WO2003010535A1 - Improved real time method for controlling applications of fertilizers and other yield improving agents to crops - Google Patents
Improved real time method for controlling applications of fertilizers and other yield improving agents to crops Download PDFInfo
- Publication number
 - WO2003010535A1 WO2003010535A1 PCT/DK2002/000512 DK0200512W WO03010535A1 WO 2003010535 A1 WO2003010535 A1 WO 2003010535A1 DK 0200512 W DK0200512 W DK 0200512W WO 03010535 A1 WO03010535 A1 WO 03010535A1
 - Authority
 - WO
 - WIPO (PCT)
 - Prior art keywords
 - data
 - lai
 - crop
 - equivalent
 - determining
 - Prior art date
 
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
 - 239000003337 fertilizer Substances 0.000 title claims description 13
 - 239000004129 EU approved improving agent Substances 0.000 title description 7
 - 229930002875 chlorophyll Natural products 0.000 claims abstract description 45
 - 235000019804 chlorophyll Nutrition 0.000 claims abstract description 45
 - ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 claims abstract description 45
 - 238000005259 measurement Methods 0.000 claims abstract description 39
 - 239000002028 Biomass Substances 0.000 claims abstract description 31
 - 239000000417 fungicide Substances 0.000 claims abstract description 15
 - 230000001276 controlling effect Effects 0.000 claims abstract description 14
 - 238000012545 processing Methods 0.000 claims abstract description 14
 - 239000000575 pesticide Substances 0.000 claims abstract description 12
 - 239000004009 herbicide Substances 0.000 claims abstract description 11
 - 230000001105 regulatory effect Effects 0.000 claims abstract description 4
 - IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 43
 - 229910052757 nitrogen Inorganic materials 0.000 claims description 22
 - 239000003795 chemical substances by application Substances 0.000 claims description 21
 - 239000002689 soil Substances 0.000 claims description 12
 - 230000009977 dual effect Effects 0.000 claims description 10
 - 230000000855 fungicidal effect Effects 0.000 claims description 3
 - 230000002363 herbicidal effect Effects 0.000 claims description 2
 - QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
 - 241000196324 Embryophyta Species 0.000 description 31
 - 230000003595 spectral effect Effects 0.000 description 8
 - 238000011161 development Methods 0.000 description 6
 - 238000010586 diagram Methods 0.000 description 6
 - 238000001228 spectrum Methods 0.000 description 4
 - 241000202240 Morone americana Species 0.000 description 3
 - ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 3
 - 238000011160 research Methods 0.000 description 3
 - 241000209140 Triticum Species 0.000 description 2
 - 235000021307 Triticum Nutrition 0.000 description 2
 - 230000002596 correlated effect Effects 0.000 description 2
 - 230000000875 corresponding effect Effects 0.000 description 2
 - 244000038559 crop plants Species 0.000 description 2
 - 238000012544 monitoring process Methods 0.000 description 2
 - 230000000243 photosynthetic effect Effects 0.000 description 2
 - 238000004364 calculation method Methods 0.000 description 1
 - 238000012512 characterization method Methods 0.000 description 1
 - 239000013043 chemical agent Substances 0.000 description 1
 - 150000001875 compounds Chemical class 0.000 description 1
 - 230000002950 deficient Effects 0.000 description 1
 - 238000013461 design Methods 0.000 description 1
 - 230000000694 effects Effects 0.000 description 1
 - 238000005516 engineering process Methods 0.000 description 1
 - 230000007613 environmental effect Effects 0.000 description 1
 - 238000002474 experimental method Methods 0.000 description 1
 - 238000009313 farming Methods 0.000 description 1
 - -1 fertilisers Substances 0.000 description 1
 - 238000003306 harvesting Methods 0.000 description 1
 - 238000003384 imaging method Methods 0.000 description 1
 - 230000003993 interaction Effects 0.000 description 1
 - 239000000463 material Substances 0.000 description 1
 - 230000003287 optical effect Effects 0.000 description 1
 - 210000000056 organ Anatomy 0.000 description 1
 - 230000035515 penetration Effects 0.000 description 1
 - 230000001737 promoting effect Effects 0.000 description 1
 - 239000011814 protection agent Substances 0.000 description 1
 - 230000005855 radiation Effects 0.000 description 1
 - 238000012552 review Methods 0.000 description 1
 - 238000004088 simulation Methods 0.000 description 1
 - 238000010183 spectrum analysis Methods 0.000 description 1
 - 239000004094 surface-active agent Substances 0.000 description 1
 - XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
 
