WO2003021247A1 - Biocapteur - Google Patents
Biocapteur Download PDFInfo
- Publication number
- WO2003021247A1 WO2003021247A1 PCT/US2002/027279 US0227279W WO03021247A1 WO 2003021247 A1 WO2003021247 A1 WO 2003021247A1 US 0227279 W US0227279 W US 0227279W WO 03021247 A1 WO03021247 A1 WO 03021247A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- electrode
- biosensor according
- ligand
- molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54306—Solid-phase reaction mechanisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
- G01N33/5438—Electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/66—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/806—Electrical property or magnetic property
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/815—Test for named compound or class of compounds
Definitions
- the present invention relates, in general, to biosensors and, in particular, to bioelectronic sensors and methods of using same in analyte detection.
- Chemoresponsive sensors have numerous medical, environmental, and defense applications (Ramsay (ed.) Commercial Biosensors: Applications to Clinical, Bioprocess, and Environmental Samples (John Wiley & Sons, New York (1998)) .
- One of the main challenges in sensor development is devising materials combining analyte binding diversity with mechanisms that transduce molecular recognition events (Ellis et al , Chem. Rev. 100:2477-2478 (2000), Hellinga et al, Trends Biotechnol . 16:183-189 (1998)).
- Bioelectronic interfaces Wang et al , Agnew. Chem. mt . Ed 39:1180- 1218 (2000), Ottovaleitmannova et al , Frog. Surf Sci .
- Proteins that allosterically link the behavior of two different sites do so via conformational coupling mechanisms (Perutz, Mechanisms of Cooperativity and Allosteric Regulation in Proteins (Cambridge University Press, Cambridge) 1990).
- two sites are thermodynamically coupled when each adopts multiple, distinct local conformations that correspond to distinct global protein conformations.
- Such global conformational changes often correspond to different quarternary states in multimeric assemblies (Gerstein et al, Biochemistry 33:6739 (1994)) but may also involve motions such as ligand-induced hinge- bending motions (Gerstein et al , Biochemistry 33:6739 (1994)) within monomers.
- the present invention results, at least in part, from studies demonstrating that it is possible to couple ligand binding in bPBPs to modulation of the interactions between a redox reporter group and a modified electrode surface.
- This scheme is analogous to ligand-dependent allosteric control of intermolecular macromolecular associations as observed in electron transport chains (Georgiadis et al, Science 257:1653 (1992); Iwata et al , Science 281:64
- the present invention relates, in general, to biosensors. More specifically, the invention relates to bioelectronic sensors and to methods of using such sensors in analyte detection.
- FIGS 1A-1D Members of the periplasmic binding protein superfamily used in this study: Fig. IA. Maltose binding protein (MBP) , showing the ligand- induced conformational change, Fig. IB. glucose binding protein (GBP), Fig. 1C. glutamine binding protein (QBP) and Fig. ID. a mutant of MBP re- engineered to bind Zn(II) (eZBP) .
- Ligands are shown as CPK representations. The attachment sites of the synthetic Ru(II) redox cofactor are indicated by large gray spheres; the C-termini by white spheres. All molecular graphics were generated with Molscript (Kraulis, Appl . Crystallorg. 24:946-950 (1991)).
- FIG. 2 Schematic illustration of the protein- mediated, ligand-dependent changes in the interactions between a Ru(II) redox reporter and a surface-modified gold electrode.
- Proteins were site-specifically attached through a carboxy-terminal oligohistidine peptide (rectangle) coordinated to a gold electrode modified with a self-assembled monolayer terminated with hydroxyl and Ni (II) -nitrilotriacetate headgroups .
- the thiol -reactive ruthenium complex (ball) was covalently linked to a mutant cysteine on the protein surface, thereby positioning the metal complex within the interface between the protein and self-assembled monolayer.
- the changes in the protein conformation [open (black) - closed (grey) ] alter the interaction between the cofactor and electrode surface, and therefore the observed current flowing between these two components (arrows) .
