WO2003066862A1 - Clonage d'une proteine humaine de type prolylhydroxylase - Google Patents
Clonage d'une proteine humaine de type prolylhydroxylase Download PDFInfo
- Publication number
- WO2003066862A1 WO2003066862A1 PCT/EP2003/001082 EP0301082W WO03066862A1 WO 2003066862 A1 WO2003066862 A1 WO 2003066862A1 EP 0301082 W EP0301082 W EP 0301082W WO 03066862 A1 WO03066862 A1 WO 03066862A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prolylhydroxylase
- protein
- polypeptide
- polynucleotide
- activity
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 220
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 153
- 241000282414 Homo sapiens Species 0.000 title abstract description 152
- 238000010367 cloning Methods 0.000 title abstract description 7
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 60
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 49
- 208000006673 asthma Diseases 0.000 claims abstract description 25
- 208000035475 disorder Diseases 0.000 claims abstract description 25
- 201000010099 disease Diseases 0.000 claims abstract description 24
- 201000011510 cancer Diseases 0.000 claims abstract description 20
- 208000015114 central nervous system disease Diseases 0.000 claims abstract description 15
- 208000024172 Cardiovascular disease Diseases 0.000 claims abstract description 11
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims abstract 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 230
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 226
- 229920001184 polypeptide Polymers 0.000 claims description 219
- 150000001875 compounds Chemical class 0.000 claims description 155
- 238000012360 testing method Methods 0.000 claims description 153
- 238000000034 method Methods 0.000 claims description 143
- 102000040430 polynucleotide Human genes 0.000 claims description 130
- 108091033319 polynucleotide Proteins 0.000 claims description 130
- 239000002157 polynucleotide Substances 0.000 claims description 130
- 230000014509 gene expression Effects 0.000 claims description 102
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 45
- 230000000694 effects Effects 0.000 claims description 44
- 239000003795 chemical substances by application Substances 0.000 claims description 33
- 239000012634 fragment Substances 0.000 claims description 29
- 239000003153 chemical reaction reagent Substances 0.000 claims description 25
- 230000007423 decrease Effects 0.000 claims description 24
- 239000013604 expression vector Substances 0.000 claims description 24
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 23
- 230000027455 binding Effects 0.000 claims description 21
- 238000012216 screening Methods 0.000 claims description 20
- 230000004952 protein activity Effects 0.000 claims description 19
- 238000009396 hybridization Methods 0.000 claims description 18
- 230000001965 increasing effect Effects 0.000 claims description 15
- 150000007523 nucleic acids Chemical class 0.000 claims description 15
- 230000003247 decreasing effect Effects 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 14
- 239000008194 pharmaceutical composition Substances 0.000 claims description 14
- 102000039446 nucleic acids Human genes 0.000 claims description 13
- 108020004707 nucleic acids Proteins 0.000 claims description 13
- 238000002360 preparation method Methods 0.000 claims description 12
- 238000004113 cell culture Methods 0.000 claims description 7
- 239000003814 drug Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 230000002068 genetic effect Effects 0.000 claims description 6
- 230000007850 degeneration Effects 0.000 claims description 5
- 229940124606 potential therapeutic agent Drugs 0.000 claims description 5
- 230000003993 interaction Effects 0.000 claims description 4
- 230000002829 reductive effect Effects 0.000 claims description 4
- 229940124597 therapeutic agent Drugs 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000012472 biological sample Substances 0.000 claims 4
- 238000009007 Diagnostic Kit Methods 0.000 claims 1
- 238000012258 culturing Methods 0.000 claims 1
- 108010043005 Prolyl Hydroxylases Proteins 0.000 abstract description 32
- 102000004079 Prolyl Hydroxylases Human genes 0.000 abstract description 31
- 230000004064 dysfunction Effects 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 158
- 241001465754 Metazoa Species 0.000 description 57
- 210000001519 tissue Anatomy 0.000 description 49
- 238000003556 assay Methods 0.000 description 44
- 108091028043 Nucleic acid sequence Proteins 0.000 description 40
- 239000002773 nucleotide Substances 0.000 description 40
- 125000003729 nucleotide group Chemical group 0.000 description 40
- 108020004414 DNA Proteins 0.000 description 37
- 239000000523 sample Substances 0.000 description 37
- 210000004072 lung Anatomy 0.000 description 35
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 33
- 108020004635 Complementary DNA Proteins 0.000 description 31
- 238000003752 polymerase chain reaction Methods 0.000 description 29
- 238000011282 treatment Methods 0.000 description 28
- 108020004999 messenger RNA Proteins 0.000 description 27
- 102000053642 Catalytic RNA Human genes 0.000 description 26
- 108090000994 Catalytic RNA Proteins 0.000 description 26
- 238000007912 intraperitoneal administration Methods 0.000 description 26
- 239000000047 product Substances 0.000 description 26
- 108091092562 ribozyme Proteins 0.000 description 26
- 208000002193 Pain Diseases 0.000 description 25
- 241000700159 Rattus Species 0.000 description 25
- 239000002299 complementary DNA Substances 0.000 description 25
- 239000002502 liposome Substances 0.000 description 25
- 108091034117 Oligonucleotide Proteins 0.000 description 24
- 238000010804 cDNA synthesis Methods 0.000 description 23
- 239000013598 vector Substances 0.000 description 23
- 210000004556 brain Anatomy 0.000 description 22
- 210000004185 liver Anatomy 0.000 description 22
- 239000000126 substance Substances 0.000 description 22
- 230000001605 fetal effect Effects 0.000 description 21
- 108020001507 fusion proteins Proteins 0.000 description 21
- 102000037865 fusion proteins Human genes 0.000 description 21
- 239000000203 mixture Substances 0.000 description 20
- 210000000056 organ Anatomy 0.000 description 20
- 230000036407 pain Effects 0.000 description 20
- 230000000295 complement effect Effects 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 19
- 239000003981 vehicle Substances 0.000 description 19
- 238000000692 Student's t-test Methods 0.000 description 18
- 239000000074 antisense oligonucleotide Substances 0.000 description 18
- 238000012230 antisense oligonucleotides Methods 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 230000002255 enzymatic effect Effects 0.000 description 17
- 210000002307 prostate Anatomy 0.000 description 17
- 238000001134 F-test Methods 0.000 description 16
- 238000007920 subcutaneous administration Methods 0.000 description 16
- 229940024606 amino acid Drugs 0.000 description 15
- 150000001413 amino acids Chemical class 0.000 description 15
- 238000003776 cleavage reaction Methods 0.000 description 15
- 238000001727 in vivo Methods 0.000 description 15
- 230000001105 regulatory effect Effects 0.000 description 15
- 230000007017 scission Effects 0.000 description 15
- 241000283984 Rodentia Species 0.000 description 14
- 230000015556 catabolic process Effects 0.000 description 14
- 210000001072 colon Anatomy 0.000 description 14
- 238000006731 degradation reaction Methods 0.000 description 14
- 229940088597 hormone Drugs 0.000 description 14
- 210000003734 kidney Anatomy 0.000 description 14
- 102000004190 Enzymes Human genes 0.000 description 13
- 108090000790 Enzymes Proteins 0.000 description 13
- 206010027476 Metastases Diseases 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 210000002216 heart Anatomy 0.000 description 13
- 239000005556 hormone Substances 0.000 description 13
- 230000009401 metastasis Effects 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- -1 antibiotic Substances 0.000 description 12
- 230000037396 body weight Effects 0.000 description 12
- 229940088598 enzyme Drugs 0.000 description 12
- 210000002683 foot Anatomy 0.000 description 12
- 230000002441 reversible effect Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 230000001225 therapeutic effect Effects 0.000 description 12
- 238000002560 therapeutic procedure Methods 0.000 description 12
- 230000014616 translation Effects 0.000 description 12
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 11
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 11
- 239000011324 bead Substances 0.000 description 11
- 210000000988 bone and bone Anatomy 0.000 description 11
- 230000001419 dependent effect Effects 0.000 description 11
- 238000013519 translation Methods 0.000 description 11
- 210000004881 tumor cell Anatomy 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 10
- 108700039887 Essential Genes Proteins 0.000 description 10
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 10
- 208000004454 Hyperalgesia Diseases 0.000 description 10
- 241000699670 Mus sp. Species 0.000 description 10
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 10
- 210000001638 cerebellum Anatomy 0.000 description 10
- 210000002744 extracellular matrix Anatomy 0.000 description 10
- 239000000499 gel Substances 0.000 description 10
- 238000003780 insertion Methods 0.000 description 10
- 230000037431 insertion Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000000746 purification Methods 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- 230000002269 spontaneous effect Effects 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 241000196324 Embryophyta Species 0.000 description 9
- 208000012766 Growth delay Diseases 0.000 description 9
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 9
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 9
- 238000010171 animal model Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000001684 chronic effect Effects 0.000 description 9
- 230000001939 inductive effect Effects 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 239000003550 marker Substances 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 210000000496 pancreas Anatomy 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- 239000002953 phosphate buffered saline Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 210000003437 trachea Anatomy 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- 230000003442 weekly effect Effects 0.000 description 9
- 108091026890 Coding region Proteins 0.000 description 8
- 206010020751 Hypersensitivity Diseases 0.000 description 8
- 108091023040 Transcription factor Proteins 0.000 description 8
- 102000040945 Transcription factor Human genes 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 230000003321 amplification Effects 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- YKPUWZUDDOIDPM-SOFGYWHQSA-N capsaicin Chemical compound COC1=CC(CNC(=O)CCCC\C=C\C(C)C)=CC=C1O YKPUWZUDDOIDPM-SOFGYWHQSA-N 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 239000003623 enhancer Substances 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 210000003491 skin Anatomy 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 210000000952 spleen Anatomy 0.000 description 8
- 230000004083 survival effect Effects 0.000 description 8
- 238000012549 training Methods 0.000 description 8
- 229930000680 A04AD01 - Scopolamine Natural products 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 108010070675 Glutathione transferase Proteins 0.000 description 7
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 7
- STECJAGHUSJQJN-GAUPFVANSA-N Hyoscine Natural products C1([C@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-GAUPFVANSA-N 0.000 description 7
- 206010061218 Inflammation Diseases 0.000 description 7
- STECJAGHUSJQJN-UHFFFAOYSA-N N-Methyl-scopolamin Natural products C1C(C2C3O2)N(C)C3CC1OC(=O)C(CO)C1=CC=CC=C1 STECJAGHUSJQJN-UHFFFAOYSA-N 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 210000001744 T-lymphocyte Anatomy 0.000 description 7
- 230000001154 acute effect Effects 0.000 description 7
- 210000000709 aorta Anatomy 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 210000004351 coronary vessel Anatomy 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 210000001652 frontal lobe Anatomy 0.000 description 7
- 238000005805 hydroxylation reaction Methods 0.000 description 7
- 230000004054 inflammatory process Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 7
- STECJAGHUSJQJN-FWXGHANASA-N scopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-FWXGHANASA-N 0.000 description 7
- 229960002646 scopolamine Drugs 0.000 description 7
- 239000000779 smoke Substances 0.000 description 7
- 210000000278 spinal cord Anatomy 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 210000004291 uterus Anatomy 0.000 description 7
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 6
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- 206010029260 Neuroblastoma Diseases 0.000 description 6
- 241000208125 Nicotiana Species 0.000 description 6
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 6
- 208000004403 Prostatic Hyperplasia Diseases 0.000 description 6
- 108091000117 Tyrosine 3-Monooxygenase Proteins 0.000 description 6
- 102000048218 Tyrosine 3-monooxygenases Human genes 0.000 description 6
- 239000013566 allergen Substances 0.000 description 6
- 210000000481 breast Anatomy 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 210000003194 forelimb Anatomy 0.000 description 6
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 6
- 210000000548 hind-foot Anatomy 0.000 description 6
- 210000005260 human cell Anatomy 0.000 description 6
- 230000003902 lesion Effects 0.000 description 6
- 150000002632 lipids Chemical class 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 208000010125 myocardial infarction Diseases 0.000 description 6
- 210000002381 plasma Anatomy 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000011002 quantification Methods 0.000 description 6
- 108091008146 restriction endonucleases Proteins 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 210000000813 small intestine Anatomy 0.000 description 6
- 210000002784 stomach Anatomy 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 210000001550 testis Anatomy 0.000 description 6
- 210000001541 thymus gland Anatomy 0.000 description 6
- 230000004614 tumor growth Effects 0.000 description 6
- 230000004568 DNA-binding Effects 0.000 description 5
- 206010012289 Dementia Diseases 0.000 description 5
- 108010013369 Enteropeptidase Proteins 0.000 description 5
- 102100029727 Enteropeptidase Human genes 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 208000018737 Parkinson disease Diseases 0.000 description 5
- 108091081024 Start codon Proteins 0.000 description 5
- 239000002671 adjuvant Substances 0.000 description 5
- 210000004100 adrenal gland Anatomy 0.000 description 5
- 238000001042 affinity chromatography Methods 0.000 description 5
- 208000026935 allergic disease Diseases 0.000 description 5
- 230000004075 alteration Effects 0.000 description 5
- 230000033115 angiogenesis Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 210000002837 heart atrium Anatomy 0.000 description 5
- 210000001320 hippocampus Anatomy 0.000 description 5
- 230000000984 immunochemical effect Effects 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 210000001165 lymph node Anatomy 0.000 description 5
- 210000005075 mammary gland Anatomy 0.000 description 5
- 210000004379 membrane Anatomy 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 5
- 210000001616 monocyte Anatomy 0.000 description 5
- 210000000440 neutrophil Anatomy 0.000 description 5
- 210000002826 placenta Anatomy 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 238000003127 radioimmunoassay Methods 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 210000003079 salivary gland Anatomy 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 210000002027 skeletal muscle Anatomy 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 210000001685 thyroid gland Anatomy 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- 206010006187 Breast cancer Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 241000282693 Cercopithecidae Species 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 102100031780 Endonuclease Human genes 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 101000835093 Homo sapiens Transferrin receptor protein 1 Proteins 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 239000013614 RNA sample Substances 0.000 description 4
- 102100026144 Transferrin receptor protein 1 Human genes 0.000 description 4
- 210000001015 abdomen Anatomy 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 230000007815 allergy Effects 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 229960002504 capsaicin Drugs 0.000 description 4
- 235000017663 capsaicin Nutrition 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 150000001720 carbohydrates Chemical group 0.000 description 4
- 210000003710 cerebral cortex Anatomy 0.000 description 4
- 210000000877 corpus callosum Anatomy 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000003291 dopaminomimetic effect Effects 0.000 description 4
- 239000008298 dragée Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010195 expression analysis Methods 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000001502 gel electrophoresis Methods 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 238000013537 high throughput screening Methods 0.000 description 4
- 239000012510 hollow fiber Substances 0.000 description 4
- 210000000688 human artificial chromosome Anatomy 0.000 description 4
- 210000003405 ileum Anatomy 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 208000004296 neuralgia Diseases 0.000 description 4
- 208000021722 neuropathic pain Diseases 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 230000004224 protection Effects 0.000 description 4
- 238000003753 real-time PCR Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002784 sclerotic effect Effects 0.000 description 4
- 150000003384 small molecules Chemical class 0.000 description 4
- 208000019553 vascular disease Diseases 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- 108020004463 18S ribosomal RNA Proteins 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 3
- 208000000884 Airway Obstruction Diseases 0.000 description 3
- 208000008035 Back Pain Diseases 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 206010052804 Drug tolerance Diseases 0.000 description 3