Classifications
- 
        
- G—PHYSICS
 - G01—MEASURING; TESTING
 - G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
 - G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
 - G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
 - G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
 - G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
 - G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
 - G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
 
 - 
        
- A—HUMAN NECESSITIES
 - A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
 - A01C—PLANTING; SOWING; FERTILISING
 - A01C21/00—Methods of fertilising, sowing or planting
 - A01C21/007—Determining fertilization requirements
 
 - 
        
- A—HUMAN NECESSITIES
 - A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
 - A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
 - A01M7/00—Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
 - A01M7/0089—Regulating or controlling systems
 
 - 
        
- G—PHYSICS
 - G01—MEASURING; TESTING
 - G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
 - G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
 - G01N33/02—Food
 
 - 
        
- G—PHYSICS
 - G01—MEASURING; TESTING
 - G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
 - G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
 - G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
 - G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
 - G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
 - G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
 - G01N2021/3155—Measuring in two spectral ranges, e.g. UV and visible
 
 - 
        
- G—PHYSICS
 - G01—MEASURING; TESTING
 - G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
 - G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
 - G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
 - G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
 - G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
 - G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
 - G01N2021/396—Type of laser source
 - G01N2021/399—Diode laser
 
 - 
        
- G—PHYSICS
 - G01—MEASURING; TESTING
 - G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
 - G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
 - G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
 - G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
 - G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
 - G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
 - G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
 
 - 
        
- G—PHYSICS
 - G01—MEASURING; TESTING
 - G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
 - G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
 - G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
 - G01N33/483—Physical analysis of biological material
 
