WO2003014178A1 - Procede et composition pour la production de masse rapide d'articles d'enregistrement holographique - Google Patents
Procede et composition pour la production de masse rapide d'articles d'enregistrement holographique Download PDFInfo
- Publication number
- WO2003014178A1 WO2003014178A1 PCT/US2002/024926 US0224926W WO03014178A1 WO 2003014178 A1 WO2003014178 A1 WO 2003014178A1 US 0224926 W US0224926 W US 0224926W WO 03014178 A1 WO03014178 A1 WO 03014178A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- optical article
- mixing
- polymerization
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0005—Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
- G03F7/001—Phase modulating patterns, e.g. refractive index patterns
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1221—Basic optical elements, e.g. light-guiding paths made from organic materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/02—Details of features involved during the holographic process; Replication of holograms without interference recording
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0065—Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/26—Apparatus or processes specially adapted for the manufacture of record carriers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/04—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
- G11C13/042—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam using information stored in the form of interference pattern
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/04—Processes or apparatus for producing holograms
- G03H1/18—Particular processing of hologram record carriers, e.g. for obtaining blazed holograms
- G03H1/181—Pre-exposure processing, e.g. hypersensitisation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/02—Details of features involved during the holographic process; Replication of holograms without interference recording
- G03H2001/026—Recording materials or recording processes
- G03H2001/0264—Organic recording material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2260/00—Recording materials or recording processes
- G03H2260/12—Photopolymer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H2270/00—Substrate bearing the hologram
- G03H2270/53—Recording material dispersed into porous substrate
Definitions
- the invention relates to optical articles including holographic recording media, in particular media useful either with holographic storage systems or as components such as optical filters or beam steerers.
- this invention relates to rapid mass production of high performance holographic recording article.
- a hologram stores data in three dimensions and reads an entire page of data at one time, i.e., page-wise, which is unlike an optical CD disk that stores data in two dimensions and reads a track at a time.
- Page-wise systems involve the storage and readout of an entire two-dimensional representation, e.g., a page, of data.
- recording light passes through a two-dimensional array of dark and transparent areas representing data, and the holographic system stores, in three dimensions, holographic representations of the pages as patterns of varying refractive index imprinted into a storage medium.
- Holographic systems are discussed generally in D. Psaltis et al., "Holographic Memories," Scientific American, November 1995, the disclosure of which is hereby incorporated by reference.
- phase correlation multiplex holography is phase correlation multiplex holography, which is described in U.S. Patent No. 5,719,691 issued February 17, 1998, the disclosure of which is hereby incorporated by reference.
- the advantages of recording a hologram are high density (storage of hundreds of billions of bytes of data), high speed (transfer rate of a billion or more bits per second) and ability to select a randomly chosen data element in 100 microseconds or less. These advantages arise from three-dimensional recording and from simultaneous readout of an entire page of data at one time.
- a hologram is a pattern, also known as a grating, which is formed when two laser beams interfere with each other in a light-sensitive material (LSM) whose optical properties are altered by the intersecting beams.
- LSM light-sensitive material
- a display such as a liquid crystal display (LCD) screen
- LCD liquid crystal display
- Other devices such as reflective LCD's or reflective deformable micromirror devices can also be used to represent the data.
- a blue-green laser beam for example, is shined through this crossword-puzzlelike pattern called a page, and focused by lenses to create a beam known as a signal beam.
- a hologram of the page of data is created when the signal beam meets another beam, called the reference beam, in the LSM.
- the reference beam could be collimated, which means that all its light waves are synchronized, with crests and troughs passing through a plane in lockstep. Such waves are known as plane waves.
- the reference beam may also be a spherical beam or may be phase-encoded or structured in other manners well known in the field of holography.
- the grating created when the signal and reference beams meet is captured as a pattern of varying refractivity in the LSM.
- the page After recording the grating, the page can be holographically reconstructed by for example shining the reference beam into the LSM from the same angle at which it had entered the LSM to create the hologram. As it passes through the grating in the LSM, the reference beam is diffracted in such a way that it recreates the image of the original page and the information contained on it. A reconstructed page is then projected onto a detector such as an array of electrooptical detectors that sense the light-and-dark pattern, thereby reading all the stored information on the page at once. The data can then be electronically stored, accessed or manipulated by any conventional computer.
- a detector such as an array of electrooptical detectors that sense the light-and-dark pattern
- a reference light beam is passed through a phase mask, and intersected in the recording medium with a signal beam that has passed through an array representing data, thereby forming a hologram in the medium.
- the spatial relation of the phase mask and the reference beam is adjusted for each successive page of data, thereby modulating the phase of the reference beam and allowing the data to be stored at overlapping areas in the medium.
- the data is later reconstructed by passing a reference beam through the original storage location with the same phase modulation used during data storage.
- volume holograms as passive optical components to control or modify light directed at the medium, e.g., filters or beam steerers.
- the material described in this article contains a photoimageable system containing a liquid monomer material (the photoactive monomer) and a photoinitiator (which promotes the polymerization of the monomer upon exposure to light), where the photoimageable system is in an organic polymer host matrix that is substantially inert to the exposure light.
- the photoimageable system is in an organic polymer host matrix that is substantially inert to the exposure light.
- U.S. Patent No. 6,013,454 and application Serial No. 08/698,142 also relate to a photoimageable system in an organic polymer matrix.
- the application discloses a recording medium formed by polymerizing matrix material in situ from a fluid mixture of organic oligomer matrix precursor and a photoimageable system.
- a similar type of system, but which does not incorporate oligomers, is discussed in D.J. Lougnot et al., Pure and Appl. Optics, 2, 383 (1993). Because little or no solvent is typically required for deposition of these matrix materials, greater thicknesses are possible, e.g., 200 ⁇ m and above.
- This invention in high performance holographic recording articles is based on a thermally crosslinked matrix system containing photoimageable monomers. Fabrication of such system demanded that the article is of low scatter, bubble-free, optically flat, and uniform in thickness so that the articles will be of high optical quality and that the articles formed will have the desired dynamic range and photosensitivity. [0013] To meet such optical quality requirements, care must be taken to deaerate all components before their reaction is activated either by heat or catalysts. Additionally, any impurity that can produce gases as byproducts must be eliminated to prevent bubbles formation in the cured final matrix system.
- thermally crosslinked matrix system occurs rapidly (preferably less than 20 minutes) to enable mass production of the recording media.
- Polyols are selected from diols and triols of polytetramethylene glycol, polycaprolactone, polypropylene oxide.
- Preferred polyols are polypropylene oxide triols with molecular weight ranging from 450 to 6,000.
- the polyols are free of moisture contents. High temperature vacuum distillation treatments or additives such as moisture scavengers may be used to assure no water residue remains in the polyols before use.
- Additives include thermal stabilizers such as butyrated hydroxytoluene (BHT), Phenothiazine, hydroquinone, and methylether of hydroquinone; reducers such as peroxides, phosphites, and hydroxyamines; and deformers or deaerators to eliminate entrapped air. bubbles.
- thermal stabilizers such as butyrated hydroxytoluene (BHT), Phenothiazine, hydroquinone, and methylether of hydroquinone
- reducers such as peroxides, phosphites, and hydroxyamines
- deformers or deaerators to eliminate entrapped air. bubbles.
- Tin catalysts could be used. These are dimethyltindilaurate, dibutyltindilaurate, stannous octoate, and others.
- the invention constitutes an improvement over prior recording media.
- Prior art has described thermally cross-linked matrix/photoimageable monomer systems but have not described methods that enable their rapid fabrication.
- the invention's use of a matrix precursor (i.e., the one or more compounds from which the matrix is formed) and a photoactive monomer the polymerize by independent reactions substantially prevents both cross-reaction between the photoactive monomer and the matrix precursor during the cure, and inhibition of subsequent monomer polymerization.
- a matrix precursor and photoactive monomer that form compatible polymers substantially avoids phase separation. And in situ formation allows fabrication of media with desirable thicknesses.
- the matrix precursors are chosen to facilitate rapid production of the recording media (i.e., precursors that polymerize rapidly).
- the recording media is fabricated through the use of an automated mixing system to further facilitate efficient production of the recording media.
- optical articles being articles that rely on the formation of refractive index patterns or modulations in the refractive index to control or modify light that is directed at them
- such articles include, but are not limited to, optical waveguides, beam steerers, and optical filters.
- Independent reactions indicate: (a) the reactions proceed by different types of reaction intennediates, e.g., ionic vs.
- Polymers are considered to be compatible if a blend of the polymers is characterized, in 90° light scattering of a wavelength used for hologram formation, by a Rayleigh ratio (R 90° ) less than 7 x 10 "3 cm "1 .
- the Rayleigh ratio (R 0 ) is a conventionally known property, and is defined as the energy scattered by a unit volume in the direction ⁇ , per steradian, when a medium is illuminated with a unit intensity of unpolarized light, as discussed in M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, Academic Press, San Diego, 1969, at 38.
- the Rayleigh ratio is typically obtained by comparison to the energy scatter of a reference material having a known Rayleigh ratio.
- a useful photorecording material i.e., the matrix material plus the photoactive monomer, photomitiator, and or other additives, is attained, the material capable of being formed in thicknesses greater than 200 ⁇ m, advantageously greater than 500 ⁇ m, and, upon flood exposure, exhibiting light scattering properties such that the Rayleigh ratio, R 90 , is less than 7 x 10 "3 .