- FIG. 3 Cyclic voltammogram of a Ru(II)- labelled Glyl74Cys MBP mutant immobilized on a surface-modified gold electrode. The measurements were taken at a scan rate of 4V/s. The observed 30 mV peak separation is indicative of surface immobilization of the redox-active species (Bard et al , Electrochemical Methods (John Wiley & Sons, New York, (1980)). Integration of the current revealed that 10-30% of the electrode surface is covered with electroactive protein.
- FIGS. 4A-4D Ligand-mediated electrochemical responses of four electroactive biomolecular assemblies. Inserts show the current responses observed at different ligand concentrations, measured by scanning the potential at a constant frequency.
- Fig. 4C L255C-GBP
- Two binding constants are reported: e K d is dissociation constant of the assembly, determined electrochemically; f K d is the dissocation constant of the protein free in solution, determined by measuring changes in the intrinsic tryptophan fluorescence of the conjugates.
- the ligand-binding affinities determined electrochemically using a disk gold electrode are 2-5 fold weaker than those in solution.
- a gold microelectrode prepared by flame annealing a gold wire (Creager et al , Anal. Chem. 70:4257 (1998)) is used instead of a gold disk electrode, the electrochemically determined affinities are similar to the solution affinities.
- Fractional saturation curves were obtained by fitting the baseline-corrected ac currents observed (filled circles, average of at least three determinations; error bars are smaller than the symbol) at different ligand concentrations to a standard binding isotherm (Marvin, et al, Proc . Natl. Acad. Sci. USA 94:4366-4371 (1997)).
- FIG. 5 Effect of maltose binding pocket mutations on maltose-dependent electrochemical responses.
- Ligand-dependent peak currents (filled circles, average of at least three determinations; error bars are smaller than the symbol) were fit to a binding isotherm (Marvin, et al , Proc . Natl. Acad. Sci. USA 94:4366-4371 (1997)).
- the present invention relates to biosensors that use ligand-mediated macromolecular structural changes to link molecular recognition and signal transduction, the sites for these two functions being sterically separated.
- the present invention results, at least in part, from the realization that protein allosteric interactions can be engineered to transduce ligand (analyte) binding into detectable signals.
- Biosensors of the invention e.g., comprising a derivatized chemo-responsive electrode
- Biosensors of the invention can be used to precisely and accurately sense a diverse set of analytes having numerous medical, environmental and defense applications (Willner et al, Angew. Chem. Int. Ed. 39:1180 (2000), Laval et al , Analyst 125:29 (2000), Lowe, Curr. Op. Chem. Biol. 10:428 (2000) and Hellinga et al, Trends Biotech. 16:1983 (1998)).
- the biosensor of the invention comprises: (i) a multilayer substrate comprising a conducting or semiconducting layer (electrode) and a self-assembled monolayer (SAM) directly or indirectly bound to the conducting or semiconducting layer;
- tether e.g., a peptide, nucleic acid (e.g. DNA) , or other organic molecule tether, advantageously, via a peptide tether;
- the conductive layer of the present biosensor can be any conducting or semiconducting substance in any form.
- suitable forms include foils, wires, wafers, chips, micro- or nano-particles, semiconductor devices and coatings deposited by any known deposition process.
- Gold, silver, and copper conductive layers chemisorb thiol, sulfide or disulfide functional compounds, while other conductive layers can chemisorb these or other SAM-forming compounds (that include oxygen-containing compounds for etched silicon [SiH] and silicon-derivative compounds [trichiorosilanes , trimethoxysilanes, for example] for metal oxides) .
- Preferred conductive materials include gold, silver, copper, aluminum, platinum, iridium, palladium, rhodium, mercury, silicon, osmium, ruthenium, gallium arsenide, indium phosphide, mercury, cadmium telluride, carbon and the like.
- Gold, silver, aluminum foil, and doped silicon wafers are particularly preferred.
- the "self-assembled monolayer” comprises a type of molecule that can bind or interact spontaneously or otherwise with a metal, metal oxide, glass, quartz or modified polymer surface in order to form a chemisorbed monolayer.