- 206010014561 Emphysema Diseases 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 201000011240 Frontotemporal dementia Diseases 0.000 description 3
- 108010024636 Glutathione Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 3
- 206010021143 Hypoxia Diseases 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 102000000588 Interleukin-2 Human genes 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- 239000005089 Luciferase Substances 0.000 description 3
- 101710182846 Polyhedrin Proteins 0.000 description 3
- 108010050808 Procollagen Proteins 0.000 description 3
- 108010067787 Proteoglycans Proteins 0.000 description 3
- 238000002123 RNA extraction Methods 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 102000006382 Ribonucleases Human genes 0.000 description 3
- 108010083644 Ribonucleases Proteins 0.000 description 3
- 241000700584 Simplexvirus Species 0.000 description 3
- 208000006011 Stroke Diseases 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 102100036407 Thioredoxin Human genes 0.000 description 3
- 241000723873 Tobacco mosaic virus Species 0.000 description 3
- 208000030886 Traumatic Brain injury Diseases 0.000 description 3
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 230000021736 acetylation Effects 0.000 description 3
- 238000006640 acetylation reaction Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 208000005298 acute pain Diseases 0.000 description 3
- 210000000577 adipose tissue Anatomy 0.000 description 3
- 230000000692 anti-sense effect Effects 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 210000002469 basement membrane Anatomy 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol group Chemical group [C@@H]1(CC[C@H]2[C@@H]3CC=C4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)[C@H](C)CCCC(C)C HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 208000037976 chronic inflammation Diseases 0.000 description 3
- 230000006020 chronic inflammation Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 230000009918 complex formation Effects 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 210000003979 eosinophil Anatomy 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 210000003191 femoral vein Anatomy 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229960003180 glutathione Drugs 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 230000026781 habituation Effects 0.000 description 3
- 210000003630 histaminocyte Anatomy 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 230000033444 hydroxylation Effects 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 238000003364 immunohistochemistry Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- QXEWZXJUGTUHSQ-UHFFFAOYSA-L iron(2+) 2-oxopentanedioate Chemical compound [Fe+2].[O-]C(=O)CCC(=O)C([O-])=O QXEWZXJUGTUHSQ-UHFFFAOYSA-L 0.000 description 3
- 208000017169 kidney disease Diseases 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 238000001325 log-rank test Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 108010082117 matrigel Proteins 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 230000007334 memory performance Effects 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- DIVDFFZHCJEHGG-UHFFFAOYSA-N oxidopamine Chemical compound NCCC1=CC(O)=C(O)C=C1O DIVDFFZHCJEHGG-UHFFFAOYSA-N 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 210000005259 peripheral blood Anatomy 0.000 description 3
- 239000011886 peripheral blood Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 210000001525 retina Anatomy 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 210000003497 sciatic nerve Anatomy 0.000 description 3
- 238000007423 screening assay Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 210000003523 substantia nigra Anatomy 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 3
- 210000001103 thalamus Anatomy 0.000 description 3
- 108060008226 thioredoxin Proteins 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 206010003130 Arrhythmia supraventricular Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 description 2
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- 206010006458 Bronchitis chronic Diseases 0.000 description 2
- 206010006482 Bronchospasm Diseases 0.000 description 2
- 101100011377 Caenorhabditis elegans egl-9 gene Proteins 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 241000700143 Castor fiber Species 0.000 description 2
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 208000000094 Chronic Pain Diseases 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 208000013586 Complex regional pain syndrome type 1 Diseases 0.000 description 2
- 208000011990 Corticobasal Degeneration Diseases 0.000 description 2
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 2
- 229930105110 Cyclosporin A Natural products 0.000 description 2
- 108010036949 Cyclosporine Proteins 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 230000033616 DNA repair Effects 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 2
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 102000016680 Dioxygenases Human genes 0.000 description 2
- 108010028143 Dioxygenases Proteins 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 108010074860 Factor Xa Proteins 0.000 description 2
- 102100039556 Galectin-4 Human genes 0.000 description 2
- 102100021023 Gamma-glutamyl hydrolase Human genes 0.000 description 2
- 206010061968 Gastric neoplasm Diseases 0.000 description 2
- 108010060309 Glucuronidase Proteins 0.000 description 2
- 102000053187 Glucuronidase Human genes 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 206010019233 Headaches Diseases 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 2
- 206010019695 Hepatic neoplasm Diseases 0.000 description 2
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 2
- 101000821981 Homo sapiens Sarcoma antigen 1 Proteins 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 2
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 206010065390 Inflammatory pain Diseases 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- 241000235058 Komagataella pastoris Species 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 208000008930 Low Back Pain Diseases 0.000 description 2
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 description 2
- 208000018262 Peripheral vascular disease Diseases 0.000 description 2
- 208000004550 Postoperative Pain Diseases 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 201000001947 Reflex Sympathetic Dystrophy Diseases 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 206010039085 Rhinitis allergic Diseases 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 2
- 241000714474 Rous sarcoma virus Species 0.000 description 2
- 102100021466 Sarcoma antigen 1 Human genes 0.000 description 2
- 206010039670 Sciatic nerve injury Diseases 0.000 description 2
- 241000256251 Spodoptera frugiperda Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 208000024770 Thyroid neoplasm Diseases 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 241000173347 Tonsilla Species 0.000 description 2
- 241000255985 Trichoplusia Species 0.000 description 2
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 2
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 102000044159 Ubiquitin Human genes 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 2
- 201000010105 allergic rhinitis Diseases 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 206010003119 arrhythmia Diseases 0.000 description 2
- 230000006793 arrhythmia Effects 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 230000001746 atrial effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 210000003651 basophil Anatomy 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 210000001772 blood platelet Anatomy 0.000 description 2
- 230000036770 blood supply Effects 0.000 description 2
- 108091005948 blue fluorescent proteins Proteins 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 210000005013 brain tissue Anatomy 0.000 description 2
- 206010006451 bronchitis Diseases 0.000 description 2
- 230000007885 bronchoconstriction Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000007975 buffered saline Substances 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000000423 cell based assay Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 210000003679 cervix uteri Anatomy 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 208000007451 chronic bronchitis Diseases 0.000 description 2
- 229960001265 ciclosporin Drugs 0.000 description 2
- 235000019504 cigarettes Nutrition 0.000 description 2
- 230000019771 cognition Effects 0.000 description 2
- 230000007278 cognition impairment Effects 0.000 description 2
- 230000003920 cognitive function Effects 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 230000002508 compound effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229930182912 cyclosporin Natural products 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 2
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 230000002616 endonucleolytic effect Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001952 enzyme assay Methods 0.000 description 2
- 230000001667 episodic effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 239000010685 fatty oil Substances 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 210000002458 fetal heart Anatomy 0.000 description 2
- 230000003176 fibrotic effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 108010062699 gamma-Glutamyl Hydrolase Proteins 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical compound OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 231100000869 headache Toxicity 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000001308 heart ventricle Anatomy 0.000 description 2
- 239000000185 hemagglutinin Substances 0.000 description 2
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 201000002312 ileal neoplasm Diseases 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 210000004969 inflammatory cell Anatomy 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 208000023589 ischemic disease Diseases 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 230000013016 learning Effects 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 230000005923 long-lasting effect Effects 0.000 description 2
- 210000003141 lower extremity Anatomy 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 208000037841 lung tumor Diseases 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 206010027175 memory impairment Diseases 0.000 description 2
- 210000002418 meninge Anatomy 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 238000001823 molecular biology technique Methods 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 208000025402 neoplasm of esophagus Diseases 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 201000001119 neuropathy Diseases 0.000 description 2
- 230000007823 neuropathy Effects 0.000 description 2
- 239000002664 nootropic agent Substances 0.000 description 2
- 210000000869 occipital lobe Anatomy 0.000 description 2
- 206010033675 panniculitis Diseases 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 210000001152 parietal lobe Anatomy 0.000 description 2
- 230000007310 pathophysiology Effects 0.000 description 2
- 210000003899 penis Anatomy 0.000 description 2
- 210000003516 pericardium Anatomy 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 210000002975 pon Anatomy 0.000 description 2
- 238000012809 post-inoculation Methods 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 230000001323 posttranslational effect Effects 0.000 description 2
- 230000001144 postural effect Effects 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 201000001514 prostate carcinoma Diseases 0.000 description 2
- 108020003519 protein disulfide isomerase Proteins 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 210000000664 rectum Anatomy 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 235000002020 sage Nutrition 0.000 description 2
- 210000001625 seminal vesicle Anatomy 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 210000003594 spinal ganglia Anatomy 0.000 description 2
- 210000001032 spinal nerve Anatomy 0.000 description 2
- 238000013223 sprague-dawley female rat Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 230000009182 swimming Effects 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 210000004062 tegmentum mesencephali Anatomy 0.000 description 2
- 210000003478 temporal lobe Anatomy 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 229940094937 thioredoxin Drugs 0.000 description 2
- 208000013076 thyroid tumor Diseases 0.000 description 2
- 230000000287 tissue oxygenation Effects 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009529 traumatic brain injury Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 208000025421 tumor of uterus Diseases 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- 208000024719 uterine cervix neoplasm Diseases 0.000 description 2
- 206010047302 ventricular tachycardia Diseases 0.000 description 2
- 201000010653 vesiculitis Diseases 0.000 description 2
- YMXHPSHLTSZXKH-RVBZMBCESA-N (2,5-dioxopyrrolidin-1-yl) 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoate Chemical compound C([C@H]1[C@H]2NC(=O)N[C@H]2CS1)CCCC(=O)ON1C(=O)CCC1=O YMXHPSHLTSZXKH-RVBZMBCESA-N 0.000 description 1
- ONIBWKKTOPOVIA-FXLFCPKBSA-N (2S)-(214C)azolidine-2-carboxylic acid Chemical compound N1[14C@@H](CCC1)C(=O)O ONIBWKKTOPOVIA-FXLFCPKBSA-N 0.000 description 1
- PMMYEEVYMWASQN-MWOPFHEZSA-N (2S)-4-hydroxy(214C)azolidine-2-carboxylic acid Chemical compound OC1C[14C@H](NC1)C(=O)O PMMYEEVYMWASQN-MWOPFHEZSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- LMGBDZJLZIPJPZ-UHFFFAOYSA-M 1-methyl-4-phenylpyridin-1-ium;chloride Chemical compound [Cl-].C1=C[N+](C)=CC=C1C1=CC=CC=C1 LMGBDZJLZIPJPZ-UHFFFAOYSA-M 0.000 description 1
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- COCMHKNAGZHBDZ-UHFFFAOYSA-N 4-carboxy-3-[3-(dimethylamino)-6-dimethylazaniumylidenexanthen-9-yl]benzoate Chemical compound C=12C=CC(=[N+](C)C)C=C2OC2=CC(N(C)C)=CC=C2C=1C1=CC(C([O-])=O)=CC=C1C(O)=O COCMHKNAGZHBDZ-UHFFFAOYSA-N 0.000 description 1
- MLACDGUOKDOLGC-UHFFFAOYSA-N 5-(2-aminoethyl)benzene-1,2,4-triol;hydron;bromide Chemical compound Br.NCCC1=CC(O)=C(O)C=C1O MLACDGUOKDOLGC-UHFFFAOYSA-N 0.000 description 1
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 1
- VDABVNMGKGUPEY-UHFFFAOYSA-N 6-carboxyfluorescein succinimidyl ester Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=C2)OC(=O)C1=CC=C2C(=O)ON1C(=O)CCC1=O VDABVNMGKGUPEY-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000009304 Acute Kidney Injury Diseases 0.000 description 1
- 102100029457 Adenine phosphoribosyltransferase Human genes 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 206010001541 Akinesia Diseases 0.000 description 1
- 108010025188 Alcohol oxidase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 208000035285 Allergic Seasonal Rhinitis Diseases 0.000 description 1
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 206010002388 Angina unstable Diseases 0.000 description 1
- 206010003178 Arterial thrombosis Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 102100030907 Aryl hydrocarbon receptor nuclear translocator Human genes 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010003645 Atopy Diseases 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010003662 Atrial flutter Diseases 0.000 description 1
- 208000006808 Atrioventricular Nodal Reentry Tachycardia Diseases 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 206010004663 Biliary colic Diseases 0.000 description 1
- 206010065687 Bone loss Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101000800130 Bos taurus Thyroglobulin Proteins 0.000 description 1
- 201000006474 Brain Ischemia Diseases 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 1
- 101000690445 Caenorhabditis elegans Aryl hydrocarbon receptor nuclear translocator homolog Proteins 0.000 description 1
- 206010058019 Cancer Pain Diseases 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 102000003846 Carbonic anhydrases Human genes 0.000 description 1
- 108090000209 Carbonic anhydrases Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 206010051290 Central nervous system lesion Diseases 0.000 description 1
- 206010008120 Cerebral ischaemia Diseases 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 239000005496 Chlorsulfuron Substances 0.000 description 1
- 206010009094 Chronic paroxysmal hemicrania Diseases 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 208000006561 Cluster Headache Diseases 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 241001573498 Compacta Species 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 102000001493 Cyclophilins Human genes 0.000 description 1
- 108010068682 Cyclophilins Proteins 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 206010067889 Dementia with Lewy bodies Diseases 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 206010014513 Embolism arterial Diseases 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 208000005741 Failed Back Surgery Syndrome Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 108010001515 Galectin 4 Proteins 0.000 description 1
- 208000022461 Glomerular disease Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010051815 Glutamyl endopeptidase Proteins 0.000 description 1
- 102100035716 Glycophorin-A Human genes 0.000 description 1
- 108091005250 Glycophorins Proteins 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101001022185 Homo sapiens Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 description 1
- 101000793115 Homo sapiens Aryl hydrocarbon receptor nuclear translocator Proteins 0.000 description 1
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 description 1
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 1
- 101000904173 Homo sapiens Progonadoliberin-1 Proteins 0.000 description 1
- 238000009015 Human TaqMan MicroRNA Assay kit Methods 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 201000002832 Lewy body dementia Diseases 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000005777 Lupus Nephritis Diseases 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 101100261636 Methanothermobacter marburgensis (strain ATCC BAA-927 / DSM 2133 / JCM 14651 / NBRC 100331 / OCM 82 / Marburg) trpB2 gene Proteins 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 208000000060 Migraine with aura Diseases 0.000 description 1