- Flood exposure is exposure of the entire photorecording material by incoherent light at wavelengths suitable to induce substantially complete polymerization of the photoactive monomer throughout the material.
- the optical article of the invention is formed by steps including mixing a matrix precursor and a photoactive monomer, and curing the mixture to form the matrix in situ.
- the reaction by which the matrix precursor is polymerized during the cure is independent from the reaction by which the photoactive monomer is later polymerizeduring writing of a pattern, e.g., data or waveguide form, and, in addition, the matrix polymer and the polymer resulting from polymerization of the photoactive monomer (hereafter referred to as the photopolymer) are compatible with each other.
- the matrix is considered to be formed when the photorecording material exhibits an elastic modulus of at least about 10 5 Pa.
- Curing indicates reacting the matrix precursor such that the matrix provides this elastic modulus in the photorecording material.
- the optical article of the invention contains a three-dimensional crosslinked polymer matrix and one or more photoactive monomers. At least one photoactive monomer contains one or more moieties, excluding the monomer frmctional groups, that are substantially absent from the polymer matrix.
- media which utilize a matrix precursor and photoactive monomer that polymerize by non-independent reactions often experience substantial cross-reaction between the precursor and the photoactive monomer during the matrix cure (e.g., greater than 20% of the monomer is reacted or attached to the matrix after cure), or other reactions that inhibit polymerization of the photoactive monomer.
- Cross-reaction tends to undesirably reduce the refractive index contrast between the matrix and the photoactive monomer and is capable of affecting the subsequent polymerization of the photoactive monomer, and inhibition of monomer polymerization clearly affects the process of writing holograms.
- phase separation typically occurs during hologram formation. It is possible for such phase separation to lead to increased light scattering, reflected in haziness or opacity, thereby degrading the quality of the medium, and the fidelity with which stored data is capable of being recovered.
- the optical article, e.g., holographic recording medium, of the invention is formed by steps including mixing a matrix precursor and a photoactive monomer, and curing the mixture to form the matrix in situ.
- the matrix precursor and photoactive monomer are selected such that (a) the reaction by which the matrix precursor is polymerized during the cure is independent from the reaction by which the photoactive monomer will be polymerized during writing of a pattern, e.g., data, and (b) the matrix polymer and the polymer resulting from polymerization of the photoactive monomer (the photopolymer) are compatible with each other.
- the matrix is considered to be formed when the photorecording material, i.e., the matrix material plus the photoactive monomer, photoinitiator, and/or other additives, exhibits an elastic modulus of at least about 10 5 Pa, generally about 10 5 Pa to about 10 9 Pa, advantageously about 10 6 Pa to about 10 8 Pa.
- the compatibility of the matrix polymer and photopolymer tends to prevent large-scale (>100 nm) phase separation of the components, such large-scale phase separation typically leading to undesirable haziness or opacity.
- Utilization of a photoactive monomer and a matrix precursor that polymerize by independent reactions provides a cured matrix substantially free of cross-reaction, i.e., the photoactive monomer remains substantially inert during the matrix cure. In addition, due to the independent reactions, there is no inhibition of subsequent polymerization of the photoactive monomer.
- At least one photoactive monomer contains one or more moieties, excluding the monomer functional groups, that are substantially absent from the polymer matrix, i.e., it is possible to find a moiety in the photoactive monomer such that no more than 20%) of all such moieties in the photorecording material are present, i.e., covalently bonded, in the matrix.
- the resulting optical article is capable of exhibiting desirable refractive index contrast due to the independence of the matrix from the photoactive monomer.
- a refractive index contrast ( ⁇ n) between exposed and unexposed regions of a medium, this contrast at least partly due to monomer diffusion to exposed regions.
- High index contrast is desired because it provides improved signal strength when reading a hologram, and provides efficient confinement of an optical wave in a waveguide.
- One way to provide high index contrast in the invention is to use a photoactive monomer having moieties (referred to as index-contrasting moieties) that are substantially absent from the matrix, and that exhibit a refractive index substantially different from the index exhibited by the bulk of the matrix.
- the matrix is a solid polymer formed in situ from a matrix precursor by a curing step (curing indicating a step of inducing reaction of the precursor to form the polymeric matrix). It is possible for the precursor to be one or more monomers, one or more oligomers, or a mixture of monomer and oligomer.
- precursor functional groups are the group or groups on a precursor molecule that are the reaction sites for polymerization during matrix cure.
- the precursor is advantageously liquid at some temperature between about -50°C and about 80°C.
- the matrix polymerization is capable of being performed at room temperature. Also advantageously, the polymerization is capable of being performed in a time period less than 5 minutes.
- the glass transition temperature (T g ) of the photorecording material is advantageously low enough to permit sufficient diffusion and chemical reaction of the photoactive monomer during a holographic recording process.
- the T g is not more than 50°C above the temperature at which holographic recording is performed, which, for typical holographic recording, means a T g between about 80°C and about -130°C (as measured by conventional methods).
- Examples of polymerization reactions contemplated for forming matrix polymers in the invention include cationic epoxy polymerization, cationic vinyl ether polymerization, cationic alkenyl ether polymerization, cationic alkyl ether polymerization, cationic ketene acetal polymerization, epoxy-amine step polymerization, epoxy-mercaptan step polymerization, unsaturated ester-amine step polymerization (via Michael addition), unsaturated ester-mercaptan step polymerization (via Michael addition), vinyl-silicon hydride step polymerization (hydrosilylation), isocyanate- hydroxyl step polymerization (urethane fonnation), and isocyanatae-amine step polymerization (urea formation).
- cationic epoxy polymerization takes place rapidly at room temperature by use of BF 3 -based catalysts
- other cationic polymerizations proceed in the presence of protons
- epoxy-mercaptan reactions and Michael additions are accelerated by bases such as amines
- hydrosilylation proceeds rapidly in the presence of transition metal catalysts such as platinum
- urethane and urea formation proceed rapidly when tin catalysts are employed.
- photogenerated catalysts for matrix formation, provided that steps are taken to prevent polymerization of the photoactive monomer during the photogeneration.
- Formulation of a version of high performance holographic recording systems comprises the following ingredients:
- the NCO-terminated prepolymers are selected from the by-products of diols and diisocyanates that have wt % contents of NCO in the range of 10 to 25.
- the NCO contents were determined based on the prepolymer, unreacted diisocyanate and optionally added neat polyisocyanates to achieve the high performance characteristics.
- Aromatic diisocynates based prepolymers are prefe ⁇ ed. However, when the NCO-terminated prepolymer is based on aliphatic diisocyanates, 5 to 100 % of its wt % contents of NCO have to be derived from aromatic diisocyanates or aliphatic polyisocyanates.
- Preferred aromatic diisocyanates are, but no limit to, diphenylmethane diisocyanate (MDI) and toluene diisocyanate (TDI).
- Preferred aliphatic polyisocyanates are: Hexamethylene diisocyanate (HDI) and its biuret, isocyanurate, uretidione, and other derivatives.
- the photoactive monomer is any monomer or monomers capable of undergoing photoinitiated polymerization, and which, in combination with a matrix materials, meets the plymerization reaction and compatibility requirements of the invention.
- Suitable photoactive monomers include those which polymerize by a free- radical reaction, e.g., molecules containing ethylenic unsaturation such as acrylates, methacrylates, acrylamides, methacrylamides, styrene, substituted styrenes, vinyl naphthalene, substituted vinyl naphthalenes, and other vinyl derivatives.
- Free-radical copolymerizable pair systems such as vinyl ether mixed with maleate and thiol mixed with olefin are also suitable. It is also possible to use cationically polymerizable systems such as vinyl ethers, alkenyl ethers, alkyl ethers, ketene acetals, and epoxies.
- a single photoactive monomer molecule may contain more than one monomer functional group.
- relatively high index contrast is desired in the article of the invention, whether for improved readout in a recording media or efficient light confinement in a waveguide.
- it is advantageous to induce this relatively large index change with a small number of monomer functional groups because polymerization of the monomer generally induces shrinkage in a material.
- shrinkage has a detrimental effect on the retrieval of data from stored holograms, and also degrades the performance of waveguide devices such as by increased transmission losses or other performance deviations. Lowering the number of monomer functional groups that must be polymerized to attain the necessary index contrast is therefore desirable.
- This lowering is possible by increasing the ratio of the molecular volume of the monomers to the number of monomer functional groups on the monomers. This increase is attainable by inco ⁇ orating into a monomer larger index-contrasting moieties and/or a larger number of index-contrasting moieties.
- the molecular volume could be increased relative to the number of monomer functional groups by incorporating a naphthalene ring instead of a benzene ring (the naphthalene having a larger volume), or by incorporating one or more additional benzene rings, without increasing the number of monomer functional groups.
- polymerization of a given volume fraction of the monomers with the larger molecular volume/monomer functional group ratio would require polymerization of less monomer functional groups, thereby inducing less shrinkage. But the requisite volume fractiion of monomer would still diffuse from the unexposed region to the exposed region, providing the desired refractive index.
- the molecular volume of the monomer should not be so large as to slow diffusion below an acceptable rate. Diffusion rates are controlled by factors including size of diffusing species, viscosity of the medium, and intermolecular interactions. Larger species tend to diffuse more slowly, but it would be possible in some situations to lower the viscosity or make adjustments to the other molecules present in order to raise diffusion to an acceptable level. Also, in accord with the discussion herein, it is important to ensure that larger molecules maintain compatibility with the matrix. [0038] Numerous architectures are possible for monomers containing multiple index- contrasting moieties. For example, it is possible for the moieties to be in the main chain of a linear oligomer, or to be substituents along an oligomer chain.
