ltd. | DNA sequencing using controlled strand displacement |
| US10576471B2 (en) | 2015-03-20 | 2020-03-03 | Illumina, Inc. | Fluidics cartridge for use in the vertical or substantially vertical position |
| EP3783109A1 (en) | 2015-03-31 | 2021-02-24 | Illumina Cambridge Limited | Surface concatamerization of templates |
| US12123056B2 (en) | 2015-03-31 | 2024-10-22 | Illumina Cambridge Limited | Surface concatemerization of templates |
| US11390912B2 (en) | 2015-04-10 | 2022-07-19 | Spatial Transcriptomics Ab | Spatially distinguished, multiplex nucleic acid analysis of biological specimens |
| US11613773B2 (en) | 2015-04-10 | 2023-03-28 | Spatial Transcriptomics Ab | Spatially distinguished, multiplex nucleic acid analysis of biological specimens |
| US11299774B2 (en) | 2015-04-10 | 2022-04-12 | Spatial Transcriptomics Ab | Spatially distinguished, multiplex nucleic acid analysis of biological specimens |
| US11162132B2 (en) | 2015-04-10 | 2021-11-02 | Spatial Transcriptomics Ab | Spatially distinguished, multiplex nucleic acid analysis of biological specimens |
| US11739372B2 (en) | 2015-04-10 | 2023-08-29 | Spatial Transcriptomics Ab | Spatially distinguished, multiplex nucleic acid analysis of biological specimens |
| US12359194B2 (en) | 2015-04-14 | 2025-07-15 | Illumina, Inc. | Structured substrates for improving detection of light emissions and methods relating to the same |
| US10900030B2 (en) | 2015-04-14 | 2021-01-26 | Illumina, Inc. | Structured substrates for improving detection of light emissions and methods relating to the same |
| WO2016168386A1 (en) | 2015-04-14 | 2016-10-20 | Illumina, Inc. | Structured substrates for improving detection of light emissions and methods relating to the same |
| EP3696536A1 (en) | 2015-04-14 | 2020-08-19 | Illumina, Inc. | A method of manufacturing a substrate and a method of analyzing biomolecules capable of generating light emissions |
| US11466268B2 (en) | 2015-04-14 | 2022-10-11 | Illumina, Inc. | Structured substrates for improving detection of light emissions and methods relating to the same |
| US11866777B2 (en) | 2015-04-28 | 2024-01-09 | Illumina, Inc. | Error suppression in sequenced DNA fragments using redundant reads with unique molecular indices (UMIS) |
| US10844428B2 (en) | 2015-04-28 | 2020-11-24 | Illumina, Inc. | Error suppression in sequenced DNA fragments using redundant reads with unique molecular indices (UMIS) |
| US10239909B2 (en) | 2015-05-22 | 2019-03-26 | Illumina Cambridge Limited | Polymethine compounds with long stokes shifts and their use as fluorescent labels |
| US10590464B2 (en) | 2015-05-29 | 2020-03-17 | Illumina Cambridge Limited | Enhanced utilization of surface primers in clusters |
| WO2016196358A1 (en) | 2015-05-29 | 2016-12-08 | Epicentre Technologies Corporation | Methods of analyzing nucleic acids |
| US12157910B2 (en) | 2015-07-06 | 2024-12-03 | Illumina Cambridge Limited | Sample preparation for nucleic acid amplification |
| EP3878974A1 (en) | 2015-07-06 | 2021-09-15 | Illumina Cambridge Limited | Sample preparation for nucleic acid amplification |
| WO2017019456A2 (en) | 2015-07-27 | 2017-02-02 | Illumina, Inc. | Spatial mapping of nucleic acid sequence information |
| EP3957747A1 (en) | 2015-07-27 | 2022-02-23 | Illumina, Inc. | Spatial mapping of nucleic acid sequence information |
| WO2017019278A1 (en) | 2015-07-30 | 2017-02-02 | Illumina, Inc. | Orthogonal deblocking of nucleotides |
| US11512348B2 (en) | 2015-08-14 | 2022-11-29 | Illumina, Inc. | Systems and methods using magnetically-responsive sensors for determining a genetic characteristic |
| EP3854884A1 (en) | 2015-08-14 | 2021-07-28 | Illumina, Inc. | Systems and methods using magnetically-responsive sensors for determining a genetic characteristic |
| US10976334B2 (en) | 2015-08-24 | 2021-04-13 | Illumina, Inc. | In-line pressure accumulator and flow-control system for biological or chemical assays |
| US10450598B2 (en) | 2015-09-11 | 2019-10-22 | Illumina, Inc. | Systems and methods for obtaining a droplet having a designated concentration of a substance-of-interest |
| EP3831825A1 (en) | 2015-09-25 | 2021-06-09 | Illumina Cambridge Limited | Polymethine compounds and their use as fluorescent labels |
| EP3663290A1 (en) | 2015-09-25 | 2020-06-10 | Illumina Cambridge Limited | Polymethine compounds and their use as fluorescent labels |
| US11530439B2 (en) | 2015-09-25 | 2022-12-20 | Illumina Cambridge Limited | Polymethine compounds and their use as fluorescent labels |
| US11981955B2 (en) | 2015-09-25 | 2024-05-14 | Illumina Cambridge Limited | Polymethine compounds and their use as fluorescent labels |
| US10982261B2 (en) | 2015-09-25 | 2021-04-20 | Illumina Cambridge Limited | Polymethine compounds and their use as fluorescent labels |
| EP3940083A1 (en) | 2015-10-07 | 2022-01-19 | Illumina, Inc. | Off-target capture reduction in sequencing techniques |
| US10465232B1 (en) | 2015-10-08 | 2019-11-05 | Trace Genomics, Inc. | Methods for quantifying efficiency of nucleic acid extraction and detection |
| US10894981B2 (en) | 2015-10-13 | 2021-01-19 | Japan Agency For Marine-Earth Science And Technology | Method for fragmenting double-stranded RNA and use of the same |
| US10253352B2 (en) | 2015-11-17 | 2019-04-09 | Omniome, Inc. | Methods for determining sequence profiles |
| WO2017177017A1 (en) | 2016-04-07 | 2017-10-12 | Omniome, Inc. | Methods of quantifying target nucleic acids and identifying sequence variants |
| US11535883B2 (en) | 2016-07-22 | 2022-12-27 | Illumina, Inc. | Single cell whole genome libraries and combinatorial indexing methods of making thereof |
| EP3904514A1 (en) | 2016-07-22 | 2021-11-03 | Oregon Health & Science University | Single cell whole genome libraries and combinatorial indexing methods of making thereof |
| WO2018018008A1 (en) | 2016-07-22 | 2018-01-25 | Oregon Health & Science University | Single cell whole genome libraries and combinatorial indexing methods of making thereof |
| US11168364B2 (en) | 2016-08-15 | 2021-11-09 | Omniome, Inc. | Method and system for sequencing nucleic acids |
| US10246744B2 (en) | 2016-08-15 | 2019-04-02 | Omniome, Inc. | Method and system for sequencing nucleic acids |
| WO2018035134A1 (en) | 2016-08-15 | 2018-02-22 | Omniome, Inc. | Method and system for sequencing nucleic acids |
| US10443098B2 (en) | 2016-08-15 | 2019-10-15 | Omniome, Inc. | Method and system for sequencing nucleic acids |
| EP4039824A1 (en) | 2016-08-15 | 2022-08-10 | Pacific Biosciences of California, Inc. | Method and system for sequencing nucleic acids |
| WO2018057770A1 (en) | 2016-09-22 | 2018-03-29 | Illumina, Inc. | Somatic copy number variation detection |
| EP3974425A1 (en) | 2016-09-30 | 2022-03-30 | Illumina Cambridge Limited | New fluorescent dyes and their uses as biomarkers |
| US10844225B2 (en) | 2016-09-30 | 2020-11-24 | Illumina Cambridge Limited | Fluorescent dyes and their uses as biomarkers |
| US11370920B2 (en) | 2016-09-30 | 2022-06-28 | Illumina Cambridge Limited | Fluorescent dyes and their uses as biomarkers |
| US10385214B2 (en) | 2016-09-30 | 2019-08-20 | Illumina Cambridge Limited | Fluorescent dyes and their uses as biomarkers |
| WO2018060482A1 (en) | 2016-09-30 | 2018-04-05 | Illumina Cambridge Limited | New fluorescent dyes and their uses as biomarkers |
| US10343160B2 (en) | 2016-10-14 | 2019-07-09 | Illumina, Inc. | Cartridge assembly |
| EP3308860A1 (en) | 2016-10-14 | 2018-04-18 | Illumina, Inc. | Cartridge assembly |
| EP4439045A2 (en) | 2016-10-14 | 2024-10-02 | Illumina, Inc. | Cartridge assembly |
| US11458469B2 (en) | 2016-10-14 | 2022-10-04 | Illumina, Inc. | Cartridge assembly |
| US10214768B2 (en) | 2016-12-22 | 2019-02-26 | Illumina Cambridge Limited | Coumarin compounds and their uses as fluorescent labels |
| US10533211B2 (en) | 2016-12-22 | 2020-01-14 | Illumina Cambridge Limited | Coumarin compounds and their uses as fluorescent labels |
| EP4257596A2 (en) | 2016-12-22 | 2023-10-11 | Illumina Cambridge Limited | Coumarin compounds and their uses as fluorescent labels |
| US10907196B2 (en) | 2016-12-22 | 2021-02-02 | Illumina Cambridge Limited | Coumarin compounds and their uses as fluorescent labels |
| WO2018114710A1 (en) | 2016-12-22 | 2018-06-28 | Illumina Cambridge Limited | Coumarin compounds and their uses as fluorescent labels |
| US11371078B2 (en) | 2016-12-22 | 2022-06-28 | Illumina Cambridge Limited | Coumarin compounds and their uses as fluorescent labels |
| WO2018121587A1 (en) | 2016-12-27 | 2018-07-05 | 深圳华大生命科学研究院 | Single fluorescent dye based sequencing method |
| WO2018125759A1 (en) | 2016-12-30 | 2018-07-05 | Omniome, Inc. | Method and system employing distinguishable polymerases for detecting ternary complexes and identifying cognate nucleotides |
| US11150179B2 (en) | 2017-01-06 | 2021-10-19 | Illumina, Inc. | Phasing correction |
| US12455229B2 (en) | 2017-01-06 | 2025-10-28 | Illumina, Inc. | Phasing correction |
| WO2018129314A1 (en) | 2017-01-06 | 2018-07-12 | Illumina, Inc. | Phasing correction |