- 102000010909 Monoamine Oxidase Human genes 0.000 description 1
- 108010062431 Monoamine oxidase Proteins 0.000 description 1
- 208000026072 Motor neurone disease Diseases 0.000 description 1
- 101100366881 Mus musculus Stat3 gene Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010029113 Neovascularisation Diseases 0.000 description 1
- 206010029155 Nephropathy toxic Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 208000000693 Neurogenic Urinary Bladder Diseases 0.000 description 1
- 206010029279 Neurogenic bladder Diseases 0.000 description 1
- 101710138657 Neurotoxin Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108700020497 Nucleopolyhedrovirus polyhedrin Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 208000036576 Obstructive uropathy Diseases 0.000 description 1
- 206010053159 Organ failure Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 208000000114 Pain Threshold Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- DPWPWRLQFGFJFI-UHFFFAOYSA-N Pargyline Chemical compound C#CCN(C)CC1=CC=CC=C1 DPWPWRLQFGFJFI-UHFFFAOYSA-N 0.000 description 1
- 208000027089 Parkinsonian disease Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 208000000450 Pelvic Pain Diseases 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- QGMRQYFBGABWDR-UHFFFAOYSA-M Pentobarbital sodium Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC(=O)[N-]C1=O QGMRQYFBGABWDR-UHFFFAOYSA-M 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 101100124346 Photorhabdus laumondii subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) hisCD gene Proteins 0.000 description 1
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 208000011185 Polyneuropathy in malignant disease Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 206010057239 Post laminectomy syndrome Diseases 0.000 description 1
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 1
- 208000008376 Pre-Excitation Syndromes Diseases 0.000 description 1
- LEIKGVHQTKHOLM-IUCAKERBSA-N Pro-Pro-Gly Chemical compound OC(=O)CNC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 LEIKGVHQTKHOLM-IUCAKERBSA-N 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 102100024028 Progonadoliberin-1 Human genes 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 208000011191 Pulmonary vascular disease Diseases 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 208000012322 Raynaud phenomenon Diseases 0.000 description 1
- 206010038419 Renal colic Diseases 0.000 description 1
- 208000033626 Renal failure acute Diseases 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 241000220010 Rhode Species 0.000 description 1
- 208000008765 Sciatica Diseases 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 208000007718 Stable Angina Diseases 0.000 description 1
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 1
- 206010066218 Stress Urinary Incontinence Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 101000996723 Sus scrofa Gonadotropin-releasing hormone receptor Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 208000008548 Tension-Type Headache Diseases 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- IUJDSEJGGMCXSG-UHFFFAOYSA-N Thiopental Chemical compound CCCC(C)C1(CC)C(=O)NC(=S)NC1=O IUJDSEJGGMCXSG-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 108700029229 Transcriptional Regulatory Elements Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- YJQCOFNZVFGCAF-UHFFFAOYSA-N Tunicamycin II Natural products O1C(CC(O)C2C(C(O)C(O2)N2C(NC(=O)C=C2)=O)O)C(O)C(O)C(NC(=O)C=CCCCCCCCCC(C)C)C1OC1OC(CO)C(O)C(O)C1NC(C)=O YJQCOFNZVFGCAF-UHFFFAOYSA-N 0.000 description 1
- 208000007814 Unstable Angina Diseases 0.000 description 1
- 206010046477 Urethral syndrome Diseases 0.000 description 1
- 208000000921 Urge Urinary Incontinence Diseases 0.000 description 1
- 206010046543 Urinary incontinence Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 208000009443 Vascular Malformations Diseases 0.000 description 1
- 201000004810 Vascular dementia Diseases 0.000 description 1
- 206010047141 Vasodilatation Diseases 0.000 description 1
- 208000008131 Ventricular Flutter Diseases 0.000 description 1
- 206010047281 Ventricular arrhythmia Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 208000003728 Vulvodynia Diseases 0.000 description 1
- 206010069055 Vulvovaginal pain Diseases 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 206010047924 Wheezing Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 201000011040 acute kidney failure Diseases 0.000 description 1
- 208000012998 acute renal failure Diseases 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 108091005764 adaptor proteins Proteins 0.000 description 1
- 102000035181 adaptor proteins Human genes 0.000 description 1
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000007801 affinity label Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 230000007000 age related cognitive decline Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 210000001552 airway epithelial cell Anatomy 0.000 description 1
- 208000037883 airway inflammation Diseases 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 210000002588 alveolar type II cell Anatomy 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 210000004727 amygdala Anatomy 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 230000003527 anti-angiogenesis Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 229940124650 anti-cancer therapies Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002590 anti-leukotriene effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 208000037849 arterial hypertension Diseases 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 206010003668 atrial tachycardia Diseases 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940125388 beta agonist Drugs 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 230000000059 bradycardiac effect Effects 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 210000000424 bronchial epithelial cell Anatomy 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- WHLPIOPUASGRQN-UHFFFAOYSA-N butyl 2-methylprop-2-enoate;methyl 2-methylprop-2-enoate Chemical compound COC(=O)C(C)=C.CCCCOC(=O)C(C)=C WHLPIOPUASGRQN-UHFFFAOYSA-N 0.000 description 1
- 229940043232 butyl acetate Drugs 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 238000001818 capillary gel electrophoresis Methods 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- VJYIFXVZLXQVHO-UHFFFAOYSA-N chlorsulfuron Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)Cl)=N1 VJYIFXVZLXQVHO-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 208000018912 cluster headache syndrome Diseases 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 230000003931 cognitive performance Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 208000018631 connective tissue disease Diseases 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 208000012790 cranial neuralgia Diseases 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 201000003146 cystitis Diseases 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 229960003914 desipramine Drugs 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 125000004427 diamine group Chemical group 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical class OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- QLTXKCWMEZIHBJ-PJGJYSAQSA-N dizocilpine maleate Chemical compound OC(=O)\C=C/C(O)=O.C12=CC=CC=C2[C@]2(C)C3=CC=CC=C3C[C@H]1N2 QLTXKCWMEZIHBJ-PJGJYSAQSA-N 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000010437 erythropoiesis Effects 0.000 description 1
- AEUTYOVWOVBAKS-UWVGGRQHSA-N ethambutol Natural products CC[C@@H](CO)NCCN[C@@H](CC)CO AEUTYOVWOVBAKS-UWVGGRQHSA-N 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001156 gastric mucosa Anatomy 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- XLXSAKCOAKORKW-UHFFFAOYSA-N gonadorelin Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 XLXSAKCOAKORKW-UHFFFAOYSA-N 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 101150113423 hisD gene Proteins 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000000222 hyperoxic effect Effects 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229940027941 immunoglobulin g Drugs 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 239000012133 immunoprecipitate Substances 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000010249 in-situ analysis Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229940125369 inhaled corticosteroids Drugs 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012482 interaction analysis Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940096397 interleukin-8 Drugs 0.000 description 1
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 1
- 201000004332 intermediate coronary syndrome Diseases 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 208000002551 irritable bowel syndrome Diseases 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- PHTQWCKDNZKARW-UHFFFAOYSA-N isopentyl alcohol Natural products CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 210000003125 jurkat cell Anatomy 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 201000003723 learning disability Diseases 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 208000018883 loss of balance Diseases 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004924 lung microvascular endothelial cell Anatomy 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 238000007403 mPCR Methods 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 210000004245 medial forebrain bundle Anatomy 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 210000004925 microvascular endothelial cell Anatomy 0.000 description 1
- 230000027939 micturition Effects 0.000 description 1
- 206010052787 migraine without aura Diseases 0.000 description 1
- 208000027061 mild cognitive impairment Diseases 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- ZAHQPTJLOCWVPG-UHFFFAOYSA-N mitoxantrone dihydrochloride Chemical compound Cl.Cl.O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO ZAHQPTJLOCWVPG-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 230000003843 mucus production Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000000581 natural killer T-cell Anatomy 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 210000001577 neostriatum Anatomy 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 231100000417 nephrotoxicity Toxicity 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000002581 neurotoxin Substances 0.000 description 1
- 231100000618 neurotoxin Toxicity 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000002474 noradrenergic effect Effects 0.000 description 1
- 238000001821 nucleic acid purification Methods 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 230000008212 organismal development Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 208000024449 overflow incontinence Diseases 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000037040 pain threshold Effects 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 208000021090 palsy Diseases 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 201000005989 paraneoplastic polyneuropathy Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 229960001779 pargyline Drugs 0.000 description 1
- 208000007777 paroxysmal Hemicrania Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 210000004345 peroneal nerve Anatomy 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000011458 pharmacological treatment Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- SXADIBFZNXBEGI-UHFFFAOYSA-N phosphoramidous acid Chemical compound NP(O)O SXADIBFZNXBEGI-UHFFFAOYSA-N 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 210000004694 pigment cell Anatomy 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000009862 primary prevention Effects 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 108010087846 prolyl-prolyl-glycine Proteins 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 210000004129 prosencephalon Anatomy 0.000 description 1
- 201000005825 prostate adenocarcinoma Diseases 0.000 description 1
- 201000001475 prostate lymphoma Diseases 0.000 description 1
- 230000026938 proteasomal ubiquitin-dependent protein catabolic process Effects 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 210000003456 pulmonary alveoli Anatomy 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000000552 rheumatic effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000010825 rotarod performance test Methods 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 230000009863 secondary prevention Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 239000012439 solid excipient Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000006886 spatial memory Effects 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- 208000022170 stress incontinence Diseases 0.000 description 1
- 210000001590 sural nerve Anatomy 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 208000001608 teratocarcinoma Diseases 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 230000000542 thalamic effect Effects 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 229960003279 thiopental Drugs 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 238000003161 three-hybrid assay Methods 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- 230000025366 tissue development Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 210000005090 tracheal smooth muscle Anatomy 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 206010044652 trigeminal neuralgia Diseases 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 101150081616 trpB gene Proteins 0.000 description 1
- 101150111232 trpB-1 gene Proteins 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 239000000225 tumor suppressor protein Substances 0.000 description 1
- ZHSGGJXRNHWHRS-VIDYELAYSA-N tunicamycin Chemical compound O([C@H]1[C@@H]([C@H]([C@@H](O)[C@@H](CC(O)[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C(NC(=O)C=C2)=O)O)O1)O)NC(=O)/C=C/CC(C)C)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O ZHSGGJXRNHWHRS-VIDYELAYSA-N 0.000 description 1
- MEYZYGMYMLNUHJ-UHFFFAOYSA-N tunicamycin Natural products CC(C)CCCCCCCCCC=CC(=O)NC1C(O)C(O)C(CC(O)C2OC(C(O)C2O)N3C=CC(=O)NC3=O)OC1OC4OC(CO)C(O)C(O)C4NC(=O)C MEYZYGMYMLNUHJ-UHFFFAOYSA-N 0.000 description 1
- 238000003160 two-hybrid assay Methods 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 206010046494 urge incontinence Diseases 0.000 description 1
- 201000002327 urinary tract obstruction Diseases 0.000 description 1
- 210000002229 urogenital system Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000037820 vascular cognitive impairment Diseases 0.000 description 1
- 231100000216 vascular lesion Toxicity 0.000 description 1
- 230000003156 vasculitic effect Effects 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 208000037997 venous disease Diseases 0.000 description 1
- 208000003663 ventricular fibrillation Diseases 0.000 description 1
- 230000007998 vessel formation Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 208000009935 visceral pain Diseases 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
- 238000001086 yeast two-hybrid system Methods 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0004—Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
- A61K49/0008—Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/11—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)
- C12Y114/11002—Procollagen-proline dioxygenase (1.14.11.2), i.e. proline-hydroxylase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the invention relates to the regulation of human prolylhydroxylase-li e protein.
- Prolyl 4-hydroxylases comprise a family of enzymes that are involved in post- translational modification of a variety of proteins.
- the prolyl 4-hydroxylation of procollagen has been analyzed in most detail. Hydroxylation of proline residues is a prerequisite for the folding of the newly synthesized procollagen polypeptide chain into its typical triple helical structure.
- Active prolyl 4-hydroxylases have been described as tetramers of 2 alpha and 2 beta subunits.
- the known beta subunit is identical to the enzyme protein disulfide isomerase (PDI).
- PDI protein disulfide isomerase
- Prolyl 4-hydroxylation of collagen is of crucial importance for any pathological process that is related to overproduction of collagen, such as fibrotic alterations of the liver, the heart, the lung, and the skin. Modulation of human prolyl 4-hydroxylases can be useful for the therapy of diseases characterized by fibrotic alterations (Franklin TJ.
- Prolyl 4-hydroxylation of certain nuclear factors also is implicated in the regulation of oxygen dependent gene expression.
- the regulation of tissue oxygen supply is of crucial importance for all processes in human life.
- the level of tissue oxygenation results from the balance between oxygen supply and oxygen consumption. This balance is exactly tuned in the healthy organism but disturbed under many pathological conditions such as pulmonary and cardiovascular diseases, which are characterized by a decrease in oxygen supply, as well as cancer and inflammations, which both are characterized by an increased demand of oxygen within the diseased tissue.
- imbalance of tissue oxygenation is followed by modulation of the transcription rate of a multitude of genes.
- genes include those that encode for important growth factors and hormones (e.g., vascular endothelial growth factor and erythropoietin) and many metabolic enzymes.
- the transcriptional modulation leads, for example, to a long lasting adaptation of metabolism, growth, or regression of blood vessels and increased or decreased erythropoiesis.
- hypoxia inducible factors All oxygen regulated genes have been turned out to be target genes for a distinct family of nuclear transcription factors which were termed hypoxia inducible factors (HIFs).
- the oxygen regulated genes carry distinct binding sites for HIFs in their regulatory elements (i.e., promoters and enhancers) (Wenger RH, Gassmann M. (1997) Biol Chem. 378(7):609-16; Semenza GL (1999) Annu Rev Cell Dev Biol. 15:551-78; Zhu H, Bunn HF (1999) Respir Physiol. 115(2): 239-47).
- hypoxia inducible factors consist of an alpha and a beta subunit.
- the alpha subunit which was named HIF-lbeta or ARNT, is not regulated in response to changes of tissue oxygen, the alpha subunit is unstable under normoxic or hyperoxic conditions. This is due to the rapid degradation of the constitutively translated alpha subunit via the proteasomal pathway.