- the index-contrasting moieties can be the subunits of a branched or dendritic low molecular weight polymer.
- the preferred acrylate monomers are monofunctional. These include 2,4,6- tribromophenylacrylate, pentabromoacrylate, isobornylacrylate, phenylthioethyl acrylate tetrahydrofurfurylacrylate, l-vinyl-2-py ⁇ olidinone, asymmetric bis thionapthyl acrylate, 2-phenoxyethylacrylate, and the like.
- the optical article typically contains a photomitiator (the photomitiator and photoactive monomer being part of the overall photoimageable system).
- the photomitiator upon exposure to relatively low levels of the recording light, chemically initiates the polymerization of the monomer, avoiding the need for direct light-induced polymerization of the monomer.
- the photomitiator generally should offer a source of species that initiate polymerization of the particular photoactive monomer. Typically, 0.1 to 20 wt. % photomitiator, based on the weight of the photoimageable system, provides desirable results.
- photoinitiators known to those skilled in the art and available commercially are suitable for use in the invention. It is advantageous to use a photomitiator that is sensitive to light in the visible part of the spectrum, particularly at wavelengths available from conventional laser sources, e.g., the blue and green lines of Ar+ (458, 488, 514 nm) and He-Cd lasers (442 nm), the green line of frequency doubled YAG lasers (532 nm), and the red lines of He-Ne (633 nm) and Kr+ lasers (647 and 676 nm).
- the blue and green lines of Ar+ (458, 488, 514 nm
- He-Cd lasers 442 nm
- the green line of frequency doubled YAG lasers 532 nm
- red lines of He-Ne (633 nm) and Kr+ lasers
- One advantageous free radical photomitiator is bis( ⁇ -5-2,4-cyclopentadien-l- yl)bis[2,6-difluoro-3-(lH-py ⁇ ol-l-yl)phenyl]titanium, available commercially from Ciba as CGI-784.
- Another visible free-radical photomitiator (which requires a co-initiator) is 5,7,diiodo-3-butoxy-6-fluorone, commercially available from Spectra Group Limited as H-Nu 470. Free-radical photoinitiators of dye-hydrogen donor systems are also possible.
- Suitable dyes include eosin, rose bengal, erythrosine, and methylene blue
- suitable hydrogen donors include tertiary amines such as n-methyl diethanol amine.
- a cationic photomitiator is used, such as a sulfonium salt or an iodonium salt. These cationic photomitiator salts absorb predominantly in the UV portion of the spectrum, and are therefore typically sensitized with a dye to allow use of the visible portion of the spectrum.
- an alternative visible cationic photomitiator is ( ⁇ 5 -2,4-cyclopentadien-l-yl) ( ⁇ 6 - isopropylbenzene)-iron(II) hexafluorophosphate, available commercial from Ciba as Irgacure 261. It is also conceivable to use other additives in the photoimageable system, e.g., inert diffusing agents having relatively high or low refractive indices. [0042]
- the photoinitiators are selected according to their sensitivity to the light sources. For example, Irgacure 369, Irgacure 819, and Irgacure 907 are suitable for commercial blue laser systems.
- the matrix is a polymer formed by mercaptan-epoxy step polymerization, more advantageously a polymer formed by mercaptan-epoxy step polymerization having a polyether backbone.
- the polyether backbone offers desirable compatibility with several useful photoactive monomers, particularly vinyl aromatic compounds.
- photoactive monomers selected from styrene, bromostyrene, divinyl benzene, and 4-methylthio-l-vinylnaphthalene have been found to be useful with matrix polymers formed by mercaptan-epoxy step polymerization and having a polyether backbone.
- a monomer that has more than one index-contrasting moiety and that is also useful with these polyether matrix polymers is 1 -(3-(naphth- 1 -ylthio)propylthio)-4-vinylnaphthalene.
- the polymerization reactions for the matrix precursor and the photoactive monomer are selected such that: (a) the reactions proceed by different types of reaction intermediates, (b) neither the intermediate nor the conditions by which the matrix is polymerized will induce substantial polymerization of the photoactive monomer functional groups, and (c) neither the intermediate nor the conditions by which the matrix is polymerized will induce a non-polymerization reaction of the monomer functional groups that causes cross-reaction (between the monomer functional groups and the matrix polymer) or inhibits later polymerization of the monomer functional groups.
- item (a) if a matrix is polymerized by use of an ionic intermediate, it would be suitable to polymerize the photoactive monomer by use of a free radical reaction.
- the ionic intermediate should not induce substantial polymerization of the photoactive monomer functional groups.
- a photoinitiated free radical matrix polymerization will typically induce a photoinitiated cationic polymerization of a photoactive monomer frmctional group.
- two otherwise independent reactions are not independent for purposes of the invention if both are driven by a single reaction condition.
- base-catalyzed matrix polymerization should not be performed when the photoactive monomer functional group undergoes a non-polymerization reaction in response to the base, even if polymerization of the monomer functional group is performed by an independent reaction.
- a specific example is that a base-catalyzed epoxy-mercaptan polymerization should not be used with an acrylate monomer because, although the acrylate is polymeried by a free radical reaction, the acrylate will react with the mercaptans under base catalysis, resulting in a cross-reaction.
- Table 1 illustrates some examples of matrix/photoactive monomer combinations where the matrix polymerization reaction and photoactive monomer polymerization are capable of being independent, and examples where the polymerizations interfere with each other. (Photoactive monomers are horizontal, and matrix polymers are vertical. "X” indicates cross-reaction or monomer polymerization during matrix polymerization. "O" indicates independent reactions.
- polymers are considered to be compatible if a blend of the polymers is characterized, in 90° light scattering, by a Rayleigh ratio (R 90° ) less than 7 x 10 " cm " .
- the Rayleigh ratio, R 0 is a conventionally known property, and is defined as the energy scattered by a unit volume in the direction ⁇ , per steradian, when a medium is illuminated with a unit intensity of unpolarized light, as discussed in M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, Academic Press, San Diego, 1969.
- the light source used for the measurement is generally a laser having a wavelength in the visible part of the spectrum.
- the wavelength intended for use in writing holograms is used.
- the scattering measurements are made upon a photorecording material that has been flood exposed.
- the scattered light is collected at an angle of 90° from the incident light, typically by a photodetector. It is possible to place a narrowband filter, centered at the laser wavelength, in front of such a photodetector to block fluorescent light, although such a step is not required.
- Rayleigh ratio is typically obtained by comparison to the energy scatter of a reference material having a known Rayleigh ratio.
- polymer blends which are considered to be miscible e.g., according to conventional tests such as exhibition of a single glass transition temperature, will typically be compatible as well, i.e., miscibility is a subset of compatibility. Standard miscibility guidelines and tables are therefrom useful in selecting a compatible blend. However, it is possible for polymer blends that are immiscible to be compatible according to the light scattering test above.
- a polymer blend is generally considered to be miscible if the blend exhibits a single glass transition temperature, T g , as measured by conventional methods. An immiscible blend will typically exhibit two glass transition temperatures corresponding to the T g values of the individual polymers.
- T g testing is most commonly performed by differential scanning calorimetry (DSC), which shows the T g as a step change in the heat flow (typically the ordinate).
- the reported T g is typically the temperature at which the ordinate reaches the mid-point between extrapolated baselines before and after the transition.
- DSC differential scanning calorimetry
- DMA Dynamic Mechanical Analysis
- Matrix polymer and photopolymer that exhibit miscibility are capable of being selected in several ways. For example, several published compilations of miscible polymers are available, such as O. Olabisi et al, Polymer-Polymer Miscibility, Academic Press, New York, 1979; L.M. Robeson, MMI, Press Svmp.
- polystyrene and poly(methylvinylether) are miscible because of an attractive interaction between the methyl ether group and the phenyl ring. It is therefore possible to promote miscibility, or at least compatibility, of two polymers by using a methyl ether group in one polymer and a phenyl group in the other polymer. It has also been demonstrated that immiscible polymers are capable of being made miscible by the incorporation of appropriate functional groups that can provide ionic interactions. (See Z.L. Zhou and A. Eisenberg, J. Polym. Sci., Polvm. Phys. Ed., 21 (4), 595, 1983; R. Murali and A. Eisenberg, J. Polym.
- polyisopreme and polystyrene are immiscible.
- polyisoprene is partially sulfonated (5%)
- 4-vinyl pyridine is copolymerized with the polystyrene
- the blend of these two functionalized polymers is miscible. It is contemplated that the ionic interaction between the sulfonated groups and the pyridine group (proton transfer) is the driving force that makes this blend miscible.
- polystyrene and poly(ethyl acrylate), which are normally immiscible, have been made miscible by lightly sulfonating the polystyrene.
- Charge-transfer has also been used to make miscible polymers that are otherwise immiscible.
- Poly(methyl methacrylate) and polystyrene are also capable of being made miscible using the corresponding donor-acceptor co-monomers (See M.C. Piton and A. Natansohn, Macromolecules, 28, 1605, 1995).
- opacity typically indicates a two-phase material, whereas clarity generally indicates a compatible system.
- Other methods for evaluating miscibility include neutron scattering, infrared spectroscopy (IR), nuclear magnetic resonance (NMR), x-ray scattering and diffraction, fluorescence, Brillouin scattering, melt titration, calorimetry, and chemilluminescence. See, for example, L. Robeson, supra; S. Krause, Chemtracts - Macromol. Chem., 2, 367, 1991a; D. Vessely in Polymer Blends and Alloys, M.J. Folkes and P.S.