- a SAM is formed from molecules that bond with the surface upon their direct contact from solvent, vapor, spray or otherwise.
- a S7 ⁇ M possesses a molecular thickness, ideally, no thicker than the length of the longest molecule used therein.
- Molecules making up SAMs can include a functional group that adheres to the conductive layer and further can include a pendant moiety that can interact with the protein molecule to be anchored above the SAM.
- the S7AM can pacify the electrode, that is, can reduce denaturation of the protein molecule and/or fouling of the electrode.
- the biosensor can also be constructed without the use of 'a SAM (e.g., by direct physical absorption of the protein molecules to the conducting or semiconducting layer) .
- the biosensor can also be constructed such that the protein is not bound to the electrode (e.g., either directly (with or without tether) or via a SAM) .
- the biosensor can employ any protein that undergoes a conformational change upon binding to a ligand (analyte) .
- the nature of the protein used is dependent upon the analyte to be detected.
- proteins suitable for use in the invention include members of the periplasmic-binding protein superfamily such as glucose-binding protein, maltose-binding protein, ribose-binding protein, arabinose-binding protein, histidine-binding protein, glutamine-binding protein.
- the ligand-binding sites can be naturally evolved, or engineered using rational design or directed evolution, and therefore interact with natural or non-natural ligands.
- Periplasmic binding proteins of E are members of the periplasmic-binding protein superfamily such as glucose-binding protein, maltose-binding protein, ribose-binding protein, arabinose-binding protein, histidine-binding protein, glutamine-binding protein.
- the ligand-binding sites can be naturally
- MBP, GBP, QBP and engineered versions thereof are merely examples, as are all homologues, analogues and/or paralogues of members of this superfamily.
- Other examples include hexokinase, phosphofructokinase, DNA polymerase, etc.
- the redox reporter can be a redox-active metal center or a redox-active organic molecule. It can be a natural organic cofactor such as NAD, N/ADP, FAD or a natural metal center such as Blue Copper, iron-sulfur clusters, or heme, or a synthetic center such as an organometallic compound such as a ruthenium complex, organic ligand such as a quinone, or an engineered metal center introduced into the protein or engineered organic cofactor binding site. Cofactor-binding sites can be engineered using rational design or directed evolution techniques.
- the redox reporter can be bound covalently or non-covalently to the protein, either by site-specific or adventitious interactions between the cofactor and protein.
- the redox reporter can be, for example, linked (e.g., covalently) to a residue on the protein surface.
- the redox reporter can be a metal-containing group (e.g., a transition metal -containing group) that is capable of reversibly or semi-reversibly transferring one or more electrons.
- a metal-containing group e.g., a transition metal -containing group
- the reporter group has a redox potential in the potential window below that subject to interference by molecular oxygen and has a functional group suitable for covalent coupling to the protein (e.g., thiol-reactive functionalities such as maleimides or iodoacetamide for coupling to unique cysteine residues in the protein) .
- the metal of the reporter group should be substitutionally insert in either reduced or oxidized states (i.e., advantageously, exogenous groups do not form adventitious bonds with the reporter group) .
- the reporter group can be capable of undergoing an amperometric or potentiometric change in response to ligand binding.
- the reporter group is water soluble, is capable of site- specific coupling to a protein (e.g., via a thiol- reactive functional group on the reporter group that reacts with a unique cysteine in the protein) , and undergoes a potentiometric response upon ligand binding.
- Suitable transition metals for use in the invention include, but are not limited to, copper
- Ni molybdenum
- Mo molybdenum
- Tc technetium
- W tungsten
- Ir iridium
- the platinum metals Ru, Rh, Pd, Os, Ir and Pt
- Fe Re, W. Mo
- Tc tungsten
- Ir iridium
- metals that do not change the number of coordination sites upon a change in oxidation state including ruthenium, osmium, iron, platinum and palladium, with ruthenium being especially preferred.
- the reporter group can be present in the biosensor as a covalent conjugate with the protein or it can be a metal center that forms part of the protein matrix (for instance, a redox center such as iron-sulfur clusters, heme, Blue copper, the electrochemical properties of which are sensitive to its local environment) .