- the alpha subunit becomes ubiquitinylated via an E3 ubiquitin conjugase complex, in which the NHL tumor suppressor protein is the central adaptor protein to the alpha subunit (Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich ⁇ , Chau N, Kaelin WG (2000) Nat Cell Biol. 2(7):423-7; Kondo K, Kaelin WG Jr.
- the ubiquitin conjugase complex can only bind to the alpha subunit and initiate degradation if the alpha subunit is hydroxylated on a distinct proline residue, which is highly conserved among HIFs. Under hypoxic conditions (low tissue oxygen), this prolyl 4-hydroxylation does not take place, and HIFs therefore become stable and can activate their target genes.
- the prolyl 4-hydroxylase(s) involved in prolyl 4- hydroxylation of HIF-alpha have not been identified (Ivan M, Kondo K, Yang H, Kim W, Naliando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin Jr WG.(2001) Science.
- any HIF- alpha specific prolyl 4-hydroxylase is a key oxygen sensor for the regulation of oxygen sensitive genes, such as vascular endothelial growth factor, erythropoietin, and i ⁇ OS and therefore is of crucial importance for cardiovascular, neoplastic and inflammatory diseases.
- a test compound is contacted with a prolylhydroxylase-like protein polypeptide comprising an amino acid sequence selected from the group consisting of:
- amino acid sequences which are at least about 49% identical to the amino acid sequence shown in SEQ ID NO: 2; and the amino acid sequence shown in SEQ ID NO: 2.
- Binding between the test compound and the prolylhydroxylase-like protein polypeptide is detected.
- a test compound which binds to the prolylhydroxylase-like protein polypeptide is thereby identified as a potential agent for decreasing extracellular matrix degradation.
- the agent can work by decreasing the activity of the prolylhydroxylase-like protein.
- Another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation.
- a test compound is contacted with a polynucleotide encoding a prolylhydroxylase-like protein polypeptide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:
- nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1; and the nucleotide sequence shown in SEQ ID NO: 1.
- Binding of the test compound to the polynucleotide is detected.
- a test compound which binds to the polynucleotide is identified as a potential agent for decreasing extracellular matrix degradation.
- the agent can work by decreasing the amount ofthe prolylhydroxylase-like protein through interacting with the prolylhydroxylase-like protein mRNA.
- Another embodiment of the invention is a method of screening for agents which regulate extracellular matrix degradation.
- a test compound is contacted with a prolylhydroxylase-like protein polypeptide comprising an amino acid sequence selected from the group consisting of:
- amino acid sequences which are at least about 49% identical to the amino acid sequence shown in SEQ ID NO: 2; and the amino acid sequence shown in SEQ ID NO: 2.
- a prolylhydroxylase-like protein activity of the polypeptide is detected.
- a test compound which increases prolylhydroxylase-like protein activity ofthe polypeptide relative to prolylhydroxylase-like protein activity in the absence of the test compound is thereby identified as a potential agent for increasing extracellular matrix degradation.
- a test compound which decreases prolylhydroxylase-like protein activity of the polypeptide relative to prolylhydroxylase-like protein activity in the absence ofthe test compound is thereby identified as a potential agent for decreasing extracellular matrix degradation.
- Yet another embodiment ofthe invention is a method of screening for agents which decrease extracellular matrix degradation.
- a test compound is contacted with a prolylhydroxylase-like protein product of a polynucleotide which comprises a nucleotide sequence selected from the group consisting of:
- nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1; and the nucleotide sequence shown in SEQ ID NO: 1.
- Binding of the test compound to the prolylhydroxylase-like protein product is detected.
- a test compound which binds to the prolylhydroxylase-like protein product is thereby identified as a potential agent for decreasing extracellular matrix degradation.
- Still another embodiment of the invention is a method of reducing extracellular matrix degradation.
- a cell is contacted with a reagent which specifically binds to a polynucleotide encoding a prolylhydroxylase-like protein polypeptide or the product encoded by the polynucleotide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:
- nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1; and the nucleotide sequene shown in SEQ ID NO: 1.
- Prolylhydroxylase-like protein activity in the cell is thereby decreased.
- the invention thus provides a human prolylhydroxylase-like protein that can be used to identify test compounds that may act, for example, as activators or inhibitors at the enzyme's active site.
- Human prolylhydroxylase-like protein and fragments thereof also are useful in raising specific antibodies that can block the enzyme and effectively reduce its activity.
- Fig. 1 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide (SEQ ID NO: 1).
- Fig. 2 shows the amino acid sequence deduced from the DNA-sequence of Fig.1
- Fig. 3 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide (SEQ ID NO: 3).
- Fig. 4 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide (SEQ ID NO: 4).
- Fig. 5 shows the DNA-sequence encoding a prolylhydroxylase-like protein Poly- peptide (SEQ ID NO: 5).
- Fig. 6 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide. (SEQ ID NO: 6).
- Fig. 7 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide
- Fig. 8 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide
- Fig. 9 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide
- Fig. 10 shows the DNA-sequence encoding a prolylhydroxylase-like protein Poly- peptide
- Fig. 11 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide
- Fig. 12 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide
- Fig. 13 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide
- Fig. 14 shows the DNA-sequence encoding a prolylhydroxylase-like protein Polypeptide
- Fig. 15 shows the DNA-sequence encoding a prolylhydroxylase-like protein Poly- peptide
- Fig. 16 shows the SAGE expression data.
- the invention relates to an isolated polynucleotide from the group consisting of:
- amino acid sequences which are at least about 49% identical to the amino acid sequence shown in SEQ ID NO: 2; and the amino acid sequence shown in SEQ ID NO: 2.
- a polynucleotide which represents a fragment, derivative or allelic variation of a polynucleotide sequence specified in (a) to (d) and encodes a prolylhydroxylase- like protein polypeptide.
- a novel prolylhydroxylase-like protein particularly a human prolylhydroxylase-like protein, can be used in therapeutic methods to treat cancer, a cardiovascular disorder, COPD, asthma, a genitourinary disorder or a CNS disorder.
- Human prolylhydroxylase-like protein comprises the amino acid sequence shown in SEQ ID NO: 2.
- a coding sequence for human prolylhydroxylase-like protein is shown in SEQ ID NO: 1.
- SEQ ID NO: 3 This sequence is contained within the longer sequence ' shown in SEQ ID NO: 3. This sequence is located on chromosome 3q8.
- Related ESTs (SEQ ID NOS: 4-15) are expressed in squamous cell carcinoma, teratocarcinoma in NT2 neuronal precursor cells, prostate, prostate carcinoma, small intestine, kidney, adrenal cortex carcinoma, .and pancreas. SAGE expression data shows expression in microvascular endothelial cells, prostate (cancerous and normal), and colon epithelium.
- SEQ ID NO: 2 was identified with the SMART domain for Prolyl 4-hydroxylase (P4Hc) alpha subunit homologues, SM0702, with an E-value of 3e-53.
- SEQ ID NO: 2 contains an endoplasmic reticulum targeting sequence and an ATP/GTP-binding site motif A as identified by Prosite.
- the top BLAST hit for SEQ ID NO : 2 is a mouse growth suppressor protein, GROS 1.
- SEQ ID NO: 2 is also described as a leprecan-a basement membrane-associated proteoglycan.
- Both GROSl and leprecan belong to new families of 2-oxoglutarate-and iron-dependent dioxegenases ⁇ the same super-family that contains Prolyl 4-hydroxylase.
- the DNA-repair protein AlkB, the extracellular matrix protein EGL-9, and the disease-resistance-related protein leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases.
- the lack of global sequence similarity among proteins containing the proly-hydroxylase domain appears to be an attribute of this family of enzymes.
- the principal component analysis of Andrade predicts a cytoplasmic cellular localization for this target.
- Human prolylhydroxylase-like protein of the invention is expected to be useful for the same purposes as previously identified prolylhydroxylase-like protein enzymes. Human prolylhydroxylase-like protein is believed to be useful in therapeutic methods to treat disorders such as cancer, cardiovascular disorders, COPD, asthma, genitouri- nary disorders, and CNS disorders. Human prolylhydroxylase-like protein also can be used to screen for human prolylhydroxylase-like protein activators and inhibitors.
- Human prolylhydroxylase-like polypeptides comprise at least 6, 10, 15, 20, 25, ⁇ 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, or 778 contiguous amino acids selected from the amino acid sequence shown in SEQ ID NO: 2 or a biologically active variant thereof, as defined below.
- a prolylhydroxylase-like polypeptide of the invention therefore can be a portion of a prolylhydroxylase-like protein, a full-length prolylhydroxylase- like protein, or a fusion protein comprising all or a portion of a prolylhydroxylase- like protein.
- prolylhydroxylase-like polypeptide variants that are biologically active, e.g., retain an enzymatic activity, also are prolylhydroxylase-like polypeptides.
- naturally or non-naturally occurring prolylhydroxylase-like polypeptide variants have amino acid sequences which are at least about 49, 50, 55, 60, 65, or 70, preferably about 75, 80, 85, 90, 95, 96, 97, 98, or 99% identical to the amino acid sequence shown in SEQ ID NO: 2 or a fragment thereof.
- Human prolylhydroxylase-like polypeptide variants which are biologically active, e.g., retain an enzymatic activity also are human prolylhydroxylase-like polypeptides.
- naturally or non-naturally occurring human prolylhydroxylase-like polypeptide variants have amino acid sequences which are at least about 49, 50, 55, 60, 65, or 70, preferably about 75, 80, 85, 90, 95, 96, 97, 98, or 99% identical to the amino acid sequence shown in SEQ ID NO: 2 or a fragment thereof.
- Percent identity between a putative human prolylhydroxylase-like polypeptide variant and an amino acid sequence of SEQ ID NO: 2 is determined by conventional methods. See, for example, Altschul et al., Bull. Math. Bio. 48:603 (1986), and Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 59:10915 (1992). Briefly, two amino acid sequences are aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of 1, and the "BLOSUM62" scoring matrix of Henikoff & Henikoff, 1992.
- the "FASTA” similarity search algorithm of Pearson & Lipman is a suitable protein alignment method for examining the level of identity shared by an amino acid sequence disclosed herein and the amino acid sequence of a putative variant.
- the FASTA algorithm is described by
- FASTA can also be used to determine the sequence identity of nucleic acid molecules using a ratio as disclosed above.
- the ktup value can range between one to six, preferably from three to six, most preferably three, with other parameters set as default.
- Variations in percent identity can be due, for example, to amino acid substitutions, insertions, or deletions.
- Amino acid substitutions are defined as one for one amino acid replacements. They are conservative in nature when the substituted amino acid has similar structural and or chemical properties. Examples of conservative replacements are substitution of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine.
- Amino acid insertions or deletions are changes to or within an amino acid sequence. They typically fall in the range of about 1 to 5 amino acids. Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immuno logical activity of a human prolylhydroxylase-like polypeptide can be found using computer programs well known in the art, such as DNASTAR software.
- the invention additionally, encompasses prolylhydroxylase-like polypeptides that are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications can be carried out by known techniques including, but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH , acetylation, formylation, oxidation, reduction, metabolic synthesis in the presence of tunicamycin, etc.
- Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or O-linked carbohydrate chains, processing of N- terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of prokaryotic host cell expression.
- the prolylhydroxylase-like polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation ofthe protein.
- the invention also provides chemically modified derivatives of prolylhydroxylase- like polypeptides that may provide additional advantages such as increased solubil- ity, stability and circulating time of the polypeptide, or decreased immunogenicity
- the chemical moieties for derivitization can be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/- propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol, and the like.
- the polypeptides can be modified at random or predetermined positions within the molecule and can include one, two, three, or more attached chemical moieties.
- Fusion proteins are useful for generating antibodies against prolylhydroxylase-like polypeptide amino acid sequences and for use in various assay systems. For example, fusion proteins can be used to identify proteins that interact with portions of a human prolylhydroxylase-like polypeptide. Protein affinity chromatography or library-based assays for protein-protein interactions, such as the yeast two-hybrid or phage display systems, can be used for this purpose. Such methods are well known in the art and also can be used as drug screens.
- a human prolylliydroxylase-like polypeptide fusion protein comprises two polypeptide segments fused together by means of a peptide bond.
- the first polypeptide segment comprises at least 6, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, or 778 contiguous amino acids of SEQ ID NO: 2 or of a biologically active variant, such as those described above.
- the first polypeptide segment also can comprise full-length prolylhydroxylase-like protein.
- the second polypeptide segment can be a full-length protein or a protein fragment.
- Proteins commonly used in fusion protein construction include ⁇ -galactosidase, ⁇ - glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horseradish peroxidase (HRP), and chloramphenicol acetyltransferase (CAT).
- epitope tags are used in fusion protein constructions, including histidine (His) tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV-G tags, and thioredoxin (Trx) tags.
- fusion constructions can include maltose binding protein (MBP), S-tag, Lex a DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP16 protein fusions.
- MBP maltose binding protein
- S-tag S-tag
- GAL4 DNA binding domain fusions GAL4 DNA binding domain fusions
- HSV herpes simplex virus
- a fusion protein also can be engineered to contain a cleavage site located between the prolylhydroxylase-like polypeptide-encoding sequence and the heterologous protein sequence, so that the prolylhydroxylase-like polypeptide can be cleaved and purified away from the heterologous moiety.
- a fusion protein can be synthesized chemically, as is known in the art.
- a fusion protein is produced by covalently linking two polypeptide segments or by standard procedures in the art of molecular biology.
- Recombinant DNA methods can be used to prepare fusion proteins, for example, by making a DNA construct which comprises coding sequences selected from SEQ ID NO: 1 in proper reading frame with nucleotides encoding the second polypeptide segment and expressing the DNA construct in a host cell, as is known in the art.
- Many kits for constructing fusion proteins are available from companies such as Promega Corporation (Madison, WI), Stratagene (La Jolla, CA), CLONTECH (Mountain View, CA), Santa Cruz
- Species homologs of human prolylhydroxylase-like polypeptide can be obtained using prolylhydroxylase-like.
- polypeptide polynucleotides described below to make suitable probes or primers for screening cDNA expression libraries from other species, such as mice, monkeys, or yeast, identifying cDNAs which encode homologs of prolylhydroxylase-like polypeptide, and expressing the cDNAs as is known in the art.
- a human prolylhydroxylase-like polynucleotide can be single- or double-stranded and comprises a coding sequence or the complement of a coding sequence . for a prolylhydroxylase-like polypeptide.
- a coding sequence for human prolylhydroxylase- like protein is shown in SEQ ID NO: 1.