- Compatibility has also been promoted in otherwise incompatible polymers by incorporating reactive groups into the polymer matrix, where such groups are capable of reacting with the photoactive monomer during the holographic recording step. Some of the photoactive monomer will thereby be grafted onto the matrix during recording. If there are enough of these grafts, it is possible to prevent or reduce phase separation during recording. However, if the refractive index of the grafted moiety and of the monomer are relatively similar, too many grafts, e.g., more than 30% of monomers grafted to the matrix, will tend to undesirably reduce refractive index contrast.
- a holographic recording medium of the invention is formed by adequately supporting the photorecording material, such that holographic writing and reading is possible.
- fabrication of the medium involves depositing the matrix precursor/photoimageable system mixture between two plates using, for example, a gasket to contain the mixture.
- the plates are typically glass, but it is also possible to use other materials transparent to the radiation used to write data, e.g., a plastic such as polycaronate or poly(methyl methacrylate). It is possible to use spacers between the plates to maintain a desired thickness for the recording medium.
- the photorecording material of the invention is also capable of being supported in other ways. For instance, it is conceivable to dispose the matrix precursor/photoimageable system mixture into the pores of a substrate, e.g., a nanoporous glass material such as Vycor, prior to matrix cure. More conventional polymer processing is also invisioned, e.g., closed mold formation or sheet extrusion. A stratified medium is also contemplated, i.e., a medium containing multiple substrates, e.g., glass, with layers of photorecording material disposed between the substrates. [0054] The medium of the invention is then capable of being used in a holographic system such as discussed previously.
- the amount ofinformation capable of being stored in a holographic medium is proportional to the product of: the refractive index contrast, ⁇ n, of the photorecording material, and the thickness, d, of the photorecording material.
- the refractive index contract, ⁇ n is conventionally known, and is defined as the amplitude of the sinusoidal variations in the refractive index of a material in which a plane-wave, volume hologram has been written.
- the ⁇ n is associated with a medium before writing, but is observed by measurement performed after recording.
- the photorecording material of the invention exhibits a ⁇ of 3 x 10 " or higher.
- Examples of other optical articles include beam filters, beam steerers or deflactors, and optical couplers. (See, e.g., L. Solymar and D. Cooke, Volume Holography and Volume Gratings, Academic Press, 315-327 (1981), the disclosure of which is hereby incorporated by reference.)
- a beam filter separates part of an incident laser beam that is traveling along a particular angle from the rest of the beam.
- the Bragg selectivity of a thick transmission hologram is able to selectively diffract light along a particular angle of incidence, while light along other angle travels undeflected through the hologram.
- a beam steerer is a hologram that deflects light incident at the Bragg angle.
- An optical coupler is typically a combination of beam deflectors that steer light from a source to a target.
- holographic optical elements are fabricated by imaging a particular optical interference pattern within a recording medium, as discussed previously with respect to data storage.
- Medium for these holographic optical elements are capable of being formed by the techniques discussed herein for recording media or waveguides.
- the material principles discussed herein are applicable not only to hologram formation, but also to formation of optical transmission devices such as waveguides.
- Polymeric optical waveguides are discussed for example in B.L. Booth, "Optical Interconnection Polymers,” in Polymers for Lightwave and Integrated Optics, Technology and Applications, L.A. Hornak, ed., Marcel Dekker, Inc. (1992); U.S. Patent No. 5,292,620; and U.S. Patent No. 5,219,710, the disclosures of which are hereby inco ⁇ orated by reference.
- the recording material of the invention is i ⁇ adiated in a desired waveguide pattern to provide refractive index contrast between the waveguide pattern and the su ⁇ ounding (cladding) material.
- a benefit of the invention is that by using conventional molding techniques, it is possible to mold the matrix/photoimageable system mixture into a variety of shapes prior to matrix cure. For example, the matrix/photoimageable system mixture is able to be molded into ridge waveguides, wherein refractive index patterns are then written into the molded structures.
- the NCO-terminated prepolymer and polyol must first be reacted to form a matrix in which the acrylate monomer, which remains unreacted, will reside.
- the reaction of the NCO-terminated prepolymer and polyol are two- component system
- the NCO-terminated prepolymer, acrylate monomer, photoinitiator, and thermal stabilizers are predissolved to form a homogeneous solution before charging into one of the holding tanks of a Posiratio two-component metering, mixing and dispensing machine, available from Liquid Control Corp.
- the polyol, tin catalyst, and other additives are premixed and charged into another holding tank. Each tank is then degassed, adjusting dispensing of materials from the tanks to the desired amount according to the procedures outlined by Liquid Control.
- Precise and accurate mixing of the two components, free of entrapped air bubbles, is carried out by metering the liquid from both tanks simultaneously into a helical element static mixer.
- the desired amount of the well-mixed solution is dispensed onto the inner surface of the bottom substrate held by one of the parallel plate.
- the upper substrate, which is held by the other parallel plate, is then brought down to come in contact with the solution and held at a predetermined distance from the bottom plate, according to the procedures described in US Patent 5,932,045 issued August 3, 1999, the disclosure of which is hereby inco ⁇ orated by reference.
- the entire set-up is held till the solution becomes solidified to assure an optically flat article is produced.
- High performance holographic recording articles are characterized by low shrinkage, dynamic range, and sensitivity. Low shrinkage will assure non-degradation of the recorded holograms and total fidelity of the holographic data to be recovered. Low shrinkage in the range of less than 0.2 % is required.
- the dynamic range of a holographic recording medium is typically characterized by the parameter, M/#, a measure of how many holograms of a give average diffraction efficiency can be stored in a common volume.
- the M/# is determined by both the refractive index contrast and thickness of a medium. Typical values of M/# are 1.5 or better.
- the photosensitivity is characterized by the total exposure time required to consume the dynamic range of the media. The sensitivity can be in the range of 25 to 120 seconds.
- each beam was 2 mW and the spot diameter was 4 mm.
- Each hologram is written with a predetermined exposure time. After recording, the material was allowed to sit in the dark for 20 minutes and then flood cured with a Xenon lamp filtered to transmit wavelengths longer than 530 nm.
- Comparative Example 1 A solution was prepared containing 89.25 wt.% phenoxyethyl acrylate (photoactive monomer), 10.11 wt.% ethoxylated bisphenol-A diacrylate (photoactive monomer), 0.5 wt.% Ciba CGI-784 (identified previously) (photomitiator), and 0.14 wt.% dibutyltin dilaurate (catalyst for matrix formation).
- the mixture was thoroughly mixed and allowed to polymerize overnight at room temperature, while protected from light.
- the polymerization was a step polymerization of the isocyanate groups with the hydroxyl groups to form a polyurethane with dissolved acrylate monomers.
- the mixture appeared clear and transparent to the naked eye. Upon exposure to an intense tungsten light, which initiated polymerization of the acrylate monomers, the material turned milky while, indicating that the polyurethane matrix and acrylate polymers were not compatible.
- the above mentioned properties were measured as follows: [0069] The exotherm start, i.e., when the rise in the temperature of the material dispensed on the dish begins, which indicates the start of the reaction, was measured by a thermocouple or thermometer inserted within the material dispensed on the dish. The [0070] The exotherm peak was recorded by monitoring the time when the temperature of the thermocouple or the ⁇ nometer peaks.
- Soft-gel state was monitored by finger pressing the material dispensed on the dish.
- Soft-gel state was the state when the surface of the material dispensed on the dish was not sticky and the material would not flow when the dish was tilted vertically, but the gel could still be deformed by finger pressing.
- Solidification was also determined by finger pressing the material dispensed on the dish. Solidification occu ⁇ ed when finger pressing could not deform the material dispensed on the dish.
- the shrinkage (occurring primarily in the thickness of the medium) is determined by measuring the Bragg detuning (the shift in the readout angle) of the angle multiplexed holograms. The quantitative relationship between the physical shrinkage of the material and the Bragg detuning is described in detail in the above reference, i.e., Applied Physics Letters, Volume 73, Number 10, p. 1337-1339, 7 September 1998.
- the M/# is defined to be the dynamic range of the recording material.
- the M/# is measured by multiplexing a series of holograms with exposure times set to consume all of the photoactive material in the media.
- the M/# is defined to be the sum of the square roots of the diffraction efficiencies of all of the multiplexed holograms. Because the M/# depends on the thickness of the media, the quantities listed in the examples are scaled to 200 ⁇ m thicknesses. [0075]
- the sensitivity is measured by the cumulative exposure time required to reach
- Example 1 [0081] Samples of Example 1 were prepared and evaluated in accordance with the procedures of Comparative Example 2 except using the following components resulting in the properties shown in Table 3 below. Table 3.
- Mondur ML is liquid diphenylmethane diisocyanate available from Bayer.
- Example 2 Samples of Example 2 were prepared and evaluated in accordance with the procedures of Comparative Example 2 except using the following components resulting in the properties shown in Table 4 below. Table 4.
- Mondur TD is toluene diisocyanate (TDI) available from Bayer.
- Example 3 [0083] Samples of Example 3 were prepared and evaluated in accordance with the procedures of Comparative Example 2 except using the following components resulting in the properties shown in Table 5 below. Table 5.
- Baytech MP-160 available from Bayer, is a NCO-te ⁇ ninated prepolymer based on diphenylmethane diisocyanate and polypropylene ether glycol.