- the reporter group can be present as a fusion between the protein and a metal binding domain (for instance, a small redox-active protein such as a cytochrome) .
- the reporter group is covalently conjugated to the protein via a maleimide functional group bound to a cysteine (thiol) on the protein.
- the reporter group is attached to the protein so that it is located between the protein and the electrode.
- the protein of the biosensor can be attached to the SAM, or directly to the conductive layer, via a tether, for example, a tether comprising a peptide, nucleic acid, lipid or carbohydrate.
- a tether for example, a tether comprising a peptide, nucleic acid, lipid or carbohydrate.
- the tether should be as short as synthetically feasible and site-specifically attached to the protein.
- linkage is between a C- or N-terminal oligohistidine fusion peptide (5-10 histidines) , binding via immobilized metal affinity interactions (Thomson et al, Biophys . J.
- the protein can also be modified so as to contain one member of a binding pair (e.g., the protein can be biotinylated) and the surface to which it is attached can be derivatized with the other member of the binding pair (e.g., the surface can be streptavidin-derivatized) (Rao et al , Mikrochimica Acta 128:127-143 (1998)).
- a binding pair e.g., the protein can be biotinylated
- the surface to which it is attached can be derivatized with the other member of the binding pair (e.g., the surface can be streptavidin-derivatized)
- the biosensor of the invention can be deployed in si tu to monitor continuously fluctuations in analyte, e.g., in the blood stream of a patient to monitor blood glucose, etc., in water samples to monitor for toxins, pollutants, or in a bioreactor or chemical reactor to monitor reaction progress .
- Analytes detectable using the biosensors of the invention include organic and inorganic molecules, including biomolecules .
- the analyte can be an environmental pollutant (e.g., a pesticide, insecticide, toxin, etc.); a therapeutic molecule (e.g., a low molecular weight drug); a biomolecule (e.g., a protein or peptide, nucleic acid, lipid or carbohydrate, for example, a hormone, cytokine, membrane antigen, receptor (e.g., neuronal , hormonal, nutrient or cell surface receptor) or ligand therefor, or nutrient and/or metabolite such as glucose) ; a whole cell (including a procaryotic (such as.
- pathogenic bacterium and eucaryotic cell, including a mammalian tumor cell) ; a virus (including a retrovirus, herpesvirus, adenovirus, lentivirus, etc.); and a spore.
- a particularly preferred analyte is glucose.
- 1-mm diameter gold disk electrodes were successively polished with 6, 3, and 1- ⁇ m diamond paste and sonicated in water for 1 min between each polishing step.
- SAMs self-assembled monolayers
- the polished electrodes were rinsed with water and immediately incubated in a solution of 11-thiolundecanoic acid (5 mM in ethanol or acetonitrile) for 24 h.
- Electrodes were then activated (COOH group) by immersion in a solution of 1- (3 -dimethylaminopropyl) -3- ethylcarbodiimide (EDC) (1 mg/mL in 20 mM MES buffer, 100 mM NaCl, pH 6.0) for 5 min, followed by a 1-h incubation in a solution (50 mM sodium phosphate buffer, 100 mM NaCl, pH 7.8) containing aminopentanol (5 mM) and N- ,N-bis- (carboxymethyl) -L-lysine hydrate (lysine-NTA) (Fluka) (0.25 mM) .
- EDC 1- (3 -dimethylaminopropyl) -3- ethylcarbodiimide
- the lysine- NTA ligands were charged with Ni(II) by immersion of the electrodes in a solution of nickel sulfate hexahydrate (40 mM in 1 mM NaOH) for 1 h followed by rinsing in water.
- Electrochemistry All electrochemical data were collected using a combined potentiostat and galvanostat equipped with a frequency response annlyzer module (Autolab/PGSTAT30, Eco Chemie B.V.). Experiments were performed at room temperature using a single-compartment cell with a three-electrode configuration: derivatized gold working electrode, Pt auxiliary electrode, and ultralow leakage Ag/AgCl/3M KCl reference electrode (Cypress) .