- nucleotide sequences encoding human prolylhydroxylase-like polypeptides as well as homologous nucleotide sequences which are at least about 50, 55, 60, 65, 70, preferably about 75, 90, 96, 98, or 99% identical to the nucleotide sequence shown in SEQ ID NO: 1 or its complement also are prolylhydroxylase-like polynucleotides. Percent sequence identity between the sequences of two polynucleotides is determined using computer programs such as ALIGN which employ the FASTA algorithm, using an affine gap search with a gap open penalty of -12 and a gap extension penalty of -2.
- cDNA Complementary DNA
- species homologs, and variants of prolylhydroxylase-like polynucleotides that encode biologically active prolylhydroxylase-like polypeptides also are prolylhydroxylase- like polynucleotides.
- Polynucleotide fragments comprising at least 8, 9, 10, 11, 12, 15, 20, or 25 contiguous nucleotides of SEQ ID NO: 1 or its complement also are prolylhydroxylase-like polynucleotides. These fragments can be used, for example, as hybridization probes or as antisense oligonucleotides.
- prolylhydroxylase-like polynucleotides described above also are prolylhydroxylase-like polynucleotides.
- homologous prolylhydroxylase-like polynucleotide sequences can be identified by hybridization of candidate polynucleotides to known prolylhydroxylase-like polynucleotides under stringent conditions, as is known in the art.
- homologous sequences can be identified which contain at most about 25-30% basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.
- Species homologs of the prolylhydroxylase-like polynucleotides disclosed herein also can be identified by making suitable probes or primers and screening cDNA expression libraries from other species, such as mice, monkeys, or yeast.
- Human variants of prolylhydroxylase-like polynucleotides can be identified, for example, by screening human cDNA expression libraries. It is well known that the T m of a double-stranded DNA decreases by 1-1.5°C with every 1% decrease in homology (Bonner et al., J. Mol. Biol. 81, 123 (1973).
- Variants of human prolylhydroxylase- like polynucleotides or prolylhydroxylase-like polynucleotides of other species can therefore be identified by hybridizing a putative homologous prolylhydroxylase-like polynucleotide with a polynucleotide having a nucleotide sequence of SEQ ID NO: 1 or the complement thereof to form a test hybrid.
- the melting temperature of the test hybrid is compared with the melting temperature of a hybrid comprising polynucleotides having perfectly complementary nucleotide sequences, and the number or percent of basepair mismatches within the test hybrid is calculated.
- Nucleotide sequences which hybridize to prolylhydroxylase-like polynucleotides or their complements following stringent hybridization and/or wash conditions also are prolylhydroxylase-like polynucleotides.
- Stringent wash conditions are well known and understood in the art and are disclosed, for example, in Sambrook et al.,
- MOLECULAR CLONING A LABORATORY MANUAL, 2d ed., 1989, at pages 9.50-9.51.
- T m of a hybrid between a prolylhydroxylase- like polynucleotide having a nucleotide sequence shown in SEQ ID NO: 1 or the complement thereof and a polynucleotide sequence which is at least about 50, preferably about 75, 90, 96, or 98% identical to one of those nucleotide sequences can be calculated, for example, using the equation of Bolton and McCarthy, Proc. Natl. Acad. Sci. U.S.A. 48, 1390 (1962):
- Stringent wash conditions include, for example, 4X SSC at 65°C, or 50% formamide, 4X SSC at 42°C, or 0.5X SSC, 0.1% SDS at 65°C. Highly stringent wash conditions include, for example, 0.2X SSC at 65°C.
- a human prolylhydroxylase-like polynucleotide can be isolated free of other cellular components such as membrane components, proteins, and lipids.
- Polynucleotides can be made by a cell and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated prolylhydroxylase-like polynucleotides.
- restriction enzymes and probes can be used to isolate polynucleotide fragments, which comprise prolylhydroxylase-like protein nucleotide sequences.
- Isolated polynucleotides are in preparations that are free or at least 70, 80, or 90% free of other molecules.
- Human' prolylhydroxylase-like cDNA molecules can be made with standard molecular biology techniques, using prolylhydroxylase-like mRNA as a template.
- Human prolylhydroxylase-like cDNA molecules can thereafter be replicated using molecular biology techniques known in the art and disclosed in manuals such as Sambrook et al. (1989).
- An amplification technique such as PCR, can be used to obtain additional copies of polynucleotides of the invention, using either human genomic DNA or cDNA as a template.
- PCR-based methods can be used to extend the nucleic acid sequences disclosed herein to detect upstream sequences such as promoters and regulatory elements.
- restriction-site PCR uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, PCR Methods Applic. 2, 318-322, 1993). Genomic DNA is first amplified in the presence of a primer to a linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.
- Inverse PCR also can be used to amplify or extend sequences using divergent primers based on a known region (Triglia et al., Nucleic Acids Res. 16, 8186, 1988).
- Primers can be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Madison, Minn.), to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68-72°C.
- the method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.
- capture PCR which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom et al., PCR Methods Applic. 1, 111-119,
- multiple restriction enzyme digestions and ligations also can be used to place an engineered double-stranded sequence into an unknown fragment ofthe DNA molecule before performing PCR.
- Randomly-primed libraries are preferable, in that they will contain more sequences which contain the 5' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries can be useful for extension of sequence into 5 ' non-transcribed regulatory regions.
- capillary electrophoresis systems can be used to analyze the size or confirm the nucleotide sequence of PCR or sequencing products.
- capillary sequencing can employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) that are laser activated, and detection of the emitted wavelengths by a charge coupled device camera.
- Output/light intensity can be converted to electrical signal using appropriate software (e.g. GENOTYPER and Sequence NAVIGATOR, Perkin Elmer), and the entire process from loading of samples to computer analysis and electronic data display can be computer controlled.
- Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA that might be present in limited amounts in a particular sample.
- Human prolylhydroxylase-like polypeptides can be obtained, for example, by purification from human cells, by expression of prolylhydroxylase-like polynucleotides, or by direct chemical synthesis. Protein purification
- Human prolylhydroxylase-like polypeptides can be purified from any human cell which expresses the receptor, including host cells which have been transfected with prolylhydroxylase-like polynucleotides.
- a purified prolylhydroxylase-like polypeptide is separated from other compounds that normally associate with the prolylhydroxylase-like polypeptide in. the cell, such as certain proteins, carbohydrates, or lipids, using methods well-known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis.
- a preparation of purified prolylhydroxylase-like polypeptides is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS-polyacrylamide gel electrophoresis.
- the polynucleotide can be inserted into an expression vector which contains the necessary elements for the transcription and translation of the inserted coding sequence.
- Methods which are well known to those skilled in the art can be used to construct expression vectors containing sequences encoding prolylhydroxylase-like polypeptides and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook et al.
- expression vector/host systems can be utilized to contain and express sequences encoding a human prolylhydroxylase-like polypeptide.
- expression vector/host systems can be utilized to contain and express sequences encoding a human prolylhydroxylase-like polypeptide.
- microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors, insect cell systems infected with virus expression vectors
- virus expression vectors e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV
- bacterial expression vectors e.g., Ti or pBR322 plasmids
- control elements or regulatory sequences are those non-translated regions of the vector — enhancers, promoters, 5' and 3' untranslated regions — which interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity.
- any number of suitable transcription and translation elements including constitutive and inducible promoters, can be used.
- inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORTl plasmid (Life Technologies) and the like can be used.
- the baculovirus polyhedrin promoter can be used in insect cells.
- Promoters or enhancers derived from the genomes of plant cells e.g., heat shock, RUBISCO, and storage genes
- plant viruses e.g., viral promoters or leader sequences
- promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a nucleotide sequence encoding a human prolylhydroxylase-like polypeptide, vectors based on SV40 or EBV can be used with an appropriate selectable marker.
- a number of expression vectors can be selected depending upon the use intended for the prolylhydroxylase-like polypeptide. For example, when a large quantity of a human prolylhydroxylase-like polypeptide is needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified can be used. Such vectors include, but are not limited to, multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene).
- a sequence encoding the prolylhydroxylase- like polypeptide can be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of ⁇ -galactosidase so that a hybrid protein is produced.
- pIN vectors Van Heeke & Schuster, J Biol. Chem. 264, 5503-5509, 1989
- pGEX vectors Promega, Madison, Wis.
- GST glutathione S-transferase
- fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione.
- Proteins made in such systems can be designed to include heparin, thrombin, or factor Xa protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.
- yeast Saccharomyces cerevisiae a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH can be used.
- constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH.
- prolylhydroxylase-like polypeptides can be driven by any of a number of promoters.
- viral promoters such as the 35S and 19S promoters of CaMV can be used alone or in combination with the omega leader sequence from TMV (Takamatsu, EMBO J. 6, 307-311, 1987).
- plant promoters such as the small subunit of RUBISCO or heat shock promoters can be used (Coruzzi et al., EMBO J. 5,- 1671-1680, 1984; Broglie et al, Science 224, 838-843, 1984; Winter et al, Results Probl. Cell Differ. 17, 85-105, 1991).
- constructs can be introduced into plant cells by direct DNA transformation or by pathogen-mediated transfection.
- pathogen-mediated transfection Such techniques are described in a number of generally available reviews (e.g., Hobbs or Murray, in MCGRAW HILL YEARBOOK OF SCIENCE AND TECHNOLOGY, McGraw Hill, New York, N ., pp. 191-196, 1992).
- An insect system also can be used to express a human prolylhydroxylase-like polypeptide.
- Autographa californica nuclear poly- hedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae.
- Sequences encoding prolylhydroxylase- like polypeptides can be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter.
- Successful insertion of prolylhydroxylase-like polypeptides will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein.
- the recombinant viruses can then be used to infect S. frugiperda cells or Trichoplusia larvae in which prolylhydroxylase-like polypeptides can be expressed (Engelhard et al, Proc. Nat. Acad. Sci. 91, 3224-3227, 1994).
- a number of viral-based expression systems can be used to express prolylhydroxylase-like polypeptides in mammalian host cells.
- sequences encoding prolylhydroxylase- like polypeptides can be ligated into an adenoviras transcription/translation complex comprising the late promoter and tripartite leader sequence. Insertion in a non- essential El or E3 region of the viral genome can be used to obtain a viable virus which is capable of expressing a human prolylhydroxylase-like polypeptide in infected host cells (Logan & Shenk, Proc. Natl. Acad. Sci. 81, 3655-3659, 1984).
- transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, can be used to increase expression in mammalian host cells.
- RSV Rous sarcoma virus
- HACs Human artificial chromosomes
- 6M to 10M are constructed and delivered to cells via conventional delivery methods (e.g., liposomes, polycationic amino polymers, or vesicles).
- Specific initiation signals also can be used to achieve more efficient translation of sequences encoding prolylhydroxylase-like polypeptides.
- Such signals include the
- ATG initiation codon and adjacent sequences In cases where sequences encoding a human prolylhydroxylase-like polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals (including the ATG initiation codon) should be provided.
- the initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used (see Scharf et al, Results Probl Cell Differ. 20, 125-162,
- a host cell strain can be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed prolylhydroxylase-like polypeptide in the desired fashion.
- modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
- Post-translational processing which cleaves a "prepro" form of the polypeptide also can be used to facilitate correct insertion, folding and/or function.
- Different host cells that have specific cellular machinery and characteristic mechanisms for post-translational activities are available from the American Type Culture Collection (ATCC; 10801 University Boulevard, Manassas, VA 20110-2209) and can be chosen to ensure the conect modification and processing ofthe foreign protein. Stable expression is preferred for long-term, high-yield production of recombinant proteins.
- cell lines which stably express prolylhydroxylase-like polypeptides can be transformed using expression vectors which can contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector.
- cells can be allowed to grow for 1-2 days in an enriched medium before they are switched to a selective medium.
- the purpose ofthe selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells that successfully express the introduced prolylhydroxylase-like protein sequences.
- Resistant clones of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type. See, for example, ANIMAL CELL CULTURE, R.I. Freshney, ed., 1986.
- herpes simplex virus thymidine kinase (Wigler et al, Cell 11, 223-32, 1977) and adenine phosphoribosyltransferase (Lowy et al, Cell 22, 817-23, 1980) genes that can be employed in tk ⁇ or aprf cells, respectively.
- antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection.
- dhfr confers resistance to methotrexate (Wigler et al, Proc. Natl. Acad. Sci.
- npt confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin et al, J. Mol. Biol. 150, 1-14, 1981), and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murray, 1992, supra). Additional selectable genes have been described. For example, trpB allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Natl. Acad. Sci. 85, 8047-51, 1988).
- Visible markers such as anthocyanins, ⁇ -glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, can be used to identify transformants and to quantify the amount of transient or stable protein expression attributable to a specific vector system
- marker gene expression suggests that the prolylhydroxylase- like polynucleotide is also present, its presence and expression may need to be confirmed. For example, if a sequence encoding a human prolylhydroxylase-like polypeptide is inserted within a marker gene sequence, transformed cells containing sequences which encode a prolylhydroxylase-like polypeptide can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding a prolylhydroxylase-like polypeptide under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the prolylhydroxylase-Uke polynucleotide.
- host cells which contain a human prolylhydroxylase-like poly- nucleotide and which express a human prolylhydroxylase-like polypeptide can be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques that include membrane, solution, or chip-based technologies for the detection and or quantification of nucleic acid or protein.
- the presence of a polynucleotide sequence encoding an prolylhydroxylase-like polypeptide can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments of polynucleotides encoding a human prolylhydroxylase-like polypeptide.
- Nucleic acid amplification-based assays involve the use of oligonucleotides selected from sequences encoding an prolylhydroxylase-like polypeptide to detect transformants which contain an prolylhydroxylase-like polynucleotide.
- a variety of protocols for detecting and measuring the expression of a human prolylhydroxylase-like polypeptide, using either polyclonal or monoclonal antibodies specific for the polypeptide, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS).
- ELISA enzyme-linked immunosorbent assay
- RIA radioimmunoassay
- FACS fluorescence activated cell sorting
- a two-site, monoclonal-based immunoassay using monoclonal antibodies reactive to two non-interfering epitopes on a human prolylhydroxylase- like polypeptide can be used, or a competitive binding assay can be employed. These and other assays are described in Hampton et al, SEROLOGICAL METHODS: A LABORATORY MANUAL, APS Press, St. Paul, Minn., 1990) and Maddox et al, J. Exp.
- Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding prolylhydroxylase-like polypeptides include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
- sequences encoding a human prolylhydroxylase-like polypeptide can be cloned into a vector for the production of an mRNA probe.
