WO2005050593A1 - Position specifying method and device for executing that method - Google Patents
Position specifying method and device for executing that method Download PDFInfo
- Publication number
- WO2005050593A1 WO2005050593A1 PCT/JP2004/016578 JP2004016578W WO2005050593A1 WO 2005050593 A1 WO2005050593 A1 WO 2005050593A1 JP 2004016578 W JP2004016578 W JP 2004016578W WO 2005050593 A1 WO2005050593 A1 WO 2005050593A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- position data
- road
- node
- linear object
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
Definitions
- the present invention relates to a position specifying method for specifying a position on a digital map from position data of roads and the like, and an apparatus for executing the method, which suppresses the amount of work memory used for the processing and reduces the amount of work required. It implements processing.
- VICS Vehicle Traffic Information and Communication System
- a road using a link number defined in the road network specifies a road using a link number defined in the road network, and identifies the road. Is displayed.
- the link numbers defined in the road network need to be replaced with new numbers when new or changed roads are established, and the digital map data produced by each company must be updated accordingly.
- the method of specifying the location of the road imposes a large social cost on maintenance.
- Patent Document 1 proposes a method of transmitting a road position on a digital map without using a common link number.
- the transmitting side sets multiple nodes pi, ⁇ 2, and ' ⁇ ⁇ in the road section to be transmitted on the digital map of the transmitting side, as shown in Fig. 15 (a).
- "road position data" in which the position data of the plurality of nodes pi, ⁇ 2,.
- the traffic information in the road section expressed by the distance of the reference node (for example, pi) force and the road position data are transmitted to the receiving side.
- the receiver identifies the road section by associating each node position included in the road position data with its own digital map, identifies the road section, and reproduces the traffic situation based on the information on the distance from the reference node.
- Patent Document 2 proposes a method of reducing the data amount by performing variable length coding on the road position data.
- this method as shown in Fig. 16 (a), nodes P, P are set at fixed distance intervals L on the road section to be transmitted (this is referred to as "equidistant resampling").
- the position data of each node excluding the starting end is declination 0 j from the adjacent node (Fig. 16 (b)).
- the deviation of the statistical statistical prediction value ⁇ 0 j (Fig. 16 (c)) (the predicted value obtained by predicting the declination of the node ⁇ j using the declination of the previous node ( ⁇ 1, 22 ⁇ ⁇ ) And the actual declination ⁇ j), which is subjected to variable-length coding, and the coded data and the starting latitude / longitude data are transmitted to the receiving side.
- the receiving side decodes the encoded data to restore the position data of each node, and specifies the position to specify the road section.
- map matching As position identification, Several methods are known for map matching as position identification.
- the macro map matching algorithm used by a car navigation device to identify the position of the vehicle on a digital map is as follows.
- Fig. 17 (a) on the digital map, search for a link around the point WP (waypoint) assigned by the GPS receiver, and search for a link centered on the first WP1.
- a link with a direction within ⁇ B ° (for example, about 45 °) that is less than ⁇ B ° (for example, about 45 °) from the direction of travel of the vehicle is detected within four meters (about 250m), and this link is set as a candidate point (marked with X). .
- the number of links (n) at the candidate points is about 5-8.
- the candidate points of WP1 are 1-1, 1-2, and 1-3.
- Each candidate point is connected along a road link to create a shape pattern.
- the candidate points do not connect along the road (for example, WP3 candidate points 3-3 and 3-2 cannot be connected to the next WP4 candidate point along the road), Do not create a pattern.
- Each shape pattern is compared with the shape of WP1, WP2, ⁇ , and the most similar shape pattern, that is, the shape of WP1, WP2, ⁇ evaluated by the standard deviation at a short distance, etc. One with a small variation is selected.
- Such a position specifying method and a map matching method can also be applied to a case where a target road represented by road position data is specified on a digital map.
- Each node whose position is given by the road position data is referred to as a WP.
- the target road can be determined.
- Patent Document 1 JP 2001-41757
- Patent Document 2 Japanese Patent Application Laid-Open No. 2003-23357
- the present invention solves such a conventional problem. Even when the number of nodes included in the position data is large, the shape can be digitally mapped on a digital map with a small amount of memory usage and at a high speed.
- the purpose of the present invention is to provide a method for specifying a position that can be specified in any other way, and to provide an apparatus for performing the method.
- the receiving side can specify the shape on the digital map with a small amount of memory usage and at high speed.
- position data is divided into a plurality of blocks, and position identification is performed in units of blocks.
- a block is generated by cutting position data at a fixed distance.
- the fixed distance is set to be equal to or less than the length of one side of the minimum unit of the map data. I have to set.
- location identification can be performed simply by loading map data for at most four units into memory.
- the block is generated by cutting the position data in units of the length of one side of the unit of the map data for displaying the linear object.
- the cutting position of the position data is set to be aligned with the boundary of the unit.
- the block is generated by cutting the position data at a fixed number of nodes.
- the block is generated by cutting the position data in accordance with the division unit of the traffic information. I have.
- the nodes that do not cause the erroneous matching in the position data force are thinned out, and the position specifying method is performed using the position data in which the nodes are thinned out.
- a node to be decimated is selected in consideration of the distance and declination between the node and an adjacent node, and the density of a linear object around the node. .
- the position force of the map data corresponding to the position information of the node is adaptively set according to the degree of bending of the linear object.
- the angle range is expanded, and the true linear object is not leaked from the candidates! If the degree of bending of the linear object is small, the angle range can be narrowed so that the number of candidate points does not increase unnecessarily.
- the angle range is set in consideration of the degree of bending of the linear object in a predetermined distance section before or after or in front of the node and the density of the linear object in the predetermined distance section. ing.
- the angle range can be set adaptively.
- a parameter used for associating a remaining portion of a linear object is adaptively changed with reference to an association result of a portion of the linear object which has already been associated. I have to.
- the average error occurrence situation is learned from the error situation of the linear object in the section where the position identification method has already been completed, and the candidate points in the position identification method in the subsequent sections are learned based on the learning result.
- the search range and candidate point search direction range can be set adaptively.
- the information processing apparatus further includes a position data acquisition unit that acquires position data of nodes arranged on a linear object on the digital map, and a position data cutting unit that divides the position data into a plurality of blocks.
- a node thinning-out processing unit that thins out nodes that do not cause erroneous identification based on the block power, and a search range for searching for candidate points of nodes included in this block are adaptively set.
- a candidate point search direction range deciding unit that sets candidate points of nodes included in the search range on the digital map data, and a shape corresponding to the linear object is displayed on the map data based on the set candidate points.
- the present invention also includes a program for causing a computer to execute the above-described position specifying method.
- the invention's effect The position specifying method of the present invention can perform a map matching process at a high speed without using a large amount of memory, and can achieve a memory saving and a high-speed mapping.
- the apparatus of the present invention that performs this position specifying method can be configured using a small-capacity memory, and nevertheless, can perform high-speed processing.
- FIG. 1 is a diagram illustrating a process of dividing road position data by a position specifying method according to a first embodiment of the present invention.
- FIG. 2 is a diagram for explaining a situation in which a used memory amount is reduced in a road position data dividing process according to the first embodiment of the present invention.
- FIG. 3 is a block diagram illustrating a configuration of an apparatus that executes a position specifying method according to the first embodiment of the present invention.
- FIG. 4 is a diagram showing units of map data.
- FIG. 5 is a diagram illustrating the reason why the number of units used is reduced by the division processing of road position data according to the first embodiment of the present invention.
- FIG. 6 is an example of a map displaying road position data.
- FIG. 7 is a diagram for explaining node thinning-out processing in the position identification method according to the first embodiment of the present invention.
- FIG. 8 is a flowchart showing a procedure for thinning-out nodes in the first embodiment of the present invention.
- FIG. 9 is a flow chart showing a procedure for adaptively setting a candidate point search azimuth range in the embodiment of the present invention.
- FIG. 10 is a diagram illustrating candidate points obtained by adaptively setting a candidate point search azimuth range according to the first embodiment of the present invention.
- FIG. 11 is a flowchart showing a procedure for matching traffic information with the position specifying method according to the first embodiment of the present invention.
- FIG. 12 is a diagram showing a correction process of an end point of a target road block in the position specifying method according to the first embodiment of the present invention.
- FIG. 13 schematically illustrates a method for adaptively setting a candidate point search range according to the second embodiment of the present invention.
- FIG. 14 is a flowchart showing a procedure for adaptively setting a candidate point search range in the second embodiment of the present invention.
- FIG. 15 is a diagram illustrating road position data.
- FIG. 16 is a diagram illustrating a process for encoding road position data.
- FIG. 17 is a diagram showing a conventional position specifying method.
- the receiving side that has received the road position data edits and processes the road position data so that the position can be specified in a short amount of memory and in a short time. Map matching is performed using the processed road position data.
- the receiving side in order to reduce the amount of memory used for location identification and shorten the processing time,
- the road on the digital map corresponds to the linear object.
- the shape of the road is not particularly limited, such as a straight line, a curve, and a zigzag shape.
- the position identification method in this specification also includes the concept of map matching when the position data is regarded as road shape data. While position data is defined by a set of nodes, it is also possible that the set of nodes forms a linear shape. What defines such a shape can be considered as shape data. That is, in the map matching, the road shape (road shape data) on the transmitting side is directly associated with the road shape (road shape data) on the receiving side.
- road position data block the divided road position data
- the condition of candidate points is that the angle difference from the heading of the vehicle is within ⁇ B °, and this ⁇ B ° is used as an invariant value (Predetermined value).
- Predetermined value the value of B, that is, the smaller the candidate point search range related to the search azimuth (“candidate point search azimuth range”), the smaller the number of WP candidate points and the higher the processing performance. May occur, and the possibility of erroneous matching increases.
- the value of B is increased, the accuracy increases, but the number of candidate points increases, and the processing performance deteriorates.
- FIG. 3 shows the configuration of the information processing apparatus 10 that performs this position identification method.
- the information processing device 10 receives traffic information and road position data of a target road from an information providing device, identifies a target road by performing position identification, a car navigation device, a PC, a PDA, a mobile phone, and the like. Or a probe information collection center (information collection) that receives measurement information (traffic information) and road position data indicating the traveling locus from the on-board equipment of the probe car and identifies the traveling locus by performing position identification. Distribution center).
- the information processing device 10 includes a digital map database 17, position data for receiving road position data and traffic information from an information transmitting device and a traffic information receiving unit 11, and decodes encoded data.
- Coded data decoding unit 12 to restore road position data A position data restoring unit 13, a position data cutting unit 14 for performing "division of road position data" processing, and a traffic information editing unit 19 for editing traffic information so as to be consistent with the divided road position data blocks.
- a node thinning-out processing unit 15 that performs “node thinning of road position data” and a candidate point search range determining unit 16 that performs “adaptive setting of a candidate point search range” and sets a node candidate point;
- a shape pattern generation and evaluation unit 18 generates and evaluates a shape pattern connecting the node candidate points and specifies a road section (referred to as a “target road block”) corresponding to each of the road position data blocks. Correct the end of each target road block so that the road blocks are continuous, and reproduce the traffic information of each target road block.
- an information utilization unit 21 that performs “node thinning of road position data” and a candidate point search range determining unit 16 that performs “adaptive setting of a candidate point search range” and sets a node candidate point.
- a shape pattern generation and evaluation unit 18 generates and evaluates a shape pattern connecting the node candidate points and specifies a road section (referred to as a “target road block”) corresponding to each of the road position data blocks. Correct
- the position data of the information processing apparatus 10 and the road position data and the traffic information received by the traffic information receiving unit 11 are decoded by the encoded data decoding unit 12 and become the position data train of the node.
- the road position data is restored by the position data restoration unit 13.
- the position data cutting unit 14 cuts the restored road position data by one of the following methods (a-1) and (a-6).
- the road position data is cut at a fixed distance determined in advance (or equally cut so as to be less than or equal to the fixed distance).
- the map data stored in the digital map database 17 is usually divided into four sub-meshes of approximately 10km x 10km (the exact size depends on the location). It is composed of units divided into 1Z2), 16 divisions (1Z4), and 64 divisions (1Z8), and the units in each region are set so that the data amount of each unit is approximately the same level.
- the smallest unit of 64 divisions is about 1.25 km square. Therefore, when cutting road position data at a fixed distance, the length of the fixed distance is set to about lk m. In this way, the position of the divided road position data blocks can be specified only by using the map data of at most four units.
- FIG. 5 shows this pattern.
- one side of the unit size is 1 km, and the length of road position data is 3.2 km. Locating road position data with the exact length In such a case, as shown in Fig. 5 (a), it is necessary to prepare a memory that can expand 4 x 4 unit data at worst. On the other hand, if the road position data is cut at the cutting point to make the length 1 km, as shown in Fig. 5 (b), this can be handled by the amount of memory that expands 2 x 2 unit data.
- the present inventor has previously proposed a position specifying method called “hierarchical position specifying”.
- the map data is hierarchized with reference to the road type, the upper layer includes only the main roads, and as the level goes down, the hierarchical map data in which roads of the new road type are sequentially added is used. To determine the position.
- the processing time can be reduced by specifying the position using the map data of the highest hierarchy as possible.
- the map data of the hierarchy to be used is specified in the hierarchical position specification, so that the operation efficiency of the hierarchical position specification is improved.
- the change point of the road type that should be the cutting point is made to correspond to the road type that distinguishes the hierarchy in the hierarchical map data.