| WO2018132389A1 (en) | 2017-01-10 | 2018-07-19 | Omniome, Inc. | Polymerases engineered to reduce nucleotide-independent dna binding |
| WO2018136416A1 (en) | 2017-01-17 | 2018-07-26 | Illumina, Inc. | Oncogenic splice variant determination |
| US10844429B2 (en) | 2017-01-18 | 2020-11-24 | Illumina, Inc. | Methods and systems for generation and error-correction of unique molecular index sets with heterogeneous molecular lengths |
| US11761035B2 (en) | 2017-01-18 | 2023-09-19 | Illumina, Inc. | Methods and systems for generation and error-correction of unique molecular index sets with heterogeneous molecular lengths |
| WO2018136118A1 (en) | 2017-01-20 | 2018-07-26 | Omniome, Inc. | Genotyping by polymerase binding |
| WO2018136117A1 (en) | 2017-01-20 | 2018-07-26 | Omniome, Inc. | Allele-specific capture of nucleic acids |
| WO2018136487A1 (en) | 2017-01-20 | 2018-07-26 | Omniome, Inc. | Process for cognate nucleotide detection in a nucleic acid sequencing workflow |
| WO2018152162A1 (en) | 2017-02-15 | 2018-08-23 | Omniome, Inc. | Distinguishing sequences by detecting polymerase dissociation |
| US11708573B2 (en) | 2017-02-21 | 2023-07-25 | Illumina, Inc. | Tagmentation using immobilized transposomes with linkers |
| WO2018156519A1 (en) | 2017-02-21 | 2018-08-30 | Illumina Inc. | Tagmentation using immobilized transposomes with linkers |
| US12234451B2 (en) | 2017-02-21 | 2025-02-25 | Illumina, Inc. | Tagmentation using immobilized transposomes with linkers |
| US10920219B2 (en) | 2017-02-21 | 2021-02-16 | Illumina, Inc. | Tagmentation using immobilized transposomes with linkers |
| EP4053294A1 (en) | 2017-03-24 | 2022-09-07 | Life Technologies Corporation | Polynucleotide adapters and methods of use thereof |
| WO2018175798A1 (en) | 2017-03-24 | 2018-09-27 | Life Technologies Corporation | Polynucleotide adapters and methods of use thereof |
| US11504711B2 (en) | 2017-04-04 | 2022-11-22 | Pacific Biosciences Of California, Inc. | Fluidic apparatus and methods useful for chemical and biological reactions |
| US12179196B2 (en) | 2017-04-04 | 2024-12-31 | Pacific Biosciences Of California, Inc. | Fluidic apparatus and methods useful for chemical and biological reactions |
| US10737267B2 (en) | 2017-04-04 | 2020-08-11 | Omniome, Inc. | Fluidic apparatus and methods useful for chemical and biological reactions |
| WO2018197945A1 (en) | 2017-04-23 | 2018-11-01 | Illumina Cambridge Limited | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| EP3872187A1 (en) | 2017-04-23 | 2021-09-01 | Illumina Cambridge Limited | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| EP3842545A1 (en) | 2017-04-23 | 2021-06-30 | Illumina, Inc. | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| EP3913053A1 (en) | 2017-04-23 | 2021-11-24 | Illumina Cambridge Limited | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| WO2018200380A1 (en) | 2017-04-23 | 2018-11-01 | Illumina, Inc. | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| WO2018200386A1 (en) | 2017-04-23 | 2018-11-01 | Illumina, Inc. | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| WO2018197950A1 (en) | 2017-04-23 | 2018-11-01 | Illumina Cambridge Limited | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| US9951385B1 (en) | 2017-04-25 | 2018-04-24 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| US11447823B2 (en) | 2017-04-25 | 2022-09-20 | Pacific Biosciences Of California, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| EP3674417A1 (en) | 2017-04-25 | 2020-07-01 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| WO2018200709A1 (en) | 2017-04-25 | 2018-11-01 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| US12180545B2 (en) | 2017-04-25 | 2024-12-31 | Pacific Biosciences Of California, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| US10161003B2 (en) | 2017-04-25 | 2018-12-25 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| US10655176B2 (en) | 2017-04-25 | 2020-05-19 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| US11028435B2 (en) | 2017-05-01 | 2021-06-08 | Illumina, Inc. | Optimal index sequences for multiplex massively parallel sequencing |
| WO2018204423A1 (en) | 2017-05-01 | 2018-11-08 | Illumina, Inc. | Optimal index sequences for multiplex massively parallel sequencing |
| US11788139B2 (en) | 2017-05-01 | 2023-10-17 | Illumina, Inc. | Optimal index sequences for multiplex massively parallel sequencing |
| US11028436B2 (en) | 2017-05-08 | 2021-06-08 | Illumina, Inc. | Universal short adapters for indexing of polynucleotide samples |
| WO2018208699A1 (en) | 2017-05-08 | 2018-11-15 | Illumina, Inc. | Universal short adapters for indexing of polynucleotide samples |
| US11814678B2 (en) | 2017-05-08 | 2023-11-14 | Illumina, Inc. | Universal short adapters for indexing of polynucleotide samples |
| EP4443436A2 (en) | 2017-05-08 | 2024-10-09 | Illumina, Inc. | Universal short adapters for indexing of polynucleotide |
| WO2018226708A1 (en) | 2017-06-07 | 2018-12-13 | Oregon Health & Science University | Single cell whole genome libraries for methylation sequencing |
| EP3981884A1 (en) | 2017-06-07 | 2022-04-13 | Oregon Health & Science University | Single cell whole genome libraries for methylation sequencing |
| EP4293122A2 (en) | 2017-06-07 | 2023-12-20 | Oregon Health & Science University | Single cell whole genome libraries for methylation sequencing |
| WO2018236631A1 (en) | 2017-06-20 | 2018-12-27 | Illumina, Inc. | Methods and compositions for addressing inefficiencies in amplification reactions |
| US11655502B2 (en) | 2017-07-12 | 2023-05-23 | Illumina Cambridge Limited | Short pendant arm linkers for nucleotides in sequencing applications |
| US11001888B2 (en) | 2017-07-12 | 2021-05-11 | Illumina Cambridge Limited | Short pendant arm linkers for nucleotides in sequencing applications |
| US12071662B2 (en) | 2017-07-12 | 2024-08-27 | Illumina Cambridge Limited | Short pendant arm linkers for nucleotides in sequencing applications |
| US10526648B2 (en) | 2017-07-12 | 2020-01-07 | Illumina Cambridge Limited | Short pendant arm linkers for nucleotides in sequencing applications |
| WO2019018366A1 (en) | 2017-07-18 | 2019-01-24 | Omniome, Inc. | Method of chemically modifying plastic surfaces |
| WO2019027767A1 (en) | 2017-07-31 | 2019-02-07 | Illumina Inc. | Sequencing system with multiplexed biological sample aggregation |
| US11326202B2 (en) | 2017-08-01 | 2022-05-10 | Helitec Limited | Methods of enriching and determining target nucleotide sequences |
| EP4446437A2 (en) | 2017-08-01 | 2024-10-16 | Illumina, Inc. | Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells |
| WO2019028047A1 (en) | 2017-08-01 | 2019-02-07 | Illumina, Inc | Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells |
| WO2019023924A1 (en) | 2017-08-01 | 2019-02-07 | Helitec Limited | Methods of enriching and determining target nucleotide sequences |
| US11352668B2 (en) | 2017-08-01 | 2022-06-07 | Illumina, Inc. | Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells |
| US12428680B2 (en) | 2017-08-01 | 2025-09-30 | Illumina, Inc. | Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells |
| EP4289967A2 (en) | 2017-08-01 | 2023-12-13 | Illumina, Inc. | Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells |
| US11649498B2 (en) | 2017-08-01 | 2023-05-16 | Illumina, Inc. | Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells |
| US10858703B2 (en) | 2017-08-15 | 2020-12-08 | Omniome, Inc. | Scanning apparatus and methods useful for detection of chemical and biological analytes |
| US10501796B2 (en) | 2017-08-15 | 2019-12-10 | Omniome, Inc. | Scanning apparatus and methods useful for detection of chemical and biological analytes |
| WO2019035897A1 (en) | 2017-08-15 | 2019-02-21 | Omniome, Inc. | Scanning apparatus and methods useful for detection of chemical and biological analytes |
| US10858701B2 (en) | 2017-08-15 | 2020-12-08 | Omniome, Inc. | Scanning apparatus and method useful for detection of chemical and biological analytes |
| US11447818B2 (en) | 2017-09-15 | 2022-09-20 | Illumina, Inc. | Universal short adapters with variable length non-random unique molecular identifiers |
| WO2019055715A1 (en) | 2017-09-15 | 2019-03-21 | Illumina, Inc. | Universal short adapters with variable length non-random unique molecular identifiers |
| US11898198B2 (en) | 2017-09-15 | 2024-02-13 | Illumina, Inc. | Universal short adapters with variable length non-random unique molecular identifiers |
| US11390619B2 (en) | 2017-10-16 | 2022-07-19 | Illumina Cambridge Limited | Secondary amine-substituted coumarin compounds and their uses as fluorescent labels |
| US11858923B2 (en) | 2017-10-16 | 2024-01-02 | Illumina Cambridge Limited | Secondary amine-substituted coumarin compounds and their uses as fluorescent labels |
| WO2019079593A1 (en) | 2017-10-19 | 2019-04-25 | Omniome, Inc. | Simultaneous background reduction and complex stabilization in binding assay workflows |
| EP4289996A2 (en) | 2017-11-06 | 2023-12-13 | Illumina Inc. | Nucleic acid indexing techniques |
| WO2019090251A2 (en) | 2017-11-06 | 2019-05-09 | Illumina, Inc. | Nucleic acid indexing techniques |