 
Definitions
- the present invention relates to the field of crop yield management and improvement.
 - a method whereby the crop leaf area and the chlorophyll content and/or the biomass of the crop is measured simultaneously in real time as a means of optimising the application to the crop of plant yield improving agents such as fertilisers, herbicides, pesticides and fungicides.
 - the invention provides a novel dual sensor device that is capable of measuring the leaf area and the chlorophyll/biomass content.
 - plant yield improving agents e.g. fertilisers such as N-fertilisers
 - fertilisers such as N-fertilisers
 - the levels of fertilisers and other auxiliary chemical agents are adequate at any given stage of the growth cycle.
 - N-fertiliser is based solely on measurements of biomass and/or chlorophyll content of the crop as such without correcting for spatial variations in leaf area per unit area, some areas will receive less than the required amount and other areas will re- ceive an excess amount relative to the actual local requirement.
 - the Hydro N-sensor and other published remote sensing based single instrument systems are not capable of measuring leaf area independent of chlorophyll content and/or biomass. Because of correlation between e.g. estimates of canopy leaf area and chlorophyll content, these systems are not capable of accurately estimating mean leaf chlorophyll content and the crop nitrogen status.
 - the control of fertiliser application and optionally, application of other growth yield improving agents offered by such systems is merely related to the biomass/chlorophyll content of the plant leaves at any given plot of the field, but not to the leaf area index (LAI) of the crop growing in that particular plot, which inevitably will lead to the application of less than optimal amounts of fertiliser or any other agent being applied at plots with a high LAI and conversely, to the application of excesses of agents at plots with a smaller LAI.
 - LAI leaf area index
 - Toivonen et al. describes a portable device for determination of chlorophyll in plant by measuring fluorescence.
 - the present inventor has now discovered that the application of fertilisers and any other crop yield optimising agents such as fungicides, herbicides or pesticides can be optimised substantially be combining real time measurements of plant chlorophyll/biomass content with simultaneous measurements of the plant leaf area, height and density.
 - the type of measurements used depends on the agent (e.g. fertiliser or fungicide) to be applied.
 - the application of fungicides and other surface active agents can be optimised by varying the rate according to especially leaf area but also height an density.
 - the present invention provides in a first aspect a method of controlling the application of fertilisers, fungicides, herbicides or pesticides to a plant crop, the method comprising simultaneous real time measurements of chlorophyll and/or biomass contents by determining the a Vegetation Index (VI) such as Reflectance Vegetation Index (RVI), Red Edge Inflection Point (REIP) or an equivalent measure of chlorophyll and/or biomass content, and crop leaf area by determining the Leaf Area Index (LAI) or an equivalent measure of crop leaf area, providing said measurement data to a data processing unit which calculates an VI/LAI ration, such as an RVI/LAI ratio, an REIP/LAI ratio or an equivalent ratio as an indication of the chlorophyll content per unit leaf area, said data processing unit is operably connected with a control unit regulating the application of fertilisers, fungicides, herbicides or pesticides to the plant crop.
 - VI Vegetation Index
 - RVI Reflectance Vegetation Index
 - REIP Red Edge Inflection Point
 - the invention pertains to a dual sensing device for real time controlling the application of a crop yield improving agent, the device comprising (i) means for determining a VI such as RVI data, REIP data or data for an equivalent measure of chlorophyll and/or biomass content, (ii) means for determining LAI data or data for an equivalent measure of crop leaf area, data processing means to combine the VI and LAI data or data for equivalent measures to an VI/LAI ratio or an equivalent ratio and means for transmitting VI/LAI ratio data or equivalent ratio data to a device controlling the application of the crop yield improving agent.
 - a VI such as RVI data, REIP data or data for an equivalent measure of chlorophyll and/or biomass content
 - means for determining LAI data or data for an equivalent measure of crop leaf area data processing means to combine the VI and LAI data or data for equivalent measures to an VI/LAI ratio or an equivalent ratio and means for transmitting VI/LAI ratio data or equivalent ratio data to a device controlling the application of the crop yield improving agent.
 - a primary objective of the present invention is to provide the means for optimising agricultural crop yield by designing a method of improved control of the application of crop yield improving agents, in particular fertilisers such as N-fertilisers, but also other improv- ing agents such as fungicides.
 - This is achieved by providing a method of controlling in real time the application of such agents to a plant crop by combining measurements of chlorophyll and/or biomass contents in the crops to which the agent is to be applied by determining a Vegetation Index (VI) such as the Reflectance Vegetation Index (RVI), the Red Edge Inflection Point (REIP) or equivalent measurements of the biomass/chlorophyll content and crop leaf area by determining a leaf area index (LAI) or a corresponding measure of the plant leaf area.
 - the method of the invention is applicable to both monocotyledonous and dicotyledonous plant crops.