- the road position data represents a road in an area of a unit of 64 division size
- the road position data is cut in units of one side length (approximately lkm) of the size of 64 division, and the area of the unit of 16 division size is cut. If the road is indicated in, the road position data is cut in units of one side (2.5 km) of 16 division sizes. Therefore, referring to the map data in the digital map database 17, the unit size of the area where the road position data can be accommodated is determined from the latitude and longitude of both ends of the road position data or the midpoint, and the unit length of cutting is determined. I do.
- the latitude and longitude of the boundary (left / right / up / down) of the cut are obtained from the digital map database 17, and along the boundary (or the boundary). Disconnect the road position data). By doing so, the number of units read from the digital map database 17 can be reduced, and It is possible to reduce the amount of memory for expanding the cut data.
- the processing performance of the position identification greatly depends on the number of nodes as well as the distance in terms of the processing algorithm.
- the processing amount of the block is enormous. This results in an increase in the overall processing amount. Therefore, it is better to cut the road position data in units of a certain number of nodes and to equalize the number of nodes in each road position data block so that road position data blocks containing many nodes do not appear.
- the number of combinations of the shape patterns shown in 1 can be reduced, and the total processing time can be reduced.
- the information transmission device cuts the target road for traffic information into unit lengths and encodes and transmits the traffic information divided into the unit, the road position data is cut according to the divided position of the traffic information. I do.
- the problem when disconnecting the road position data is the correspondence with the traffic information linked to the road position data.
- the information transmitting device transmits traffic information in units of unit length, the road position data is cut off according to the divided position of the traffic information, so that there is no extra calculation for the correspondence with the traffic information. Very easy to take.
- the inter-node bow I processing unit 15 performs a process of thinning out nodes included in the road position data block.
- the basic concept of thinning out nodes is as follows (b-1), (b-2), and (b-3). (b-1) If the declination value of the node is less than a certain value, thinning is performed.
- a thinning condition combining these ideas is set, and whether to thin the node is determined in light of the condition.
- the thinning conditions are set as follows.
- the peripheral road density P1 is a value (ranked value) indicating a road extension per unit area around the target node.
- This P1 is also a value (ranked value) indicating the size of the unit in which the target node exists. In other words, since the unit size differs depending on the road density, the surrounding road density can be estimated by checking the unit size.
- FIG. 7 shows, step by step, how the nodes included in the road position data are decimated.
- Node 1 is left as the starting point (a).
- Node 2 is left because the declination has a constant value of 1 or more ( ⁇ 1: approximately 1 2 °) (b).
- Node 3 is deleted because the argument is within a constant value ⁇ 1 and the node interval is within ⁇ 1 (c).
- Node 4 has the declination within a1, but keeps it because the node interval is j8 1 or more (c).
- Node 5 is deleted because the argument is within a fixed value ⁇ 1 and the node interval is within j81 (d).
- Node 6 is left because the declination has a constant value of 1 or more (e).
- Node 7 is left for termination (e).
- FIG. 8 shows a processing flow of the node thinning processing section 15.
- the surrounding road density P1 is calculated from the latitude and longitude of the node, and the thinning-out parameters ⁇ 1 and ⁇ 1 are determined (step 5).
- Step 6 the absolute value of the argument ⁇ between the node ( ⁇ -1) ⁇ node ⁇ and the distance j8 between the nodes are calculated (Step 6), and it is determined whether ⁇ ⁇ 1 and whether ⁇ is less than ⁇ 1. Is determined (step 7), and if yes, the node n is thinned out (step 8). If No, do not skip. This process is performed sequentially for all nodes (steps 9 and 10).
- the candidate point search range determination unit 16 adaptively determines a candidate point search range in position identification with respect to the road position data block that has been thinned out by the inter-node bow processing unit 15, and determines the search range power of the node. Search and set candidate points.
- the basic idea when the candidate point search range determination unit 16 determines the candidate point search azimuth range is the following (c1) or (c2) and (c3).
- FIG. 9 shows a processing flow of the candidate point search range determination unit 16.
- the absolute value of the declination is calculated, and the statistical value (maximum value / average value) of the declination absolute value is calculated (step 14).
- the azimuth range B at the time of candidate point search is calculated by, for example,
- the shape pattern generation / evaluation unit 18 connects the candidate points set by the candidate point search range determination unit 16 along a road link to create a road shape pattern.
- candidate points are connected along the road.
- no road shape pattern is created.
- each road shape pattern was compared with the shapes of node 1 (WP1), node 2 (WP2), and the like, and the most similar road shape pattern, that is, the standard deviation of a short distance, was evaluated.
- WP1, WP2, ⁇ Select one with small variation from the shape.
- the target road block is specified by specifying the position of the road position data block.
- Cutting shape correction • The traffic information superimposing unit 20 corrects the “displacement” at the end of each target road block so that the target road block is connected to an adjacent target road block.
- the traffic information editing unit 19 obtains information on the cutting unit of the road position data from the position data cutting unit 14, and matches the received traffic information with each road position data block. Edit to
- the cutting shape correction / traffic information superimposing section 20 obtains the traffic information edited in block units by the traffic information editing section 19 and superimposes the traffic information on the target road block whose end point has been corrected, thereby reproducing the traffic information in block units.
- FIG. 11 shows a procedure leading to reproduction of traffic information.
- the position data cutting unit 14 determines the cutting unit of the road position data (step 22), and cuts the road position data into road position data blocks.
- the traffic information editing unit 19 edits the traffic information so as to be consistent with each road position data block (step 23).
- the road position data is cut by the method described in (a-6) (the road position data is cut according to the division unit of the traffic information), there is no need to edit the traffic information.
- To identify the target road block n of the road position data block n (step 25).
- the cut shape correction 'traffic information superimposing unit 20 checks the connectivity of the end points of each target road block (step 26). 28) If there is a “displacement” at the end point of the target road block, a correction process is performed (step 29).
- FIG. 12 schematically shows a correction process for a deviation of a target road block end point.
- the road position data blocks are individually located (a), and if the end points of the target road block are shifted (b), the midpoint of the end points of both target road blocks is set as the end point of the target road block ( c).
- the latitude and longitude of the road position data block N after the position identification on the starting end side are (XI, ⁇ ), and the latitude and longitude of the end position of the road position data block ( ⁇ + 1) are specified.
- longitude is ( ⁇ 2, ⁇ 2)
- Cut shape correction The traffic information superimposing unit 20 superimposes the traffic information edited by the traffic information editing unit 19 on each target road block whose end point has been corrected, and Reproduce (Step 30).
- the force described in the case of performing all of the above (1), (2), and (3) is only required to perform one or two of these forces.
- processing efficiency can be improved, processing time can be shortened, and the amount of memory used can be reduced.
- the transmitting side uses the digital map to create the road position data. If the data and the digital map data used by the receiver for location identification are similar! / ⁇ , the difference between the WP and the candidate point on the target road ("true road") identified from the WP will be smaller and similar. If not, the difference is large.
- the difference between the WP and the candidate points on the "true road” is the scale difference (1Z25,000, 1 / 10,000, 1 / 2,500, etc.) in the maps on both the transmitting and receiving sides. ) And the differences in the mapping rules of map creators. For example, if the road location data generated from Company A's 1Z2,500 map is to be located on Company B's 1Z2,500 map, the error between the WP and the candidate point on the ⁇ true road '' may vary. If the road location data generated from the 1Z25,000 map of Company A is specified on the 1Z2,500 map of Company B, an error of several tens of meters will occur.
- the state of the map data on the transmitting side (scale, map creation rules, etc.)
- the search range of the candidate point in the position specification can be changed in accordance with.
- the receiving side may or may not know the status of the map data on the transmitting side.
- the road position data is divided to specify the position
- the road position data of the section whose position has been successfully specified is determined. Learn the average error occurrence situation from the error situation between the data and the specific road, and adaptively set the candidate point search range in position identification in subsequent sections based on the learning result. Becomes possible.
- FIG. 13 schematically shows this pattern.
- Fig. 13 (a) for divided section 1 of the road position data, candidate points included in the candidate point search range of the default size determined in advance are searched, and the "true road" To identify.
- Fig. 13 (b) the error distance between each node (node A and node B) on the "true road” and the WP is calculated, and the average 'Calculate the minimum error distance.
- the candidate point search range is adjusted and optimized based on the average 'maximum' and minimum error distances in divided section 1 as shown in Fig. 13 (c).
- the candidate point search range is displayed as a rectangle.
- the search range naturally includes the candidate point search direction range.
- FIG. 14 shows that the candidate point search range determination unit 16 estimates the error occurrence state in the other part of the road position data from the error occurrence state in one part of the road position data and adapts the candidate point search range. Show the processing flow when you set it! / Puru.
- the various parameters such as WP force distance, ⁇ , ⁇ , etc.
- Step 37 When the position is specified successfully (Yes in Step 37), the error between the road position data and the specified road is calculated (Step 39), and the parameters of the error situation are updated. (Step 40).
- the distance of the WP force that defines the candidate point search range is set as follows. I do.
- step 41 For the road position data block following the road position data ⁇ , the processing of steps 35-40 is performed using the updated parameters, and such a procedure is performed for all the road position data blocks ⁇ of the road position data ⁇ . (Steps 41 and 42). When the processing for all the road position data blocks ⁇ of the road position data ⁇ has been completed, the next and subsequent position specifying parameters are updated (step 43), and step 33— The processing of step 43 is performed, and such a procedure is repeated for all the road position data ⁇ (steps 44 and 45).
- a candidate point search range in another part of the road position data can be adaptively set based on an error occurrence state of a part of the road position data.
- the occurrence of the distance error between maps depends on the road attributes such as whether the road is an expressway or a main line or a connecting road.
- the parameter adjustment of the candidate point search range is performed in units of classification such as road attributes. It is also possible to do it.
- the classification of the declination absolute value of the road position data (within 10 °, 10 ⁇ 45 °, 45 ° or more, etc.) It is also conceivable to adjust the parameters of the candidate point search range for each unit.
- the position identification method of the present invention is also used for position identification to associate linear objects on a digital map using position data of linear objects such as railways, waterways, contour lines, administrative boundaries, etc., which are not only roads. Applicable.
- the information processing device 10 receives traffic information and road position data of the target road from the information providing device, and performs position identification to identify the target road, a car navigation device, a PC, a PDA, and a mobile phone. Or a probe information collection center (Information Terminal) that receives the information on the in-vehicle capability of the probe car (traffic information) and the road position data indicating the travel trajectory and identifies the travel trajectory by performing position identification. Collection and distribution center).
- Information Terminal Information Terminal
- the present invention also includes a program for causing a computer to execute the above-described position specifying method.
- a program is incorporated into the information processing device 10 in various formats.
- the program can be recorded in a predetermined memory in the information processing device 10 or in a device outside these devices.
- the program may be recorded on an information recording device such as a hard disk, or an information recording medium such as a CD-ROM, a DVD-ROM, or a memory card.
- the program may be downloaded via a network.
- the position specifying method of the present invention can be used in all fields that require memory saving and high-speed processing when specifying a position.
- a traffic information providing system for example, a probe information collecting system, a railway system, and the like.
- the device of the present invention can be used to identify a location such as a car navigation device that receives and reproduces traffic information, an information terminal such as a PC, a PDA, or a mobile phone, or a probe information collection center that collects probe car information.
- a location such as a car navigation device that receives and reproduces traffic information
- an information terminal such as a PC, a PDA, or a mobile phone
- a probe information collection center that collects probe car information.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Instructional Devices (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
明 細 書 Specification
位置特定方法とそれを実施する装置 Positioning method and device for implementing it
技術分野 Technical field
[0001] 本発明は、道路等の位置データからデジタル地図上の位置を特定する位置特定 方法と、それを実施する装置に関し、その処理に使用するワークメモリのメモリ使用量 を抑え、高速での処理を実現するものである。 The present invention relates to a position specifying method for specifying a position on a digital map from position data of roads and the like, and an apparatus for executing the method, which suppresses the amount of work memory used for the processing and reduces the amount of work required. It implements processing.
背景技術 Background art
[0002] 現在、カーナビゲーシヨン装置などに道路交通情報の提供サービスを実施している VICS (道路交通情報通信システム)では、道路網に定義したリンク番号を使って道 路を特定し、その道路の混雑状況などを表示している。 [0002] Currently, VICS (Road Traffic Information and Communication System), which provides a service for providing road traffic information to car navigation devices and the like, specifies a road using a link number defined in the road network, and identifies the road. Is displayed.
しかし、道路網に定義したリンク番号は、道路の新設や変更等に伴って新しい番号 に付け替える必要があり、それに応じて、各社で制作したデジタル地図データも更新 しなければならないため、リンク番号で道路位置を特定する方式は、メンテナンスに 多大な社会的コストが掛カることになる。 However, the link numbers defined in the road network need to be replaced with new numbers when new or changed roads are established, and the digital map data produced by each company must be updated accordingly. The method of specifying the location of the road imposes a large social cost on maintenance.