| US11891600B2 (en) | 2017-11-06 | 2024-02-06 | Illumina, Inc. | Nucleic acid indexing techniques |
| US12154664B2 (en) | 2017-11-16 | 2024-11-26 | Illumina, Inc. | Systems and methods for determining microsatellite instability |
| WO2019099529A1 (en) | 2017-11-16 | 2019-05-23 | Illumina, Inc. | Systems and methods for determining microsatellite instability |
| WO2019108972A1 (en) | 2017-11-30 | 2019-06-06 | Illumina, Inc. | Validation methods and systems for sequence variant calls |
| EP4579669A2 (en) | 2017-11-30 | 2025-07-02 | Illumina, Inc. | Validation methods and systems for sequence variant calls |
| US12040047B2 (en) | 2017-11-30 | 2024-07-16 | Illumina, Inc. | Validation methods and systems for sequence variant calls |
| WO2019136376A1 (en) | 2018-01-08 | 2019-07-11 | Illumina, Inc. | High-throughput sequencing with semiconductor-based detection |
| US11561196B2 (en) | 2018-01-08 | 2023-01-24 | Illumina, Inc. | Systems and devices for high-throughput sequencing with semiconductor-based detection |
| WO2019136388A1 (en) | 2018-01-08 | 2019-07-11 | Illumina, Inc. | Systems and devices for high-throughput sequencing with semiconductor-based detection |
| EP3913358A1 (en) | 2018-01-08 | 2021-11-24 | Illumina Inc | High-throughput sequencing with semiconductor-based detection |
| US11953464B2 (en) | 2018-01-08 | 2024-04-09 | Illumina, Inc. | Semiconductor-based biosensors for base calling |
| WO2019195225A1 (en) | 2018-04-02 | 2019-10-10 | Illumina, Inc. | Compositions and methods for making controls for sequence-based genetic testing |
| US11603383B2 (en) | 2018-04-04 | 2023-03-14 | Nautilus Biotechnology, Inc. | Methods of generating nanoarrays and microarrays |
| WO2019203986A1 (en) | 2018-04-19 | 2019-10-24 | Omniome, Inc. | Improving accuracy of base calls in nucleic acid sequencing methods |
| WO2019209426A1 (en) | 2018-04-26 | 2019-10-31 | Omniome, Inc. | Methods and compositions for stabilizing nucleic acid-nucleotide-polymerase complexes |
| EP4234718A2 (en) | 2018-04-26 | 2023-08-30 | Pacific Biosciences Of California, Inc. | Methods and compositions for stabilizing nucleic acid-nucleotide-polymerase complexes |
| WO2019222688A1 (en) | 2018-05-17 | 2019-11-21 | Illumina, Inc. | High-throughput single-cell sequencing with reduced amplification bias |
| US11981891B2 (en) | 2018-05-17 | 2024-05-14 | Illumina, Inc. | High-throughput single-cell sequencing with reduced amplification bias |
| WO2019231568A1 (en) | 2018-05-31 | 2019-12-05 | Omniome, Inc. | Increased signal to noise in nucleic acid sequencing |
| US12180538B2 (en) | 2018-05-31 | 2024-12-31 | Pacific Biosciences Of California, Inc. | Methods and compositions for capping nucleic acids |
| US11180794B2 (en) | 2018-05-31 | 2021-11-23 | Omniome, Inc. | Methods and compositions for capping nucleic acids |
| US11339428B2 (en) | 2018-05-31 | 2022-05-24 | Pacific Biosciences Of California, Inc. | Increased signal to noise in nucleic acid sequencing |
| EP4269618A2 (en) | 2018-06-04 | 2023-11-01 | Illumina, Inc. | Methods of making high-throughput single-cell transcriptome libraries |
| US12083514B2 (en) | 2018-07-03 | 2024-09-10 | Illumina, Inc. | Interposer with first and second adhesive layers |
| WO2020023362A1 (en) | 2018-07-24 | 2020-01-30 | Omniome, Inc. | Serial formation of ternary complex species |
| US12435362B2 (en) | 2018-08-15 | 2025-10-07 | Illumina, Inc. | Compositions and methods for improving library enrichment |
| WO2020036991A1 (en) | 2018-08-15 | 2020-02-20 | Illumina, Inc. | Compositions and methods for improving library enrichment |
| EP4464793A2 (en) | 2018-08-28 | 2024-11-20 | 10X Genomics, Inc. | Methods for generating spatially barcoded arrays |
| WO2020047007A2 (en) | 2018-08-28 | 2020-03-05 | 10X Genomics, Inc. | Methods for generating spatially barcoded arrays |
| US11519033B2 (en) | 2018-08-28 | 2022-12-06 | 10X Genomics, Inc. | Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample |
| WO2020047004A2 (en) | 2018-08-28 | 2020-03-05 | 10X Genomics, Inc. | Methods of generating an array |
| US12344892B2 (en) | 2018-08-28 | 2025-07-01 | 10X Genomics, Inc. | Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample |
| US12270077B2 (en) | 2018-08-28 | 2025-04-08 | 10X Genomics, Inc. | Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample |
| US12378607B2 (en) | 2018-08-28 | 2025-08-05 | 10X Genomics, Inc. | Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample |
| WO2020047002A1 (en) | 2018-08-28 | 2020-03-05 | 10X Genomics, Inc. | Method for transposase-mediated spatial tagging and analyzing genomic dna in a biological sample |
| EP4603594A2 (en) | 2018-08-28 | 2025-08-20 | 10x Genomics, Inc. | Increasing spatial array resolution |
| WO2020047005A1 (en) | 2018-08-28 | 2020-03-05 | 10X Genomics, Inc. | Resolving spatial arrays |
| WO2020047010A2 (en) | 2018-08-28 | 2020-03-05 | 10X Genomics, Inc. | Increasing spatial array resolution |
| WO2020060811A1 (en) | 2018-09-17 | 2020-03-26 | Omniome, Inc. | Engineered polymerases for improved sequencing |
| WO2020104851A1 (en) | 2018-11-21 | 2020-05-28 | Akershus Universitetssykehus Hf | Tagmentation-associated multiplex pcr enrichment sequencing |
| NL2022043B1 (en) | 2018-11-21 | 2020-06-03 | Akershus Univ Hf | Tagmentation-Associated Multiplex PCR Enrichment Sequencing |
| WO2020117653A1 (en) | 2018-12-04 | 2020-06-11 | Omniome, Inc. | Mixed-phase fluids for nucleic acid sequencing and other analytical assays |
| US10710076B2 (en) | 2018-12-04 | 2020-07-14 | Omniome, Inc. | Mixed-phase fluids for nucleic acid sequencing and other analytical assays |
| WO2020114918A1 (en) | 2018-12-05 | 2020-06-11 | Illumina Cambridge Limited | Methods and compositions for cluster generation by bridge amplification |
| WO2020123319A2 (en) | 2018-12-10 | 2020-06-18 | 10X Genomics, Inc. | Methods of using master / copy arrays for spatial detection |
| WO2020123317A2 (en) | 2018-12-10 | 2020-06-18 | 10X Genomics, Inc | Three-dimensional spatial analysis |
| EP4567127A2 (en) | 2018-12-10 | 2025-06-11 | 10x Genomics, Inc. | Methods for determining a location of a biological analyte in a biological sample |
| US12180543B2 (en) | 2018-12-10 | 2024-12-31 | 10X Genomics, Inc. | Imaging system hardware |
| WO2020123316A2 (en) | 2018-12-10 | 2020-06-18 | 10X Genomics, Inc. | Methods for determining a location of a biological analyte in a biological sample |
| WO2020123311A2 (en) | 2018-12-10 | 2020-06-18 | 10X Genomics, Inc. | Resolving spatial arrays using deconvolution |
| WO2020123305A2 (en) | 2018-12-10 | 2020-06-18 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
| WO2020123320A2 (en) | 2018-12-10 | 2020-06-18 | 10X Genomics, Inc. | Imaging system hardware |
| WO2020123309A1 (en) | 2018-12-10 | 2020-06-18 | 10X Genomics, Inc. | Resolving spatial arrays by proximity-based deconvolution |
| US11933957B1 (en) | 2018-12-10 | 2024-03-19 | 10X Genomics, Inc. | Imaging system hardware |
| US12404544B2 (en) | 2018-12-10 | 2025-09-02 | 10X Genomics, Inc. | Methods of capturing multiple analytes on a spatial array |
| WO2020123318A1 (en) | 2018-12-10 | 2020-06-18 | 10X Genomics, Inc. | Resolving spatial arrays using deconvolution |
| US12385083B2 (en) | 2018-12-10 | 2025-08-12 | 10X Genomics, Inc. | Methods of using master / copy arrays for spatial detection |
| US12024741B2 (en) | 2018-12-10 | 2024-07-02 | 10X Genomics, Inc. | Imaging system hardware |
| WO2020123301A2 (en) | 2018-12-10 | 2020-06-18 | 10X Genomics, Inc. | Generating spatial arrays with gradients |
| WO2020126602A1 (en) | 2018-12-18 | 2020-06-25 | Illumina Cambridge Limited | Methods and compositions for paired end sequencing using a single surface primer |
| WO2020132103A1 (en) | 2018-12-19 | 2020-06-25 | Illumina, Inc. | Methods for improving polynucleotide cluster clonality priority |
| WO2020132350A2 (en) | 2018-12-20 | 2020-06-25 | Omniome, Inc. | Temperature control for analysis of nucleic acids and other analytes |
| US11041199B2 (en) | 2018-12-20 | 2021-06-22 | Omniome, Inc. | Temperature control for analysis of nucleic acids and other analytes |
| US12077815B2 (en) | 2018-12-20 | 2024-09-03 | Pacific Biosciences Of California, Inc. | Temperature control for analysis of nucleic acids and other analytes |
| US11293061B2 (en) | 2018-12-26 | 2022-04-05 | Illumina Cambridge Limited | Sequencing methods using nucleotides with 3′ AOM blocking group |
| US11827931B2 (en) | 2018-12-26 | 2023-11-28 | Illumina Cambridge Limited | Methods of preparing growing polynucleotides using nucleotides with 3′ AOM blocking group |
| US12227802B2 (en) | 2018-12-26 | 2025-02-18 | Illumina Cambridge Limited | Nucleotides with a 3′ AOM blocking group |
| WO2020136170A2 (en) | 2018-12-26 | 2020-07-02 | Illumina Cambridge Limited | Nucleosides and nucleotides with 3'-hydroxy blocking groups |
| US11649485B2 (en) | 2019-01-06 | 2023-05-16 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
| US11926867B2 (en) | 2019-01-06 | 2024-03-12 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
| US11753675B2 (en) | 2019-01-06 | 2023-09-12 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