- Example 4 [0084] Samples of Example 2 were prepared and evaluated in accordance with the procedures of Comparative Example 2 except using the following components resulting in the properties shown in Table 6 below. Table 6.
- PMEG 1000 is polytetramethylene ether diol having 1000 molecular weight.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Holo Graphy (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE60212854T DE60212854T2 (de) | 2001-08-07 | 2002-08-07 | Verfahren und zusammensetzung zur schnellen massenproduktion von gegenständen zur holographischen aufzeichnung |
| EP02756982A EP1414878B1 (fr) | 2001-08-07 | 2002-08-07 | Procede et composition pour la production de masse rapide d'articles d'enregistrement holographique |
| KR1020047001961A KR100920260B1 (ko) | 2001-08-07 | 2002-08-07 | 홀로그래픽 기록 제품의 신속한 대량 생산을 위한 방법 및 조성물 |
| JP2003519124A JP2004537620A (ja) | 2001-08-07 | 2002-08-07 | ホログラフィック記録製品の迅速大量生産のための製造方法及び組成物 |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US31022501P | 2001-08-07 | 2001-08-07 | |
| US60/310,225 | 2001-08-07 | ||
| US10/146,115 | 2002-05-16 | ||
| US10/146,115 US6743552B2 (en) | 2001-08-07 | 2002-05-16 | Process and composition for rapid mass production of holographic recording article |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2003014178A1 true WO2003014178A1 (fr) | 2003-02-20 |
Family
ID=26843588
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2002/024926 Ceased WO2003014178A1 (fr) | 2001-08-07 | 2002-08-07 | Procede et composition pour la production de masse rapide d'articles d'enregistrement holographique |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US6743552B2 (fr) |
| EP (1) | EP1414878B1 (fr) |
| JP (2) | JP2004537620A (fr) |
| KR (1) | KR100920260B1 (fr) |
| CN (1) | CN1564834A (fr) |
| AT (1) | ATE331744T1 (fr) |
| DE (1) | DE60212854T2 (fr) |
| WO (1) | WO2003014178A1 (fr) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1610191A4 (fr) * | 2003-03-24 | 2007-04-04 | Konica Minolta Med & Graphic | Support d'enregistrement holographique et procede d'enregistrement afferent |
| EP1612623A4 (fr) * | 2003-04-09 | 2007-04-04 | Konica Minolta Med & Graphic | Support d'enregistrement holographique et procede d'enregistrement utilisant ce support |
| EP1666988A4 (fr) * | 2003-09-17 | 2007-04-11 | Konica Minolta Med & Graphic | Support d'enregistrement holographique, procede d'enregistrement holographique et support d'informations holographique |
| US7282322B2 (en) * | 2002-05-29 | 2007-10-16 | Songvit Setthachayanon | Long-term high temperature and humidity stable holographic optical data storage media compositions with exceptional high dynamic range |
| EP1959316A2 (fr) | 2007-02-16 | 2008-08-20 | FUJIFILM Corporation | Support d'enregistrement holographique et procédé de fabrication de support d'enregistrement holographique |
| EP2003500A3 (fr) * | 2007-06-11 | 2009-01-07 | FUJIFILM Corporation | Composition d'enregistrement optique, support d'enregistrement holographique, et procédé d'enregistrement et reproduction d'informations |
| WO2010037515A1 (fr) * | 2008-10-01 | 2010-04-08 | Bayer Materialscience Ag | Supports pour enregistrement holographique en volume, à base d'un polymère autodéveloppant |
| SG160314A1 (en) * | 2008-10-01 | 2010-04-29 | Bayer Materialscience Ag | Polyether-based polyurethane formulations for the production of holographic media |
| EP1696266A3 (fr) * | 2005-02-25 | 2010-06-30 | FUJIFILM Corporation | Matériau d'enregistrement d'hologrammes et support d'enregistrement optique |
| EP2218745A1 (fr) * | 2009-02-12 | 2010-08-18 | Bayer MaterialScience AG | Formules de polyuréthane à base de prépolymère pour la fabrication de films holographiques |
| EP2218742A1 (fr) * | 2009-02-12 | 2010-08-18 | Bayer MaterialScience AG | Compositions photopolymères en tant que formules imprimables |
| WO2011054791A1 (fr) * | 2009-11-03 | 2011-05-12 | Bayer Materialscience Ag | Procédé de production d'un film holographique |
| WO2011054793A1 (fr) * | 2009-11-03 | 2011-05-12 | Bayer Materialscience Ag | Procédé pour produire des supports holographiques |
| WO2011067057A1 (fr) * | 2009-11-03 | 2011-06-09 | Bayer Materialscience Ag | Procédé de production d'un film holographique |
| US8284234B2 (en) | 2009-03-20 | 2012-10-09 | Absolute Imaging LLC | Endoscopic imaging using reflection holographic optical element for autostereoscopic 3-D viewing |
| CN102880004A (zh) * | 2012-09-27 | 2013-01-16 | 武汉华工图像技术开发有限公司 | 一种光致聚合物全息记录材料及其制备方法 |
| CN110426372A (zh) * | 2019-07-16 | 2019-11-08 | 南昌航空大学 | 一种扫频式布里渊散射体弹性模量成像检测方法 |
Families Citing this family (114)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030044690A1 (en) * | 2001-06-27 | 2003-03-06 | Imation Corp. | Holographic photopolymer data recording media, method of manufacture and method of holographically reading, recording and storing data |
| US6780546B2 (en) * | 2001-08-30 | 2004-08-24 | Inphase Technologies, Inc. | Blue-sensitized holographic media |
| US20030206320A1 (en) * | 2002-04-11 | 2003-11-06 | Inphase Technologies, Inc. | Holographic media with a photo-active material for media protection and inhibitor removal |
| AU2003232437A1 (en) * | 2002-05-29 | 2003-12-19 | Inphase Technologies, Inc. | High reflective index photoactive compound for optical applications |
| JP2005208219A (ja) * | 2004-01-21 | 2005-08-04 | Nitto Denko Corp | 光記録素子の製造方法 |
| US7271940B2 (en) * | 2004-02-10 | 2007-09-18 | Zebra Imaging, Inc. | Deposition of photosensitive media for digital hologram recording |
| US20050187308A1 (en) * | 2004-02-20 | 2005-08-25 | Korea Advanced Institute Of Science And Technology | Method of preparing photopolymer with enhanced optical quality using nanoporous membrane and photopolymer prepared by the same |
| US7455889B2 (en) * | 2004-03-24 | 2008-11-25 | Imation Corp. | Holographic media fabrication techniques |
| JP4461901B2 (ja) * | 2004-05-11 | 2010-05-12 | Tdk株式会社 | ホログラム記録材料及びホログラム記録媒体 |
| JP4461902B2 (ja) * | 2004-05-11 | 2010-05-12 | Tdk株式会社 | ホログラム記録材料及びホログラム記録媒体 |
| US7739577B2 (en) * | 2004-06-03 | 2010-06-15 | Inphase Technologies | Data protection system |
| US20050270856A1 (en) * | 2004-06-03 | 2005-12-08 | Inphase Technologies, Inc. | Multi-level format for information storage |
| US7122290B2 (en) | 2004-06-15 | 2006-10-17 | General Electric Company | Holographic storage medium |
| EP1780610A1 (fr) * | 2004-08-18 | 2007-05-02 | Konica Minolta Medical & Graphic, Inc. | Support d'enregistrement holographique, procédé d'enregistrement holographique et support d'informations holographiques |
| US7897296B2 (en) * | 2004-09-30 | 2011-03-01 | General Electric Company | Method for holographic storage |
| US20060078802A1 (en) * | 2004-10-13 | 2006-04-13 | Chan Kwok P | Holographic storage medium |
| JP2006154083A (ja) * | 2004-11-26 | 2006-06-15 | Toshiba Corp | ホログラム記録媒体 |
| US7704643B2 (en) * | 2005-02-28 | 2010-04-27 | Inphase Technologies, Inc. | Holographic recording medium with control of photopolymerization and dark reactions |
| US7623279B1 (en) | 2005-11-22 | 2009-11-24 | Inphase Technologies, Inc. | Method for holographic data retrieval by quadrature homodyne detection |
| US20060199081A1 (en) * | 2005-03-04 | 2006-09-07 | General Electric Company | Holographic storage medium, article and method |
| US7710624B2 (en) * | 2005-05-26 | 2010-05-04 | Inphase Technologies, Inc. | Controlling the transmission amplitude profile of a coherent light beam in a holographic memory system |
| US7742211B2 (en) * | 2005-05-26 | 2010-06-22 | Inphase Technologies, Inc. | Sensing and correcting angular orientation of holographic media in a holographic memory system by partial reflection, the system including a galvano mirror |
| US20060280096A1 (en) * | 2005-05-26 | 2006-12-14 | Inphase Technologies, Inc. | Erasing holographic media |
| US20060281021A1 (en) * | 2005-05-26 | 2006-12-14 | Inphase Technologies, Inc. | Illuminative treatment of holographic media |