- RNA probes are known in the art, are commercially available, and can be used to synthesize RNA probes in vitro by addition of labeled nucleotides and an appropriate RNA polymerase such as T7, T3, or SP6. These procedures can be conducted using a variety of commercially available kits (Amersham Pharmacia Biotech, Promega, and US Biochemical). Suitable reporter molecules or labels which can be used for ease of detection include radionuclides, enzymes, and fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
- Host cells transformed with nucleotide sequences encoding a human prolylhydroxylase- like polypeptide can be cultured under conditions suitable for the expression and recovery of he protein from cell culture.
- the polypeptide produced by a transformed cell can be secreted or contained intracellularly depending on the sequence and/or the vector used.
- expression vectors containing polynucleotides which encode prolylhydroxylase-like polypeptides can be designed to contain signal sequences which direct secretion of soluble prolylhydroxylase-like polypeptides through a prokaryotic or eukaryotic cell membrane or which direct the membrane insertion of membrane-bound prolylhydroxylase-like polypeptide.
- purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immuno globulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.).
- cleavable linker sequences such as those specific for Factor Xa or enterokinase (Invitrogen, San Diego, CA) between the purification domain and the prolylhydroxylase-like polypeptide also can be used to facilitate purification.
- One such expression vector provides for expression of- a fusion protein containing a human prolylhydroxylase-like polypeptide and 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification by IMAC (immobilized metal ion affinity chromatography, as described in Porath et al, Prot. Exp. Purif.
- enterokinase cleavage site provides a means for purifying the prolylhydroxylase-like polypeptide from the fusion protein.
- Vectors that contain fusion proteins are disclosed in Kroll et al, DNA Cell Biol. 12, 441-453, 1993.
- Sequences encoding a human prolylhydroxylase-like polypeptide can be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers et al, Nucl. Acids Res. Symp. Ser. 215-223, 1980; Horn et al. Nucl. Acids Res. Symp. Ser. 225-232, 1980).
- a human prolylhydroxylase-like polypeptide itself can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques (Merrifield, J Am. Chem. Soc. 85, 2149-2154, 1963; Roberge et al, Science 269, 202-204, 1995).
- Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be achieved, for example, using Applied Biosystems 431 A Peptide Synthesizer (Perkin Elmer). Optionally, fragments of prolylhydroxylase- like polypeptides can be separately synthesized and combined using chemical methods to produce a full-length molecule.
- the newly synthesized peptide can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, PROTEINS: STRUCTURES AND MOLECULAR PRINCIPLES, WH Freeman and Co., New York, N.Y., 1983).
- the composition of a synthetic prolylhydroxylase-like polypeptide can be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; see Creighton, supra). Additionally, any portion of the amino acid sequence of the prolylhydroxylase-like polypeptide can be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins to produce a variant polypeptide or a fusion protein.
- codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce an RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.
- nucleotide sequences disclosed herein can be engineered using methods generally known in the art to alter prolylhydroxylase-like polypeptide-encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the polypeptide or mRNA product.
- DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides can be used to engineer the nucleotide sequences.
- site-directed mutagenesis can be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth.
- Antibody as used herein includes intact immunoglobulin molecules, as well as fragments thereof, such as Fab, F(ab') 2 , and Fv, which are capable of binding an epitope of a human prolylhydroxylase-like polypeptide.
- Fab fragment antigen binding protein
- F(ab') 2 fragment antigen binding protein
- Fv fragment antigen binding protein
- An antibody which specifically binds to an epitope of a human prolylhydroxylase- like polypeptide can be used therapeutically, as well as in immunochemical assays, such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art.
- immunochemical assays such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art.
- Various immunoassays can be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays are well known in the art. Such immunoassays typically involve the measurement of complex formation between an immunogen and an antibody that specifically binds to the immunogen.
- an antibody that specifically binds to a human prolylhydroxylase-like polypeptide provides a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay.
- antibodies that specifically bind to prolylhydroxylase-like polypeptides do not detect other proteins in immunochemical assays and can immunoprecipitate a human prolylhydroxylase-like polypeptide from solution.
- Human prolylhydroxylase-like polypeptides can be used to immunize a mammal, such as a mouse, rat, rabbit, guinea pig, monkey, or human, to produce polyclonal antibodies.
- a human prolylhydroxylase-like polypeptide can be conjugated to a carrier protein, such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin.
- a carrier protein such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin.
- various adjuvants can be used to increase the immunological response.
- adjuvants include, but are not limited to, Freund's adjuvant, mineral gels (e.g., aluminum hydroxide), and surface active substances (e.g. lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol).
- BCG Bacilli Calmette-Gue i ⁇
- C ⁇ rynebacterium parvum are especially useful.
- Monoclonal antibodies that specifically bind to a human prolylhydroxylase-like polypeptide can be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These techniques include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler et al, Nature 256, 495-497, 1985; Kozbor et al, J. Immunol. Methods 81, 31-42, 1985; Cote et al, Proc. Natl. Acad. Sci. SO, 2026-2030, 1983; Cole et al, Mol. Cell Biol. 62, 109-120, 1984).
- chimeric antibodies the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison et al, Proc. Natl. Acad. Sci. 81, 6851-6855, 1984; Neuberger et al, Nature 312, 604-608, 1984; Takeda et al, Nature 314, 452-454, 1985).
- Monoclonal and other antibodies also can be "humanized” to prevent a patient from mounting an immune response against the antibody when it is used therapeutically. Such antibodies may be sufficiently similar in sequence to human antibodies to be used directly in therapy or may require alteration of a few key residues.
- rodent antibodies and human sequences can be minimized by replacing residues which differ from those in the human sequences by site directed mutagenesis of individual residues or by grating of entire complementarity determining regions.
- humanized antibodies can be produced using recombinant methods, as described in GB2188638B.
- Antibodies that specifically bind to a human prolylhydroxylase-like polypeptide can contain antigen binding sites which are either partially or fully humanized, as disclosed in U.S. 5,565,332.
- single chain antibodies can be adapted using methods known in the art to produce single chain antibodies that specifically bind to prolylhydroxylase-like polypeptides.
- Antibodies with related specificity, but of distinct idiotypic composition can be generated by chain shuffling from random combinatorial immunoglobin libraries (Burton, Proc. Natl. Acad. Sci.
- Single-chain antibodies also can be constructed using a DNA amplification method, such as PCR, using hybridoma cDNA as a template (Thirion et al, 1996, Eur. J. Cancer Prev. 5, 507-11).
- Single-chain antibodies can be mono- or bispecific, and can be bivalent or tetravalent. Construction of tetravalent, bispecific single-chain antibodies is taught, for example, in Coloma & Morrison, 1997, Nat. Biotechnol. 15, 159-63. Construction of bivalent, bispecific single-chain antibodies is taught in Mallender & Voss, 1994, J Biol. Chem. 269, 199-206.
- a nucleotide sequence encoding a single-chain antibody can be constructed using manual or automated nucleotide synthesis, cloned into an expression construct using standard recombinant DNA methods, and introduced into a cell to express the coding sequence, as described below.
- single-chain antibodies can be pro- prised directly using, for example, filamentous phage technology (Verhaar et al,
- Antibodies which specifically bind to prolylhydroxylase-like polypeptides also can be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi et al, Proc. Natl. Acad. Sci. 86, 3833-3837, 1989; Winter et al, Nature 349, 293-299, 1991).
- chimeric antibodies can be constracted as disclosed in
- Binding proteins which are derived from immunoglobulms and which are multivalent and multispecific, such as the "diabodies" described in WO 94/13804, also can be prepared.
- Antibodies according to the invention can be purified by methods well known in the art. For example, antibodies can be affinity purified by passage over a column to which a human prolylhydroxylase-like polypeptide is bound. The bound antibodies can then be eluted from the column using a buffer with a high salt concentration.
- Antisense oligonucleotides are nucleotide sequences that are complementary to a specific DNA or RNA sequence. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form complexes and block either transcription or translation. Preferably, an antisense oligonucleotide is at least 11 nucleotides in length, but can be at least 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. Antisense oligonucleotide molecules can be provided in a DNA construct and introduced into a cell as described above to decrease the level of prolylhydroxylase-like gene products in the cell.
- Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides can be synthesized manually or by an automated synthesizer, by covalently linking the 5' end of one nucleotide with the 3' end of another nucleotide with non-phosphodiester internucleotide linkages such alkylphosphonates, phosphorothioates, phosphorodithioates, alkylphosphonothioates, alkylphosphonates, phosphoramidates, phosphate esters, carbamates, acetamidate, carboxymethyl esters, carbonates, and phosphate triesters. See Brown, Meth. Mol. Biol. 20, 1-8, 1994; Sonveaux, Meth. Mol Biol. 26, 1-72, 1994; Uhlmann et al, Chem. Rev. 90, 543-583, 1990.
- Modifications of prolylhydroxylase-like gene expression can be obtained by designing antisense oligonucleotides that will form duplexes to the control, 5', or regulatory regions of the prolylhydroxylase-like gene. Oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using "triple helix" base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or chaperons.
- An antisense oligonucleotide also can be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
- Antisense oligonucleotides which comprise, for example, 2, 3, 4, or 5 or more stretches of contiguous nucleotides which are precisely complementary to an prolylhydroxylase-like polynucleotide, each separated by a stretch of contiguous nucleotides which are not complementary to adjacent prolylhydroxylase-like protein nucleotides, can provide sufficient targeting specificity for prolylhydroxylase-like mRNA.
- each stretch of complementary contiguous nucleotides is at least 4, 5, 6, 7, or 8 or more nucleotides in length.
- Non-complementary intervening sequences are preferably 1, 2, 3, or 4 nucleotides in length.
- One skilled in the art can easily use the calculated melting point of an antisense-sense pair to determine the degree of mismatching which will be tolerated between a particular antisense oligonucleotide and a particular prolylhydroxylase-like polynucleotide sequence.
- Antisense oligonucleotides can be modified without affecting their ability to hybridize to a human prolylhydroxylase-like polynucleotide. These modifications can be internal or at one or both ends of the antisense molecule.
- internucleoside phosphate linkages can be modified by adding cholesteryl or diamine moieties with varying numbers of carbon residues between the amino groups and terminal ribose.
- Modified bases and/or sugars such as arabinose instead of ribose, or a 3', 5 '-substituted oligonucleotide in which the 3' hydroxyl group or the 5' phosphate group are substituted, also can be employed in a modified antisense oligonucleotide.
- modified oligonucleotides can be prepared by methods well known in the art. See, e.g., Agrawal et al, Trends Biotechnol. 10, 152-158, 1992;
- Ribozymes are RNA molecules with catalytic activity. See, e.g, Cech, Science 236, 1532-1539; 1987; Cech, Ann. Rev. Biochem. 59, 543-568; 1990, Cech, Curr. Opin.
- Ribozymes can be used to inhibit gene function by cleaving an RNA sequence, as is known in the art (e.g., Haseloff et al, U.S. Patent 5,641,673).
- the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. '
- Examples include engineered hammerhead motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of specific nucleotide sequences.
- the coding sequence of a human prolylhydroxylase-like polynucleotide can be used to generate ribozymes that will specifically bind to mRNA transcribed from the prolylhydroxylase-like polynucleotide.
- Methods of designing ' and constructing ribozymes which can cleave other RNA molecules in trans in a highly sequence specific manner have been developed and described in the art (see Haseloff et al. Nature 334, 585-591, 1988).
- the cleavage activity of ribozymes can be targeted to specific RNAs by engineering a discrete "hybridization" region into the ribozyme.
- the hybridization region contains a sequence complementary to the target RNA and thus specifically hybridizes with the target (see, for example, Gerlach et al, EP 321,201).
- RNA target can be identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target RNA containing the cleavage site can be evaluated for secondary structural features which may render the target inoperable. Suitability of candidate prolylhydroxylase-like protein RNA targets also can be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays. Longer complementary sequences can be used to increase the affinity ofthe hybridization sequence for the target.
- the hybridizing and cleavage regions ofthe ribozyme can be integrally related such that upon hybridizing to the target RNA through the complementary regions, the catalytic region of the ribozyme can cleave the target.
- Ribozymes can be introduced into cells as part of a DNA construct. Mechanical methods, such as microinjection, liposome-mediated transfection, electroporation, or calcium phosphate precipitation, can be used to introduce a ribozyme-containing DNA construct into cells in which it is desired to decrease prolylhydroxylase-like protein expression. Alternatively, if it is desired that the cells stably retain the DNA construct, the construct can be supplied on a plasmid and maintained as a separate element or integrated into the genome of the cells, as is known in the art.
- a ribozyme-encoding DNA construct can include transcriptional regulatory elements, such as a promoter element, an enhancer or UAS element, and a transcriptional terminator signal, for controlling transcription of ribozymes in the cells.
- ribozymes can be engineered so that ribozyme expression will occur in response to factors that induce expression of a target gene. Ribozymes also can be engineered to provide an additional level of regulation, so that destruction of mRNA occurs only when both a ribozyme and a target gene are induced in the cells.
- genes whose products interact with human prolylhydroxylase-like protein may represent genes that are differentially expressed in disorders including, but not limited to, cancer, cardio- vascular disorders, COPD, asthma, genitourinary disorders, and CNS disorders.
- genes may represent genes that are differentially regulated in response to manipulations relevant to the progression or treatment of such diseases. Additionally, such genes may have a temporally modulated expression, increased or decreased at different stages of tissue or organism development. A differentially expressed gene may also have its expression modulated under control versus experimental conditions. In addition, the human prolylhydroxylase-like gene or gene product may itself be tested for differential expression.
- the degree to which expression differs in a normal versus a diseased state need only be large enough to be visualized via standard characterization techniques such as differential display techniques.
- standard characterization techniques such as differential display techniques.
- Other such standard characterization techniques by which expression differences may be visualized include but are not limited to, quantitative RT (reverse transcriptase), PCR, and Northern analysis.
- RNA samples are obtained from tissues of experimental subjects and from corresponding tissues of control subjects. Any RNA isolation technique that does not select against the isolation of mRNA may be utilized for the purification of such RNA samples. See, for example, Ausubel et al., ed., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, Inc. New York, 1987-1993. Large numbers of tissue samples may readily be processed using techniques well known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomczynski, U.S. Patent 4,843,155.
- Transcripts within the collected RNA samples that represent RNA produced by differentially expressed genes are identified by methods well known to those of skill in the art. They include, for example, differential screening (Tedder et al, Proc. Natl. Acad. Sci. U.S.A. 85, 208-12, 1988), subrractive hybridization (Hedrick et al, Nature 308, 149-53; Lee et al, Proc. Natl. Acad. Sci. U.S.A. 88, 2825, 1984), and, preferably, differential display (Liang & Pardee, Science 257, 967-71, 1992; U.S. Patent 5,262,311).
- the differential expression information may itself suggest relevant methods for the treatment of disorders involving the human prolylhydroxylase-like protein.