| WO2020144373A1 (en) | 2019-01-11 | 2020-07-16 | Illumina Cambridge Limited | Complex surface-bound transposome complexes |
| US12448644B2 (en) | 2019-01-11 | 2025-10-21 | Illumina Cambridge Limited | Complex surface-bound transposome complexes |
| US11685946B2 (en) | 2019-01-11 | 2023-06-27 | Illumina Cambridge Limited | Complex surface-bound transposome complexes |
| US11306348B2 (en) | 2019-01-11 | 2022-04-19 | Illumina Cambridge Limited | Complex surface-bound transposome complexes |
| WO2020167574A1 (en) | 2019-02-14 | 2020-08-20 | Omniome, Inc. | Mitigating adverse impacts of detection systems on nucleic acids and other biological analytes |
| US11680950B2 (en) | 2019-02-20 | 2023-06-20 | Pacific Biosciences Of California, Inc. | Scanning apparatus and methods for detecting chemical and biological analytes |
| WO2020176788A1 (en) | 2019-02-28 | 2020-09-03 | 10X Genomics, Inc. | Profiling of biological analytes with spatially barcoded oligonucleotide arrays |
| WO2020178162A1 (en) | 2019-03-01 | 2020-09-10 | Illumina Cambridge Limited | Exocyclic amine-substituted coumarin compounds and their uses as fluorescent labels |
| WO2020178165A1 (en) | 2019-03-01 | 2020-09-10 | Illumina Cambridge Limited | Tertiary amine substituted coumarin compounds and their uses as fluorescent labels |
| NL2023327B1 (en) | 2019-03-01 | 2020-09-17 | Illumina Inc | Multiplexed fluorescent detection of analytes |
| WO2020180778A1 (en) | 2019-03-01 | 2020-09-10 | Illumina, Inc. | High-throughput single-nuclei and single-cell libraries and methods of making and of using |
| US12110546B2 (en) | 2019-03-01 | 2024-10-08 | Illumina Cambridge Limited | Tertiary amine substituted coumarin compounds and uses as fluorescent labels |
| US11390753B2 (en) | 2019-03-01 | 2022-07-19 | Illumina Cambridge Limited | Exocyclic amine substituted coumarin compounds and uses as fluorescent labels |
| WO2020178231A1 (en) | 2019-03-01 | 2020-09-10 | Illumina, Inc. | Multiplexed fluorescent detection of analytes |
| US11884825B2 (en) | 2019-03-01 | 2024-01-30 | Illumina Cambridge Limited | Exocyclic amine substituted coumarin compounds and uses as fluorescent labels |
| WO2020190509A1 (en) | 2019-03-15 | 2020-09-24 | 10X Genomics, Inc. | Methods for using spatial arrays for single cell sequencing |
| US11908548B2 (en) | 2019-03-21 | 2024-02-20 | Illumina, Inc. | Training data generation for artificial intelligence-based sequencing |
| NL2023310B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Training data generation for artificial intelligence-based sequencing |
| US12217831B2 (en) | 2019-03-21 | 2025-02-04 | Illumina, Inc. | Artificial intelligence-based quality scoring |
| NL2023311B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based generation of sequencing metadata |
| US11961593B2 (en) | 2019-03-21 | 2024-04-16 | Illumina, Inc. | Artificial intelligence-based determination of analyte data for base calling |
| US11676685B2 (en) | 2019-03-21 | 2023-06-13 | Illumina, Inc. | Artificial intelligence-based quality scoring |
| US11783917B2 (en) | 2019-03-21 | 2023-10-10 | Illumina, Inc. | Artificial intelligence-based base calling |
| NL2023314B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based quality scoring |
| NL2023312B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based base calling |
| US12119088B2 (en) | 2019-03-21 | 2024-10-15 | Illumina, Inc. | Deep neural network-based sequencing |
| EP4276769A2 (en) | 2019-03-21 | 2023-11-15 | Illumina, Inc. | Training data generation for artificial intelligence-based sequencing |
| NL2023316B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based sequencing |
| US12277998B2 (en) | 2019-03-21 | 2025-04-15 | Illumina, Inc. | Artificial intelligence-based base calling |
| WO2020205296A1 (en) | 2019-03-21 | 2020-10-08 | Illumina, Inc. | Artificial intelligence-based generation of sequencing metadata |
| WO2020191389A1 (en) | 2019-03-21 | 2020-09-24 | Illumina, Inc. | Training data generation for artificial intelligence-based sequencing |
| WO2020191391A2 (en) | 2019-03-21 | 2020-09-24 | Illumina, Inc. | Artificial intelligence-based sequencing |
| WO2020198071A1 (en) | 2019-03-22 | 2020-10-01 | 10X Genomics, Inc. | Three-dimensional spatial analysis |
| US11421271B2 (en) | 2019-03-28 | 2022-08-23 | Illumina Cambridge Limited | Methods and compositions for nucleic acid sequencing using photoswitchable labels |
| US11959138B2 (en) | 2019-03-28 | 2024-04-16 | Illumina Cambridge Limited | Methods and compositions for nucleic acid sequencing using photoswitchable labels |
| WO2020193765A1 (en) | 2019-03-28 | 2020-10-01 | Illumina Cambridge Limited | Methods and compositions for nucleic acid sequencing using photoswitchable labels |
| US12306093B2 (en) | 2019-04-29 | 2025-05-20 | Nautilus Subsidiary, Inc. | Methods and systems for integrated on-chip single-molecule detection |
| WO2020227953A1 (en) | 2019-05-15 | 2020-11-19 | 深圳华大智造极创科技有限公司 | Single-channel sequencing method based on self-luminescence |
| US12237052B2 (en) | 2019-05-16 | 2025-02-25 | Illumina, Inc. | Base calling using convolution |
| US11817182B2 (en) | 2019-05-16 | 2023-11-14 | Illumina, Inc. | Base calling using three-dimentional (3D) convolution |
| US12106828B2 (en) | 2019-05-16 | 2024-10-01 | Illumina, Inc. | Systems and devices for signal corrections in pixel-based sequencing |
| US11593649B2 (en) | 2019-05-16 | 2023-02-28 | Illumina, Inc. | Base calling using convolutions |
| US11965213B2 (en) | 2019-05-30 | 2024-04-23 | 10X Genomics, Inc. | Methods of detecting spatial heterogeneity of a biological sample |
| WO2020243579A1 (en) | 2019-05-30 | 2020-12-03 | 10X Genomics, Inc. | Methods of detecting spatial heterogeneity of a biological sample |
| US12442045B2 (en) | 2019-05-30 | 2025-10-14 | 10X Genomics, Inc. | Methods of detecting spatial heterogeneity of a biological sample |
| WO2020252186A1 (en) | 2019-06-11 | 2020-12-17 | Omniome, Inc. | Calibrated focus sensing |
| WO2021008805A1 (en) | 2019-07-12 | 2021-01-21 | Illumina Cambridge Limited | Compositions and methods for preparing nucleic acid sequencing libraries using crispr/cas9 immobilized on a solid support |
| WO2021009494A1 (en) | 2019-07-12 | 2021-01-21 | Illumina Cambridge Limited | Nucleic acid library preparation using electrophoresis |
| US11377655B2 (en) | 2019-07-16 | 2022-07-05 | Pacific Biosciences Of California, Inc. | Synthetic nucleic acids having non-natural structures |
| US10656368B1 (en) | 2019-07-24 | 2020-05-19 | Omniome, Inc. | Method and system for biological imaging using a wide field objective lens |
| US11644636B2 (en) | 2019-07-24 | 2023-05-09 | Pacific Biosciences Of California, Inc. | Method and system for biological imaging using a wide field objective lens |
| WO2021015838A1 (en) | 2019-07-24 | 2021-01-28 | Omniome, Inc. | Objective lens of a microscope for imaging an array of nucleic acids and system for dna sequencing |
| WO2021031109A1 (en) | 2019-08-20 | 2021-02-25 | 深圳华大智造极创科技有限公司 | Method for sequencing polynucleotides on basis of optical signal dynamics of luminescent label and secondary luminescent signal |
| EP4265628A2 (en) | 2019-09-10 | 2023-10-25 | Pacific Biosciences of California, Inc. | Reversible modification of nucleotides |
| WO2021050681A1 (en) | 2019-09-10 | 2021-03-18 | Omniome, Inc. | Reversible modification of nucleotides |
| US11180520B2 (en) | 2019-09-10 | 2021-11-23 | Omniome, Inc. | Reversible modifications of nucleotides |
| US11788137B2 (en) | 2019-09-30 | 2023-10-17 | Diagenode S.A. | Diagnostic and/or sequencing method and kit |
| EP3798319A1 (en) | 2019-09-30 | 2021-03-31 | Diagenode S.A. | An improved diagnostic and/or sequencing method and kit |
| US11514575B2 (en) | 2019-10-01 | 2022-11-29 | 10X Genomics, Inc. | Systems and methods for identifying morphological patterns in tissue samples |
| US12125260B2 (en) | 2019-10-01 | 2024-10-22 | 10X Genomics, Inc. | Systems and methods for identifying morphological patterns in tissue samples |
| WO2021076152A1 (en) | 2019-10-18 | 2021-04-22 | Omniome, Inc. | Methods and compositions for capping nucleic acids |
| US12377635B2 (en) | 2019-10-30 | 2025-08-05 | Nautilus Subsidiary, Inc. | Flow cell systems and methods |
| US11808769B2 (en) | 2019-11-08 | 2023-11-07 | 10X Genomics, Inc. | Spatially-tagged analyte capture agents for analyte multiplexing |
| US11592447B2 (en) | 2019-11-08 | 2023-02-28 | 10X Genomics, Inc. | Spatially-tagged analyte capture agents for analyte multiplexing |
| WO2021092431A1 (en) | 2019-11-08 | 2021-05-14 | Omniome, Inc. | Engineered polymerases for improved sequencing by binding |
| WO2021091611A1 (en) | 2019-11-08 | 2021-05-14 | 10X Genomics, Inc. | Spatially-tagged analyte capture agents for analyte multiplexing |
| WO2021097255A1 (en) | 2019-11-13 | 2021-05-20 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
| EP4589016A2 (en) | 2019-11-13 | 2025-07-23 | 10x Genomics, Inc. | Generating capture probes for spatial analysis |