[0003] こうした点を改善するため、下記特許文献 1では、共通のリンク番号を用いずに、デ ジタル地図上の道路位置を伝える方法を提案している。この方法では、送信側が、 図 15 (a)に示すように、送信側のデジタル地図上で伝送しょうとする道路区間に複数 のノード pi、 ρ2、 · 'ρΝを設定し、図 15 (b)に示すように、この複数のノード pi、 ρ2、 · •pNの位置データを配列した「道路位置データ」を生成する。そして、この道路区間 内の交通状況を基準ノード (例えば pi)力もの距離で表した交通情報と、この道路位 置データとを受信側に伝える。受信側は、道路位置データに含まれる各ノード位置を 自己のデジタル地図上に対応付ける位置特定を行って道路区間を特定し、その基 準ノードからの距離の情報に基づいて交通状況を再現する。 [0003] In order to improve such a point, Patent Document 1 below proposes a method of transmitting a road position on a digital map without using a common link number. In this method, the transmitting side sets multiple nodes pi, ρ2, and 'ρ に in the road section to be transmitted on the digital map of the transmitting side, as shown in Fig. 15 (a). As shown in (1), "road position data" in which the position data of the plurality of nodes pi, ρ2,. Then, the traffic information in the road section expressed by the distance of the reference node (for example, pi) force and the road position data are transmitted to the receiving side. The receiver identifies the road section by associating each node position included in the road position data with its own digital map, identifies the road section, and reproduces the traffic situation based on the information on the distance from the reference node.
[0004] また、下記特許文献 2では、この道路位置データを可変長符号化して、データ量を 削減する方法を提案している。この方法では、図 16 (a)に示すように、伝えようとする 道路区間上に一定距離間隔 Lでノード P 、 P · · ·を再設定し (これを「等距離リサンプ [0004] Further, Patent Document 2 below proposes a method of reducing the data amount by performing variable length coding on the road position data. In this method, as shown in Fig. 16 (a), nodes P, P are set at fixed distance intervals L on the road section to be transmitted (this is referred to as "equidistant resampling").
H i H i
ル」と言う)、始端を除く各ノードの位置データを隣接ノードからの偏角 0 j (図 16 (b) ) または偏角統計予測値差分 Δ 0 j (図 16 (c) ) (ノードの偏角 Θ jをそれ以前のノードの 偏角( Θ卜 1、 Θ卜 2 · ·)を用いて予測した予測値と、実際の偏角 Θ jとの差分)で表わし 、これを可変長符号化して、受信側に、その符号化データと、始端の緯度'経度デー タとを送信する。受信側は、符号化されたデータを復号化して各ノードの位置データ を復元し、位置特定を行って道路区間を特定する。 ), And the position data of each node excluding the starting end is declination 0 j from the adjacent node (Fig. 16 (b)). Or, the deviation of the statistical statistical prediction value Δ 0 j (Fig. 16 (c)) (the predicted value obtained by predicting the declination of the node を j using the declination of the previous node (Θ1, 22 · ·) And the actual declination Θj), which is subjected to variable-length coding, and the coded data and the starting latitude / longitude data are transmitted to the receiving side. The receiving side decodes the encoded data to restore the position data of each node, and specifies the position to specify the road section.
[0005] また、位置特定としてのマップマッチングには、いくつかの方法が知られている。例 えば、カーナビゲーシヨン装置が自車位置をデジタル地図上で特定するために使用 されているマクロマップマッチングのアルゴリズムは次のようなものである。 [0005] Several methods are known for map matching as position identification. For example, the macro map matching algorithm used by a car navigation device to identify the position of the vehicle on a digital map is as follows.
(1)図 17 (a)に示すように、デジタル地図上で、 GPS受信機によって位置が与えられ た点 WP (ウェイポイント)の周辺のリンクを探索し、 1番目の WP1を中心とする Aメート ル(250m程度)四方の中で車両の進行方位との差が ±B° (例えば 45° 程度)以 内の方位を持つリンクを検出し、このリンクを候補点( X印)に設定する。候補点のリン ク数 (n)は 5— 8個程度とする。図 17 (b)では、 WP1の候補点を 1—1、 1—2、 1—3とし ている。 (1) As shown in Fig. 17 (a), on the digital map, search for a link around the point WP (waypoint) assigned by the GPS receiver, and search for a link centered on the first WP1. A link with a direction within ± B ° (for example, about 45 °) that is less than ± B ° (for example, about 45 °) from the direction of travel of the vehicle is detected within four meters (about 250m), and this link is set as a candidate point (marked with X). . The number of links (n) at the candidate points is about 5-8. In FIG. 17 (b), the candidate points of WP1 are 1-1, 1-2, and 1-3.
[0006] (2)図 17 (b)〖こ示すように、次の WP2を中心とする Aメートル四方の中で車両の進行 方位との差が ±B° 以内の方位を持つリンクを検出し、 n個のリンクを候補点(2— 1、 2— 2、 2-3)として設定する。 [0006] (2) As shown in Fig. 17 (b), a link with a direction within ± B ° of the difference between the traveling direction of the vehicle and the direction of travel of the vehicle is detected within the A meter square centered on the next WP2. , And n links are set as candidate points (2-1, 2-2, 2-3).
(3)この処理を最後の WPに達するまで繰り返す。 (3) Repeat this process until the last WP is reached.
(4)各々の候補点間を道路リンクに沿って接続し、形状パターンを作成する。候補点 間が道路に沿って接続しないケース(例えば、 WP3の候補点 3—3、 3—2は、次の W P4の候補点と道路に沿って接続することができな 、)では、形状パターンを作成しな い。(5)各々の形状パターンと、 WP1、 WP2、 · ·の形状とを比較し、最も似通った形 状パターン、即ち、距離が近ぐ標準偏差等によって評価した WP1、 WP2、 · ·の形 状とのばらつきが小さいものを一つ選出する。 (4) Each candidate point is connected along a road link to create a shape pattern. In the case where the candidate points do not connect along the road (for example, WP3 candidate points 3-3 and 3-2 cannot be connected to the next WP4 candidate point along the road), Do not create a pattern. (5) Each shape pattern is compared with the shape of WP1, WP2, ···, and the most similar shape pattern, that is, the shape of WP1, WP2, ··· evaluated by the standard deviation at a short distance, etc. One with a small variation is selected.
[0007] こうした位置特定方法、マップマッチング方法は、デジタル地図上で道路位置デー タが表す対象道路を特定する場合にも適用することができ、道路位置データによって 位置が与えられる各ノードを WPとして、対象道路を求めることができる。 [0007] Such a position specifying method and a map matching method can also be applied to a case where a target road represented by road position data is specified on a digital map. Each node whose position is given by the road position data is referred to as a WP. , The target road can be determined.
特許文献 1:特開 2001-41757号公報 特許文献 2:特開 2003— 23357号公報 Patent Document 1: JP 2001-41757 A Patent Document 2: Japanese Patent Application Laid-Open No. 2003-23357
[0008] この道路位置データは、ノード数が多いほど、可変長符号化によるデータ圧縮の効 率が向上する。しかし、位置特定では、 WPの数を M個、各 WP当たりの候補点の平 均個数を N個とすると、前記 (4)の段階で得られる形状パターンが、 NM個の組み合 わせとなるため、ノード数(=WP数)が多いと、処理量が膨大になり、長い処理時間 が掛力ることになる。また、対象道路の距離が長いと、地図データを展開するために 多くのメモリ量を持つワークメモリが必要になる。 [0008] In this road position data, the efficiency of data compression by variable-length coding improves as the number of nodes increases. However, the localization, M-number the number of WP, when the average number of candidate points per each WP and the N, wherein the stage obtained shape pattern of (4), and N M number of combinations Therefore, when the number of nodes (= the number of WPs) is large, the processing amount becomes enormous, and a long processing time is required. If the distance of the target road is long, a work memory with a large amount of memory is required to develop the map data.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0009] 本発明は、こうした従来の問題点を解決するものであり、位置データに含まれるノー ド数が多い場合でも、少ないメモリ使用量で、且つ、高速で、その形状をデジタル地 図上に特定することができる位置特定方法を提供し、また、その方法を実施する装置 を提供することを目的として!ヽる。 [0009] The present invention solves such a conventional problem. Even when the number of nodes included in the position data is large, the shape can be digitally mapped on a digital map with a small amount of memory usage and at a high speed. The purpose of the present invention is to provide a method for specifying a position that can be specified in any other way, and to provide an apparatus for performing the method.
課題を解決するための手段 Means for solving the problem
[0010] 本発明では、デジタル地図の線形対象物上に配列されるノードの位置データを受 信して、この線形対象物を受信側のデジタル地図の地図データに対応付ける位置特 定方法において、受信した位置データを受信側で編集加工した後、前記対応付けを 行うようにしている。 [0010] In the present invention, in a position specifying method for receiving position data of nodes arranged on a linear object on a digital map and associating the linear object with map data on the digital map on the receiving side, After the edited position data is edited on the receiving side, the association is performed.
そのため、受信側では、受信した位置データを編集加工することにより、少ないメモ リ使用量で、且つ、高速で、その形状をデジタル地図上に特定することが可能になる Therefore, by editing the received position data, the receiving side can specify the shape on the digital map with a small amount of memory usage and at high speed.
[0011] また、本発明では、位置データを複数のブロックに分割し、位置特定をブロックの単 位で行うようにしている。 In the present invention, position data is divided into a plurality of blocks, and position identification is performed in units of blocks.
そのため、生成される形状パターンの数が減り、高速処理が可能になる。また、メモ リ使用量は少なくて済む。 Therefore, the number of generated shape patterns is reduced, and high-speed processing can be performed. Also, less memory is used.
[0012] また、本発明では、位置データを一定距離で切断してブロックを生成するようにして いる。 In the present invention, a block is generated by cutting position data at a fixed distance.
また、この場合、この一定距離を、地図データの最小ユニットの一辺の長さ以下に 設定するようにしている。 In this case, the fixed distance is set to be equal to or less than the length of one side of the minimum unit of the map data. I have to set.
こうすることで、最大でも 4枚分のユニットの地図データをメモリに展開するだけで位 置特定が実施できる。 In this way, location identification can be performed simply by loading map data for at most four units into memory.
[0013] また、線形対象物が道路形状である場合に、一定距離での切断箇所を、道路種別 の変更点に一致させるようにして 、る。 [0013] Further, when the linear object has a road shape, a cut portion at a fixed distance is made to coincide with a change point of the road type.
こうすることで、後述する「階層型位置特定方法」の動作効率が上がる。 By doing so, the operation efficiency of the “hierarchical position identification method” described later increases.
[0014] また、本発明では、位置データを、線形対象物を表示する地図データのユニットの 一辺の長さを単位に切断して前記ブロックを生成するようにして 、る。 Further, in the present invention, the block is generated by cutting the position data in units of the length of one side of the unit of the map data for displaying the linear object.
こうすることで、位置データを無駄に細力べすること無ぐ効率的に切断できる。 In this way, it is possible to cut the position data efficiently without wasting power.
[0015] また、この場合、位置データの切断箇所を、ユニットの境界に合わせるようにして ヽ る。 [0015] In this case, the cutting position of the position data is set to be aligned with the boundary of the unit.
こうすることで、使用するユニットの枚数を減らすことができる。 By doing so, the number of units to be used can be reduced.
[0016] また、本発明では、位置データを、一定のノード数で切断して前記ブロックを生成 するようにしている。 Further, in the present invention, the block is generated by cutting the position data at a fixed number of nodes.
こうすることで、ノードが局所的に密集している場合でも、生成される形状パターン の数を減らすことができ、総合的な処理量を削減できる。 By doing so, even when the nodes are locally dense, the number of generated shape patterns can be reduced, and the overall processing amount can be reduced.
[0017] また、本発明では、線形対象物が交通情報の対象道路の道路形状である場合に、 位置データを、交通情報の分割単位に合わせて切断して前記ブロックを生成するよ うにしている。 Further, according to the present invention, when the linear object has the road shape of the target road of the traffic information, the block is generated by cutting the position data in accordance with the division unit of the traffic information. I have.
こうすることで、交通情報と対象道路との整合性が取りやす ヽ。 By doing so, it is easier to match traffic information with the target road.
[0018] また、本発明では、位置データ力も誤マッチングを生じさせないノードを間引き、位 置特定方法を、ノードを間引いた位置データを用いて行うようにして 、る。 Further, in the present invention, the nodes that do not cause the erroneous matching in the position data force are thinned out, and the position specifying method is performed using the position data in which the nodes are thinned out.
ノード数が減れば、生成される形状パターンの数が減り、高速処理が可能になる。 When the number of nodes decreases, the number of generated shape patterns decreases, and high-speed processing becomes possible.
[0019] また、この場合、間引きの対象となるノードを、そのノードと隣接ノードとの距離及び 偏角、並びに、そのノードの周辺における線形対象物の密度を考慮して選択するよう にしている。 In this case, a node to be decimated is selected in consideration of the distance and declination between the node and an adjacent node, and the density of a linear object around the node. .
こうすることで、誤特定を生じさせな ソードが選択できる。 In this way, a sword that does not cause misidentification can be selected.
[0020] また、本発明では、ノードの位置情報に対応する地図データの位置力もそのノード の候補点を検索する角度範囲を、線形対象物の曲がり具合に応じて適応的に設定 するようにしている。 In the present invention, the position force of the map data corresponding to the position information of the node The angle range in which to search for the candidate points is adaptively set according to the degree of bending of the linear object.
こうすることで、線形対象物の曲がり具合が大きければ、角度範囲を拡げて、真の 線形対象物が候補から漏れな!/、ようにし、線形対象物の曲がり具合が小さければ、 角度範囲を狭めて、候補点が徒に増えないようにすることができる。 By doing so, if the degree of bending of the linear object is large, the angle range is expanded, and the true linear object is not leaked from the candidates! If the degree of bending of the linear object is small, the angle range can be narrowed so that the number of candidate points does not increase unnecessarily.