- the electrolyte solution was 20 mM NaP0 4 , 100 mM NaCl, pH 7.5.
- the electrode was incubated for 1 h in 5 ⁇ M protein solutions (in electrolyte) before making measurements.
- Electrode area was determined electrochemically using 0.1 M ferroene in acetronitrile with a Ag/AgCl acetonitrile non-aqueous reference electrode (BAS) in 0.1 M tetrabutylammonium perchlorate.
- the anodic and cathodic peak currents of the ferrocene redox couple were obtained by CV as a function of the square root of the scan rate (10 to 500 mV/s) .
- This area was within 10% of the geometrically estimated gold electrode area.
- the quantity of electroactive protein conjugates in the monolayer was determined from the integrated current of the oxidative or reductive peaks measured in the CV of the His-tag adsorbed Ru-MBP protein.
- the number of electrons was calculated by dividing the integrated peak current by the scan rate (4 V/s) and the charge of an electron. This number was assumed to correspond to the number of electroactive redox cofactors and was divided by the number of available MPB binding sites on the electrode.
- the total possible number of MPB binding sites on the electrode is calculated as a geometrical estimate obtained by dividing the electrochemically determined electrode area by the approximate area occupied by one MBP molecule (40 x 60 2 ) , calculated from a projection of the molecular principle axes on a plane. 10-30% of the electrode surface was estimated to be covered with electroactive MBP proteins.
- the modified electrode was then rinsed with water and placed in an aqueous solution (20 mM sodium phosphate buffer, 100 mM sodium chloride, pH 7.8) containing 5 mM [Ru(II) (NH 3 ) 4 (1,10- phenanthroline-5-maleimide) ] (PFg) for 1 h.
- PFg phenanthroline-5-maleimide
- Maltose-binding protein is a structurally well-characterized member of the bPBP family (Quiocho, et al, Structure 5:997 (1997)). This protein adopts two conformations: a ligand-free open form and a liganded closed form, which inter-convert by a hinge- bending motion (Fig. 1) .
- a conformational coupling mechanism was designed to modulate the behavior of a redox reporter group.
- the carboxy-terminus (near the hinge-region) of MBP was tethered to the electrode, and a Ru(II) redox reporter group was conjugated site-specifically to the surface of MBP that faces the electrode (Fig.
- This arrangement orients the ligand-binding site toward the bulk solution, and links the ligand-mediated conformational changes within the MBP-electrode interface to alterations in electronic coupling between the Ru(II) reporter group and the electrode, thereby allowing ligand binding to be measured electrochemically.
- (+220 mV) is consistent with immobilization, since it is similar to the measured potential of the Ru(II) reporter directly tethered to a modified gold electrode (+240 mV) and not to that observed in the MBP-Ru(II) conjugate free in solution (+330 mV)
- the ligand dependence of the electrochemical response was probed using ac voltammetry (Bard et al , Electrochemical Methods (John Wiley & Sons, New York 1980), Creager et al , Anal. Chem. 70:4257 (1998)).
- the optimal ac current response due to the Ru(II) reporter group was observed at 1 kHz, and decreased from 12 to 5 ⁇ A upon addition of maltose (Fig. 4A inset) .
- the optimal frequency for ac voltammograms was determined using a ratio of ac peak current to baseline current (Creager et al, Anal. Chem. 70:4257 (1998)).
- This method is used to partially correct for capacitive contributions to the total observed current, thereby providing a relatively specific probe for the Faradaic contributions by the Ru(II) reporter group.
- the baseline current was linearly interpolated between the extrema of the potentiometric peak.
- currents are reported as a difference between the ac peak and baseline currents, since there is no need for frequency correction of current response.
- the ligand concentration dependence of the ac current fit to a single-site binding isotherm (Fig. 4A) , and only the addition of maltose (and not glucose, glutamine, or zinc) elicited an electrochemical response. Additional modified electrodes were prepared using MBP point mutants with decreased affinities for maltose
- the GBP- and QBP-modified electrodes exhibited similar ac currents (0.5-10 ⁇ A) , mid-point potentials (+220-230 V) , optimal frequencies (0.1-1 kHz), and ligand-mediated ac current changes (Fig 4B, 4D) as the MBP-modified electrodes.