 - the ratio gives an indication of the chlorophyll content at the leaf level of each plant. It is thus possible to distinguish between a situation where a low level of chlorophyll and/or biomass content in a certain part of a field is due to the plants in this given area of the field is nutritionally deficient or are due to the plants in the given area is grown with a high distance between the individual plants.
 - a critical parameter in determining the ratio between the chlorophyll and/or biomass contents and the crop leaf area is that the crop leaf area is determined accurately and within the same area wherein the chlorophyll and/or biomass content is being measured.
 - the RVI is typically measured by means of a sensing device that is capable of measuring the reflectance (p) of the crop in the visible light spectrum, such as the red light spectrum and in the near infrared (NIR) spectrum and combining the measurement values into the spectral index, RVI. It has been found that RVI measurements are closely related to the biomass and chlorophyll content of crops. RVI may be influenced by the altitude of the sun which implies that RVI measurements can only be made with high precision around noon.
 - REIP Red Edge Position
 - CCD canopy chlorophyll density
 - the REIP and SAVI2 is examples of "an equivalent measure of plant biomass/chlorophyll content”.
 - the formulas of three Vis are given in Table 1.
 - o, c_, c 2 , c 3 , c 4 , c s and c 6 are coefficients associated with a polynomial curve fit over the vegetation red edge region (670 - 780 nm).
 - a canopy reflectance model (ProSAIL (Jacquemoud et al., 2000)) can be employed to simulate spectral reflectance with 10 nm band spacing of a range of similar canopies.
 - the selected range of model input parameters represent a wheat crop.
 - the mathematical form of the ProSAIL model is
 - p is reflectance at wavelength ⁇
 - ⁇ s (°) and y/ s (°) represent the solar zenith and azimuth angles
 - ⁇ v ⁇ °) and ⁇ v ⁇ °) represent the view zenith and azimuth angles
 - MTA(°) is the mean leaf tilt angle
 - ⁇ /(-) is a parameter describing the leaf mesophyll structure
 - C 3 ⁇ ( ⁇ g/cm 2 )) is the leaf chlorophyll concentration
 - Cw(cm) is the leaf water depth
 - C DM (g/cm 2 ) is the leaf dry matter content
 - s is the Kuusk hot spot size parameter (Kuusk, 1991)
 - p s is the soil background reflectance at wavelength ⁇ .
 - the ProSAIL model builds on the following assumptions regarding canopy morphology: • the canopy is horizontal, homogenous and infinitely extended
 - the canopy consist of small green flat leaves and is characterised by a uniform leaf azimuth distribution.
 - a presently preferred method of measuring the crop leaf area index is by applying a scan- ning laser instrument that, when applied to the crop field area and moved herein, is capable of continuously recording, at a high precision level, the leaf area of the crop, the reflection of the plant organs and the height and density (canopy cover fraction) of the crop plants.
 - the leaf area index (LAI) is calculated on the basis of measurements of canopy gap fractions by means of a model for light penetration in a crop and numerical inversion of the model. Other means of obtaining LAI data are conceivable such as e.g. ultrasonic measurements, and such means are within the scope of the present invention.
 - the crop leaf area, height and density is being determined from a number of scan lines perpendicular to the direction of travelling of the vehicle carrying the instrument, i.e. the scan is crosswise of the plant rows.
 - Measurement of standard parameters such as LAI, height and density is important for the regulation of the application of surface active compounds such as fungicides and in part also pesticides.
 - RVI and corresponding values have been used previously in several experiments aiming at describing the development of a variety of crops and the harvest yield hereof under varying N-applications. These measurements have been performed both as manual and position determined mobile measurements.
 - the spectral index is, as mentioned above, closely related to green biomass of a crop and the amount of chlorophyll per unit area of ground. Accordingly, the RVI/LAI ratio is a measure of the chlorophyll content per unit leaf area, which in turn is a measure of the nitrogen content of the leaves and the nitrogen requirement of the crop.
 - the REIP/LAI ratio is a measure of the chlorophyll content per unit leaf area, which in turn is a measure of the nitrogen content of the leaves and the nitrogen requirement of the crop.
 - C gb the leaf chlorophyll concentration in ⁇ g/cm 2
 - C gb the leaf chlorophyll concentration in ⁇ g/cm 2
 - the crop nitrogen status is achieved by the direct measurement of canopy structural parameters (leaf area, height and density), and the herein described system thus allows a more accurate application of e.g. N-fertilisers and/or plant protection agents as compared to previously described systems which are not capable of measuring leaf area independently of chlorophyll content and/or biomass.
 - the data are transmitted to a data processing unit operably linked to measuring device, which unit calculates an RVI/LAI ratio or an equivalent ratio as an indication of the chlorophyll content per unit leaf area.
 - the data processing unit is in turn operably connected with a control unit regulating the application of fertilisers, fungicides, herbicides or pesticides to the plant crop being measured.
 - a dual sensing device comprising (i) means for determining RVI, REIP or the equivalent thereof and (ii) means for determining LAI or the equivalent thereof which conveniently is mounted on a tractor or any other vehicle carrying a device for application of a fertiliser, a fungicide, a herbicide or a pesticide in such a manner that the dual sensing device is operably linked to the sensing device.
 - the LAI is conveniently measured by measuring canopy gap fractions by means of a laser diode such as an IR laser diode.
 - a laser diode such as an IR laser diode.