[0021] また、この場合、角度範囲を、ノードの前後または前方における所定距離区間の線 形対象物の曲がり具合と、その所定距離区間の線形対象物の密度とを考慮して設定 するようにしている。 In this case, the angle range is set in consideration of the degree of bending of the linear object in a predetermined distance section before or after or in front of the node and the density of the linear object in the predetermined distance section. ing.
こうすることで、角度範囲を適応的に設定できる。 By doing so, the angle range can be set adaptively.
[0022] また、本発明では、線形対象物の既に対応付けが終了した部分の対応付け結果を 参照して、線形対象物の残る部分の対応付けに用いられるパラメータを適応的に変 更するようにしている。 Further, in the present invention, a parameter used for associating a remaining portion of a linear object is adaptively changed with reference to an association result of a portion of the linear object which has already been associated. I have to.
こうすることで、既に位置特定方法が終了した区間の線形対象物の誤差状況から、 平均的な誤差発生状況を学習し、その学習結果に基づいて、以降の区間での位置 特定方法における候補点検索範囲や候補点検索方位範囲を適応的に設定すること ができる。 By doing so, the average error occurrence situation is learned from the error situation of the linear object in the section where the position identification method has already been completed, and the candidate points in the position identification method in the subsequent sections are learned based on the learning result. The search range and candidate point search direction range can be set adaptively.
[0023] また、本発明では、情報処理装置に、デジタル地図の線形対象物上に配列される ノードの位置データを取得する位置データ取得部と、位置データを複数のブロックに 分割する位置データ切断部と、このブロック力ら、誤特定を生じさせないノードを間引 くノード間引き処理部と、このブロックに含まれたノードの候補点を検索するための検 索範囲を適応的に設定し、自己のデジタル地図の地図データ上でその検索範囲に 含まれるノードの候補点を設定する候補点検索方位範囲決定部と、設定された候補 点を基に、線形対象物に対応する形状を地図データ上で特定する位置特定処理部 とを設けている。 In the present invention, the information processing apparatus further includes a position data acquisition unit that acquires position data of nodes arranged on a linear object on the digital map, and a position data cutting unit that divides the position data into a plurality of blocks. And a node thinning-out processing unit that thins out nodes that do not cause erroneous identification based on the block power, and a search range for searching for candidate points of nodes included in this block are adaptively set. A candidate point search direction range deciding unit that sets candidate points of nodes included in the search range on the digital map data, and a shape corresponding to the linear object is displayed on the map data based on the set candidate points. And a position specification processing unit specified by.
この装置は、多くのメモリを使わずに、高速で位置特定を行うことが可能である。 また、コンピュータに対し、上述の位置特定方法を実行させるためのプログラムも本 発明に含まれる This device can perform position identification at high speed without using much memory. The present invention also includes a program for causing a computer to execute the above-described position specifying method.
発明の効果 [0024] 本発明の位置特定方法は、多くのメモリ量を使わずに、高速でマップマッチング処 理を行うことができ、省メモリ及び高速ィ匕を実現できる。 The invention's effect The position specifying method of the present invention can perform a map matching process at a high speed without using a large amount of memory, and can achieve a memory saving and a high-speed mapping.
また、この位置特定方法を実施する本発明の装置は、少容量のメモリを用いて構成 することができ、それにも関わらず、高速での処理が可能である。 In addition, the apparatus of the present invention that performs this position specifying method can be configured using a small-capacity memory, and nevertheless, can perform high-speed processing.
図面の簡単な説明 Brief Description of Drawings
[0025] [図 1]本発明の第 1の実施形態における位置特定方法での道路位置データの分割 処理を説明する図。 FIG. 1 is a diagram illustrating a process of dividing road position data by a position specifying method according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施形態における道路位置データの分割処理で使用メモリ量 が少なくなる状況を説明する図である。 FIG. 2 is a diagram for explaining a situation in which a used memory amount is reduced in a road position data dividing process according to the first embodiment of the present invention.
[図 3]本発明の第 1の実施形態における位置特定方法を実施する装置の構成を示す ブロック図である。 FIG. 3 is a block diagram illustrating a configuration of an apparatus that executes a position specifying method according to the first embodiment of the present invention.
[図 4]地図データのユニットを示す図である。 FIG. 4 is a diagram showing units of map data.
[図 5]本発明の第 1の実施形態における道路位置データの分割処理によりユニットの 使用枚数が減る理由を説明する図である。 FIG. 5 is a diagram illustrating the reason why the number of units used is reduced by the division processing of road position data according to the first embodiment of the present invention.
[図 6]道路位置データを表示した地図の例である。 FIG. 6 is an example of a map displaying road position data.
[図 7]本発明の第 1の実施形態における位置特定方法でのノードの間引き処理を説 明する図である。 FIG. 7 is a diagram for explaining node thinning-out processing in the position identification method according to the first embodiment of the present invention.
[図 8]本発明の第 1の実施形態におけるノードの間引き処理手順を示すフロー図であ る。 FIG. 8 is a flowchart showing a procedure for thinning-out nodes in the first embodiment of the present invention.
[図 9]本発明の実施形態における候補点検索方位範囲の適応的設定手順を示すフ ロー図である。 FIG. 9 is a flow chart showing a procedure for adaptively setting a candidate point search azimuth range in the embodiment of the present invention.
[図 10]本発明の第 1の実施形態における候補点検索方位範囲の適応的設定で得ら れる候補点を説明する図である。 FIG. 10 is a diagram illustrating candidate points obtained by adaptively setting a candidate point search azimuth range according to the first embodiment of the present invention.
[図 11]本発明の第 1の実施形態における位置特定方法で交通情報との整合を取る 手順を示すフロー図である。 FIG. 11 is a flowchart showing a procedure for matching traffic information with the position specifying method according to the first embodiment of the present invention.
[図 12]本発明の第 1の実施形態における位置特定方法での対象道路ブロックの端点 の補正処理を示す図である。 FIG. 12 is a diagram showing a correction process of an end point of a target road block in the position specifying method according to the first embodiment of the present invention.
[図 13]本発明の第 2の実施形態における候補点検索範囲の適応的設定方法を模式 的に説明する図である。 FIG. 13 schematically illustrates a method for adaptively setting a candidate point search range according to the second embodiment of the present invention. FIG.
圆 14]本発明の第 2の実施形態における候補点検索範囲の適応的設定手順を示す フロー図である。 FIG. 14 is a flowchart showing a procedure for adaptively setting a candidate point search range in the second embodiment of the present invention.
圆 15]道路位置データを説明する図である。 [15] FIG. 15 is a diagram illustrating road position data.
[図 16]道路位置データの符号ィ匕のための処理を説明する図である。 FIG. 16 is a diagram illustrating a process for encoding road position data.
[図 17]従来の位置特定方法を示す図である。 FIG. 17 is a diagram showing a conventional position specifying method.
符号の説明 Explanation of symbols
10 情報処理装置 10 Information processing equipment
11 位置データ ·交通情報受信部 11 Location dataTraffic information receiver
12 符号化データ復号部 12 Encoded data decoder
13 位置データ復元部 13 Position data restoration unit
14 位置データ切断部 14 Position data cutting section
15 ノード間引き処理部 15 Node thinning processing unit
16 候補点検索範囲決定部 16 Candidate point search range determination unit
17 デジタノレ地図データベース 17 Digital Tanole Map Database
18 形状パターン生成'評価部 18 Shape pattern generation 'evaluation unit
19 交通情報編集部 19 Traffic Information Editor
20 切断形状補正 ·交通情報重畳部 20 Cutting shape correctionTraffic information superimposition section
21 情報活用部 21 Information Utilization Department
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(第 1の実施形態) (First Embodiment)
本発明の実施形態における位置特定方法では、道路位置データを受信した受信 側が、少ないメモリ使用量で、且つ、短時間で位置特定ができるように、道路位置デ ータを編集加工し、この加工処理を施した道路位置データを用いてマップマッチング を実行する。受信側は、位置特定におけるメモリ使用量を抑制し、処理時間を短縮 するため、 In the position specifying method according to the embodiment of the present invention, the receiving side that has received the road position data edits and processes the road position data so that the position can be specified in a short amount of memory and in a short time. Map matching is performed using the processed road position data. On the receiving side, in order to reduce the amount of memory used for location identification and shorten the processing time,
(1)道路位置データの分割 (1) Road position data division
(2)道路位置データからのノードの間引き (3)候補点検索範囲の適応的設定 (2) Thinning out nodes from road position data (3) Adaptive setting of candidate point search range
の各処理を実行する。各処理の概略について説明する。 Are executed. The outline of each process will be described.
本実施形態において、デジタル地図上の道路が線形対象物に該当する。道路の 形状は直線、曲線、ジグザグ形状等特に限定はされない。 In the present embodiment, the road on the digital map corresponds to the linear object. The shape of the road is not particularly limited, such as a straight line, a curve, and a zigzag shape.
また、本明細書における位置特定方法は、位置データを道路の形状データとして 捉えた場合のマップマッチングの概念をも含む。位置データはノードの集合により定 義される一方で、当該ノードの集合が線形の形状を形成するとも考えられる。このよう な形状を定義づけるものが形状データとして考えられる。すなわち、マップマッチング は、送信側の道路形状 (道路形状データ)と、受信側の道路形状 (道路形状データ) を直接対応付けるものである。 In addition, the position identification method in this specification also includes the concept of map matching when the position data is regarded as road shape data. While position data is defined by a set of nodes, it is also possible that the set of nodes forms a linear shape. What defines such a shape can be considered as shape data. That is, in the map matching, the road shape (road shape data) on the transmitting side is directly associated with the road shape (road shape data) on the receiving side.
[0028] (1)道路位置データの分割 (1) Division of road position data
圧縮効率を上げるために多数のノードが含まれて 、る長 、道路位置データを、受 信側の都合に合わせて適宜切断し、分割した道路位置データ(「道路位置データブ ロック」と呼ぶ)の単位で位置特定を行う。 In order to increase the compression efficiency, a large number of nodes are included. The length of the road position data is appropriately cut according to the convenience of the receiving side, and the divided road position data (called “road position data block”) is obtained. Specify the location in units.
[0029] 例えば、図 1 (a)に示すように、 6個のノードを含む道路位置データをそのまま位置 特定すると、各 WP当たりの候補点の平均個数が 3個の場合、形状パターンの組み 合わせ数は、 36 = 729個であるが、図 1 (b)に示すように、この道路位置データを 2個 のノードを含む 3個の道路位置データブロックに分割して位置特定を行うと、形状パ ターンの組み合わせ数は、 3 X 32 = 27個となり、処理量が減少する。 [0029] For example, as shown in Fig. 1 (a), if the road position data including six nodes is specified as it is, when the average number of candidate points per WP is three, the combination of shape patterns is used. the number is a 3 6 = 729, as shown in FIG. 1 (b), when the road location data is divided into three road location data blocks performs location specified including two nodes, the number of combinations of shapes pattern is, 3 X 3 2 = 27 pieces and makes the processing amount decreases.
また、図 2に模式的に示すように、道路位置データを切断して、道路位置データブ ロックを個別に位置特定した方が使用メモリ量は少なくて済む。一般に、位置特定に 必要なメモリ量は、道路位置データの長さの 2乗に比例して増える。例えば、道路位 置データの最大長が 10kmのとき、 10km四方(100平方 km)分の地図データを展 開するメモリサイズが必要となる力 道路位置データの最大長が lkmのときは、 1km 四方(1平方 km)のメモリで済むことになる。 In addition, as schematically shown in FIG. 2, the amount of memory used can be reduced by cutting the road position data and individually specifying the road position data blocks. In general, the amount of memory required for location identification increases in proportion to the square of the length of the road location data. For example, when the maximum length of road position data is 10 km, a force that requires a memory size to expand map data for 10 km square (100 square km) is 1 km square when the maximum length of road position data is 1 km. (1 square km) of memory.
[0030] (2)道路位置データからのノードの間引き [0030] (2) Thinning out nodes from road position data
一般に、ノードが密に設定されているほど、位置特定の精度は上がるが、その分、 WP数が増えるため、形状パターンの組み合わせ数が指数的に増加し、処理性能を 劣化させる。位置特定精度を落とす恐れが少な ゾードを選択して間引くことにより、 処理時間の短縮、及び、ワークメモリ使用量の削減を図ることができる。 In general, the higher the number of nodes, the higher the accuracy of position identification, but the number of WPs increases accordingly, so the number of combinations of shape patterns increases exponentially, and processing performance increases. Deteriorate. By selecting and thinning out a zone that has little risk of deteriorating the position identification accuracy, the processing time can be reduced and the work memory usage can be reduced.
[0031] (3)候補点検索範囲の適応的設定 (3) Adaptive setting of candidate point search range
従来の位置特定方法では、 WPの候補点を抽出する際、車両の進行方位との角度 差が ±B° 以内であることを候補点の条件にしており、この ±B° を不変値 (あらかじ め決められた値)としている。 Bの値、即ち、検索方位に関する候補点検索範囲(「候 補点検索方位範囲」)が小さいほど、 WP候補点数が少なくなり、処理性能は向上す る力 「真の道路」上に候補点が乗らない可能性が発生し、誤マッチングの可能性が 高くなる。一方、 Bの値を大きくすると精度は上がるが、候補点数が増え、処理性能が 劣化する。 In the conventional position identification method, when extracting candidate points for WP, the condition of candidate points is that the angle difference from the heading of the vehicle is within ± B °, and this ± B ° is used as an invariant value (Predetermined value). The smaller the value of B, that is, the smaller the candidate point search range related to the search azimuth (“candidate point search azimuth range”), the smaller the number of WP candidate points and the higher the processing performance. May occur, and the possibility of erroneous matching increases. On the other hand, when the value of B is increased, the accuracy increases, but the number of candidate points increases, and the processing performance deteriorates.