- a protein-modified electrode was constructed using an engineered MBP redesigned to bind Zn(II) (eZBP) (Marvin et al , Proc. Natl. Acad. Sci. USA 98 (9) :4955-4960 (2001)) to demonstrate that new sensors can be developed in a modular fashion by re- engineering the ligand-binding site without destroying the linkage to the reporter group (Hellinga et al , Trends Biotech. 16:183-189 (1998)).
- the electrochemical response of the eZBP-modified electrode (Fig. 4C) was identical to wild-type MBP, but changed in response to zinc, rather than maltose.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Diabetes (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Peptides Or Proteins (AREA)
Abstract
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP02773249.4A EP1421371B1 (fr) | 2001-08-28 | 2002-08-28 | Biocapteur |
| JP2003525280A JP4358626B2 (ja) | 2001-08-28 | 2002-08-28 | バイオセンサー |
| CA2457964A CA2457964C (fr) | 2001-08-28 | 2002-08-28 | Biocapteur |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US31503601P | 2001-08-28 | 2001-08-28 | |
| US60/315,036 | 2001-08-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2003021247A1 true WO2003021247A1 (fr) | 2003-03-13 |
Family
ID=23222585
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2002/027279 Ceased WO2003021247A1 (fr) | 2001-08-28 | 2002-08-28 | Biocapteur |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US6977180B2 (fr) |
| EP (1) | EP1421371B1 (fr) |
| JP (1) | JP4358626B2 (fr) |
| CA (1) | CA2457964C (fr) |
| WO (1) | WO2003021247A1 (fr) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2679990A1 (fr) * | 2007-09-18 | 2014-01-01 | Ultizyme International Ltd. | Électrode enzymatique |
| US9005983B2 (en) | 2008-09-08 | 2015-04-14 | Schlumberger Technology Corporation | Electro-chemical sensor |
| CN104910256A (zh) * | 2015-07-10 | 2015-09-16 | 重庆医科大学 | 一种自组装短肽及其对金电极修饰的应用 |
| US9625458B2 (en) | 2002-10-16 | 2017-04-18 | Duke University | Biosensor |
| US11119097B2 (en) | 2011-12-05 | 2021-09-14 | The Trustees Of The University Of Pennsylvania | Graphene-biomolecule bioelectronic devices |
Families Citing this family (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1620548A2 (fr) * | 2003-05-07 | 2006-02-01 | Duke University | Conception de structures de proteine pour reconnaissance et liaison recepteur-ligand |
| US7787923B2 (en) * | 2003-11-26 | 2010-08-31 | Becton, Dickinson And Company | Fiber optic device for sensing analytes and method of making same |
| WO2005108612A2 (fr) * | 2003-11-28 | 2005-11-17 | Genorx, Inc. | Dispositif de biodetecteur de nano-echelle, systeme et technique associes |
| US7563891B2 (en) * | 2004-05-21 | 2009-07-21 | Becton, Dickinson & Company | Long wavelength thiol-reactive fluorophores |
| US8465981B2 (en) * | 2007-08-06 | 2013-06-18 | University Of Kentucky Research Foundation | Polypeptides, systems, and methods useful for detecting glucose |
| JP2009075100A (ja) * | 2007-08-30 | 2009-04-09 | National Institute Of Advanced Industrial & Technology | 分子認識素子及び該分子認識素子を用いたバイオセンサ並びに該バイオセンサを用いた測定方法。 |
| US9375529B2 (en) | 2009-09-02 | 2016-06-28 | Becton, Dickinson And Company | Extended use medical device |
| EP3384942B1 (fr) | 2009-01-12 | 2025-09-17 | Becton, Dickinson and Company | Ensemble de perfusion et/ou pompe à plaque ayant au moins un cathéter rigide intégré avec des éléments flexibles et/ou une fixation pour cathéter flexible |