 - Presently preferred LAI measuring parameters for the laser diode include: a small measuring area (spot), e.g. less than 1 mm including less than 0.75 mm, less than 0.50 mm or less than 0.25 mm, measurement of the strength of the reflected signal and a relatively high measuring frequency such as at least 25 kHz, at least 50 kHz, at least 75 kHz or at least 100 kHz.
 - the laser diode is connected with a scanning unit and preferably the entire LAI measuring device is adapted to mobile measurements.
 - RVI or an equivalent measure of the biomass/chlorophyll content is determined by means of combining measurement data for crop reflectance of visible light and near infrared light.
 - the inverse re- flectance of visible light is e.g. carried out within the red light spectrum such as at about 650 nm.
 - Any type of spectral analysis equipment that is capable of providing spectral data that are correlated to chlorophyll and/or biomass content of growing plants can be used in the present method. E.g. may such equipment which also functions appropriately in vary- ing daylight intensities and solar altitudes and/or in artificial light be particularly useful.
 - a dual sensing device for real time control of the application of a crop yield improving agent.
 - a device comprises means for determining RVI data or equivalent data and means for determining LAI data or equivalent data.
 - the device further comprises appropriate data processing means including software programmes to convert the signals received from the sensors to digital data, data processing means for combining the obtained RVI and LAI data or the equivalents thereof into an RVI/LAI ratio or equivalent ratio and means for interfacing such ratio data with a device controlling the application of the crop yield improving agent.
 - a controlling device should include adequate mechanical means permitting the adjustment of the flow of the fertiliser or other yield improving agent to the crop or the soil.
 - a dual sensing device for real time control of the application of a crop yield improving agent.
 - a device comprises means for determining REIP data or equivalent data and means for determining LAI data or equivalent data.
 - the device further comprises appropriate data processing means including software programmes to convert the signals received from the sensors to digital data, data processing means for combining the obtained REIP and LAI data or the equivalents thereof into an REIP/LAI ratio or equivalent ratio and means for interfacing such ratio data with a device controlling the application of the crop yield improving agent.
 - a controlling device should include adequate mechanical means permitting the adjustment of the flow of the fertiliser or other yield improving agent to the crop or the soil.
 - a 4 channel portable multispectral radiometer developed at Research Centre Foulum (Thomsen et al., 2002) may be employed. This system is capable of calculating both REIP and RVI.
 - the means for measuring LAI is adapted to measure canopy gap fractions by means of a laser diode e.g. having functional characteristics as it is described hereinbefore.
 - a significant aspect of the sensing device of the invention is that it can be used for real time simultaneous field monitoring of RVI and LAI data, REIP and LAI data, RVI and REIP and LAI data or equivalent data. It will be appreciated that such monitoring may be carried out by using portable device units e.g. connected wirelessly to agent application control devices mounted on a tractor or a similar vehicle carrying the means for applying the fertiliser or other yield improving agent.
 - the dual sensing device is mounted directly on the tractor or other vehicle and is therefore provided with means for mounting it on a tractor or vehicle or on another device or part mounted on the tractor or vehicle.
 - the means for measuring RVI, REIP and LAI, respectively or measures equivalent with such indice.s can be separate means used or mounted separately, i.e. used or mounted as separate units. However, it may be preferred that said measuring means are located within the same housing, i.e. as a single unit comprising the two sensing means. In both cases, it is important that the sensing devices are within single housing or separate housings that are made of a material having a strength and form that provide sufficient protection of the sensors towards mechanical and physical "hardship".
 - Fig. 1 it is illustrated how the RVI/LAI index measure- ments provided by the method of the invention can be applied for controlling the application of nitrogen to crops. Assuming that a first nitrogen application is carried out at an early stage of the growth season, e.g. in March/April and a second application in May and further that the soil quality and the expected yield requires a "standard" nitrogen application of 160 kg/ha.
 - the point at the lowest RVI value represents a point with a relatively low plant density and a low amount of biomass and a correspondingly better nitrogen supply and higher chlorophyll content in the leaves.
 - the point at the lowest RVI value represents a point with a relatively low plant density and a low amount of biomass and a correspondingly better nitrogen supply and higher chlorophyll content in the leaves.
 - the diagram As it can also be derived from the diagram, it will at a uniform plant density secure an optimal nitrogen application and uniform crop yield all over the field.
 - the diagram In fields with a substantial variation in growth conditions e.g. related to differences in soil structure, the diagram is used in combination with a digital map showing the variation in the "standard" nitrogen application. The application of nitrogen in the individual points is calculated as the interpolated difference between the measuring point and the standard nitrogen application.
 - PROSPECT A Model of Leaf Optical Properties Spectra. Remote Sensing of Environment. 34:75-91.
 