[0032] カーナビゲーシヨン装置の位置特定では、「これから進む道路」はどうなるか分から ないが、道路位置データによる位置特定では、あら力じめ進む道が明示されているた め、着目している WPの前後または前方の所定距離 (地図誤差は最大 100m程度あ るので、 100— 200m程度)を見通して、カーブ状況を観察し、直線が続く場合は、 B の値を 10° まで絞り、大きなカーブがある場合は、 60° まで広げる、と言うように候 補点検索方位範囲を可変にすることができる。 [0032] In the position identification of the car navigation device, it is not known what the "road to go to" will be, but in the position identification based on the road position data, attention is paid to the roads that are going to be overtly specified. Observe the predetermined distance before and after or in front of the WP (100 to 200 m, since the map error is about 100 m at the maximum), observe the curve situation, and if a straight line continues, reduce the value of B to 10 °, If there is a curve, the candidate point search direction range can be made variable, such as expanding to 60 °.
このように候補点検索範囲を適応的に可変にすることで、「真の道路」となる可能性 が極めて低い道路を効率的に候補力 除外することができ、位置特定の処理性能を 高め、計算用のワークメモリ使用量を削減することができる。 By adaptively changing the candidate point search range in this way, roads that are extremely unlikely to be “true roads” can be efficiently excluded as candidate powers, and the processing performance for position identification can be improved. The amount of work memory used for calculation can be reduced.
[0033] 図 3には、この位置特定方法を実施する情報処理装置 10の構成を示している。 FIG. 3 shows the configuration of the information processing apparatus 10 that performs this position identification method.
この情報処理装置 10は、情報提供装置から交通情報と対象道路の道路位置デー タとを受信し、位置特定を実施して対象道路を特定する、カーナビゲーシヨン装置、 PC、 PDA,携帯電話等の情報端末であり、あるいは、プローブカー車載機から計測 情報 (交通情報)と走行軌跡を示す道路位置データとを受信し、位置特定を実施して 走行軌跡を特定するプローブ情報収集センタ (情報収集配信センタ)等である。 The information processing device 10 receives traffic information and road position data of a target road from an information providing device, identifies a target road by performing position identification, a car navigation device, a PC, a PDA, a mobile phone, and the like. Or a probe information collection center (information collection) that receives measurement information (traffic information) and road position data indicating the traveling locus from the on-board equipment of the probe car and identifies the traveling locus by performing position identification. Distribution center).
[0034] この情報処理装置 10は、デジタル地図データベース 17と、情報送信装置から道路 位置データ及び交通情報を受信する位置データ ·交通情報受信部 11と、符号化さ れて!ヽるデータを復号化する符号化データ復号部 12と、道路位置データを復元する 位置データ復元部 13と、「道路位置データの分割」処理を行う位置データ切断部 14 と、分割された道路位置データブロックと整合が取れるように交通情報を編集する交 通情報編集部 19と、「道路位置データ力ものノード間引き」処理を行うノード間引き処 理部 15と、「候補点検索範囲の適応的設定」処理を行い、ノードの候補点を設定す る候補点検索範囲決定部 16と、ノード候補点を繋ぐ形状パターンを生成し、評価し て、道路位置データブロックのそれぞれに対応する道路区間(「対象道路ブロック」と 呼ぶ)を特定する形状パターン生成 ·評価部 18と、各対象道路ブロックが連続するよ うに各対象道路ブロックの端部を補正し、各対象道路ブロックの交通情報を再現する 切断形状補正 ·交通情報重畳部 20と、再現された交通情報を活用する情報活用部 21とを備えている。 [0034] The information processing device 10 includes a digital map database 17, position data for receiving road position data and traffic information from an information transmitting device and a traffic information receiving unit 11, and decodes encoded data. Coded data decoding unit 12 to restore road position data A position data restoring unit 13, a position data cutting unit 14 for performing "division of road position data" processing, and a traffic information editing unit 19 for editing traffic information so as to be consistent with the divided road position data blocks. A node thinning-out processing unit 15 that performs “node thinning of road position data” and a candidate point search range determining unit 16 that performs “adaptive setting of a candidate point search range” and sets a node candidate point; A shape pattern generation and evaluation unit 18 generates and evaluates a shape pattern connecting the node candidate points and specifies a road section (referred to as a “target road block”) corresponding to each of the road position data blocks. Correct the end of each target road block so that the road blocks are continuous, and reproduce the traffic information of each target road block. And an information utilization unit 21.
[0035] この情報処理装置 10の位置データ ·交通情報受信部 11で受信された道路位置デ ータと交通情報とは、符号化データ復号部 12で復号化され、ノードの位置データ列 力 成る道路位置データが位置データ復元部 13で復元される。 The position data of the information processing apparatus 10 and the road position data and the traffic information received by the traffic information receiving unit 11 are decoded by the encoded data decoding unit 12 and become the position data train of the node. The road position data is restored by the position data restoration unit 13.
[0036] (a)位置データ切断部 14の道路位置データの分割処理 (A) Division processing of road position data by the position data cutting unit 14
位置データ切断部 14は、復元された道路位置データを、次の(a - 1)一(a - 6)いず れかの方法で切断する。 The position data cutting unit 14 cuts the restored road position data by one of the following methods (a-1) and (a-6).
(a-1)道路位置データを、あらかじめ決めた固定距離で (または、固定距離以下と なるように等分に)切る。 (a-1) The road position data is cut at a fixed distance determined in advance (or equally cut so as to be less than or equal to the fixed distance).
デジタル地図データベース 17に格納されている地図データは、図 4に示すように、 通常、概ね 10km X 10km (正確なサイズは、場所により異なる)の 2次メッシュをべ一 スに 4分割 (長さ 1Z2)、 16分割(1Z4)、 64分割(1Z8)されたユニットで構成され ており、各ユニットのデータ量が略同レベルになるように、各地のユニットが設定され ている。最も小さい 64分割サイズのユニットは、約 1. 25km四方の大きさである。 そのため、道路位置データを固定距離で切断する場合は、固定距離の長さを約 lk mに設定する。こうすることで、分割した道路位置データブロックの位置特定は、最大 でも 4枚分のユニットの地図データを用いるだけで可能になる。 As shown in Fig. 4, the map data stored in the digital map database 17 is usually divided into four sub-meshes of approximately 10km x 10km (the exact size depends on the location). It is composed of units divided into 1Z2), 16 divisions (1Z4), and 64 divisions (1Z8), and the units in each region are set so that the data amount of each unit is approximately the same level. The smallest unit of 64 divisions is about 1.25 km square. Therefore, when cutting road position data at a fixed distance, the length of the fixed distance is set to about lk m. In this way, the position of the divided road position data blocks can be specified only by using the map data of at most four units.
[0037] この模様を図 5に示している。ここでは、ユニットサイズの一辺を lkmとし、道路位置 データの長さを 3. 2kmとしている。道路位置データをこのままの長さで位置特定する 場合は、図 5 (a)に示すように、最悪で 4 X 4枚のユニットデータが展開できるメモリを 準備する必要がある。これに対して、道路位置データを切断点で切断し、 1kmの長さ にすると、図 5 (b)に示すように、 2 X 2枚のユニットデータを展開するメモリ量で対応 できる。 FIG. 5 shows this pattern. Here, one side of the unit size is 1 km, and the length of road position data is 3.2 km. Locating road position data with the exact length In such a case, as shown in Fig. 5 (a), it is necessary to prepare a memory that can expand 4 x 4 unit data at worst. On the other hand, if the road position data is cut at the cutting point to make the length 1 km, as shown in Fig. 5 (b), this can be handled by the amount of memory that expands 2 x 2 unit data.
[0038] (a— 2)道路位置データを固定距離 (または固定距離以下)で切断する場合に、道 路種別の変化点を切断点に設定する。 [0038] (a-2) When the road position data is cut at a fixed distance (or a fixed distance or less), the changing point of the road type is set as the cutting point.
本発明者は、先に、「階層型位置特定」と言う位置特定方法を提案している。この方 法では、道路種別を参考に地図データを階層化し、上位の階層は幹線道路のみを 含み、階層が下がるに連れて、新たな道路種別の道路が順次追加された階層型の 地図データを用いて位置特定を行う。この方法では、可能な限り上位の階層の地図 データを用いて位置特定を行うことにより、処理時間を短縮できる。 The present inventor has previously proposed a position specifying method called “hierarchical position specifying”. In this method, the map data is hierarchized with reference to the road type, the upper layer includes only the main roads, and as the level goes down, the hierarchical map data in which roads of the new road type are sequentially added is used. To determine the position. In this method, the processing time can be reduced by specifying the position using the map data of the highest hierarchy as possible.
[0039] この(a— 2)により道路位置データを切断する場合は、階層型位置特定において、 使用する階層の地図データが特定されるため、階層型位置特定の動作効率が向上 する。なお、切断点とすべき道路種別の変化点は、階層型の地図データにおいて階 層を区別している道路種別に対応させた方が効率的である。 [0039] When the road position data is cut off according to (a-2), the map data of the hierarchy to be used is specified in the hierarchical position specification, so that the operation efficiency of the hierarchical position specification is improved. In addition, it is more efficient that the change point of the road type that should be the cutting point is made to correspond to the road type that distinguishes the hierarchy in the hierarchical map data.
[0040] (a— 3)道路位置データを、該当箇所周辺部のユニットサイズに合わせて切断する。 (A-3) The road position data is cut in accordance with the unit size around the pertinent location.
道路位置データが 64分割サイズのユニットのエリアにおける道路を表している場合 は、 64分割サイズの一辺の長さ(約 lkm)の単位で道路位置データを切断し、 16分 割サイズのユニットのエリアにおける道路を表している場合は、 16分割サイズの一辺 の長さ(2. 5km)の単位で道路位置データを切断する。そのため、デジタル地図デ ータベース 17の地図データを参照して、道路位置データの両端、または中点の緯度 '経度から、当該道路位置データが収まるエリアのユニットサイズを求め、切断の単位 長さを決定する。 If the road position data represents a road in an area of a unit of 64 division size, the road position data is cut in units of one side length (approximately lkm) of the size of 64 division, and the area of the unit of 16 division size is cut. If the road is indicated in, the road position data is cut in units of one side (2.5 km) of 16 division sizes. Therefore, referring to the map data in the digital map database 17, the unit size of the area where the road position data can be accommodated is determined from the latitude and longitude of both ends of the road position data or the midpoint, and the unit length of cutting is determined. I do.
[0041] (a-4)道路位置データを、ユニットの境界に合わせて切断する。 (A-4) The road position data is cut in accordance with the unit boundaries.
道路位置データを、その箇所のユニットサイズに合わせて切断する際に、そのュ- ットの境界 (左右 ·上下)の緯度 ·経度をデジタル地図データベース 17から求め、この 境界線沿いに(または境界を参考にして)道路位置データを切断する。こうすることで 、デジタル地図データベース 17から読み出すユニットの数を減らすことができ、ュ- ットデータを展開するメモリ量を減少させることができる。 When the road position data is cut according to the unit size of the location, the latitude and longitude of the boundary (left / right / up / down) of the cut are obtained from the digital map database 17, and along the boundary (or the boundary). Disconnect the road position data). By doing so, the number of units read from the digital map database 17 can be reduced, and It is possible to reduce the amount of memory for expanding the cut data.
[0042] (a— 5)道路位置データを一定のノード数の単位に切断する。 (A-5) The road position data is cut into units of a fixed number of nodes.
都市部の密集地の道路や山間部の峠道などでは、沢山のノードが局部的に密集し ているケースがある。この場合、道路位置データを固定距離で切断すると、一部の道 路位置データブロックに多数のノードが含まれる可能性が生じる。 There are cases where many nodes are concentrated locally on roads in densely populated areas in urban areas or on mountain pass roads. In this case, if the road position data is cut at a fixed distance, there is a possibility that a number of nodes are included in some road position data blocks.
[0043] 位置特定の処理性能は、処理アルゴリズム上、距離もさることながらノード数にも大 きく依存し、道路位置データブロックが多数のノードを含む場合は、そのブロックの処 理量が膨大になり、全体の処理量を押し上げる結果になる。このため、多数のノード を含む道路位置データブロックが出現しな ヽように、一定ノード数単位に道路位置デ ータを切断して各道路位置データブロックのノード数を均一化した方が、図 1で示し た形状パターンの組み合わせ数を減らすことができ、トータルの処理時間を短縮でき る。 [0043] The processing performance of the position identification greatly depends on the number of nodes as well as the distance in terms of the processing algorithm. When the road position data block includes a large number of nodes, the processing amount of the block is enormous. This results in an increase in the overall processing amount. Therefore, it is better to cut the road position data in units of a certain number of nodes and to equalize the number of nodes in each road position data block so that road position data blocks containing many nodes do not appear. The number of combinations of the shape patterns shown in 1 can be reduced, and the total processing time can be reduced.