| US12154266B2 (en) | 2019-11-18 | 2024-11-26 | 10X Genomics, Inc. | Systems and methods for binary tissue classification |
| WO2021102003A1 (en) | 2019-11-18 | 2021-05-27 | 10X Genomics, Inc. | Systems and methods for tissue classification |
| WO2021102039A1 (en) | 2019-11-21 | 2021-05-27 | 10X Genomics, Inc, | Spatial analysis of analytes |
| EP4538971A2 (en) | 2019-11-21 | 2025-04-16 | 10x Genomics, Inc. | Spatial analysis of analytes |
| US11501440B2 (en) | 2019-11-22 | 2022-11-15 | 10X Genomics, Inc. | Systems and methods for spatial analysis of analytes using fiducial alignment |
| WO2021102005A1 (en) | 2019-11-22 | 2021-05-27 | 10X Genomics, Inc. | Systems and methods for spatial analysis of analytes using fiducial alignment |
| EP4435718A2 (en) | 2019-11-22 | 2024-09-25 | 10X Genomics, Inc. | Systems and methods for spatial analysis of analytes using fiducial alignment |
| US12229974B2 (en) | 2019-11-22 | 2025-02-18 | 10X Genomics, Inc. | Systems and methods for spatial analysis of analytes using fiducial alignment |
| US12195796B2 (en) | 2019-11-27 | 2025-01-14 | Illumina Cambridge Limited | Cyclooctatetraene containing dyes and compositions |
| WO2021104845A1 (en) | 2019-11-27 | 2021-06-03 | Illumina Cambridge Limited | Cyclooctatetraene containing dyes and compositions |
| US12031178B2 (en) | 2019-11-27 | 2024-07-09 | Illumina Cambridge Limited | Cyclooctatetraene containing dyes and compositions |
| US11597969B2 (en) | 2019-11-27 | 2023-03-07 | Illumina Cambridge Limited | Cyclooctatetraene containing dyes and compositions |
| EP3828283A1 (en) | 2019-11-28 | 2021-06-02 | Diagenode S.A. | An improved sequencing method and kit |
| DE202019106695U1 (en) | 2019-12-02 | 2020-03-19 | Omniome, Inc. | System for sequencing nucleic acids in fluid foam |
| DE202019106694U1 (en) | 2019-12-02 | 2020-03-19 | Omniome, Inc. | System for sequencing nucleic acids in fluid foam |
| WO2021123074A1 (en) | 2019-12-18 | 2021-06-24 | F. Hoffmann-La Roche Ag | Methods of sequencing by synthesis using a consecutive labeling scheme |
| WO2021127436A2 (en) | 2019-12-19 | 2021-06-24 | Illumina, Inc. | High-throughput single-cell libraries and methods of making and of using |
| WO2021128441A1 (en) | 2019-12-23 | 2021-07-01 | Mgi Tech Co.,Ltd. | Controlled strand-displacement for paired-end sequencing |
| EP4524259A2 (en) | 2019-12-23 | 2025-03-19 | MGI Tech Co., Ltd. | Controlled strand-displacement for paired-end sequencing |
| US11795504B2 (en) | 2020-01-17 | 2023-10-24 | Element Biosciences, Inc. | High performance fluorescence imaging module for genomic testing assay |
| WO2021148809A1 (en) | 2020-01-22 | 2021-07-29 | Nuclera Nucleics Ltd | Methods of nucleic acid synthesis |
| US11821035B1 (en) | 2020-01-29 | 2023-11-21 | 10X Genomics, Inc. | Compositions and methods of making gene expression libraries |
| US12076701B2 (en) | 2020-01-31 | 2024-09-03 | 10X Genomics, Inc. | Capturing oligonucleotides in spatial transcriptomics |
| US12112833B2 (en) | 2020-02-04 | 2024-10-08 | 10X Genomics, Inc. | Systems and methods for index hopping filtering |
| WO2021158964A1 (en) | 2020-02-07 | 2021-08-12 | University Of Rochester | Ribozyme-mediated rna assembly and expression |
| US12421558B2 (en) | 2020-02-13 | 2025-09-23 | 10X Genomics, Inc. | Systems and methods for joint interactive visualization of gene expression and DNA chromatin accessibility |
| US12215379B2 (en) | 2020-02-17 | 2025-02-04 | 10X Genomics, Inc. | In situ analysis of chromatin interaction |
| US11749380B2 (en) | 2020-02-20 | 2023-09-05 | Illumina, Inc. | Artificial intelligence-based many-to-many base calling |
| WO2021168018A1 (en) | 2020-02-20 | 2021-08-26 | Illumina, Inc. | Hardware execution and acceleration of artificial intelligence-based base caller |
| US12354008B2 (en) | 2020-02-20 | 2025-07-08 | Illumina, Inc. | Knowledge distillation and gradient pruning-based compression of artificial intelligence-based base caller |
| WO2021168014A1 (en) | 2020-02-20 | 2021-08-26 | Illumina, Inc. | Knowledge distillation and gradient pruning-based compression of artificial intelligence-based base caller |
| US12443849B2 (en) | 2020-02-20 | 2025-10-14 | Illumina, Inc. | Bus network for artificial intelligence-based base caller |
| US12106829B2 (en) | 2020-02-20 | 2024-10-01 | Illumina, Inc. | Artificial intelligence-based many-to-many base calling |
| WO2021168353A2 (en) | 2020-02-20 | 2021-08-26 | Illumina, Inc. | Artificial intelligence-based many-to-many base calling |
| WO2021168287A1 (en) | 2020-02-21 | 2021-08-26 | 10X Genomics, Inc. | Methods and compositions for integrated in situ spatial assay |
| EP4484571A2 (en) | 2020-02-21 | 2025-01-01 | 10X Genomics, Inc. | Methods and compositions for integrated in situ spatial assay |
| US12173360B2 (en) | 2020-02-21 | 2024-12-24 | 10X Genomics, Inc. | Methods and compositions for integrated in situ spatial assay |
| US11608528B2 (en) | 2020-03-03 | 2023-03-21 | Pacific Biosciences Of California, Inc. | Methods and compositions for sequencing double stranded nucleic acids using RCA and MDA |
| US12435370B2 (en) | 2020-03-03 | 2025-10-07 | Pacific Biosciences Of California, Inc. | Methods and compositions for sequencing double stranded nucleic acids |
| WO2021178467A1 (en) | 2020-03-03 | 2021-09-10 | Omniome, Inc. | Methods and compositions for sequencing double stranded nucleic acids |
| US12188085B2 (en) | 2020-03-05 | 2025-01-07 | 10X Genomics, Inc. | Three-dimensional spatial transcriptomics with sequencing readout |
| US11694309B2 (en) | 2020-05-05 | 2023-07-04 | Illumina, Inc. | Equalizer-based intensity correction for base calling |
| US12361525B2 (en) | 2020-05-05 | 2025-07-15 | Illumina, Inc. | Equalizer-based intensity correction for base calling |
| WO2021225886A1 (en) | 2020-05-05 | 2021-11-11 | Omniome, Inc. | Compositions and methods for modifying polymerase-nucleic acid complexes |
| WO2021226522A1 (en) | 2020-05-08 | 2021-11-11 | Illumina, Inc. | Genome sequencing and detection techniques |
| WO2021226523A2 (en) | 2020-05-08 | 2021-11-11 | Illumina, Inc. | Genome sequencing and detection techniques |
| WO2021231477A2 (en) | 2020-05-12 | 2021-11-18 | Illumina, Inc. | Generating nucleic acids with modified bases using recombinant terminal deoxynucleotidyl transferase |
| WO2021252375A1 (en) | 2020-06-08 | 2021-12-16 | The Broad Institute, Inc. | Single cell combinatorial indexing from amplified nucleic acids |
| WO2021252617A1 (en) | 2020-06-09 | 2021-12-16 | Illumina, Inc. | Methods for increasing yield of sequencing libraries |
| US12286453B2 (en) | 2020-06-22 | 2025-04-29 | Illumina Cambridge Limited | Methods of sequencing using nucleotides with 3′ acetal blocking group |
| US11787831B2 (en) | 2020-06-22 | 2023-10-17 | Illumina Cambridge Limited | Nucleosides and nucleotides with 3′ acetal blocking group |
| WO2021259881A1 (en) | 2020-06-22 | 2021-12-30 | Illumina Cambridge Limited | Nucleosides and nucleotides with 3' acetal blocking group |
| WO2022006081A1 (en) | 2020-06-30 | 2022-01-06 | Illumina, Inc. | Catalytically controlled sequencing by synthesis to produce scarless dna |
| US12168801B1 (en) | 2020-07-02 | 2024-12-17 | 10X Genomics, Inc. | Hybrid/capture probe designs for full-length cDNA |
| WO2022010965A1 (en) | 2020-07-08 | 2022-01-13 | Illumina, Inc. | Beads as transposome carriers |
| US11981964B2 (en) | 2020-07-28 | 2024-05-14 | Illumina Cambridge Limited | Substituted coumarin dyes and uses as fluorescent labels |
| US12351871B2 (en) | 2020-07-28 | 2025-07-08 | Illumina Cambridge Limited | Substituted coumarin dyes and uses as fluorescent labels |
| WO2022023353A1 (en) | 2020-07-28 | 2022-02-03 | Illumina Cambridge Limited | Substituted coumarin dyes and uses as fluorescent labels |
| WO2022031955A1 (en) | 2020-08-06 | 2022-02-10 | Illumina, Inc. | Preparation of rna and dna sequencing libraries using bead-linked transposomes |
| WO2022040176A1 (en) | 2020-08-18 | 2022-02-24 | Illumina, Inc. | Sequence-specific targeted transposition and selection and sorting of nucleic acids |
| WO2022038386A1 (en) | 2020-08-21 | 2022-02-24 | Nuclera Nucleics Ltd | Polyacrilamide type solid-supported nucleic acid synthesis |
| WO2022087150A2 (en) | 2020-10-21 | 2022-04-28 | Illumina, Inc. | Sequencing templates comprising multiple inserts and compositions and methods for improving sequencing throughput |
| US12071667B2 (en) | 2020-11-04 | 2024-08-27 | 10X Genomics, Inc. | Sequence analysis using meta-stable nucleic acid molecules |
| US11692217B2 (en) | 2020-11-11 | 2023-07-04 | Nautilus Subsidiary, Inc. | Affinity reagents having enhanced binding and detection characteristics |
| US11993807B2 (en) | 2020-11-11 | 2024-05-28 | Nautilus Subsidiary, Inc. | Affinity reagents having enhanced binding and detection characteristics |
| WO2022103887A1 (en) | 2020-11-11 | 2022-05-19 | Nautilus Biotechnology, Inc. | Affinity reagents having enhanced binding and detection characteristics |
| WO2022119812A1 (en) | 2020-12-02 | 2022-06-09 | Illumina Software, Inc. | System and method for detection of genetic alterations |