Landscapes
- Life Sciences & Earth Sciences (AREA)
 - Physics & Mathematics (AREA)
 - Engineering & Computer Science (AREA)
 - Chemical & Material Sciences (AREA)
 - Health & Medical Sciences (AREA)
 - Spectroscopy & Molecular Physics (AREA)
 - Environmental Sciences (AREA)
 - Food Science & Technology (AREA)
 - Pathology (AREA)
 - General Physics & Mathematics (AREA)
 - Immunology (AREA)
 - Soil Sciences (AREA)
 - Analytical Chemistry (AREA)
 - Biochemistry (AREA)
 - General Health & Medical Sciences (AREA)
 - Zoology (AREA)
 - Medicinal Chemistry (AREA)
 - Wood Science & Technology (AREA)
 - Pest Control & Pesticides (AREA)
 - Insects & Arthropods (AREA)
 - Investigating Or Analysing Materials By Optical Means (AREA)
 - Fertilizing (AREA)
 
Abstract
Description
Claims
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| EP02754554A EP1419385A1 (en) | 2001-07-25 | 2002-07-24 | Improved real time method for controlling applications of fertilizers and other yield improving agents to crops | 
| NO20040271A NO20040271L (en) | 2001-07-25 | 2004-01-21 | Mobile sensor | 
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| DKPA200101146 | 2001-07-25 | ||
| DKPA200101146 | 2001-07-25 | 
Publications (1)
| Publication Number | Publication Date | 
|---|---|
| WO2003010535A1 true WO2003010535A1 (en) | 2003-02-06 | 
Family
ID=8160640
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| PCT/DK2002/000512 WO2003010535A1 (en) | 2001-07-25 | 2002-07-24 | Improved real time method for controlling applications of fertilizers and other yield improving agents to crops | 
Country Status (4)
| Country | Link | 
|---|---|
| EP (1) | EP1419385A1 (en) | 
| NO (1) | NO20040271L (en) | 
| PL (1) | PL369138A1 (en) | 
| WO (1) | WO2003010535A1 (en) | 
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| EP1493316A1 (en) * | 2003-07-01 | 2005-01-05 | Amazonen-Werke H. Dreyer GmbH & Co. KG | Apparatus for measuring the density of the vegetation | 
| CN101413797B (en) * | 2008-12-04 | 2011-06-01 | 北京师范大学 | Multi-spectral canopy imaging method and instrument | 
| CN102538717A (en) * | 2010-12-30 | 2012-07-04 | 北京师范大学 | Automatic leaf area index observation system and method | 
| ES2384947A1 (en) * | 2010-06-21 | 2012-07-16 | Consejo Superior De Investigaciones Cientificas (Csic) | SYSTEM AND METHOD FOR THE APPLICATION OF HERBICIDE. | 
| WO2012156490A1 (en) * | 2011-05-18 | 2012-11-22 | Georg Fritzmeier Gmbh & Co.Kg | Method for determining an amount to be applied and device for carrying out the method | 
| CN103650731A (en) * | 2013-12-27 | 2014-03-26 | 江苏大学 | Method for carrying out fertilizer application at vegetative growth phase in accordance with change of crop plant height | 
| CN107505271A (en) * | 2017-07-13 | 2017-12-22 | 北京农业信息技术研究中心 | Plant nitrogen evaluation method and system based on nitrogen fractions radiative transfer model | 
| CN107690925A (en) * | 2017-11-09 | 2018-02-16 | 湖南杂交水稻研究中心 | A kind of accurate topdressing method of hybrid rice | 
| CN108184792A (en) * | 2017-12-27 | 2018-06-22 | 定远县宏源农业机械有限公司 | A kind of Intelligentized regulating and controlling system of spraying equipment and drugs | 
| CN108195770A (en) * | 2018-01-03 | 2018-06-22 | 电子科技大学 | A kind of chlorophyll content semiempirical evaluation method based on PROSAIL models | 
| CN111175782A (en) * | 2019-12-31 | 2020-05-19 | 塔里木大学 | Satellite remote sensing monitoring method for chlorophyll content of cotton canopy | 
| CN111860328A (en) * | 2020-07-21 | 2020-10-30 | 杭州时光坐标影视传媒股份有限公司 | Biomass estimation method based on bidirectional reflection function and forest scene illumination effect modeling | 
| CN112330672A (en) * | 2020-11-28 | 2021-02-05 | 华中农业大学 | Crop leaf area index inversion method based on PROSAIL model and under participation of canopy coverage in optimization | 
| CN113673366A (en) * | 2021-07-29 | 2021-11-19 | 长光卫星技术有限公司 | Crop growth monitoring method based on remote sensing inversion | 
| WO2023147050A1 (en) * | 2022-01-27 | 2023-08-03 | Pivot Bio, Inc. | Assessing relative plant nitrogen in a field environment | 
| WO2024194458A1 (en) * | 2023-03-23 | 2024-09-26 | Basf Agro Trademarks Gmbh | Method for providing nitrogen uptake data of plants and/or plant parts of an agricultural field | 
| US12281980B2 (en) | 2020-05-01 | 2025-04-22 | Pivot Bio, Inc. | Measurement of nitrogen fixation and incorporation | 
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CA2299941A1 (en) * | 1999-03-05 | 2000-09-05 | Japan As Represented By Director General Of Hokkaido National Agricultur Al Experiment Station | Topdressing method and apparatus therefor | 
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE10002880C1 (en) * | 2000-01-10 | 2001-06-13 | Norsk Hydro As | Monitor system useful for examining the health of plants and vegetation comprises a vehicle equipped to register active and passive light and fluorescent spectra with satellite GPS links to determine corrective actions to be taken on site | 
- 
        2002
        