[0044] (a— 6)道路位置データを、交通情報の分割単位に合わせて切断する。 (A-6) The road position data is cut in accordance with the division unit of the traffic information.
情報送信装置が、交通情報の対象道路を単位長さに切断し、その単位に区分した 交通情報を符号化して送信して来る場合は、道路位置データを交通情報の分割位 置に合わせて切断する。 If the information transmission device cuts the target road for traffic information into unit lengths and encodes and transmits the traffic information divided into the unit, the road position data is cut according to the divided position of the traffic information. I do.
道路位置データを切断する際に問題となるのは、道路位置データに紐付けされた 交通情報との対応である。つまり、道路位置データブロックと対応するように、適切に 交通情報も再編集する必要がある。交通情報は、情報送信装置の地図データを基 準に対象道路に位置付けられて作成されて ヽるため、これを単に距離で切断すると 、位置特定後の対象道路ブロックの道なり距離とずれる可能性がある。情報送信装 置が交通情報を単位長さに区分して送信して来る場合は、道路位置データを交通情 報の分割位置に合わせて切断することにより、交通情報との対応が余計な計算なし に非常にとりやすくなる。 The problem when disconnecting the road position data is the correspondence with the traffic information linked to the road position data. In other words, it is necessary to edit traffic information appropriately so as to correspond to the road position data block. Since the traffic information is created based on the map data of the information transmission device and positioned on the target road, if the traffic information is simply cut at a distance, the traffic information may deviate from the road distance of the target road block after the position is specified. There is. When the information transmitting device transmits traffic information in units of unit length, the road position data is cut off according to the divided position of the traffic information, so that there is no extra calculation for the correspondence with the traffic information. Very easy to take.
[0045] (b)ノード間弓 Iき処理部 15のノード間引き処理 [0045] (b) Inter-node bow processing by the node I processing unit 15
ノード間弓 Iき処理部 15は、道路位置データブロックに含まれるノードを間引く処理 を行う。 The inter-node bow I processing unit 15 performs a process of thinning out nodes included in the road position data block.
ノードを間引く際の基本的な考え方は、次の (b— 1) (b-2) (b— 3)の通りである。 (b— 1)ノードの偏角の値が、ある一定値以下であれば間引く。 The basic concept of thinning out nodes is as follows (b-1), (b-2), and (b-3). (b-1) If the declination value of the node is less than a certain value, thinning is performed.
(b-2)ノード間距離が、ある一定値以下であれば間引く。 (b-2) If the distance between nodes is equal to or smaller than a certain value, thinning is performed.
(b— 3)周辺部の道路密度を考慮し、道路密度が高いときは、誤マッチングを生じな いようにノードの間引きは控える。道路密度が低いときは、誤マッチングの恐れが少な いためノードを間引く。 (b-3) Considering the road density in the surrounding area, when the road density is high, refrain from thinning nodes so that erroneous matching does not occur. When the road density is low, nodes are thinned out because there is little risk of erroneous matching.
[0046] ノードの間引き処理を実行する際は、これらの考え方を組み合わせた間引き条件を 設定し、その条件に照らして、ノードを間引くか否かを決める。 When executing the node thinning process, a thinning condition combining these ideas is set, and whether to thin the node is determined in light of the condition.
例えば、間引き条件は、次のように設定する。 For example, the thinning conditions are set as follows.
"周辺道路密度 P1のとき、(1)ノードの偏角の絶対値が《1未満、且つ、(2)ノード間 隔が β 1未満、であればノードを間引く" "When the surrounding road density is P1, (1) if the absolute value of the declination of the node is less than 1, and (2) the node interval is less than β1, skip the nodes."
なお、周辺道路密度 P1は、対象ノード周辺の単位面積当たりの道路延長を示す値 (ランク分けした値)である。また、この P1は、対象ノードが存在するユニットのサイズ を示す値 (ランク分けした値)でもある。つまり、道路密度によりユニットサイズが違うの で、ユニットサイズをチェックすると周辺道路密度が推定できる。 The peripheral road density P1 is a value (ranked value) indicating a road extension per unit area around the target node. This P1 is also a value (ranked value) indicating the size of the unit in which the target node exists. In other words, since the unit size differs depending on the road density, the surrounding road density can be estimated by checking the unit size.
[0047] 図 6の地図にぉ 、て、 Αの付近 (本線)の道路位置データと Bの付近 (連絡路)の道 路位置データとを比べると、周辺道路密度 P1やノード間距離に関しては、双方で大 きな違いは無いが、 Aの付近のノードは偏角が小さぐ Bの付近のノードは偏角が大 きい。そのため、 Aの付近のノードは、間引くことができるが、 Bの付近のノードは、間 引きの条件に合致しな 、。 B付近のノードを間弓 Iくと本線側に誤マッチングする可能 '性がある。 [0047] Comparing the road position data near ぉ and Α (main line) with the road position data near B (connection road) in the map of Fig. 6, the peripheral road density P1 and the distance between nodes are Although there is no significant difference between the two, the angle near the node A is small and the angle near the node B is large. Therefore, the nodes near A can be thinned out, but the nodes near B do not meet the thinning conditions. If the node near B crosses I, there is a possibility of erroneous matching to the main line.
[0048] 図 7は、道路位置データに含まれるノードが間引かれていく様子を、段階を追って 示している。 FIG. 7 shows, step by step, how the nodes included in the road position data are decimated.
ノード 1は、始端のため残す (a)。ノード 2は、偏角が一定値ひ 1以上あるため残す( α 1 :概ね 一 2° ) (b)。ノード 3は、偏角が一定値 α 1以内、且つ、ノード間隔が β 1以内のため削除する(c)。ノード 4は、偏角が a 1以内であるが、ノード間隔が j8 1 以上のため残す (c)。ノード 5は、偏角が一定値 α 1以内、且つ、ノード間隔が j8 1以 内のため削除する(d)。ノード 6は、偏角が一定値ひ 1以上あるため残す (e)。ノード 7 は、終端のため残す (e)。 [0049] 図 8は、このノード間引き処理部 15の処理フローを示している。 Node 1 is left as the starting point (a). Node 2 is left because the declination has a constant value of 1 or more (α 1: approximately 1 2 °) (b). Node 3 is deleted because the argument is within a constant value α1 and the node interval is within β1 (c). Node 4 has the declination within a1, but keeps it because the node interval is j8 1 or more (c). Node 5 is deleted because the argument is within a fixed value α1 and the node interval is within j81 (d). Node 6 is left because the declination has a constant value of 1 or more (e). Node 7 is left for termination (e). FIG. 8 shows a processing flow of the node thinning processing section 15.
間引き対象の道路位置データブロックを取得し (ステップ 1)、ノード番号 n= 1のノ ードから順に (ステップ 2)、ノード nの情報を取得し (ステップ 3)、間引いても差し支え 無!ゾードか否かを判定する (ステップ 4)。 Obtain the road position data block to be decimated (Step 1), start from the node with node number n = 1 (Step 2), acquire the information on node n (Step 3), and do not worry about thinning! It is determined whether or not (step 4).
[0050] 間引きが差し支える、間引きが不可能なノードには、次のようなものがある。 [0050] There are the following nodes that are not supported by thinning and that cannot be thinned.
'始終端 'Start and end
•ブロックコードや、イベント発生位置など、位置特定に使用する形状以外の目的の ための位置を明示したノード (イベント発生点、属性変化点、ブロック化の端点位置な ど) • Nodes that clearly indicate the position for the purpose other than the shape used for specifying the position, such as the block code or event occurrence position (event occurrence point, attribute change point, block end point position, etc.)
[0051] 間引いても差し支えないノードの場合は、ノードの緯度'経度から周辺道路密度 P1 を算出し、間引きパラメータ α 1、 β 1を決定する (ステップ 5)。 In the case of a node that can be thinned out, the surrounding road density P1 is calculated from the latitude and longitude of the node, and the thinning-out parameters α 1 and β 1 are determined (step 5).
次いで、ノード (η-1)→ノード η間の偏角絶対値 αと、ノード間距離 j8とを算出し (ス テツプ 6)、 α < α 1、且つ、 βぐ β 1であるか否かを判定し (ステップ 7)、 Yesであれ ば、そのノード nを間引く(ステップ 8)。 Noであれば間引かない。こうした処理を全て のノードについて逐次行う(ステップ 9、ステップ 10)。 Next, the absolute value of the argument α between the node (η-1) → node η and the distance j8 between the nodes are calculated (Step 6), and it is determined whether α <α 1 and whether β is less than β1. Is determined (step 7), and if yes, the node n is thinned out (step 8). If No, do not skip. This process is performed sequentially for all nodes (steps 9 and 10).
[0052] (c)候補点検索範囲決定部 16の候補点検索範囲の適応的設定処理 (C) Candidate Point Search Range Determination Unit 16 Adaptively Setting Candidate Point Search Range
候補点検索範囲決定部 16は、ノード間弓 Iき処理部 15が間引き処理した道路位置 データブロックに対して、位置特定における候補点検索範囲を適応的に決定し、そ の検索範囲力 ノードの候補点を検索し、設定する。 The candidate point search range determination unit 16 adaptively determines a candidate point search range in position identification with respect to the road position data block that has been thinned out by the inter-node bow processing unit 15, and determines the search range power of the node. Search and set candidate points.
候補点検索範囲決定部 16が候補点検索方位範囲を決定する際の基本的な考え 方は、次の(c 1)または(c 2)と、(c 3)とである。 The basic idea when the candidate point search range determination unit 16 determines the candidate point search azimuth range is the following (c1) or (c2) and (c3).
(c 1)着目するノードの前後数十一数百 mの道路位置データの状況(曲がり具合) を見て、当該ノードの候補点検索方位範囲を決定する。 (c 1) Look at the situation (the degree of curvature) of road position data several tens and several hundreds meters before and after the node of interest, and determine the candidate point search azimuth range of the node.
(c 2)着目するノードの今後位置特定していく方向の道路位置データの曲がり具合 を見て、当該ノードの候補点検索方位範囲を決定する。 (c 2) The degree of bending of the road position data in the direction in which the position of the node of interest is to be specified in the future is determined, and the candidate point search azimuth range of the node is determined.
(c 3)道路密度を考慮する。 (c 3) Consider road density.
[0053] 図 9は、候補点検索範囲決定部 16の処理フローを示している。 FIG. 9 shows a processing flow of the candidate point search range determination unit 16.
候補点設定対象の道路位置データブロックを取得し (ステップ 11)、ノード番号 n= 1のノード力も順に (ステップ 12)、ノード nの前後であら力じめ決めた固定区間長内 に存在する各ノードの情報を取得し (ステップ 13)、それらの各ノードと隣接ノードとの 間の偏角絶対値を算出し、この偏角絶対値の統計値 (最大値'平均値等)を算出す る (ステップ 14)。ノード n周辺の道路密度も考慮して、候補点検索時の方位範囲 Bを 、例えば、次式、 The road position data block for which the candidate point is set is obtained (step 11), and the node number n = The node power of 1 is also obtained in order (step 12), and information on each node existing within the fixed section length determined before and after node n is obtained (step 13). The absolute value of the declination is calculated, and the statistical value (maximum value / average value) of the declination absolute value is calculated (step 14). Considering the road density around node n, the azimuth range B at the time of candidate point search is calculated by, for example,
B =統計値 X τ + γ ( τ、 γは、道路密度に応じて決めたパラメータ) によって決定する(ステップ 15)。 B = Statistical value X τ + γ (τ and γ are parameters determined according to road density) (Step 15).
[0054] 次に、デジタル地図データベース 17の地図上で、ノード ηの位置の周辺 Αメートル 内に存在し、且つ、ノード nの位置から"ノード nの方位 ± B° "の方位範囲内に存在 するリンクに候補点を設定する (ステップ 16)。こうした処理を全てのノードについて行 う(ステップ 17、ステップ 18)。 Next, on the map of the digital map database 17, it exists within Α meters around the position of the node η and within the azimuth range of “the azimuth of the node n ± B °” from the position of the node n. A candidate point is set for the link to be made (step 16). This process is performed for all nodes (steps 17 and 18).
[0055] こうした手順で候補点検索方位範囲を決定することにより、図 10に示すように、 WP 3、 WP4、 WP5の場合は、その前後にカーブが存在するため、候補点検索方位範 囲が広く設定され、「真の道路」上に間違いなく候補点が設定される。また、 WP6、 W P7の場合は、 Bの値力 S小さくなるため、 (6-2) (7-2)が候補力も外れ、後続する形 成パターン生成処理が効率ィ匕できる。 By determining the candidate point search azimuth range by such a procedure, as shown in FIG. 10, in the case of WP 3, WP4, and WP5, there are curves before and after that, so that the candidate point search azimuth range is Widely set, and candidate points are definitely set on "true roads". In the case of WP6 and WP7, the value power S of B becomes smaller, so that (6-2) and (7-2) also deviate from the candidate power, and the subsequent formed pattern generation processing can be performed efficiently.