| WO2022129930A1 (en) | 2020-12-17 | 2022-06-23 | Illumina Cambridge Limited | Alkylpyridinium coumarin dyes and uses in sequencing applications |
| WO2022129439A1 (en) | 2020-12-17 | 2022-06-23 | Illumina Cambridge Limited | Methods, systems and compositions for nucleic acid sequencing |
| WO2022129437A1 (en) | 2020-12-17 | 2022-06-23 | Illumina Cambridge Limited | Long stokes shift chromenoquinoline dyes and uses in sequencing applications |
| WO2022136402A1 (en) | 2020-12-22 | 2022-06-30 | Illumina Cambridge Limited | Methods and compositions for nucleic acid sequencing |
| WO2022159663A1 (en) | 2021-01-21 | 2022-07-28 | Nautilus Biotechnology, Inc. | Systems and methods for biomolecule preparation |
| WO2022192591A1 (en) | 2021-03-11 | 2022-09-15 | Nautilus Biotechnology, Inc. | Systems and methods for biomolecule retention |
| US11505796B2 (en) | 2021-03-11 | 2022-11-22 | Nautilus Biotechnology, Inc. | Systems and methods for biomolecule retention |
| US12305167B2 (en) | 2021-03-11 | 2025-05-20 | Nautilus Subsidiary, Inc. | Systems and methods for biomolecule retention |
| US11912990B2 (en) | 2021-03-11 | 2024-02-27 | Nautilus Subsidiary, Inc. | Systems and methods for biomolecule retention |
| US11760997B2 (en) | 2021-03-11 | 2023-09-19 | Nautilus Subsidiary, Inc. | Systems and methods for biomolecule retention |
| US12071618B2 (en) | 2021-03-11 | 2024-08-27 | Nautilus Subsidiary, Inc. | Systems and methods for biomolecule retention |
| EP4263868A4 (en) * | 2021-03-12 | 2024-11-27 | Singular Genomics Systems, Inc. | NANOARRAYS AND METHODS OF USE THEREOF |
| WO2022197752A1 (en) | 2021-03-16 | 2022-09-22 | Illumina, Inc. | Tile location and/or cycle based weight set selection for base calling |
| WO2022204032A1 (en) | 2021-03-22 | 2022-09-29 | Illumina Cambridge Limited | Methods for improving nucleic acid cluster clonality |
| WO2022212269A1 (en) | 2021-03-29 | 2022-10-06 | Illumina, Inc. | Improved methods of library preparation |
| WO2022212330A1 (en) | 2021-03-30 | 2022-10-06 | Illumina, Inc. | Improved methods of isothermal complementary dna and library preparation |
| WO2022212402A1 (en) | 2021-03-31 | 2022-10-06 | Illumina, Inc. | Methods of preparing directional tagmentation sequencing libraries using transposon-based technology with unique molecular identifiers for error correction |
| WO2022207804A1 (en) | 2021-03-31 | 2022-10-06 | Illumina Cambridge Limited | Nucleic acid library sequencing techniques with adapter dimer detection |
| WO2022213027A1 (en) | 2021-04-02 | 2022-10-06 | Illumina, Inc. | Machine-learning model for detecting a bubble within a nucleotide-sample slide for sequencing |
| US12217829B2 (en) | 2021-04-15 | 2025-02-04 | Illumina, Inc. | Artificial intelligence-based analysis of protein three-dimensional (3D) structures |
| US11515010B2 (en) | 2021-04-15 | 2022-11-29 | Illumina, Inc. | Deep convolutional neural networks to predict variant pathogenicity using three-dimensional (3D) protein structures |
| US12444482B2 (en) | 2021-04-15 | 2025-10-14 | Illumina, Inc. | Multi-channel protein voxelization to predict variant pathogenicity using deep convolutional neural networks |
| WO2022232425A2 (en) | 2021-04-29 | 2022-11-03 | Illumina, Inc. | Amplification techniques for nucleic acid characterization |
| WO2022233795A1 (en) | 2021-05-05 | 2022-11-10 | Illumina Cambridge Limited | Fluorescent dyes containing bis-boron fused heterocycles and uses in sequencing |
| US12043637B2 (en) | 2021-05-05 | 2024-07-23 | Illumina Cambridge Limited | Fluorescent dyes containing bis-boron fused heterocycles and uses in sequencing |
| WO2022240766A1 (en) | 2021-05-10 | 2022-11-17 | Pacific Biosciences Of California, Inc. | Dna amplification buffer replenishment during rolling circle amplification |
| WO2022240764A1 (en) | 2021-05-10 | 2022-11-17 | Pacific Biosciences Of California, Inc. | Single-molecule seeding and amplification on a surface |
| WO2022243480A1 (en) | 2021-05-20 | 2022-11-24 | Illumina, Inc. | Compositions and methods for sequencing by synthesis |
| WO2022251510A2 (en) | 2021-05-28 | 2022-12-01 | Illumina, Inc. | Oligo-modified nucleotide analogues for nucleic acid preparation |
| WO2022256229A1 (en) | 2021-06-03 | 2022-12-08 | Illumina Cambridge Limited | Systems and methods for sequencing nucleotides using two optical channels |
| WO2022272260A1 (en) | 2021-06-23 | 2022-12-29 | Illumina, Inc. | Compositions, methods, kits, cartridges, and systems for sequencing reagents |
| WO2022271983A1 (en) | 2021-06-24 | 2022-12-29 | Nautilus Biotechnology, Inc. | Methods and systems for assay refinement |
| WO2022271954A1 (en) | 2021-06-24 | 2022-12-29 | Illumina, Inc. | Methods and compositions for combinatorial indexing of bead-based nucleic acids |
| US12217403B2 (en) | 2021-06-29 | 2025-02-04 | Illumina, Inc. | Methods and systems to correct crosstalk in illumination emitted from reaction sites |
| WO2023278927A1 (en) | 2021-06-29 | 2023-01-05 | Illumina Software, Inc. | Signal-to-noise-ratio metric for determining nucleotide-base calls and base-call quality |
| WO2023278609A1 (en) | 2021-06-29 | 2023-01-05 | Illumina, Inc. | Self-learned base caller, trained using organism sequences |
| WO2023278608A1 (en) | 2021-06-29 | 2023-01-05 | Illumina, Inc. | Self-learned base caller, trained using oligo sequences |
| WO2023278966A1 (en) | 2021-06-29 | 2023-01-05 | Illumina, Inc. | Machine-learning model for generating confidence classifications for genomic coordinates |
| WO2023278184A1 (en) | 2021-06-29 | 2023-01-05 | Illumina, Inc. | Methods and systems to correct crosstalk in illumination emitted from reaction sites |
| WO2023278788A1 (en) | 2021-07-01 | 2023-01-05 | Illumina, Inc. | Efficient artificial intelligence-based base calling of index sequences |
| WO2023287617A1 (en) | 2021-07-13 | 2023-01-19 | Illumina, Inc. | Methods and systems for real time extraction of crosstalk in illumination emitted from reaction sites |
| US12423815B2 (en) | 2021-07-13 | 2025-09-23 | Illumina, Inc. | Methods and systems for real time extraction of crosstalk in illumination emitted from reaction sites |
| WO2023003757A1 (en) | 2021-07-19 | 2023-01-26 | Illumina Software, Inc. | Intensity extraction with interpolation and adaptation for base calling |
| US12367263B2 (en) | 2021-07-19 | 2025-07-22 | Illumina, Inc. | Intensity extraction for feature values in base calling |
| US11989265B2 (en) | 2021-07-19 | 2024-05-21 | Illumina, Inc. | Intensity extraction from oligonucleotide clusters for base calling |
| US12146190B2 (en) | 2021-07-21 | 2024-11-19 | Element Biosciences, Inc. | Optical systems for nucleic acid sequencing and methods thereof |
| WO2023004323A1 (en) | 2021-07-23 | 2023-01-26 | Illumina Software, Inc. | Machine-learning model for recalibrating nucleotide-base calls |
| WO2023009758A1 (en) | 2021-07-28 | 2023-02-02 | Illumina, Inc. | Quality score calibration of basecalling systems |
| WO2023014741A1 (en) | 2021-08-03 | 2023-02-09 | Illumina Software, Inc. | Base calling using multiple base caller models |
| WO2023034079A1 (en) | 2021-09-01 | 2023-03-09 | Illumina Software, Inc. | Amplitude modulation for accelerated base calling |
| WO2023044229A1 (en) | 2021-09-17 | 2023-03-23 | Illumina, Inc. | Automatically identifying failure sources in nucleotide sequencing from base-call-error patterns |
| WO2023049558A1 (en) | 2021-09-21 | 2023-03-30 | Illumina, Inc. | A graph reference genome and base-calling approach using imputed haplotypes |
| WO2023049212A2 (en) | 2021-09-22 | 2023-03-30 | Illumina, Inc. | State-based base calling |
| WO2023049215A1 (en) | 2021-09-22 | 2023-03-30 | Illumina, Inc. | Compressed state-based base calling |
| WO2023060527A1 (en) | 2021-10-11 | 2023-04-20 | 深圳华大智造科技股份有限公司 | Use of saponin compound in nucleic acid sequencing |
| US11455487B1 (en) | 2021-10-26 | 2022-09-27 | Illumina Software, Inc. | Intensity extraction and crosstalk attenuation using interpolation and adaptation for base calling |
| WO2023081485A1 (en) | 2021-11-08 | 2023-05-11 | Pacific Biosciences Of California, Inc. | Stepwise sequencing of a polynucleotide with a homogenous reaction mixture |
| WO2023102336A1 (en) | 2021-11-30 | 2023-06-08 | Nautilus Subsidiary, Inc. | Particle-based isolation of proteins and other analytes |
| US12195790B2 (en) | 2021-12-01 | 2025-01-14 | 10X Genomics, Inc. | Methods for improved in situ detection of nucleic acids and spatial analysis |
| WO2023102118A2 (en) | 2021-12-01 | 2023-06-08 | 10X Genomics, Inc. | Methods, compositions, and systems for improved in situ detection of analytes and spatial analysis |
| WO2023102354A1 (en) | 2021-12-02 | 2023-06-08 | Illumina Software, Inc. | Generating cluster-specific-signal corrections for determining nucleotide-base calls |
| WO2023107622A1 (en) | 2021-12-10 | 2023-06-15 | Illumina, Inc. | Parallel sample and index sequencing |
| WO2023114896A1 (en) | 2021-12-16 | 2023-06-22 | Illumina Cambridge Limited | Methods for metal directed cleavage of surface-bound polynucleotides |
| WO2023122499A1 (en) | 2021-12-20 | 2023-06-29 | Illumina Cambridge Limited | Periodate compositions and methods for chemical cleavage of surface-bound polynucleotides |