| US8939928B2 (en) | 2009-07-23 | 2015-01-27 | Becton, Dickinson And Company | Medical device having capacitive coupling communication and energy harvesting |
| US10092691B2 (en) | 2009-09-02 | 2018-10-09 | Becton, Dickinson And Company | Flexible and conformal patch pump |
| US8741591B2 (en) | 2009-10-09 | 2014-06-03 | The Research Foundation For The State University Of New York | pH-insensitive glucose indicator protein |
| TWI396844B (zh) * | 2009-12-15 | 2013-05-21 | Biosensors Electrode Technology Co Ltd | 用於生物檢測試片之電極、其製造方法及其生物檢測試片 |
| CN101750443A (zh) * | 2009-12-31 | 2010-06-23 | 立威生技实业股份有限公司 | 生物检测试片电极、其制造方法及生物检测试片 |
| GB201018224D0 (en) | 2010-10-28 | 2010-12-15 | Dna Electronics | Chemical sensing device |
| US8814831B2 (en) | 2010-11-30 | 2014-08-26 | Becton, Dickinson And Company | Ballistic microneedle infusion device |
| US9950109B2 (en) | 2010-11-30 | 2018-04-24 | Becton, Dickinson And Company | Slide-activated angled inserter and cantilevered ballistic insertion for intradermal drug infusion |
| US8795230B2 (en) | 2010-11-30 | 2014-08-05 | Becton, Dickinson And Company | Adjustable height needle infusion device |
| US10004845B2 (en) | 2014-04-18 | 2018-06-26 | Becton, Dickinson And Company | Split piston metering pump |
| US9416775B2 (en) | 2014-07-02 | 2016-08-16 | Becton, Dickinson And Company | Internal cam metering pump |
| EP3377643A4 (fr) * | 2015-11-20 | 2019-10-02 | Duke University | Biocapteurs de glucose et leurs utilisations |
| KR102093540B1 (ko) | 2017-08-11 | 2020-03-25 | 주식회사 엘지화학 | 할로겐 치환된 스티렌 모노머의 제조방법 |
| JP2025523210A (ja) * | 2022-07-18 | 2025-07-17 | ウィロー・ラボラトリーズ・インコーポレイテッド | 遺伝子操作されたグルコース結合タンパク質へのグルコース平衡結合による電気化学的グルコース感知 |
| JP7655499B1 (ja) | 2024-08-09 | 2025-04-02 | 株式会社オプトラン | 電気化学測定用の電極及び測定方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6130037A (en) * | 1996-04-25 | 2000-10-10 | Pence And Mcgill University | Biosensor device and method |
| US6231733B1 (en) * | 1993-04-17 | 2001-05-15 | Kurt Nilsson | Immobilized carbohydrate biosensor |
| US6277627B1 (en) * | 1997-12-31 | 2001-08-21 | Duke University | Biosensor |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6060327A (en) * | 1997-05-14 | 2000-05-09 | Keensense, Inc. | Molecular wire injection sensors |
| US6013459A (en) * | 1997-06-12 | 2000-01-11 | Clinical Micro Sensors, Inc. | Detection of analytes using reorganization energy |
| IL124903A0 (en) * | 1998-06-15 | 1999-01-26 | Bauer Alan Josef | An enzyme biosensor |
| DK1098658T3 (da) * | 1998-07-17 | 2009-11-09 | Univ Maryland | Manipulerede proteiner til detektering af analytter |
| US6432723B1 (en) * | 1999-01-22 | 2002-08-13 | Clinical Micro Sensors, Inc. | Biosensors utilizing ligand induced conformation changes |
-
2002
- 2002-08-28 WO PCT/US2002/027279 patent/WO2003021247A1/fr not_active Ceased
- 2002-08-28 JP JP2003525280A patent/JP4358626B2/ja not_active Expired - Fee Related
- 2002-08-28 US US10/229,286 patent/US6977180B2/en not_active Expired - Lifetime
- 2002-08-28 CA CA2457964A patent/CA2457964C/fr not_active Expired - Fee Related
- 2002-08-28 EP EP02773249.4A patent/EP1421371B1/fr not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6231733B1 (en) * | 1993-04-17 | 2001-05-15 | Kurt Nilsson | Immobilized carbohydrate biosensor |
| US6130037A (en) * | 1996-04-25 | 2000-10-10 | Pence And Mcgill University | Biosensor device and method |
| US6277627B1 (en) * | 1997-12-31 | 2001-08-21 | Duke University | Biosensor |
Non-Patent Citations (2)
| Title |