- 2002-07-24 EP EP02754554A patent/EP1419385A1/en not_active Withdrawn
 - 2002-07-24 PL PL02369138A patent/PL369138A1/en not_active Application Discontinuation
 - 2002-07-24 WO PCT/DK2002/000512 patent/WO2003010535A1/en not_active Application Discontinuation
 
 - 
        2004
        
- 2004-01-21 NO NO20040271A patent/NO20040271L/en not_active Application Discontinuation
 
 
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| CA2299941A1 (en) * | 1999-03-05 | 2000-09-05 | Japan As Represented By Director General Of Hokkaido National Agricultur Al Experiment Station | Topdressing method and apparatus therefor | 
Non-Patent Citations (10)
| Title | 
|---|
| AGRONOMY JOURNAL, vol. 88, no. 1, 1996, pages 1 - 5, ISSN: 0002-1962 * | 
| DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1995, JOHNKUTTY I ET AL: "Use of chlorophyll meter for nitrogen management in lowland rice.", XP002218523, Database accession no. PREV199699128524 * | 
| DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1996, BLACKMER TRACY M ET AL: "Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies.", XP002218525, Database accession no. PREV199698770376 * | 
| DATABASE INSPEC [online] INSTITUTE OF ELECTRICAL ENGINEERS, STEVENAGE, GB; TOIVONEN P ET AL: "Integrating fluorometer for the measurement of chlorophyll fluorescence induction in intact plants", XP002218524, Database accession no. 2379895 * | 
| DATABASE WPI Section PQ Week 200062, Derwent World Patents Index; Class P11, AN 2000-638839, XP002218526 * | 
| DAUGHTRY C S T ET AL: "Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance.", REMOTE SENSING OF ENVIRONMENT, vol. 74, no. 2, November 2000 (2000-11-01), pages 229 - 239, XP002218522, ISSN: 0034-4257 * | 
| FERTILIZER RESEARCH, vol. 45, no. 1, 1995, pages 21 - 24, ISSN: 0167-1731 * | 
| MORAN M S ET AL: "Opportunities and limitations for image-based remote sensing in precision crop management.", REMOTE SENSING OF ENVIRONMENT, vol. 61, no. 3, 1997, pages 319 - 346, XP002218521, ISSN: 0034-4257 * | 
| REVIEW OF SCIENTIFIC INSTRUMENTS, OCT. 1984, USA, vol. 55, no. 10, pages 1687 - 1690, ISSN: 0034-6748 * | 
| See also references of EP1419385A1 * | 
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| EP1493316A1 (en) * | 2003-07-01 | 2005-01-05 | Amazonen-Werke H. Dreyer GmbH & Co. KG | Apparatus for measuring the density of the vegetation | 
| CN101413797B (en) * | 2008-12-04 | 2011-06-01 | 北京师范大学 | Multi-spectral canopy imaging method and instrument | 
| ES2384947A1 (en) * | 2010-06-21 | 2012-07-16 | Consejo Superior De Investigaciones Cientificas (Csic) | SYSTEM AND METHOD FOR THE APPLICATION OF HERBICIDE. | 
| CN102538717A (en) * | 2010-12-30 | 2012-07-04 | 北京师范大学 | Automatic leaf area index observation system and method | 
| WO2012156490A1 (en) * | 2011-05-18 | 2012-11-22 | Georg Fritzmeier Gmbh & Co.Kg | Method for determining an amount to be applied and device for carrying out the method | 
| CN103635077A (en) * | 2011-05-18 | 2014-03-12 | 乔治弗里茨迈尔两合公司 | Method for determining an amount to be applied and device for carrying out the method | 
| EA030261B1 (en) * | 2011-05-18 | 2018-07-31 | Георг Фритцмайер Гмбх Унд Ко. Кг | Method for determining an amount of agrochemicals to be applied | 
| CN103650731A (en) * | 2013-12-27 | 2014-03-26 | 江苏大学 | Method for carrying out fertilizer application at vegetative growth phase in accordance with change of crop plant height | 
| CN107505271A (en) * | 2017-07-13 | 2017-12-22 | 北京农业信息技术研究中心 | Plant nitrogen evaluation method and system based on nitrogen fractions radiative transfer model | 
| CN107505271B (en) * | 2017-07-13 | 2020-02-14 | 北京农业信息技术研究中心 | Plant nitrogen estimation method and system based on nitrogen component radiation transmission model | 
| CN107690925A (en) * | 2017-11-09 | 2018-02-16 | 湖南杂交水稻研究中心 | A kind of accurate topdressing method of hybrid rice | 
| CN107690925B (en) * | 2017-11-09 | 2020-01-31 | 湖南杂交水稻研究中心 | A method for precise top dressing of hybrid rice | 
| CN108184792A (en) * | 2017-12-27 | 2018-06-22 | 定远县宏源农业机械有限公司 | A kind of Intelligentized regulating and controlling system of spraying equipment and drugs | 
| CN108195770A (en) * | 2018-01-03 | 2018-06-22 | 电子科技大学 | A kind of chlorophyll content semiempirical evaluation method based on PROSAIL models | 
| CN111175782A (en) * | 2019-12-31 | 2020-05-19 | 塔里木大学 | Satellite remote sensing monitoring method for chlorophyll content of cotton canopy | 
| US12281980B2 (en) | 2020-05-01 | 2025-04-22 | Pivot Bio, Inc. | Measurement of nitrogen fixation and incorporation | 
| CN111860328A (en) * | 2020-07-21 | 2020-10-30 | 杭州时光坐标影视传媒股份有限公司 | Biomass estimation method based on bidirectional reflection function and forest scene illumination effect modeling | 