| WO2023122491A1 (en) | 2021-12-20 | 2023-06-29 | Illumina Cambridge Limited | Periodate compositions and methods for chemical cleavage of surface-bound polynucleotides |
| WO2023122362A1 (en) | 2021-12-23 | 2023-06-29 | Illumina Software, Inc. | Facilitating secure execution of external workflows for genomic sequencing diagnostics |
| WO2023122363A1 (en) | 2021-12-23 | 2023-06-29 | Illumina Software, Inc. | Dynamic graphical status summaries for nucelotide sequencing |
| WO2023129896A1 (en) | 2021-12-28 | 2023-07-06 | Illumina Software, Inc. | Machine learning model for recalibrating nucleotide base calls corresponding to target variants |
| WO2023129764A1 (en) | 2021-12-29 | 2023-07-06 | Illumina Software, Inc. | Automatically switching variant analysis model versions for genomic analysis applications |
| WO2023126457A1 (en) | 2021-12-29 | 2023-07-06 | Illumina Cambridge Ltd. | Methods of nucleic acid sequencing using surface-bound primers |
| WO2023164660A1 (en) | 2022-02-25 | 2023-08-31 | Illumina, Inc. | Calibration sequences for nucelotide sequencing |
| WO2023164492A1 (en) | 2022-02-25 | 2023-08-31 | Illumina, Inc. | Machine-learning models for detecting and adjusting values for nucleotide methylation levels |
| WO2023175043A1 (en) | 2022-03-15 | 2023-09-21 | Illumina, Inc. | Methods of base calling nucleobases |
| WO2023175024A1 (en) | 2022-03-15 | 2023-09-21 | Illumina, Inc. | Paired-end sequencing |
| WO2023175026A1 (en) | 2022-03-15 | 2023-09-21 | Illumina, Inc. | Methods of determining sequence information |
| WO2023175042A1 (en) | 2022-03-15 | 2023-09-21 | Illumina, Inc. | Parallel sample and index sequencing |
| WO2023183937A1 (en) | 2022-03-25 | 2023-09-28 | Illumina, Inc. | Sequence-to-sequence base calling |
| WO2023186815A1 (en) | 2022-03-28 | 2023-10-05 | Illumina Cambridge Limited | Labeled avidin and methods for sequencing |
| WO2023192163A1 (en) | 2022-03-29 | 2023-10-05 | Illumina Cambridge Limited | Systems and methods of sequencing polynucleotides |
| WO2023186819A1 (en) | 2022-03-29 | 2023-10-05 | Illumina Cambridge Limited | Chromenoquinoline dyes and uses in sequencing |
| WO2023186872A1 (en) | 2022-03-30 | 2023-10-05 | Illumina Cambridge Limited | Methods for chemical cleavage of surface-bound polynucleotides |
| WO2023186982A1 (en) | 2022-03-31 | 2023-10-05 | Illumina, Inc. | Compositions and methods for improving sequencing signals |
| WO2023192900A1 (en) | 2022-03-31 | 2023-10-05 | Illumina Singapore Pte. Ltd. | Nucleosides and nucleotides with 3' vinyl blocking group useful in sequencing by synthesis |
| US12234507B2 (en) | 2022-04-01 | 2025-02-25 | 10X Genomics, Inc. | Compositions and methods for targeted masking of autofluorescence |
| WO2023192616A1 (en) | 2022-04-01 | 2023-10-05 | 10X Genomics, Inc. | Compositions and methods for targeted masking of autofluorescence |
| WO2023196526A1 (en) | 2022-04-06 | 2023-10-12 | 10X Genomics, Inc. | Methods for multiplex cell analysis |
| WO2023196572A1 (en) | 2022-04-07 | 2023-10-12 | Illumina Singapore Pte. Ltd. | Altered cytidine deaminases and methods of use |
| WO2023196528A1 (en) | 2022-04-08 | 2023-10-12 | Illumina, Inc. | Aptamer dynamic range compression and detection techniques |
| WO2023212601A1 (en) | 2022-04-26 | 2023-11-02 | Illumina, Inc. | Machine-learning models for selecting oligonucleotide probes for array technologies |
| WO2023209606A1 (en) | 2022-04-29 | 2023-11-02 | Illumina Cambridge Limited | Methods and systems for encapsulating lyophilised microspheres |
| WO2023220627A1 (en) | 2022-05-10 | 2023-11-16 | Illumina Software, Inc. | Adaptive neural network for nucelotide sequencing |
| WO2023225095A1 (en) | 2022-05-18 | 2023-11-23 | Illumina Cambridge Limited | Preparation of size-controlled nucleic acid fragments |
| WO2023232829A1 (en) | 2022-05-31 | 2023-12-07 | Illumina, Inc | Compositions and methods for nucleic acid sequencing |
| WO2023250504A1 (en) | 2022-06-24 | 2023-12-28 | Illumina Software, Inc. | Improving split-read alignment by intelligently identifying and scoring candidate split groups |
| WO2024006779A1 (en) | 2022-06-27 | 2024-01-04 | Illumina, Inc. | Accelerators for a genotype imputation model |
| WO2024006705A1 (en) | 2022-06-27 | 2024-01-04 | Illumina Software, Inc. | Improved human leukocyte antigen (hla) genotyping |
| WO2024003087A1 (en) | 2022-06-28 | 2024-01-04 | Illumina, Inc. | Fluorescent dyes containing fused tetracyclic bis-boron heterocycle and uses in sequencing |
| WO2024026356A1 (en) | 2022-07-26 | 2024-02-01 | Illumina, Inc. | Rapid single-cell multiomics processing using an executable file |
| WO2024039516A1 (en) | 2022-08-19 | 2024-02-22 | Illumina, Inc. | Third dna base pair site-specific dna detection |
| WO2024050815A1 (en) | 2022-09-09 | 2024-03-14 | 深圳华大生命科学研究院 | Use of heteroaromatic ring compounds in nucleic acid tests |
| WO2024059852A1 (en) | 2022-09-16 | 2024-03-21 | Illumina, Inc. | Cluster segmentation and conditional base calling |
| WO2024073516A1 (en) | 2022-09-29 | 2024-04-04 | Illumina, Inc. | A target-variant-reference panel for imputing target variants |
| WO2024068889A2 (en) | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Compositions and methods for reducing photo damage during sequencing |
| WO2024073519A1 (en) | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Machine-learning model for refining structural variant calls |
| WO2024073047A1 (en) | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Cytidine deaminases and methods of use in mapping modified cytosine nucleotides |
| WO2024069581A1 (en) | 2022-09-30 | 2024-04-04 | Illumina Singapore Pte. Ltd. | Helicase-cytidine deaminase complexes and methods of use |
| WO2024073043A1 (en) | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Methods of using cpg binding proteins in mapping modified cytosine nucleotides |
| WO2024077096A1 (en) | 2022-10-05 | 2024-04-11 | Illumina, Inc. | Integrating variant calls from multiple sequencing pipelines utilizing a machine learning architecture |
| WO2024081649A1 (en) | 2022-10-11 | 2024-04-18 | Illumina, Inc. | Detecting and correcting methylation values from methylation sequencing assays |
| WO2024118791A1 (en) | 2022-11-30 | 2024-06-06 | Illumina, Inc. | Accurately predicting variants from methylation sequencing data |
| WO2024118903A1 (en) | 2022-11-30 | 2024-06-06 | Illumina, Inc. | Chemoenzymatic correction of false positive uracil transformations |
| WO2024123866A1 (en) | 2022-12-09 | 2024-06-13 | Illumina, Inc. | Nucleosides and nucleotides with 3´ blocking groups and cleavable linkers |
| WO2024130031A1 (en) | 2022-12-16 | 2024-06-20 | Illumina, Inc. | Boranes on solid supports |
| WO2024137886A1 (en) | 2022-12-21 | 2024-06-27 | Illumina, Inc. | Context-dependent base calling |
| WO2024137826A1 (en) | 2022-12-21 | 2024-06-27 | 10X Genomics, Inc. | Analysis of analytes and spatial gene expression |
| WO2024137774A1 (en) | 2022-12-22 | 2024-06-27 | Illumina, Inc. | Palladium catalyst compositions and methods for sequencing by synthesis |
| WO2024137765A1 (en) | 2022-12-22 | 2024-06-27 | Illumina, Inc. | Transition-metal catalyst compositions and methods for sequencing by synthesis |
| WO2024145154A1 (en) | 2022-12-27 | 2024-07-04 | Illumina, Inc. | Methods of sequencing using 3´ allyl blocked nucleotides |
| WO2024147904A1 (en) | 2023-01-06 | 2024-07-11 | Illumina, Inc. | Reducing uracils by polymerase |
| WO2024167954A1 (en) | 2023-02-06 | 2024-08-15 | Illumina, Inc. | Determining and removing inter-cluster light interference |
| WO2024191806A1 (en) | 2023-03-10 | 2024-09-19 | Illumina, Inc. | Aptamer detection techniques |
| WO2024196855A2 (en) | 2023-03-17 | 2024-09-26 | University Of Rochester | Ribozyme-mediated rna assembly and expression |
| WO2024206407A2 (en) | 2023-03-29 | 2024-10-03 | Illumina, Inc. | Naphthalimide dyes and uses in nucleic acid sequencing |
| WO2024206394A1 (en) | 2023-03-30 | 2024-10-03 | Illumina, Inc. | Compositions and methods for nucleic acid sequencing |
| WO2024206848A1 (en) | 2023-03-30 | 2024-10-03 | Illumina, Inc. | Tandem repeat genotyping |
| WO2024229396A1 (en) | 2023-05-03 | 2024-11-07 | Illumina, Inc. | Machine learning model for recalibrating genotype calls from existing sequencing data files |
| WO2024249200A1 (en) | 2023-05-26 | 2024-12-05 | Illumina, Inc. | Methods for preserving methylation status during clustering |
| WO2024249940A1 (en) | 2023-05-31 | 2024-12-05 | Illumina, Inc. | Improving structural variant alignment and variant calling by utilizing a structural-variant reference genome |
| WO2024249466A1 (en) | 2023-05-31 | 2024-12-05 | Illumina, Inc. | False positive reduction by translesion polymerase repair |
| WO2024249591A1 (en) | 2023-05-31 | 2024-12-05 | Illumina, Inc. | Methods for double-stranded sequencing by synthesis |
| WO2024249973A2 (en) | 2023-06-02 | 2024-12-05 | Illumina, Inc. | Linking human genes to clinical phenotypes using graph neural networks |