|---|
| BONTIDEAN ET AL.: "Detection of heavy metal ions at femtomolar levels using protein-based biosensors", ANALYTICAL CHEMISTRY, vol. 70, no. 19, 1 October 1998 (1998-10-01), pages 4162 - 4169, XP002954974 * |
| See also references of EP1421371A4 * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9625458B2 (en) | 2002-10-16 | 2017-04-18 | Duke University | Biosensor |
| US10712341B2 (en) | 2002-10-16 | 2020-07-14 | Duke University | Biosensor |
| EP2679990A1 (fr) * | 2007-09-18 | 2014-01-01 | Ultizyme International Ltd. | Électrode enzymatique |
| US9005983B2 (en) | 2008-09-08 | 2015-04-14 | Schlumberger Technology Corporation | Electro-chemical sensor |
| US11119097B2 (en) | 2011-12-05 | 2021-09-14 | The Trustees Of The University Of Pennsylvania | Graphene-biomolecule bioelectronic devices |
| CN104910256A (zh) * | 2015-07-10 | 2015-09-16 | 重庆医科大学 | 一种自组装短肽及其对金电极修饰的应用 |
Also Published As
| Publication number | Publication date |
|---|---|
| US6977180B2 (en) | 2005-12-20 |
| JP4358626B2 (ja) | 2009-11-04 |
| EP1421371B1 (fr) | 2014-03-19 |
| EP1421371A4 (fr) | 2008-08-27 |
| CA2457964C (fr) | 2013-05-28 |
| US20030129622A1 (en) | 2003-07-10 |
| EP1421371A1 (fr) | 2004-05-26 |
| JP2005502045A (ja) | 2005-01-20 |
| CA2457964A1 (fr) | 2003-03-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6977180B2 (en) | Biosensor | |
| EP0988532B1 (fr) | Detection d'analytes au moyen d'une energie de reorganisation | |
| de Castro et al. | Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum | |
| Santhosh et al. | Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications | |
| Andreescu et al. | Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application | |
| Zeynaloo et al. | Design of a mediator-free, non-enzymatic electrochemical biosensor for glutamate detection | |
| WO2018031497A1 (fr) | Détection sans réactif à une seule étape par biocapteurs électrochimiques à base de protéines utilisant l'interférence stérique | |
| Wei et al. | Electrocatalytic oxidation of tyrosines shows signal enhancement in label-free protein biosensors | |
| Li et al. | A label-free electrochemical aptasensor for low-density lipoprotein detection using MoS2-Au-Fc nanosheets as a high-performance redox indicator | |
| Amini et al. | Construction of a highly sensitive immunosensor based on antibody immunoglobulin G/3-(trimethoxysilyl) propylamine/graphene oxide for antigen-specific immunoglobulin G detection | |
| WO2011078800A1 (fr) | Procédé de détection d'un analyte | |
| AU2012304199B2 (en) | Electrochemical affinity sensor | |
| Feleni et al. | Biocompatible palladium telluride quantum dot-amplified biosensor for HIV drug | |
| AU2002336402A1 (en) | Biosensor | |
| US20060003382A1 (en) | Compositions and methods for analyte detection | |
| Vieira et al. | Stripping metalloprotein with bismuth nanomaterials tethered on carbon surface | |
| US20240068981A1 (en) | Biosensor Based Tool to Monitor Obesity | |
| Das | Electrochemical and functional studies of de novo alpha helical proteins from a designed combinatorial library |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2002336402 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2457964 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2002773249 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003525280 Country of ref document: JP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2002773249 Country of ref document: EP |