| CN112330672A (en) * | 2020-11-28 | 2021-02-05 | 华中农业大学 | Crop leaf area index inversion method based on PROSAIL model and under participation of canopy coverage in optimization | 
| CN113673366A (en) * | 2021-07-29 | 2021-11-19 | 长光卫星技术有限公司 | Crop growth monitoring method based on remote sensing inversion | 
| WO2023147050A1 (en) * | 2022-01-27 | 2023-08-03 | Pivot Bio, Inc. | Assessing relative plant nitrogen in a field environment | 
| WO2024194458A1 (en) * | 2023-03-23 | 2024-09-26 | Basf Agro Trademarks Gmbh | Method for providing nitrogen uptake data of plants and/or plant parts of an agricultural field | 
Also Published As
| Publication number | Publication date | 
|---|---|
| NO20040271L (en) | 2004-03-25 | 
| EP1419385A1 (en) | 2004-05-19 | 
| PL369138A1 (en) | 2005-04-18 | 
Similar Documents
| Publication | Publication Date | Title | 
|---|---|---|
| EP1419385A1 (en) | Improved real time method for controlling applications of fertilizers and other yield improving agents to crops | |
| Plant et al. | Relationships between remotely sensed reflectance data and cotton growth and yield | |
| Daughtry et al. | Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies | |
| Sola et al. | Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes | |
| US7408145B2 (en) | Light sensing instrument with modulated polychromatic source | |
| Mistele et al. | Spectral measurements of the total aerial N and biomass dry weight in maize using a quadrilateral-view optic | |
| Tilling et al. | Remote sensing of nitrogen and water stress in wheat | |
| US9075008B2 (en) | Plant treatment based on a water invariant chlorophyll index | |
| Foster et al. | Estimation of bioenergy crop yield and N status by hyperspectral canopy reflectance and partial least square regression | |
| Carter et al. | Narrow-band reflectance imagery compared with thermalimagery for early detection of plant stress | |
| Lamb | The use of qualitative airborne multispectral imaging for managing agricultural crops-a case study in south-eastern Australia | |
| US20010016053A1 (en) | Multi-spectral imaging sensor | |
| US20080291455A1 (en) | Active Light Sensor | |
| Noh et al. | Dynamic calibration and image segmentation methods for multispectral imaging crop nitrogen deficiency sensors | |
| Sakamoto et al. | Application of day and night digital photographs for estimating maize biophysical characteristics | |
| WO2019198072A1 (en) | Crop coefficients and use thereof for irrigation guidance | |
| Shibayama et al. | Estimating rice leaf greenness (SPAD) using fixed-point continuous observations of visible red and near infrared narrow-band digital images | |
| Hama et al. | Examination of appropriate observation time and correction of vegetation index for drone-based crop monitoring | |
| Gnyp et al. | Comparison between tractor-based and UAV-based spectrometer measurements in winter wheat | |
| Shibayama et al. | Estimating paddy rice leaf area index with fixed point continuous observation of near infrared reflectance using a calibrated digital camera | |
| Biewer et al. | Prediction of yield and the contribution of legumes in legume-grass mixtures using field spectrometry | |
| Reyniers et al. | Optical measurement of crop cover for yield prediction of wheat | |
| Mihaylov et al. | Tracking The Development Of Six Wheat Varieties Using Infrared Imaging And Image Processing Algorithms | |
| Quemada et al. | Vegetation indices from remote sensing imagery as proxies for yield and grain N in wheat | |
| Shibayama et al. | Estimating the mean leaf inclination angle of wheat canopies using reflected polarized light | 
Legal Events
| Date | Code | Title | Description | 
|---|---|---|---|
| AK | Designated states | 
             Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NO NZ OM PH PT RO RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM  | 
        |
| AL | Designated countries for regional patents | 
             Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG  | 
        |
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| REEP | Request for entry into the european phase | 
             Ref document number: 2002754554 Country of ref document: EP  | 
        |
| WWE | Wipo information: entry into national phase | 
             Ref document number: 2002754554 Country of ref document: EP  | 
        |
| WWP | Wipo information: published in national office | 
             Ref document number: 2002754554 Country of ref document: EP  | 
        |
| REG | Reference to national code | 
             Ref country code: DE Ref legal event code: 8642  | 
        |
| NENP | Non-entry into the national phase | 
             Ref country code: JP  | 
        |
| WWW | Wipo information: withdrawn in national office | 
             Ref document number: JP  |