[0056] 形状パターン生成 ·評価部 18は、候補点検索範囲決定部 16が設定した候補点間 を道路リンクに沿って接続し、道路形状パターンを作成する。デジタル地図上で候補 点間が道路に沿って接続して 、な 、ケースでは、道路形状パターンを作成しな 、。 次いで、各々の道路形状パターンと、ノード 1 (WP1)、ノード 2 (WP2)、 · ·の形状とを 比較し、最も似通った道路形状パターン、即ち、距離が近ぐ標準偏差等によって評 価した WP1、 WP2、 · ·の形状とのばらつきが小さいものを一つ選出する。 The shape pattern generation / evaluation unit 18 connects the candidate points set by the candidate point search range determination unit 16 along a road link to create a road shape pattern. In the digital map, candidate points are connected along the road. In some cases, no road shape pattern is created. Next, each road shape pattern was compared with the shapes of node 1 (WP1), node 2 (WP2), and the like, and the most similar road shape pattern, that is, the standard deviation of a short distance, was evaluated. WP1, WP2, ··· Select one with small variation from the shape.
[0057] こうして、道路位置データブロックの位置特定により、対象道路ブロックが特定され る。 Thus, the target road block is specified by specifying the position of the road position data block.
切断形状補正 ·交通情報重畳部 20は、対象道路ブロックが隣の対象道路ブロック と接続するように、各対象道路ブロックの端における"ずれ"を補正する。 Cutting shape correction • The traffic information superimposing unit 20 corrects the “displacement” at the end of each target road block so that the target road block is connected to an adjacent target road block.
[0058] 一方、交通情報編集部 19は、位置データ切断部 14から道路位置データの切断単 位の情報を取得して、受信した交通情報を、各道路位置データブロックと整合が取 れるように編集する。 [0058] On the other hand, the traffic information editing unit 19 obtains information on the cutting unit of the road position data from the position data cutting unit 14, and matches the received traffic information with each road position data block. Edit to
切断形状補正 ·交通情報重畳部 20は、交通情報編集部 19がブロック単位に編集 した交通情報を取得して、端点を補正した対象道路ブロックに重畳し、ブロック単位 の交通情報を再現する。 The cutting shape correction / traffic information superimposing section 20 obtains the traffic information edited in block units by the traffic information editing section 19 and superimposes the traffic information on the target road block whose end point has been corrected, thereby reproducing the traffic information in block units.
[0059] 図 11のフロー図は、交通情報の再現に至る手順を示している。 [0059] The flowchart of FIG. 11 shows a procedure leading to reproduction of traffic information.
データを受信すると (ステップ 21)、位置データ切断部 14力 道路位置データの切 断単位を決定し (ステップ 22)、道路位置データを道路位置データブロックに切断す る。交通情報編集部 19は、各々の道路位置データブロックと整合が取れるように交 通情報を編集する (ステップ 23)。なお、道路位置データが前述する(a— 6) (道路位 置データを、交通情報の分割単位に合わせて切断する)の方式で切断される場合は 、交通情報の編集は必要がない。 When the data is received (step 21), the position data cutting unit 14 determines the cutting unit of the road position data (step 22), and cuts the road position data into road position data blocks. The traffic information editing unit 19 edits the traffic information so as to be consistent with each road position data block (step 23). When the road position data is cut by the method described in (a-6) (the road position data is cut according to the division unit of the traffic information), there is no need to edit the traffic information.
[0060] ノード間引き処理部 15、候補点検索範囲決定部 16、及び、形状パターン生成,評 価部 18は、ブロック番号 n= lの道路位置データブロック力 順に、前述する処理を 行い、位置特定を実施して、道路位置データブロック nの対象道路ブロック nを特定 する(ステップ 25)。全ての道路位置データブロックに対してステップ 25の処理が終 了すると (ステップ 26、ステップ 27)、切断形状補正'交通情報重畳部 20は、各対象 道路ブロックの端点の接続性をチェックし (ステップ 28)、対象道路ブロック端点に"ず れ"がある場合は、補正処理を行う(ステップ 29)。 [0060] The node thinning processing unit 15, the candidate point search range determination unit 16, and the shape pattern generation / evaluation unit 18 perform the above-described processing in the order of the road position data block power of the block number n = l, and specify the position. To identify the target road block n of the road position data block n (step 25). When the processing of step 25 is completed for all road position data blocks (steps 26 and 27), the cut shape correction 'traffic information superimposing unit 20 checks the connectivity of the end points of each target road block (step 26). 28) If there is a “displacement” at the end point of the target road block, a correction process is performed (step 29).
[0061] 図 12は、対象道路ブロック端点のずれに対する補正処理を模式的に示している。 FIG. 12 schematically shows a correction process for a deviation of a target road block end point.
道路位置データブロックを個別に位置特定し (a)、対象道路ブロックの端点にずれが ある場合は (b)、双方の対象道路ブロックにおける端点の中点を、対象道路ブロック の端点として設定する (c)。 The road position data blocks are individually located (a), and if the end points of the target road block are shifted (b), the midpoint of the end points of both target road blocks is set as the end point of the target road block ( c).
[0062] この補正処理は、道路位置データブロック Nの始端側の位置特定後の緯度 ·経度 を (XI ,ΥΙ)、道路位置データブロック (Ν + 1)の終端側の位置特定後の緯度 ·経度 を (Χ2,Υ2)とするとき、 X= (Xl+X2) /2、 Υ= (Yl+Y2) /2と最も近い道路上の地点 X' ,Υ'を対象道路ブロックの端点とする処理である。 [0062] In this correction process, the latitude and longitude of the road position data block N after the position identification on the starting end side are (XI, ΥΙ), and the latitude and longitude of the end position of the road position data block (Ν + 1) are specified. When longitude is (Χ2, Υ2), the point on the road closest to X = (Xl + X2) / 2 and Υ = (Yl + Y2) / 2 is the end point of the target road block. Processing.
切断形状補正 ·交通情報重畳部 20は、端点を補正した各対象道路ブロックに対し て、交通情報編集部 19が編集した交通情報を重畳して、ブロック単位の交通情報を 再現する(ステップ 30)。 Cut shape correctionThe traffic information superimposing unit 20 superimposes the traffic information edited by the traffic information editing unit 19 on each target road block whose end point has been corrected, and Reproduce (Step 30).
[0063] このように、道路位置データの位置特定に際して、 As described above, when specifying the position of the road position data,
(1)道路位置データの分割 (1) Road position data division
(2)道路位置データからのノードの間引き (2) Thinning out nodes from road position data
(3)候補点検索範囲の適応的設定 (3) Adaptive setting of candidate point search range
を行うことにより、処理効率が向上し、処理時間が短縮され、また、使用メモリ量が少 なくて済む。 By doing so, the processing efficiency is improved, the processing time is shortened, and the amount of memory used can be reduced.
[0064] ここでは、道路位置データの位置特定に当たり、前記(1)、 (2)、 (3)の全てを実施 する場合について説明した力 このうちの一つ、あるいは、二つを実施するだけでも、 処理効率の向上、処理時間の短縮、及び、使用メモリ量の減少が実現できることは 明らかである。 Here, in specifying the position of the road position data, the force described in the case of performing all of the above (1), (2), and (3) is only required to perform one or two of these forces. However, it is clear that processing efficiency can be improved, processing time can be shortened, and the amount of memory used can be reduced.
[0065] (第 2の実施形態) (Second Embodiment)
本発明の第 2の実施形態では、図 3の情報処理装置 10の候補点検索範囲決定部 16で行われる候補点検索範囲の適応的設定処理に関する他の方法について説明 する。 In the second embodiment of the present invention, another method relating to the adaptive setting processing of the candidate point search range performed by the candidate point search range determination unit 16 of the information processing apparatus 10 in FIG. 3 will be described.
受信側が送信側カゝら送られた道路位置データを用いて位置特定を行い、自己のデ ジタル地図上で道路区間を特定する場合は、送信側が道路位置データの作成に用 V、たデジタル地図データと受信側が位置特定に用いたデジタル地図データとが似通 つて!/ヽれば、 WPとそれから特定される対象道路(「真の道路」 )上の候補点との差異 は小さくなり、似通っていなければ、この差異は大きくなる。 When the receiving side identifies the position using the road position data sent from the transmitting side and identifies the road section on its own digital map, the transmitting side uses the digital map to create the road position data. If the data and the digital map data used by the receiver for location identification are similar! / ヽ, the difference between the WP and the candidate point on the target road ("true road") identified from the WP will be smaller and similar. If not, the difference is large.
[0066] WPと「真の道路」上の候補点との差異は、送信側及び受信側の双方の地図にお ける縮尺差(1Z25, 000、 1/10, 000、 1/2, 500等)や地図作成者の作成ルー ルの違いによるところが大きい。例えば、 A社の 1Z2, 500地図から生成した道路位 置データを B社の 1Z2, 500地図に位置特定する場合は、 WPと「真の道路」上の候 補点との誤差が場所によらず数 mであり、 A社の 1Z25, 000地図から生成した道路 位置データを B社の 1Z2, 500地図に位置特定する場合は、数十 mの誤差が発生 する。 [0066] The difference between the WP and the candidate points on the "true road" is the scale difference (1Z25,000, 1 / 10,000, 1 / 2,500, etc.) in the maps on both the transmitting and receiving sides. ) And the differences in the mapping rules of map creators. For example, if the road location data generated from Company A's 1Z2,500 map is to be located on Company B's 1Z2,500 map, the error between the WP and the candidate point on the `` true road '' may vary. If the road location data generated from the 1Z25,000 map of Company A is specified on the 1Z2,500 map of Company B, an error of several tens of meters will occur.
そのため、受信側では、送信側の地図データの状況 (縮尺や地図作成ルール等) に応じて、位置特定における候補点検索範囲を変えることができる答である。 Therefore, on the receiving side, the state of the map data on the transmitting side (scale, map creation rules, etc.) The answer is that the search range of the candidate point in the position specification can be changed in accordance with.
[0067] 一般に受信側では、送信側の地図データの状況を知るよしも無 、が、道路位置デ ータを分割して位置特定する場合は、既に位置特定が成功した区間の、道路位置デ ータと特定道路との間の誤差状況から、平均的な誤差発生状況を学習し、その学習 結果に基づいて、以降の区間での位置特定における候補点検索範囲を適応的に設 定することが可能になる。 [0067] In general, the receiving side may or may not know the status of the map data on the transmitting side. However, when the road position data is divided to specify the position, the road position data of the section whose position has been successfully specified is determined. Learn the average error occurrence situation from the error situation between the data and the specific road, and adaptively set the candidate point search range in position identification in subsequent sections based on the learning result. Becomes possible.
[0068] 図 13は、この模様を模式的に示している。図 13 (a)に示すように、道路位置データ の分割区間 1に対しては、あら力じめ決めたデフォルトサイズの候補点検索範囲に含 まれる候補点を検索し、「真の道路」を特定する。分割区間 1の位置特定が終了する と、図 13 (b)に示すように、「真の道路」上の各ノード (ノード A、ノード B)における WP との誤差距離を算出し、平均 '最大'最小誤差距離等を算出する。道路位置データ の分割区間 2に対しては、図 13 (c)に示すように、分割区間 1での平均 '最大'最小 誤差距離等を基に、候補点検索範囲を調整し最適化する。 FIG. 13 schematically shows this pattern. As shown in Fig. 13 (a), for divided section 1 of the road position data, candidate points included in the candidate point search range of the default size determined in advance are searched, and the "true road" To identify. When the location of the divided section 1 is completed, as shown in Fig. 13 (b), the error distance between each node (node A and node B) on the "true road" and the WP is calculated, and the average 'Calculate the minimum error distance. For divided section 2 of the road position data, the candidate point search range is adjusted and optimized based on the average 'maximum' and minimum error distances in divided section 1 as shown in Fig. 13 (c).
[0069] このように、道路位置データの一部分における誤差発生状況から、道路位置データ のその他の部分における誤差発生状況を推定して候補点検索範囲を設定すること により、「送受信間の地図差異が小さいほど、位置特定の処理時間は短くなり、大き いほど処理時間は長くなる。」という、理にかなつた動作が適応的に実現できる。 [0069] As described above, by estimating the error occurrence situation in the other part of the road position data from the error occurrence situation in a part of the road position data and setting the candidate point search range, "the map difference between transmission and reception is reduced. The smaller the value, the shorter the processing time for position identification, and the larger the value, the longer the processing time. "
[0070] なお、図 13では、候補点検索範囲を矩形で表示しているが、候補点検索の角度範 囲を示す候補点検索方位範囲を決定する場合も同様であり、ここで言う候補点検索 範囲には候補点検索方位範囲も当然含まれる。 In FIG. 13, the candidate point search range is displayed as a rectangle. However, the same applies to the case where the candidate point search azimuth range indicating the angle range of the candidate point search is determined. The search range naturally includes the candidate point search direction range.
[0071] 図 14は、候補点検索範囲決定部 16が、道路位置データの一部分における誤差発 生状況から、道路位置データのその他の部分における誤差発生状況を推定して候 補点検索範囲を適応的に設定する場合の処理フローを示して!/ヽる。 FIG. 14 shows that the candidate point search range determination unit 16 estimates the error occurrence state in the other part of the road position data from the error occurrence state in one part of the road position data and adapts the candidate point search range. Show the processing flow when you set it! / Puru.