| US7466411B2 (en) * | 2005-05-26 | 2008-12-16 | Inphase Technologies, Inc. | Replacement and alignment of laser |
| US7675025B2 (en) | 2005-05-26 | 2010-03-09 | Inphase Technologies, Inc. | Sensing absolute position of an encoded object |
| US20060279819A1 (en) * | 2005-05-26 | 2006-12-14 | Inphase Technologies, Inc. | Laser mode stabilization using an etalon |
| US7397571B2 (en) * | 2005-05-26 | 2008-07-08 | Inphase Technologies, Inc. | Methods and systems for laser mode stabilization |
| US7548358B2 (en) * | 2005-05-26 | 2009-06-16 | Inphase Technologies, Inc. | Phase conjugate reconstruction of a hologram |
| US7480085B2 (en) * | 2005-05-26 | 2009-01-20 | Inphase Technologies, Inc. | Operational mode performance of a holographic memory system |
| US7633662B2 (en) * | 2005-05-26 | 2009-12-15 | Inphase Technologies, Inc. | Holographic drive head alignments |
| US20060275670A1 (en) * | 2005-05-26 | 2006-12-07 | Inphase Technologies, Inc. | Post-curing of holographic media |
| US8305700B2 (en) * | 2005-05-26 | 2012-11-06 | Inphase Technologies, Inc. | Holographic drive head and component alignment |
| JP2007057572A (ja) * | 2005-08-22 | 2007-03-08 | Fujifilm Corp | 光記録用組成物、光記録媒体及びその製造方法 |
| JP2007072192A (ja) | 2005-09-07 | 2007-03-22 | Fujifilm Corp | 光記録媒体及びその製造方法 |
| JP4675196B2 (ja) * | 2005-09-20 | 2011-04-20 | 富士フイルム株式会社 | ホログラム記録媒体用組成物、ホログラム記録媒体及びその製造方法、並びに、ホログラム記録方法及びホログラム再生方法 |
| JP4675197B2 (ja) * | 2005-09-20 | 2011-04-20 | 富士フイルム株式会社 | 溶媒非含有の光記録用組成物及びその製造方法、並びに光記録媒体 |
| JP2007093688A (ja) * | 2005-09-27 | 2007-04-12 | Toshiba Corp | ホログラム記録媒体、マスターホログラムの製造方法およびコピーホログラムの製造方法 |
| US7813017B2 (en) * | 2005-10-21 | 2010-10-12 | Inphase Technologies, Inc. | Method and system for increasing holographic data storage capacity using irradiance-tailoring element |
| US8349524B2 (en) * | 2005-11-11 | 2013-01-08 | Tdk Corporation | Hologram recording material and hologram recording medium |
| US8367274B2 (en) * | 2005-11-11 | 2013-02-05 | Tdk Corporation | Hologram recording material, and hologram recording medium |
| US7173744B1 (en) | 2005-12-02 | 2007-02-06 | Inphase Technologies, Inc. | Article comprising holographic medium between substrates having environmental barrier seal and process for preparing same |
| US20070160106A1 (en) * | 2006-01-06 | 2007-07-12 | Inphase Technologies | External cavity laser with a tunable holographic element |
| EP1999509A4 (fr) * | 2006-03-06 | 2011-03-30 | Inphase Tech Inc | Scanneurs miniatures a base flexible pour multiplexage angulaire |
| US7773276B2 (en) * | 2006-03-07 | 2010-08-10 | Inphase Technologies, Inc. | Method for determining media orientation and required temperature compensation in page-based holographic data storage systems using data page Bragg detuning measurements |
| US20070223554A1 (en) | 2006-03-09 | 2007-09-27 | Inphase Technologies, Inc. | External cavity laser |
| JP2007241144A (ja) | 2006-03-10 | 2007-09-20 | Fujifilm Corp | 感光性組成物、並びに光記録媒体及びその製造方法、光記録方法、光記録装置 |
| JP4917400B2 (ja) * | 2006-03-29 | 2012-04-18 | 富士フイルム株式会社 | ホログラフィック記録用組成物及び光記録媒体、並びに光記録方法 |
| US8120832B2 (en) | 2006-05-23 | 2012-02-21 | Inphase Technologies, Inc. | High speed electromechanical shutter |
| WO2008017063A2 (fr) | 2006-08-03 | 2008-02-07 | Inphase Technologies, Inc. | SCANNER MINIATURE À ACTIONNEUR UNIQUE POUR MULTIPLEXAGE ANGULAIRE AVEC circularisation ET CAPACITÉ DE CORRECTION DU TANGAGE |
| JP2010503025A (ja) * | 2006-08-28 | 2010-01-28 | インフェイズ テクノロジーズ インコーポレイテッド | ホログラフィックデータシステムにおける位相共役を改良する新規なタイプのフーリエ変換(ft)レンズ(204)が提供されるこのタイプのftレンズは、独特に大きいアイソプラナティックパッチを有するこれは、組み立て許容範囲の緩和、非対称の読み取り/書き込みアーキテクチャー、および媒体における傾斜したプレートの収差に対する補償を可能にする |
| US20080059144A1 (en) * | 2006-09-01 | 2008-03-06 | Inphase Technologies | Emulation of dissimilar removable medium storage device types assisted by information embedded in the logical format |
| WO2008042552A2 (fr) * | 2006-09-29 | 2008-04-10 | Inphase Technologies, Inc. | Feedback de position en champ magnétique pour scannneur à mémoire holographique |
| WO2008047626A1 (fr) * | 2006-10-16 | 2008-04-24 | Mitsui Chemicals, Inc. | Procédé de fabrication d'une résine pour un matériau optique |
| TW200830299A (en) | 2006-10-25 | 2008-07-16 | Mitsubishi Chem Corp | Volume hologram optical recording medium, composition for volume hologram recording layer formation, and volume hologram recording material |
| CN102394071A (zh) | 2006-11-01 | 2012-03-28 | 英法塞技术公司 | 单目全息数据存储系统结构 |
| EP2390731B1 (fr) | 2006-11-01 | 2012-10-24 | InPhase Technologies, Inc. | Architecture monoculaire de système de stockage de données holographiques |
| JP2008164941A (ja) * | 2006-12-28 | 2008-07-17 | Tdk Corp | ホログラム記録媒体 |
| US20080239428A1 (en) * | 2007-04-02 | 2008-10-02 | Inphase Technologies, Inc. | Non-ft plane angular filters |
| JP4874854B2 (ja) * | 2007-04-10 | 2012-02-15 | 富士フイルム株式会社 | ホログラフィック記録用組成物およびホログラフィック記録媒体 |
| RU2470953C2 (ru) * | 2007-04-11 | 2012-12-27 | Байер Матириальсайенс Аг | Радиационно-сшиваемые и термически сшиваемые полиуретановые системы на основе блок-сополимеров, реагирующих с изоцианатами |
| BRPI0809620A2 (pt) * | 2007-04-11 | 2014-09-16 | Bayer Materialscience Ag | Polióis de poliéster de poli(epsilon-caprolactona) com base em sistemas de pu reticulação térmica e reticulação por radiação |
| EP2144942A1 (fr) * | 2007-04-11 | 2010-01-20 | Bayer MaterialScience AG | Systèmes pu à réticulation par radiation et thermique, contenant de l'iminooxadiazinedione |
| US8031580B1 (en) | 2007-05-25 | 2011-10-04 | Cinram International Inc. | Recording media with features to render media unreadable and method and apparatus for replication of said media |
| WO2009009182A1 (fr) * | 2007-07-10 | 2009-01-15 | Inphase Technologies, Inc. | Procédé pour permettre la rétrocompatibilité de support holographique avec un connecteur de carte multimédia à double usage |
| US8141782B2 (en) * | 2007-07-10 | 2012-03-27 | Inphase Technologies, Inc. | Dual-use media card connector for backwards compatible holographic media card |
| JP2010535358A (ja) * | 2007-08-17 | 2010-11-18 | インフェーズ テクノロジィズ インコーポレイテッド | Hrom複製方法、装置またはシステム、同方法、装置またはシステムで使用された物品および同方法、装置またはシステムで作成された物品 |
| JP2009047922A (ja) * | 2007-08-20 | 2009-03-05 | Toshiba Corp | ホログラム記録媒体および光情報記録再生装置 |
| US20090103416A1 (en) * | 2007-10-17 | 2009-04-23 | Inphase Technologies, Inc. | Layout method for multiplexed holograms |
| US8446808B2 (en) * | 2008-02-14 | 2013-05-21 | Akonia Holographics, Llc | Use of feedback error and/or feed-forward signals to adjust control axes to optimal recovery position of hologram in holographic data storage system or device |
| US8311067B2 (en) * | 2008-06-12 | 2012-11-13 | Akonia Holographics, Llc | System and devices for improving external cavity diode lasers using wavelength and mode sensors and compact optical paths |
| US20100014133A1 (en) * | 2008-07-21 | 2010-01-21 | Inphase Technologies, Inc. | Method to modify and apply edge seal materials in laminated media |
| US8254418B2 (en) | 2008-09-19 | 2012-08-28 | Inphase Technologies, Inc. | Method for finding and tracking single-mode operation point of external cavity diode lasers |
| BRPI0920781A2 (pt) * | 2008-10-01 | 2015-12-22 | Bayer Materialscience Ag | formulações de poliuretano à base de pré-polímeros para produção de meios holográficos. |
| IL200997A0 (en) * | 2008-10-01 | 2010-06-30 | Bayer Materialscience Ag | Special polyether-based polyurethane formulations for the production of holographic media |
| EP2218744A1 (fr) * | 2009-02-12 | 2010-08-18 | Bayer MaterialScience AG | Procédé de fabrication de photopolymères holographiques sur des films polymères |
| US8323854B2 (en) * | 2009-04-23 | 2012-12-04 | Akonia Holographics, Llc | Photopolymer media with enhanced dynamic range |
| ATE548730T1 (de) * | 2009-11-03 | 2012-03-15 | Bayer Materialscience Ag | Photopolymerformulierungen mit einstellbarem mechanischem modul guv |