| WO2024254003A1 (en) | 2023-06-05 | 2024-12-12 | Illumina, Inc. | Identification and mapping of methylation sites |
| WO2025006565A1 (en) | 2023-06-27 | 2025-01-02 | Illumina, Inc. | Variant calling with methylation-level estimation |
| WO2025006466A1 (en) | 2023-06-30 | 2025-01-02 | Illumina, Inc. | Systems and methods of sequencing polynucleotides with four labeled nucleotides |
| WO2025006460A1 (en) | 2023-06-30 | 2025-01-02 | Illumina, Inc. | Systems and methods of sequencing polynucleotides with modified bases |
| WO2025006464A1 (en) | 2023-06-30 | 2025-01-02 | Illumina, Inc. | Systems and methods of sequencing polynucleotides with alternative scatterplots |
| WO2025003434A1 (en) | 2023-06-30 | 2025-01-02 | Dna Script | Nucleic acid synthesis on reusable support |
| WO2025006874A1 (en) | 2023-06-30 | 2025-01-02 | Illumina, Inc. | Machine-learning model for recalibrating genotype calls corresponding to germline variants and somatic mosaic variants |
| WO2025010160A1 (en) | 2023-07-06 | 2025-01-09 | Pacific Biosciences Of California, Inc. | Methods and compositions for stabilizing concatemers |
| WO2025049331A2 (en) | 2023-08-31 | 2025-03-06 | Illumina, Inc. | Aptamer detection techniques |
| WO2025049720A2 (en) | 2023-08-31 | 2025-03-06 | Illumina, Inc. | Aptamer dynamic range compression and detection techniques |
| WO2025049700A1 (en) | 2023-08-31 | 2025-03-06 | Illumina, Inc. | Compositions and methods for nucleic acid sequencing |
| WO2025054389A1 (en) | 2023-09-07 | 2025-03-13 | Illumina, Inc. | Identification of methylated cytosine using landmarks |
| EP4520821A1 (en) | 2023-09-08 | 2025-03-12 | The Regents Of The University Of Michigan | Microrna-derived rnas and polypeptides and uses thereof |
| WO2025061942A1 (en) | 2023-09-20 | 2025-03-27 | Illumina, Inc. | Sequencing error identification and correction |
| WO2025061922A1 (en) | 2023-09-20 | 2025-03-27 | Illumina, Inc. | Methods for sequencing |
| WO2025072793A1 (en) | 2023-09-28 | 2025-04-03 | Illumina, Inc. | Altered cytidine deaminases and methods of use |
| WO2025072800A2 (en) | 2023-09-28 | 2025-04-03 | Illumina, Inc. | Altered cytidine deaminases and methods of use |
| WO2025072783A1 (en) | 2023-09-28 | 2025-04-03 | Illumina, Inc. | Altered cytidine deaminases and methods of use |
| WO2025072870A1 (en) | 2023-09-29 | 2025-04-03 | Illumina, Inc. | Tracking and modifying cluster location on nucleotide-sample slides in real time |
| WO2025072833A1 (en) | 2023-09-29 | 2025-04-03 | Illumina, Inc. | Predicting insert lengths using primary analysis metrics |
| WO2025080780A1 (en) | 2023-10-10 | 2025-04-17 | University Of Rochester | Delivery and expression of prime editing crispr systems |
| WO2025081064A2 (en) | 2023-10-11 | 2025-04-17 | Illumina, Inc. | Thermophilic deaminase and methods for identifying modified cytosine |
| WO2025090596A1 (en) | 2023-10-26 | 2025-05-01 | Illumina, Inc. | 4,5-substituted naphthalimide dyes and uses in nucleic acid sequencing |
| WO2025090883A1 (en) | 2023-10-27 | 2025-05-01 | Illumina, Inc. | Detecting variants in nucleotide sequences based on haplotype diversity |
| WO2025106715A1 (en) | 2023-11-17 | 2025-05-22 | Illumina, Inc. | Conjugated polymers or polymer dots as fluorescent labels |
| WO2025117738A1 (en) | 2023-11-28 | 2025-06-05 | Illumina, Inc. | Methods of improving unique molecular index ligation efficiency |
| WO2025123005A2 (en) | 2023-12-07 | 2025-06-12 | Illumina, Inc. | Preparation and compositions of cot-1 nucleic acid |
| WO2025129133A1 (en) | 2023-12-15 | 2025-06-19 | Illumina, Inc. | Minimal residual disease (mrd) models for determining likelihoods or probabilities of a subject comprising cancer |
| WO2025136998A1 (en) | 2023-12-18 | 2025-06-26 | Illumina, Inc. | Using machine learning models for detecting minimum residual disease (mrd) in a subject |
| WO2025136890A1 (en) | 2023-12-18 | 2025-06-26 | Illumina, Inc. | Hydrogel nanoparticles as labeling scaffold in sequencing |
| WO2025137222A1 (en) | 2023-12-19 | 2025-06-26 | Illumina, Inc. | Methylation detection assay |
| WO2025137268A1 (en) | 2023-12-20 | 2025-06-26 | Pacific Biosciences Of California, Inc. | Methods and compositions for reducing gc bias |
| WO2025137341A1 (en) | 2023-12-20 | 2025-06-26 | Illumina, Inc. | Directly determining signal-to-noise-ratio metrics for accelerated convergence in determining nucleotide-base calls and base-call quality |
| WO2025137647A1 (en) | 2023-12-21 | 2025-06-26 | Illumina, Inc. | Enhanced mapping and alignment of nucleotide reads utilizing an improved haplotype data structure with allele-variant differences |
| WO2025144716A1 (en) | 2023-12-28 | 2025-07-03 | Illumina, Inc. | Nucleotides with enzymatically cleavable 3'-o-glycoside blocking groups for sequencing |
| WO2025144711A1 (en) | 2023-12-29 | 2025-07-03 | Illumina, Inc. | Tricyclic polymethine dyes for nucleic acid sequencing |
| WO2025160089A1 (en) | 2024-01-26 | 2025-07-31 | Illumina, Inc. | Custom multigenome reference construction for improved sequencing analysis of genomic samples |
| WO2025174774A1 (en) | 2024-02-12 | 2025-08-21 | Illumina, Inc. | Determining offline corrections for sequence specific errors caused by low complexity nucleotide sequences |
| WO2025174708A1 (en) | 2024-02-13 | 2025-08-21 | Illumina, Inc. | Design and method for cross-sequencing platform compatibility of flow cells |
| WO2025178951A1 (en) | 2024-02-22 | 2025-08-28 | Illumina, Inc. | Techniques for dynamic range compression grouping in analyte assays |
| WO2025184226A1 (en) | 2024-02-28 | 2025-09-04 | Illumina, Inc. | Nucleotides with terminal phosphate capping |
| WO2025184234A1 (en) | 2024-02-28 | 2025-09-04 | Illumina, Inc. | A personalized haplotype database for improved mapping and alignment of nucleotide reads and improved genotype calling |
| WO2025188906A1 (en) | 2024-03-08 | 2025-09-12 | Illumina, Inc. | Modified adenosine nucleotides |
| WO2025193747A1 (en) | 2024-03-12 | 2025-09-18 | Illumina, Inc. | Machine-learning models for ordering and expediting sequencing tasks or corresponding nucleotide-sample slides |
| WO2025217057A1 (en) | 2024-04-08 | 2025-10-16 | Illumina, Inc. | Variant detection using improved sequence data alignments |
| WO2025221895A1 (en) | 2024-04-19 | 2025-10-23 | Illumina, Inc. | Water soluble polymer scaffolds for dye labeling |
| WO2025230914A1 (en) | 2024-04-29 | 2025-11-06 | Illumina, Inc. | Nucleotides with enzyme-triggered self-immolative linkers for sequencing by synthesis |
| WO2025240924A1 (en) | 2024-05-17 | 2025-11-20 | Illumina, Inc. | Blind equalization systems for base calling applications |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110059865A1 (en) | 2011-03-10 |
| HK1202835A1 (en) | 2015-10-09 |
| EP2789383B1 (en) | 2023-05-03 |
| US20200188871A1 (en) | 2020-06-18 |
| US9376710B2 (en) | 2016-06-28 |
| JP2007525571A (en) | 2007-09-06 |
| US20180207606A1 (en) | 2018-07-26 |
| US9889422B2 (en) | 2018-02-13 |
| US11654411B2 (en) | 2023-05-23 |
| US20150119295A1 (en) | 2015-04-30 |
| US10953379B2 (en) | 2021-03-23 |
| EP2789383A1 (en) | 2014-10-15 |
| US20140100140A1 (en) | 2014-04-10 |
| EP1701785A1 (en) | 2006-09-20 |
| US10525437B2 (en) | 2020-01-07 |
| EP3175914A1 (en) | 2017-06-07 |
| US8563477B2 (en) | 2013-10-22 |
| US20130085084A1 (en) | 2013-04-04 |
| US20220016592A1 (en) | 2022-01-20 |
| US20160256846A1 (en) | 2016-09-08 |
| US8969258B2 (en) | 2015-03-03 |
| ES2949821T3 (en) | 2023-10-03 |
| EP3673986A1 (en) | 2020-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11654411B2 (en) | Methods and compositions of localizing nucleic acids to arrays | |
| US7553943B2 (en) | Polynucleotide arrays | |
| US20220098660A1 (en) | Articles having localized molecules disposed thereon and methods of producing same | |
| JP2003520570A (en) | Detection of nucleic acid sequence differences using a ligase detection reaction with a positionable array | |
| EP1716251A1 (en) | Arrayed polynucleotides | |
| EP1910561A1 (en) | Methods of nucleic acid amplification and sequencing | |
| JP4101830B2 (en) | Reusable substrate for the production of DNA microarrays | |
| US20190284619A1 (en) | In situ probe inversion process for contstructing probe arrays | |
| US20210032776A1 (en) | Method and system for fabricating dna sequencing arrays | |
| EP1655069A1 (en) | Modified molecular arrays | |
| HK1238600A1 (en) | Improvements in or relating to molecular arrays | |
| HK1202835B (en) | Molecular arrays | |
| US20080108515A1 (en) | Arrayed polynucleotides | |
| US20100130368A1 (en) | Method and system for sequencing polynucleotides | |
| Song et al. | Selectivity of hybridization controlled by the density of solid phase synthesized DNA probes on glass substrates | |
| JP2006234712A (en) | Dna immobilization method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2005701804 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006548380 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
| WWP | Wipo information: published in national office |
Ref document number: 2005701804 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 10585373 Country of ref document: US |