- treatment may include a modulation of expression of the differentially expressed genes and/or the gene encoding the human prolylhydroxylase-like protein.
- the differential expression information may indicate whether the expression or activity of the differentially expressed gene or gene product or the human prolylhydroxylase-like gene or gene product are up-regulated or down-regulated.
- the invention provides assays for screening test compounds that bind to or modulate the activity of a human prolylhydroxylase-like polypeptide or a human prolylhydroxylase- like polynucleotide.
- a test compound preferably binds to a human prolylhydroxylase- like polypeptide or polynucleotide. More preferably, a test compound decreases or increases enzymatic activity by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence ofthe test compound.
- Test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity.
- the compounds can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, and can be produced re- combinantly, or synthesized by chemical methods known in the art. If desired, test compounds can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one-compound” library method, and synthetic library methods using affinity chromatography selection.
- the biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer, or small -molecule libraries of compounds. See Lam, Anticancer Drug Des. 12, 145, 1997.
- Test compounds can be screened for the ability to bind to prolylhydroxylase-like polypeptides or polynucleotides or to affect prolylhydroxylase-like protein activity or prolylhydroxylase-like gene expression using high throughput screening.
- high throughput screening many discrete compounds can be tested in parallel so that large numbers of test compounds can be quickly screened.
- the most widely established techniques utilize 96-well microtiter plates. The wells of the microtiter plates typically require assay volumes that range from 50 to 500 ⁇ l.
- many instruments, materials, pipettors, robotics, plate washers, and plate readers are commercially available to fit the 96-well format.
- free format assays or assays that have no physical barrier between samples, can be used.
- an assay using pigment cells (melanocytes) in a simple homogeneous assay for combinatorial peptide libraries is described by Jayawickreme et al, Proc. Natl. Acad. Sci. U.S.A. 19, 1614-18 (1994).
- the cells are placed under agarose in perri dishes, then beads that carry combinatorial compounds are placed on the surface of the agarose.
- the combinatorial compounds are partially released the compounds from the beads. Active compounds can be visualized as dark pigment areas because, as the compounds diffuse locally into the gel matrix, the active compounds cause the cells to change colors.
- Chelsky "Strategies for Screening Combinatorial Libraries: Novel and Traditional Approaches," reported at the First Annual Conference of The Society for Biomolecular Screening in Philadelphia, Pa. (Nov. 7-10, 1995).
- Chelsky placed a simple homogenous enzyme assay for carbonic anhydrase inside an agarose gel such that the enzyme in the gel would cause a color change throughout the gel.
- beads carrying combinatorial compounds via a photolinker were placed inside the gel and the compounds were partially released by UV-light. Compounds that inhibited the enzyme were observed as local zones of inhibition having less color change.
- test samples are placed in a porous matrix.
- One or more assay components are then placed within, on top of, or at the bottom of a matrix such as a gel, a plastic sheet, a filter, or other form of easily manipulated solid support.
- a matrix such as a gel, a plastic sheet, a filter, or other form of easily manipulated solid support.
- the test compound is preferably a small molecule that binds to and occupies, for example, the active site of the prolylhydroxylase-like polypeptide, such that normal biological activity is prevented.
- small molecules include, but are not limited to, small peptides or peptide-like molecules.
- either the test compound or the prolylhydroxylase-like polypeptide can comprise a detectable label, such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase.
- a detectable label such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase.
- Detection of a test compound that is bound to the prolylhydroxylase-like polypeptide can then be accomplished, for example, by direct counting of radioemmission, by scintillation counting, or by deterrnining conversion of an appropriate substrate to a detectable product.
- binding of a test compound to a human prolylhydroxylase-like polypeptide can be determined without labeling either ofthe interactants.
- a microphysiometer can be used to detect binding of a test compound with a human prolylhydroxylase-like polypeptide.
- a microphysiometer e.g., CytosensorTM
- a microphysiometer is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between a test compound and a human prolylhydroxylase-like polypeptide (McConnell et al, Science 257, 1906-1912, 1992).
- Determining the ability of a test compound to bind to a human prolylhydroxylase- like polypeptide also can be accomplished using a technology such as real-time
- BIA Bimolecular Interaction Analysis
- a human prolylhydroxylase-like polypeptide can be used as a "bait protein" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent 5,283,317; Zervos et al, Cell 72, 223-232, 1993; Madura et al, J. Biol.
- the two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
- the assay utilizes two different DNA constructs.
- polynucleotide encoding a human prolylhydroxylase-like polypeptide can be fused to a poly- nucleotide encoding the DNA binding domain of a known transcription factor (e.g.,
- a DNA sequence that encodes an unidentified protein can be fused to a polynucleotide that codes for the activation domain of the known transcription factor. If the "bait” and the “prey” proteins are able to interact in vivo to form an protein-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ), which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected, and cell colonies containing the functional transcription factor can be isolated and used to obtain the DNA sequence encoding the protein that interacts with the prolylhydroxylase-like polypeptide.
- a reporter gene e.g., LacZ
- either the prolylhydroxylase-like polypeptide (or polynucleotide) or the test compound can be bound to a solid support.
- Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads (including, but not limited to, latex, polystyrene, or glass beads).
- any method known in the art can be used to attach the polypeptide (or polynucleotide) or test compound to a solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached respectively to the polypeptide (or polynucleotide) or test compound and the solid support.
- Test compounds are preferably bound to the solid support in an array, so that the location of individual test compounds can be tracked. Binding of a test compound to a human prolylhydroxylase-like polypeptide (or polynucleotide) can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.
- the prolylhydroxylase-like polypeptide is a fusion protein comprising a domain that allows the prolylhydroxylase-like polypeptide to be bound to a solid support.
- glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and the non-adsorbed prolylhydroxylase-like polypeptide; the mixture is then incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components.
- Binding of the interactants can be determined either, directly or indirectly, as described above.
- the complexes can be dissociated from the solid support before binding is determined.
- a human prolylhydroxylase-like polypeptide (or polynucleotide) or a test compound can be immobilized utilizing conjugation of biotin and streptavidin.
- Biotinylated prolylhydroxylase-like polypeptides (or polynucleotides) or test compounds can be prepared from biotin-NHS(N- hydroxysuccmimide) using techniques well known in the art (e.g.
- antibodies which specifically bind to a prolylhydroxylase-like polypeptide, polynucleotide, or a test compound, but which do not interfere with a desired binding site, such as the active site of the prolylhydroxylase-like polypeptide, can be derivatized to the wells of the plate. Unbound target or protein can be trapped in the wells by antibody conjugation.
- Methods for detecting such complexes include immunodetection of complexes . using antibodies which specifically bind to the prolylhydroxylase-like polypeptide or test compound, enzyme-linked assays which rely on detecting an activity of the prolylhydroxylase-like polypeptide, and SDS gel electrophoresis under non-reducing conditions. Screening for test compounds which bind to a human prolylhydroxylase-like polypeptide or polynucleotide also can be carried out in an intact cell. Any cell which comprises a prolylhydroxylase-like polypeptide or polynucleotide can be used in a cell-based assay system.
- a prolylhydroxylase-like polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Binding of the test compound to a prolylhydroxylase-like polypeptide or polynucleotide is determined as described above.
- Test compounds can be tested for the ability to increase or decrease the enzymatic activity of a human prolylhydroxylase-like polypeptide.
- Enzymatic activity can be measured, for example, as described in Kivirikko, K. I., Myllyla, T. (1982) Methods Enzymol. 82, 245-304, or Cuncliffe, C. J., Franklin, T. J., Gaskell, R. M. (1986) Biochem. J. 240, 617-619.
- Enzyme assays can be carried out after contacting either a purified prolylhydroxylase- like polypeptide, a cell membrane preparation, or an intact cell with a test compound.
- a test compound which increases enzymatic activity of a human prolylhydroxylase-like polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for increasing human prolylhydroxylase-like protein activity.
- test compounds that increase or decrease prolylhydroxylase- like gene expression are identified.
- a prolylhydroxylase-like polynucleotide is contacted with a test compound, and the expression of an RNA or polypeptide product of the prolylhydroxylase-like polynucleotide is determined.
- the level of expression of appropriate mRNA or polypeptide in the presence ofthe test compound is compared to the level of expression of mRNA or polypeptide in the absence of the test compound.
- the test compound can then be identified as a modulator of expression based on this comparison. For example, when expression of mRNA or polypeptide is greater in the presence of the test compound than in its absence, the test compound is identified as a stimulator or enhancer of the mRNA or polypeptide expression. Alternatively, when expression of the mRNA or polypeptide is less in the presence ofthe test compound than in its absence, the test compound is identified as an inhibitor of the mRNA or polypeptide expression.
- the level of prolylhydroxylase-like mRNA or polypeptide expression in the cells can be determined by methods well known in the art for detecting mRNA or polypeptide. Either qualitative or quantitative methods can be used.
- the presence of polypeptide products of a human prolylhydroxylase-like polynucleotide can be determined, for example, using a variety of techniques known in the art, including immunochemical methods such as radioimmunoassay, Western blotting, and immunohistochemistry.
- polypeptide synthesis can be determined in vivo, in a cell culture, or in an in vitro translation system by detecting incorporation of labeled amino acids into a human prolylhydroxylase-like polypeptide.
- Such screening can be carried out either in a cell-free assay system or in an intact cell.
- Any cell that expresses a human prolylhydroxylase-like polynucleotide can be used in a cell-based assay system.
- the prolylhydroxylase-like polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above.
- Either a primary culture or an established cell line, such as CHO or human embryonic kidney 293 cells, can be used.
- compositions of the invention can comprise, for example, a human prolylhydroxylase-like polypeptide, prolylhydroxylase-like polynucleotide, ribozymes or antisense oligonucleotides, antibodies which specifically bind to a prolylhydroxylase-like polypeptide, or mimetics, activators, or inhibitors of a human prolylhydroxylase-like polypeptide activity.
- compositions can.be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water.
- agent such as stabilizing compound
- the compositions can be administered to a patient alone, or in combination with other agents, drags or hormones.
- compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means.
- Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
- compositions for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
- Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen.
- disintegrating or solubilizing agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.
- Dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
- suitable coatings such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
- Dyestuffs or pigments can be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
- compositions that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.
- Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers.
- the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
- compositions suitable for parenteral administration can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline.
- Aqueous injection suspensions can contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
- suspensions of the active compounds can be prepared as appropriate oily injection suspensions.
- Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
- Non-lipid polycationic amino polymers also can be used for delivery.
- the suspension also can contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
- penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
- compositions of the present invention can be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.
- the pharmaceutical composition can be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms.
- the prefened preparation can be a lyophilized powder which can contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
- compositions After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.
- Human prolylhydroxylase-like protein can be regulated to treat cancer, cardiovascular disorders, COPD, asthma, genitourinary disorders, and CNS disorders.
- the novel human prolyl hydroxylase of the invention is highly expressed in the following brain tissues: postcentral gyrus, spinal cord, corpus callosum, neuro- blastema SK-N-MC cells, retina, hippocampus, Alzheimer brain frontal lobe.
- the expression in brain tissues and in particular the differential expression between diseased tissue (Alzheimer brain frontal lobe) and healthy tissue (frontal lobe) demonstrates that the novel human prolyl hydroxylase or mRNA can be utilized to diagnose nervous system diseases. Additionally the activity of the novel human prolyl hydroxylase can be modulated to treat nervous system diseases.
- CNS disorders include disorders ofthe central nervous system as well as disorders of the peripheral nervous system.
- CNS disorders include, but are not limited to, brain injuries, cerebrovascular diseases and their consequences, Parkinson's disease, corticobasal degeneration, motor neuron disease (including ALS), multiple sclerosis, traumatic brain injury, stroke, post-stroke, post-traumatic brain injury, and small- vessel cerebrovascular disease.
- Dementias such as Alzheimer's disease, vascular dementia, dementia with Lewy bodies, frontotemporal dementia and Parkinsonism linked to chromosome 17, frontotemporal dementias (including Pick's disease), progressive nuclear palsy, corticobasal degeneration, Huntington's disease, thalamic degeneration, Creutzfeld- Jakob dementia, HIV dementia, schizophrenia with dementia, and Korsakoff s psychosis, also are CNS disorders.
- CNS disorders such as. mild cognitive impairment, age-associated memory impairment, age-related cognitive decline, vascular cognitive impairment, attention deficit disorders, attention deficit hyperactivity disorders, and memory disturbances in children with learning disabilities also are considered to be CNS disorders.
- Pain within the meaning of the invention, is also considered to be a CNS disorder.
- CNS disorders such as multiple sclerosis, spinal cord injury, sciatica, failed back surgery syndrome, traumatic brain injury, epilepsy, Parkinson's disease, post-stroke, and vascular lesions in the brain and spinal cord (e.g., infarct, hemorrhage, vascular malformation).
- Non-central neuropathic pain includes that associated with post mastectomy pain, phantom feeling, reflex sympathetic dystrophy (RSD), trigeminal neuralgiaradioculopathy, post-surgical pain, HIV/AIDS related pain, cancer pain, metabolic neuropathies (e.g., diabetic neuropathy, vasculitic neuropathy secondary to connective tissue disease), paraneo- plastic polyneuropathy associated, for example, with carcinoma of lung, or leukemia, or lymphoma, or carcinoma of prostate, colon or stomach, trigeminal neuralgia, cranial neuralgias, and post-herpetic neuralgia.
- RSD reflex sympathetic dystrophy
- Pain is also associated with peripheral nerve damage, central pain (e.g., due to cerebral ischemia) and various chronic pain (e.g., lumbago, back pain (low back pain), inflammatory and/or rheumatic pain.
- Headache pain for example, migraine with aura, migraine without aura, and other migraine disorders
- episodic and chronic tension-type headache tension-type like headache, cluster headache, and chronic paroxysmal hemicrania also are CNS disorders.
- Visceral pain such as pancreatits, intestinal cystitis, dysmenorehea, irritable Bowel syndrome, Crohn's disease, biliary colic, ureteral colic, myocardial infarction and pain syndromes of the pelvic cavity, e.g., vulvodynia, orchialgia, urethral syndrome and protatodynia also is a CNS disorder.
- disorders of the nervous system are acute pain, for example postoperative pain, and pain after trauma.
- the novel human prolyl hydroxylase is highly expressed in the following cardiovascular related tissues: aorta, heart atrium (right), kidney, and fetal kidney. Expression in the above mentioned tissues demonstrates that the novel human prolyl hydroxylase or mRNA can be utilized to diagnose of cardiovascular diseases. Additionally the activity ofthe novel human prolyl hydroxylase can be modulated to treat cardiovascular diseases. Cardiovascular diseases include the following disorders of the heart and the vascular system: congestive heart failure, myocardial infarction, ischemic diseases of the heart, all kinds of atrial and ventricular arrhythmias, hypertensive vascular diseases, and peripheral vascular diseases.