| GB2476275A (en) | 2009-12-17 | 2011-06-22 | Dublin Inst Of Technology | Photosensitive holographic recording medium comprising glycerol |
| KR20120125270A (ko) * | 2010-02-02 | 2012-11-14 | 바이엘 인텔렉쳐 프로퍼티 게엠베하 | 트리아진-기재 기록 단량체를 갖는 광중합체 배합물 |
| EP2450893A1 (fr) | 2010-11-08 | 2012-05-09 | Bayer MaterialScience AG | Formule photopolymère pour la fabrication de supports holographiques dotés de polymères à matrice hautement réticulés |
| US20130310517A1 (en) | 2012-05-17 | 2013-11-21 | Xerox Corporation | Methods for manufacturing curable inks for digital offset printing applications and the inks made therefrom |
| US9868873B2 (en) | 2012-05-17 | 2018-01-16 | Xerox Corporation | Photochromic security enabled ink for digital offset printing applications |
| US9611403B2 (en) | 2012-05-17 | 2017-04-04 | Xerox Corporation | Fluorescent security enabled ink for digital offset printing applications |
| US9499701B2 (en) | 2013-05-17 | 2016-11-22 | Xerox Corporation | Water-dilutable inks and water-diluted radiation curable inks useful for ink-based digital printing |
| US9745484B2 (en) | 2013-09-16 | 2017-08-29 | Xerox Corporation | White ink composition for ink-based digital printing |
| US9724909B2 (en) | 2013-12-23 | 2017-08-08 | Xerox Corporation | Methods for ink-based digital printing with high ink transfer efficiency |
| US9644105B2 (en) | 2013-12-23 | 2017-05-09 | Xerox Corporation | Aqueous dispersible polymer inks |
| US10113076B2 (en) | 2014-09-30 | 2018-10-30 | Xerox Corporation | Inverse emulsion acrylate ink compositions for ink-based digital lithographic printing |
| US9416285B2 (en) | 2014-12-17 | 2016-08-16 | Xerox Corporation | Acrylate ink compositions for ink-based digital lithographic printing |
| US9956760B2 (en) | 2014-12-19 | 2018-05-01 | Xerox Corporation | Multilayer imaging blanket coating |
| US9890291B2 (en) | 2015-01-30 | 2018-02-13 | Xerox Corporation | Acrylate ink compositions for ink-based digital lithographic printing |
| US9815992B2 (en) | 2015-01-30 | 2017-11-14 | Xerox Corporation | Acrylate ink compositions for ink-based digital lithographic printing |
| US10323154B2 (en) | 2015-02-11 | 2019-06-18 | Xerox Corporation | White ink composition for ink-based digital printing |
| US9751326B2 (en) | 2015-02-12 | 2017-09-05 | Xerox Corporation | Hyperbranched ink compositions for controlled dimensional change and low energy curing |
| US9434848B1 (en) | 2015-03-02 | 2016-09-06 | Xerox Corporation | Process black ink compositions and uses thereof |
| US9956757B2 (en) | 2015-03-11 | 2018-05-01 | Xerox Corporation | Acrylate ink compositions for ink-based digital lithographic printing |
| JP2017107063A (ja) * | 2015-12-09 | 2017-06-15 | 三菱化学株式会社 | ホログラム記録媒体の再生方法及び再生装置 |
| US9744757B1 (en) | 2016-08-18 | 2017-08-29 | Xerox Corporation | Methods for rejuvenating an imaging member of an ink-based digital printing system |
| US20200355997A1 (en) | 2019-05-08 | 2020-11-12 | Facebook Technologies, Llc | Thianthrene derivatized monomers and polymers for volume bragg gratings |
| US20200354594A1 (en) | 2019-05-08 | 2020-11-12 | Facebook Technologies, Llc | Thermally reversible and reorganizable crosslinking polymers for volume bragg gratings |
| US11718580B2 (en) | 2019-05-08 | 2023-08-08 | Meta Platforms Technologies, Llc | Fluorene derivatized monomers and polymers for volume Bragg gratings |
| US11634528B2 (en) | 2019-05-08 | 2023-04-25 | Meta Platforms Technologies, Llc | Latent imaging for volume Bragg gratings |
| US20210155581A1 (en) | 2019-11-27 | 2021-05-27 | Facebook Technologies, Llc | Aromatic substituted ethane-core monomers and polymers thereof for volume bragg gratings |
| US20210155639A1 (en) | 2019-11-27 | 2021-05-27 | Facebook Technologies, Llc | Thiophosphate and phosphine sulfide derivatized monomers and polymers for volume bragg gratings |
| US20210155585A1 (en) | 2019-11-27 | 2021-05-27 | Facebook Technologies, Llc | Anthraquinone derivatized monomers and polymers for volume bragg gratings |
| US20210155584A1 (en) | 2019-11-27 | 2021-05-27 | Facebook Technologies, Llc | Aromatic substituted methane-core monomers and polymers thereof for volume bragg gratings |
| US11780819B2 (en) | 2019-11-27 | 2023-10-10 | Meta Platforms Technologies, Llc | Aromatic substituted alkane-core monomers and polymers thereof for volume Bragg gratings |
| US11939478B2 (en) | 2020-03-10 | 2024-03-26 | Xerox Corporation | Metallic inks composition for digital offset lithographic printing |
| US11879024B1 (en) | 2020-07-14 | 2024-01-23 | Meta Platforms Technologies, Llc | Soft mold formulations for surface relief grating fabrication with imprinting lithography |
| US20220153895A1 (en) | 2020-11-13 | 2022-05-19 | Facebook Technologies, Llc | Substituted propane-core monomers and polymers thereof for volume bragg gratings |
| US20220153693A1 (en) | 2020-11-13 | 2022-05-19 | Facebook Technologies, Llc | Substituted mono- and poly-phenyl-core monomers and polymers thereof for volume bragg gratings |
| US20220332896A1 (en) | 2021-03-31 | 2022-10-20 | Facebook Technologies, Llc | Halogenated monomers and polymers for volume bragg gratings |
| CN118732388A (zh) * | 2023-03-30 | 2024-10-01 | 华为技术有限公司 | 全息光聚合材料、全息感光膜、全息光学元件、显示设备 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0278033A (ja) * | 1988-09-14 | 1990-03-19 | Canon Inc | 光学的記録担体 |
| JPH05323850A (ja) * | 1992-05-19 | 1993-12-07 | Dainippon Printing Co Ltd | ホログラム記録媒体 |
| US5959775A (en) * | 1997-12-23 | 1999-09-28 | 3M Innovative Properties Company | Urethane/acrylate bead bond for retroreflective articles |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4547478A (en) * | 1984-03-09 | 1985-10-15 | American Cyanamid Company | Catalyst systems for polyurethane compositions |
| DE3603266A1 (de) | 1986-02-04 | 1987-08-06 | Roehm Gmbh | Vorrichtung zur reversibeln, optischen datenspeicherung (ii) |
| DE3824359A1 (de) * | 1988-04-07 | 1989-10-19 | Bayer Ag | Verbundmembranen, verfahren zu ihrer herstellung und ihre verwendung |
| US5270120A (en) | 1988-12-20 | 1993-12-14 | Ciba-Geigy Corporation | Data carrying laminate |
| US5543251A (en) | 1990-06-29 | 1996-08-06 | E. I. Du Pont De Nemours And Company | Method of recording plural holographic images into a holographic recording material by temporal interleaving |
| DE69131158T2 (de) | 1990-11-22 | 1999-12-16 | Canon K.K., Tokio/Tokyo | Photoempfindliches Aufzeichnungsmedium enthaltendes Volumen-Phasenhologram und Verfahren zum Herstellen von einem Volumen-Phasenhologram mit diesem Medium |
| US5344808A (en) | 1992-09-09 | 1994-09-06 | Toppan Printing Co., Ltd. | Intermediate transfer medium and process for producing image-recorded article making use of the same |
| JPH06279558A (ja) * | 1993-03-24 | 1994-10-04 | Sekisui Chem Co Ltd | 型内被覆用樹脂組成物 |
| JP3111736B2 (ja) * | 1993-03-31 | 2000-11-27 | 凸版印刷株式会社 | 被転写シート |
| EP0669541A4 (fr) | 1993-08-25 | 1997-11-26 | Sumitomo Chemical Co | Filtres pour ecrans a cristaux liquides. |
| JP3379280B2 (ja) * | 1995-05-09 | 2003-02-24 | 富士ゼロックス株式会社 | 半導電性ロール |
| US5874187A (en) | 1996-08-15 | 1999-02-23 | Lucent Technologies Incorporated | Photo recording medium |
| JPH10204284A (ja) * | 1997-01-21 | 1998-08-04 | Kyodo Yakuhin Kk | 安定化されたポリウレタン組成物 |
| JPH10218962A (ja) * | 1997-02-13 | 1998-08-18 | Nippon Polyurethane Ind Co Ltd | フィッシュアイの少ない熱可塑性ポリウレタン樹脂の製造方法 |
| JP3098463B2 (ja) * | 1997-06-09 | 2000-10-16 | 三洋化成工業株式会社 | 熱可塑性ポリウレタン樹脂水性分散体の製造方法およびポリウレタン樹脂粉末 |
| US6103454A (en) | 1998-03-24 | 2000-08-15 | Lucent Technologies Inc. | Recording medium and process for forming medium |
| US6482551B1 (en) * | 1998-03-24 | 2002-11-19 | Inphase Technologies | Optical article and process for forming article |
| US20030044690A1 (en) * | 2001-06-27 | 2003-03-06 | Imation Corp. | Holographic photopolymer data recording media, method of manufacture and method of holographically reading, recording and storing data |