候補点検索範囲の設定に関する各種パラメータ (WP力もの距離、 τ、 Ύ等)を初 期値にリセットし (ステップ 31)、最初 (Μ= 1)の道路位置データ Μに着目して (ステツ プ 32)、道路位置データ Μを分割し (ステップ 33)、その最初 (Μη=Μ1)の道路位 置データブロック Μηを対象として (ステップ 34)、そのブロック Μηの道路位置データ を取得し (ステップ 35)、位置特定を行い (ステップ 36)、位置特定が成功したか否か を判定する (ステップ 37)。適切な候補点が得られず、位置特定に失敗したときは、 検索範囲が拡がるようにパラメータを変更し (ステップ 38)、位置特定をやり直す。 Reset the various parameters (such as WP force distance, τ , Ύ, etc.) related to the setting of the candidate point search range to the initial values (step 31), and focus on the first (Μ = 1) road position data ((step 32), the road position data Μ is divided (step 33), the first (Μη = Μ1) road position data block Μη is targeted (step 34), and the road position data of the block Μη is obtained (step 35). ), And specify the location (step 36), and determine whether the location was successful. Is determined (step 37). If an appropriate candidate point is not obtained and the position identification fails, change the parameters so that the search range is expanded (step 38) and repeat the position identification.
[0072] 位置特定に成功したときは (ステップ 37で Yesの場合)、道路位置データとそれを 用いて特定した道路との誤差を算出し (ステップ 39)、誤差の状況力もパラメータを更 新する (ステップ 40)。 [0072] When the position is specified successfully (Yes in Step 37), the error between the road position data and the specified road is calculated (Step 39), and the parameters of the error situation are updated. (Step 40).
[0073] 例えば、各 WPの誤差 (WPと「真の道路」上の候補点との距離)を Diとするとき、候 補点検索範囲を規定する WP力もの距離を、次のように設定する。 [0073] For example, when the error of each WP (distance between the WP and the candidate point on the "true road") is Di, the distance of the WP force that defines the candidate point search range is set as follows. I do.
• Diにおける最大誤差 Dmaxの P倍に設定する。 • Set to P times the maximum error Dmax in Di.
•Diの平均 Daverage + 2 σに設定する(母数全体の 98%が候補点検索範囲に入る 水準)。 • Set the average of Di to Daverage + 2σ (a level at which 98% of the total parameters fall within the candidate point search range).
•Daverage + P- σに設定する(Ρは、母数全体の Ν%が候補点検索範囲に入るよう に調整する定数)。 • Set to Daverage + P-σ (Ρ is a constant that adjusts so that Ν% of the whole parameter is within the candidate point search range).
[0074] 道路位置データ Μの次の道路位置データブロックに対しては、更新したパラメータ を用いてステップ 35— 40の処理を行 、、こうした手順を道路位置データ Μの全ての 道路位置データブロック Μηに対して繰り返す (ステップ 41、 42)。道路位置データ Μ の全ての道路位置データブロック Μηに対する処理が終了したときは、次回以降の位 置特定用パラメータを更新して (ステップ 43)、次の道路位置データを対象としてステ ップ 33— 43の処理を行い、こうした手順を道路位置データ Μの全てに対して繰り返 す (ステップ 44、 45)。 [0074] For the road position data block following the road position data Μ, the processing of steps 35-40 is performed using the updated parameters, and such a procedure is performed for all the road position data blocks Μη of the road position data Μ. (Steps 41 and 42). When the processing for all the road position data blocks Μη of the road position data 終了 has been completed, the next and subsequent position specifying parameters are updated (step 43), and step 33— The processing of step 43 is performed, and such a procedure is repeated for all the road position data Μ (steps 44 and 45).
[0075] こうした手順で、道路位置データの一部分の誤差発生状況に基づ 、て、道路位置 データのその他の部分での候補点検索範囲を適応的に設定することができる。 なお、地図間の距離誤差の発生状況は、高速道路か否か、本線か連絡路か等々 の道路属性により変わるケースが多いため、候補点検索範囲のパラメータ調整は、 道路属性等の分類単位に行うという方法も考えられる。 [0075] According to such a procedure, a candidate point search range in another part of the road position data can be adaptively set based on an error occurrence state of a part of the road position data. In many cases, the occurrence of the distance error between maps depends on the road attributes such as whether the road is an expressway or a main line or a connecting road.Therefore, the parameter adjustment of the candidate point search range is performed in units of classification such as road attributes. It is also possible to do it.
[0076] また、地図間での角度誤差の発生状況は、偏角の大きさにより大きく変わるため、 道路位置データの偏角絶対値の分類(10° 以内、 10— 45° 、45° 以上等)単位に 候補点検索範囲のパラメータ調整を行うという方法も考えられる。 Further, since the occurrence of the angle error between the maps greatly changes depending on the magnitude of the declination, the classification of the declination absolute value of the road position data (within 10 °, 10−45 °, 45 ° or more, etc.) It is also conceivable to adjust the parameters of the candidate point search range for each unit.
[0077] なお、各実施形態では、道路位置データを位置特定する場合につ!ヽて説明したが 、本発明の位置特定方法は、道路だけで無ぐ鉄道、水路、等高線、行政境界等の 如き線形対象物の位置データを用いて、それらの線形対象物をデジタル地図上に 対応付ける位置特定にも適用できる。 In each embodiment, the case where the road position data is specified is described. The position identification method of the present invention is also used for position identification to associate linear objects on a digital map using position data of linear objects such as railways, waterways, contour lines, administrative boundaries, etc., which are not only roads. Applicable.
[0078] 情報処理装置 10は、情報提供装置から交通情報と対象道路の道路位置データと を受信し、位置特定を実施して対象道路を特定する、カーナビゲーシヨン装置、 PC、 PDA,携帯電話等の情報端末であり、あるいは、プローブカー車載機力 計測情報 (交通情報)と走行軌跡を示す道路位置データとを受信し、位置特定を実施して走行 軌跡を特定するプローブ情報収集センタ (情報収集配信センタ)等である。 [0078] The information processing device 10 receives traffic information and road position data of the target road from the information providing device, and performs position identification to identify the target road, a car navigation device, a PC, a PDA, and a mobile phone. Or a probe information collection center (Information Terminal) that receives the information on the in-vehicle capability of the probe car (traffic information) and the road position data indicating the travel trajectory and identifies the travel trajectory by performing position identification. Collection and distribution center).
[0079] また、コンピュータに対し、上述の位置特定方法を実行させるためのプログラムも本 発明に含まれる。このようなプログラムは、情報処理装置 10に対し、種々の形式で組 み込まれる。例えば情報処理装置 10内又はこれらの外部の装置内の所定のメモリに プログラムを記録することができる。また、ハードディスクのような情報記録装置や、 C D— ROMや DVD— ROM、メモリカードのような情報記録媒体にプログラムを記録し てもよい。また、ネットワーク経由により当該プログラムをダウンロードするようにしても よい。 [0079] The present invention also includes a program for causing a computer to execute the above-described position specifying method. Such a program is incorporated into the information processing device 10 in various formats. For example, the program can be recorded in a predetermined memory in the information processing device 10 or in a device outside these devices. Further, the program may be recorded on an information recording device such as a hard disk, or an information recording medium such as a CD-ROM, a DVD-ROM, or a memory card. Alternatively, the program may be downloaded via a network.
[0080] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there.
[0081] 本出願は、 2003年 11月 19日出願の日本特許出願(特願 2003— 389006)に基 づくものであり、その内容はここに参照として取り込まれる。 [0081] The present application is based on a Japanese patent application filed on November 19, 2003 (Japanese Patent Application No. 2003-389006), the contents of which are incorporated herein by reference.
産業上の利用可能性 Industrial applicability
[0082] 本発明の位置特定方法は、位置特定に際して、省メモリや処理の高速化が必要な 全ての分野で利用することができ、例えば、交通情報提供システムやプローブ情報 の収集システム、鉄道 '水路'等高線 ·行政境界等の地図データを提供するシステム などで、幅広く利用することができる。 [0082] The position specifying method of the present invention can be used in all fields that require memory saving and high-speed processing when specifying a position. For example, a traffic information providing system, a probe information collecting system, a railway system, and the like. Canal 'Contours · It can be widely used in systems that provide map data such as administrative boundaries.
また、本発明の装置は、交通情報を受信して再現するカーナビゲーシヨン装置、 P C、 PDA,携帯電話等の情報端末、あるいは、プローブカー情報を収集するプロ一 ブ情報収集センタ等、位置特定を実施する多くの装置に適用することができる。 Further, the device of the present invention can be used to identify a location such as a car navigation device that receives and reproduces traffic information, an information terminal such as a PC, a PDA, or a mobile phone, or a probe information collection center that collects probe car information. Can be applied to many devices that implement
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003389006A JP4318537B2 (en) | 2003-11-19 | 2003-11-19 | Map matching method and apparatus for implementing the same |
| JP2003-389006 | 2003-11-19 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2005050593A1 true WO2005050593A1 (en) | 2005-06-02 |
Family
ID=34616238
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2004/016578 Ceased WO2005050593A1 (en) | 2003-11-19 | 2004-11-09 | Position specifying method and device for executing that method |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP4318537B2 (en) |
| WO (1) | WO2005050593A1 (en) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008146151A (en) * | 2006-12-06 | 2008-06-26 | Sumitomo Electric System Solutions Co Ltd | Traveling data collection device, collection program, and method |
| WO2008117787A1 (en) | 2007-03-27 | 2008-10-02 | Nec Corporation | Map matching system, map matching method and program |
| JP5349804B2 (en) * | 2008-01-10 | 2013-11-20 | 株式会社日立産機システム | Mobile robot system and control method thereof |
| DE102009047407A1 (en) * | 2009-12-02 | 2011-06-09 | Robert Bosch Gmbh | Method and navigation device for simplifying a description of a route |
| JP5348181B2 (en) * | 2011-06-02 | 2013-11-20 | 株式会社デンソー | Road estimation device |
| GB201404040D0 (en) | 2014-03-07 | 2014-04-23 | Tomtom Int Bv | Reconstructing routes using electronic map data |
| JP2016090371A (en) * | 2014-11-04 | 2016-05-23 | 国立研究開発法人産業技術総合研究所 | Information processing apparatus for processing sensor information, information management system, information display system, information processing method, program, recording medium, and server apparatus |
| JP2017075952A (en) * | 2016-11-14 | 2017-04-20 | パイオニア株式会社 | Information processing apparatus, information acquisition apparatus, information processing system, information processing method, and information processing program |
| JP7267501B2 (en) * | 2020-03-27 | 2023-05-01 | 三菱重工機械システム株式会社 | Driving route recording device, driving route recording system, server, driving route recording method, and program |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002328027A (en) * | 2001-04-27 | 2002-11-15 | Matsushita Electric Ind Co Ltd | Digital map location information transmission method |
| JP2002328032A (en) * | 2001-04-27 | 2002-11-15 | Matsushita Electric Ind Co Ltd | Digital map location information transmission method |
| JP2003254762A (en) * | 2002-02-28 | 2003-09-10 | Matsushita Electric Ind Co Ltd | Position information transmitting device and method |
-
2003
- 2003-11-19 JP JP2003389006A patent/JP4318537B2/en not_active Expired - Lifetime
-
2004
- 2004-11-09 WO PCT/JP2004/016578 patent/WO2005050593A1/en not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002328027A (en) * | 2001-04-27 | 2002-11-15 | Matsushita Electric Ind Co Ltd | Digital map location information transmission method |
| JP2002328032A (en) * | 2001-04-27 | 2002-11-15 | Matsushita Electric Ind Co Ltd | Digital map location information transmission method |
| JP2003254762A (en) * | 2002-02-28 | 2003-09-10 | Matsushita Electric Ind Co Ltd | Position information transmitting device and method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4318537B2 (en) | 2009-08-26 |
| JP2005147982A (en) | 2005-06-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7528746B2 (en) | Encoding data generation method and device | |
| JP4663136B2 (en) | Method and apparatus for transmitting location information of digital map | |
| US6931319B2 (en) | Method for transmitting information on position on digital map and device used for the same | |
| CN114450557B (en) | Route deviation quantification and vehicle route learning based thereon | |
| US20040044468A1 (en) | Method and apparatus for transmitting position information | |
| CN102648396B (en) | Method for Simplifying the Delineation of Driving Routes | |
| CN1982847A (en) | Digital map position information transfer method | |
| KR20110025799A (en) | How to analyze position from encoded data indicating position | |
| CN102918358A (en) | A method of resolving a location from data representative thereof | |
| JP2010267000A (en) | Path estimation device, path estimation method and program | |
| KR20040099353A (en) | Relative location data correction apparatus, relative location data correction method, relative location data correction program, shape data generation apparatus, shape data generation method and shape data generation program | |
| WO2005050593A1 (en) | Position specifying method and device for executing that method | |
| JPWO2005013242A1 (en) | Method for transmitting position information of digital map and program, program product, system and apparatus for implementing the method | |
| JP2004354395A (en) | Map matching method and device | |
| CN118585832B (en) | Vehicle track recognition method, device, equipment, storage medium and program product | |
| JP4606445B2 (en) | Map matching method and apparatus for implementing the same | |
| JP4991002B2 (en) | Method and apparatus for transmitting location information of digital map | |
| JP5328944B2 (en) | Method and apparatus for transmitting location information of digital map | |
| CN113393694B (en) | Bus backbone line grabbing method | |
| JP2006071627A (en) | POSITION INFORMATION TRANSMISSION DEVICE, POSITION INFORMATION RECEPTION DEVICE, POSITION INFORMATION TRANSMISSION METHOD, AND POSITION INFORMATION TRANSMISSION PROGRAM | |
| JP2004125537A (en) | Map matching method and device | |
| JP2004264203A (en) | Map matching method and device | |
| JP2011248374A (en) | Position information transmission method of digital map and apparatus thereof | |
| JP2005121518A (en) | Route information transmission method and apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
| 122 | Ep: pct application non-entry in european phase |