| US6780546B2 (en) * | 2001-08-30 | 2004-08-24 | Inphase Technologies, Inc. | Blue-sensitized holographic media |
-
2002
- 2002-05-16 US US10/146,115 patent/US6743552B2/en not_active Expired - Fee Related
- 2002-08-07 EP EP02756982A patent/EP1414878B1/fr not_active Expired - Lifetime
- 2002-08-07 JP JP2003519124A patent/JP2004537620A/ja active Pending
- 2002-08-07 WO PCT/US2002/024926 patent/WO2003014178A1/fr not_active Ceased
- 2002-08-07 KR KR1020047001961A patent/KR100920260B1/ko not_active Expired - Fee Related
- 2002-08-07 AT AT02756982T patent/ATE331744T1/de not_active IP Right Cessation
- 2002-08-07 CN CNA028198603A patent/CN1564834A/zh active Pending
- 2002-08-07 DE DE60212854T patent/DE60212854T2/de not_active Expired - Lifetime
-
2008
- 2008-10-22 JP JP2008272362A patent/JP5295712B2/ja not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0278033A (ja) * | 1988-09-14 | 1990-03-19 | Canon Inc | 光学的記録担体 |
| JPH05323850A (ja) * | 1992-05-19 | 1993-12-07 | Dainippon Printing Co Ltd | ホログラム記録媒体 |
| US5959775A (en) * | 1997-12-23 | 1999-09-28 | 3M Innovative Properties Company | Urethane/acrylate bead bond for retroreflective articles |
Non-Patent Citations (2)
| Title |
|---|
| DATABASE WPI Week 9017, Derwent World Patents Index; AN 1990-128677, XP002220016, "Photo record medium" * |
| DATABASE WPI Week 9402, Derwent World Patents Index; AN 1994-016313, XP002220015, "hologram record medium" * |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7282322B2 (en) * | 2002-05-29 | 2007-10-16 | Songvit Setthachayanon | Long-term high temperature and humidity stable holographic optical data storage media compositions with exceptional high dynamic range |
| EP1610191A4 (fr) * | 2003-03-24 | 2007-04-04 | Konica Minolta Med & Graphic | Support d'enregistrement holographique et procede d'enregistrement afferent |
| EP1612623A4 (fr) * | 2003-04-09 | 2007-04-04 | Konica Minolta Med & Graphic | Support d'enregistrement holographique et procede d'enregistrement utilisant ce support |
| EP1666988A4 (fr) * | 2003-09-17 | 2007-04-11 | Konica Minolta Med & Graphic | Support d'enregistrement holographique, procede d'enregistrement holographique et support d'informations holographique |
| EP1696266A3 (fr) * | 2005-02-25 | 2010-06-30 | FUJIFILM Corporation | Matériau d'enregistrement d'hologrammes et support d'enregistrement optique |
| EP1959316A2 (fr) | 2007-02-16 | 2008-08-20 | FUJIFILM Corporation | Support d'enregistrement holographique et procédé de fabrication de support d'enregistrement holographique |
| EP2003500A3 (fr) * | 2007-06-11 | 2009-01-07 | FUJIFILM Corporation | Composition d'enregistrement optique, support d'enregistrement holographique, et procédé d'enregistrement et reproduction d'informations |
| WO2010037515A1 (fr) * | 2008-10-01 | 2010-04-08 | Bayer Materialscience Ag | Supports pour enregistrement holographique en volume, à base d'un polymère autodéveloppant |
| SG160314A1 (en) * | 2008-10-01 | 2010-04-29 | Bayer Materialscience Ag | Polyether-based polyurethane formulations for the production of holographic media |
| US8715889B2 (en) | 2009-02-12 | 2014-05-06 | Bayer Materialscience Ag | Photopolymer compositions as printable formulations |
| EP2218743A1 (fr) * | 2009-02-12 | 2010-08-18 | Bayer MaterialScience AG | Formules de polyuréthane à base de prépolymère pour la fabrication de films holographiques |
| WO2010091807A1 (fr) * | 2009-02-12 | 2010-08-19 | Bayer Materialscience Ag | Compositions photopolymériques en tant que formulations imprimables |
| EP2218745A1 (fr) * | 2009-02-12 | 2010-08-18 | Bayer MaterialScience AG | Formules de polyuréthane à base de prépolymère pour la fabrication de films holographiques |
| US8685595B2 (en) | 2009-02-12 | 2014-04-01 | Bayer Materialscience Ag | Prepolymer-based polyurethane formulations for the production of holographic films |
| EP2218742A1 (fr) * | 2009-02-12 | 2010-08-18 | Bayer MaterialScience AG | Compositions photopolymères en tant que formules imprimables |
| US8284234B2 (en) | 2009-03-20 | 2012-10-09 | Absolute Imaging LLC | Endoscopic imaging using reflection holographic optical element for autostereoscopic 3-D viewing |
| CN102870157A (zh) * | 2009-11-03 | 2013-01-09 | 拜尔材料科学股份公司 | 生产全息膜的方法 |
| CN102667936A (zh) * | 2009-11-03 | 2012-09-12 | 拜尔材料科学股份公司 | 生产全息介质的方法 |
| WO2011067057A1 (fr) * | 2009-11-03 | 2011-06-09 | Bayer Materialscience Ag | Procédé de production d'un film holographique |
| WO2011054793A1 (fr) * | 2009-11-03 | 2011-05-12 | Bayer Materialscience Ag | Procédé pour produire des supports holographiques |
| WO2011054791A1 (fr) * | 2009-11-03 | 2011-05-12 | Bayer Materialscience Ag | Procédé de production d'un film holographique |
| US8771903B2 (en) | 2009-11-03 | 2014-07-08 | Bayer Materialscience Ag | Method for producing a holographic film |
| US8771904B2 (en) | 2009-11-03 | 2014-07-08 | Bayer Materialscience Ag | Method for producing holographic media |
| US8889321B2 (en) | 2009-11-03 | 2014-11-18 | Bayer Materialscience Ag | Method for producing a holographic film |
| CN102870157B (zh) * | 2009-11-03 | 2016-01-20 | 拜尔材料科学股份公司 | 生产全息膜的方法 |
| CN102880004A (zh) * | 2012-09-27 | 2013-01-16 | 武汉华工图像技术开发有限公司 | 一种光致聚合物全息记录材料及其制备方法 |
| CN110426372A (zh) * | 2019-07-16 | 2019-11-08 | 南昌航空大学 | 一种扫频式布里渊散射体弹性模量成像检测方法 |
| CN110426372B (zh) * | 2019-07-16 | 2021-10-22 | 南昌航空大学 | 一种扫频式布里渊散射体弹性模量成像检测方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1414878B1 (fr) | 2006-06-28 |
| EP1414878A1 (fr) | 2004-05-06 |
| DE60212854D1 (de) | 2006-08-10 |
| JP5295712B2 (ja) | 2013-09-18 |
| CN1564834A (zh) | 2005-01-12 |
| KR100920260B1 (ko) | 2009-10-05 |
| JP2004537620A (ja) | 2004-12-16 |
| US20030044691A1 (en) | 2003-03-06 |
| KR20040058172A (ko) | 2004-07-03 |
| US6743552B2 (en) | 2004-06-01 |
| JP2009025838A (ja) | 2009-02-05 |
| DE60212854T2 (de) | 2007-09-06 |
| ATE331744T1 (de) | 2006-07-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6743552B2 (en) | Process and composition for rapid mass production of holographic recording article | |
| US6765061B2 (en) | Environmentally durable, self-sealing optical articles | |
| US6780546B2 (en) | Blue-sensitized holographic media | |
| US6103454A (en) | Recording medium and process for forming medium | |
| US7229741B2 (en) | Exceptional high reflective index photoactive compound for optical applications | |
| EP0945762B1 (fr) | Procédé pour la fabrication d'un article optique | |
| EP1508144B1 (fr) | Supports de donnees holographiques comprenant un compose a base de sel d'aluminium et un compose acrylique asymetrique | |
| US20030206320A1 (en) | Holographic media with a photo-active material for media protection and inhibitor removal | |
| US6788443B2 (en) | Associative write verify | |
| US7678507B2 (en) | Latent holographic media and method | |
| US20020191236A1 (en) | Method for improved holographic recording using beam apodization | |
| EP1033623A2 (fr) | Matériau d'enregistrement photosensible, procédé pour sa fabrication ainsi qu'un procédé holographique utilisant ce matériau | |
| CN113728029A (zh) | 用于体布拉格光栅的热可逆和可重组的交联聚合物 | |
| US7736818B2 (en) | Holographic recording medium and method of making it | |
| Samui | Holographic recording medium | |
| TW202239016A (zh) | 全訊光柵中的空間變化動態範圍 | |
| TW202240285A (zh) | 潛在全訊光柵的紀錄及其動態範圍的放大 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VC VN YU ZA ZM |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2002756982 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020047001961 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003519124 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 159/MUMNP/2004 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 20028198603 Country of ref document: CN |
|
| WWP | Wipo information: published in national office |
Ref document number: 2002756982 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2002756982 Country of ref document: EP |