- Heart failure is defined as a pathophysiologic state in which an abnormality of cardiac function is responsible for the failure of the heart to pump blood at a rate commensurate with the requirement of the metabolizing tissue. It includes all forms of pumping failure, such as high-output and low-output, acute and chronic, right- sided or left-sided, systolic or diastolic, independent ofthe underlying cause.
- MI Myocardial infarction
- Ischemic diseases are conditions in which the coronary flow is restricted resulting in a perfusion which inadequate to meet the myocardial requirement for oxygen.
- This group of diseases includes stable angina, unstable angina, and asymptomatic ischemia.
- Arrhythmias include all forms of atrial and ventricular tachyarrhythmias (atrial tachycardia, atrial flutter, atrial fibrillation, atrio-ventricular reentrant tachycardia, preexcitation syndrome, ventricular tachycardia, ventricular flutter, and ventricular fibrillation), as well as bradycardic forms of arrhythmias.
- vascular diseases include primary as well as all kinds of secondary arterial hypertension (renal, endocrine, neuro genie, others).
- the disclosed gene and its product may be used as drag targets for the treatment of hypertension as well as for the prevention of all complications.
- Peripheral vascular diseases are defined as vascular diseases in which arterial and/or venous flow is reduced resulting in an imbalance between blood supply and tissue oxygen demand. It includes chronic peripheral arterial occlusive disease (PAOD), acute arterial thrombosis and embolism, inflammatory vascular disorders, Raynaud's phenomenon, and venous disorders.
- PAOD peripheral arterial occlusive disease
- acute arterial thrombosis and embolism inflammatory vascular disorders
- Raynaud's phenomenon Raynaud's phenomenon
- novel human prolyl hydroxylase is highly expressed in the following tissues of the respiratory system: fetal lung fibroblast cells, fetal lung, and lung.
- the expression in the above mentioned tissues demonstrates that the novel human prolyl hydroxylase or mRNA can be utilized to diagnose of COPD/ Asthma. Additionally the activity of the novel human prolyl hydroxylase can be modulated to treat those diseases.
- allergens typically elicit a specific IgE response and, although in most cases the allergens themselves have little or no intrinsic toxicity, they induce pathology when the IgE response in turn elicits an IgE-dependent or T cell-dependent hypersensitivity reaction.
- Hypersensitivity reactions can be local or systemic and typically occur within minutes after allergen exposure in individuals who have previously been sensitized to the respective allergen.
- the hypersensitivity reaction of allergy develops when the allergen is recognized by IgE antibodies bound to specific receptors on the surface of effector cells, such as mast cells, basophils, or eosinophils, which causes the activation ofthe effector cells and the release of mediators that produce the acute signs and symptoms ofthe reactions.
- Allergic diseases include asthma, allergic rhinitis (hay fever), atopic dermatitis, and anaphylaxis.
- Asthma is though to arise as a result of interactions between multiple genetic and environmental factors and is characterized by three major features: 1) intermittent and reversible airway obstruction caused by bronchoconstriction, increased mucus production, and thickening ofthe walls ofthe airways that leads to a narrowing ofthe airways, 2) airway hypenesponsiveness, and 3) airway inflammation.
- Certain cells are critical to the inflammatory reaction of asthma and they include T cells and antigen presenting cells, B cells that produce IgE, and mast cells, basophils, eosinophils, and other cells that bind IgE. These effector cells accumulate at the site of allergic reaction in the airways and release toxic products that contribute to the acute pathology and eventually to tissue destruction related to the disorder.
- Other resident cells such as smooth muscle cells, lung epithelial cells, mucus-producing cells, and nerve cells may also be abnormal in individuals with asthma and may contribute to its pathology. While the airway obstruction of asthma, presenting clinically as an intermittent wheeze and shortness of breath, is generally the most pressing symptom of the disease requiring immediate treatment, the inflammation and tissue destruction associated with the disease can lead to irreversible changes that eventually makes asthma a chronic and disabling disorder requiring long-term management.
- Commonly used therapeutic agents can act as symptom relievers to transiently improve pulmonary function, but do not affect the underlying inflammation.
- Agents that can reduce the underlying inflammation such as anti- inflammatory steroids, may have major drawbacks which range from immunosuppression to bone loss.
- many of the present therapies such as inhaled corticosteroids, are short-lasting, inconvenient to use, and must be used often on a regular, in some cases lifelong basis, making failure of patients to comply with the treatment a major problem and thereby reducing their effectiveness as a treatment. Because ofthe problems associated with conventional therapies, alternative treatment strategies have been evaluated.
- Glycophorin A, cyclosporin and a nonapeptide fragment of IL-2 all inhibit interleukin-2 dependent T lymphocyte proliferation; however, they are known to have many other effects.
- cyclosporin is used as a immunosuppressant after organ transplantation. While these agents may represent alternatives to steroids in the treatment of asthmatics, they inhibit interleukin-2 dependent T lymphocyte proliferation and potentially critical immune functions associated with homeostasis.
- Other treatments that block the release or activity of mediators of bronchoconstriction, such as cromones or anti-leukotrienes have recently been introduced for the treatment of mild asthma, but they are expensive and not effective in all patients and it is unclear whether they affect the chronic changes associated with asthmatic inflammation at all. What is needed in the art is the identification of a treatment that can act on pathways critical to the development of asthma and that both blocks the episodic attacks of the disorder and which dampens the hyperactive allergic immune response without immuno- compromising the patient. .
- COPD chronic obstructive pulmonary (or airways) disease
- COPD chronic obstructive pulmonary (or airways) disease
- Emphysema is characterized by destruction of alveolar walls leading to abnormal enlargement of the air spaces of the lung.
- Chronic bronchitis is defined clinically as the presence of chronic productive cough for three months in each of two successive years.
- airflow obstruction is usually progressive and is only partially reversible. By far the most important risk factor for development of COPD is cigarette smoking, although the disease does also occur in non-smokers.
- Chronic inflammation of the airways is a key pathological feature of COPD.
- the inflammatory cell population comprises increased numbers of macrophages, neutrophils and CD8+ lymphocytes.
- Inhaled irritants such as cigarette smoke activate macrophages resident in the respiratory tract as well as epithelial cells leading, to release of chemokines (e.g., interleukin- 8) and other chemotactic factors which act to increase the neutrophil/monocyte trafficking from the blood into lung ' tissue and airways.
- chemokines e.g., interleukin- 8
- Neutrophils and monocytes recruited into the airways can release a variety of potentially damaging mediators such as proteolytic enzymes and reactive oxygen species.
- Matrix degradation and emphysema, along with airway wall thickening, surfactant dysfunction and mucus hypersecretion are all potential sequelae of this inflammatory response that lead to impaired airflow and gas exchange.
- the novel human prolyl hydroxylase is highly expressed in the following tissues of the genitourinary system: prostate, uterus, bladder, and prostate BPH.
- the expression in the above mentioned tissues and in particular the differential expression between diseased tissue prostate BPH and healthy tissue prostate demonstrates that the novel human prolyl hydroxylase or mRNA can be utilized to diagnose of genitourinary disorders. Additionally the activity of the novel human prolyl hydroxylase can be modulated to treat genitourinary disorders.
- Genitourological disorders comprise benign and malign disorders of the organs constituting the genitourological system of female and male, renal diseases such as acute or chronic renal failure, immunologically mediated renal diseases such as renal transplant rejection, lupus nephritis, immune complex renal diseases, glomerulo- pathies, nephritis, toxic nephropathy, obstructive uropathies such as benign prostatic hyperplasia (BPH), neurogenic bladder syndrome, urinary incontinence such as urge-, stress-, or overflow incontinence, pelvic pain, and erectile dysfunction.
- renal diseases such as acute or chronic renal failure
- immunologically mediated renal diseases such as renal transplant rejection, lupus nephritis, immune complex renal diseases, glomerulo- pathies, nephritis, toxic nephropathy, obstructive uropathies such as benign prostatic hyperplasia (BPH), neurogenic bladder syndrome, urinary incontinence such as urge
- Cancer is a disease fundamentally caused by oncogenic cellular transformation. There are several hallmarks of transformed cells that distinguish them from their normal counterparts and underlie the pathophysiology of cancer. These include uncontrolled cellular proliferation, unresponsiveness to normal death-inducing signals (immortalization), increased cellular motility and invasiveness, increased ability to recruit blood supply through induction of new blood vessel formation (angiogenesis), genetic instability, and dysregulated gene expression. Various combinations of these abenant physiologies, along with the acquisition of drag-resistance frequently lead to an intractable disease state in which organ failure and patient death ultimately ensue.
- genomics-driven molecular target identification has opened up the possibility of identifying new cancer-specific targets for therapeutic intervention that . will provide safer, more effective treatments for cancer patients.
- newly discovered tumor-associated genes and their products can be tested for their role(s) in disease and used as tools to discover and develop innovative therapies.
- Genes playing important roles in any of the physiological processes outlined above can be characterized as cancer targets.
- Genes or gene fragments identified through genomics can readily be expressed in one or more heterologous expression systems to produce functional recombinant proteins. These proteins are characterized in vitro for their biochemical properties and then used as tools in high-throughput molecular screening programs to identify chemical modulators of their biochemical activities.
- Agonists and/or antagonists of target protein activity can be identified in this manner and subsequently tested in cellular and in vivo disease models for anti-cancer activity. Optimization of lead compounds with iterative testing in biological models and detailed pharmacokinetic and toxicological analyses form the basis for drug development and subsequent testing in humans.
- This invention further pertains to the use of novel agents identified by the screening assays described above. Accordingly, it is within the scope of this invention to use a test compound identified as described herein in an appropriate animal model.
- an agent identified as described herein e.g., a modulating agent, an antisense nucleic acid molecule, a specific antibody, ribozyme, or a human prolylhydroxylase-like polypeptide binding molecule
- an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent.
- an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent.
- this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
- a reagent which affects prolylhydroxylase-like protein activity can be administered to a human cell, either in vitro or in vivo, to reduce prolylhydroxylase-like protein activity.
- the reagent preferably binds to an expression product of a human prolylhydroxylase-like gene. If the expression product is a protein, the reagent is preferably an antibody.
- an antibody can be added to a preparation of stem cells that have been removed from the body. The cells can then be replaced in the same or another human body, with or without clonal propagation, as is known in the art.
- the reagent is delivered using a liposome.
- the liposome is stable in the animal into which it has been administered for at least about 30 minutes, more preferably for at least about 1 hour, and even more preferably for at least about 24 hours.
- a liposome comprises a lipid composition that is capable of targeting a reagent, particularly a polynucleotide, to a particular site in an animal, such as a human.
- the lipid composition of the liposome is capable of targeting to a specific organ of an animal, such as the lung, liver, spleen, heart brain, lymph nodes, and skin.
- a liposome useful in the present invention comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to . deliver its contents to the cell.
- the transfection efficiency of a liposome is about 0.5 ⁇ g of DNA per 16 nmole of liposome delivered to about 10 6 cells, more preferably about 1.0 ⁇ g of DNA per 16 nmole of liposome delivered to about 10 6 cells, and even more preferably about 2.0 ⁇ g of DNA per 16 nmol of liposome delivered to about 10 6 cells.
- a liposome is between about 100 and 500 nm, more preferably between about 150 and 450 nm, and even more preferably between about 200 and 400 nm in diameter.
- Suitable liposomes for use in the present invention include those liposomes standardly used in, for example, gene delivery methods known to those of skill in the art. More prefened liposomes include liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to poly- ethylene glycol.
- a liposome comprises a compound capable of targeting the liposome to a particular cell type, such as a cell-specific ligand exposed on the outer surface of the liposome.
- a liposome with a reagent such as an antisense oligonucleotide or ribozyme can be achieved using methods that are standard in the art (see, for example, U.S. Patent 5,705,151).
- a reagent such as an antisense oligonucleotide or ribozyme
- from about 0.1 ⁇ g to about 10 ⁇ g of polynucleotide is combined with about 8 nmol of liposomes, more preferably from about 0.5 ⁇ g to about 5 ⁇ g of polynucleotides are combined with about 8 nmol liposomes, and even more preferably about 1.0 ⁇ g of polynucleotides is combined with about 8 nmol liposomes.
- antibodies can. be delivered to specific tissues in vivo using receptor-mediated targeted delivery.
- Receptor-mediated DNA delivery techniques are taught in, for example, Findeis et al. Trends in Biotechnol. 11, 202-05 (1993); Chiou et al., GENE THERAPEUTICS: METHODS AND APPLICATIONS OF DIRECT GENE TRANSFER (J.A. Wolff, ed.) (1994); Wu & Wu, J. Biol. Chem. 263, 621-24 (1988);
- a therapeutically effective dose refers to that amount of active ingredient which increases or decreases enzymatic activity relative to the enzymatic activity which occurs in the absence ofthe therapeutically effective dose.
- the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs.
- the animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
- Therapeutic efficacy and toxicity can be determined by standard pharmaceutical procedures in cell cultures or experimental animals.
- the dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD 50 /ED 50 .
- Pharmaceutical compositions that exhibit large therapeutic indices are prefened. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use.
- the dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity ofthe patient, and the route of administration.
- Dosage and administration are adjusted to provide sufficient levels of the active ingredient or to maintain the desired effect.
- Factors that can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drag combination(s), reaction sensitivities, and tolerance/response to therapy.
- Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate ofthe particular formulation.
- Normal dosage amounts can vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration.
- Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
- polynucleotides encoding the antibody can be constructed and introduced into a cell either ex vivo or in vivo using well- established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome- mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun,” and DEAE- or calcium phosphate-mediated transfection.
- Effective in vivo dosages of an antibody are in the range of about 5 ⁇ g to about 50 ⁇ g/kg, about 50 ⁇ g to about 5 mg/kg, about 100 ⁇ g to about 500 ⁇ g/kg of patient body weight, and about 200 to about 250 ⁇ g/kg of patient body weight.
- effective in vivo dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 mg, about.1 ⁇ g to about 2 mg, about 5 ⁇ g to about 500 ⁇ g, and about 20 ⁇ g to about 100 ⁇ g of DNA.
- the reagent is preferably an antisense oligonucleotide or a ribozyme.
- Polynucleotides that express antisense oligonucleotides or ribozymes can be introduced into cells by a variety of methods, as described above.
- a reagent reduces expression of a human prolylhydroxylase-like gene or the activity of a prolylhydroxylase-like polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent.
- the effectiveness of the mechanism chosen to decrease the level of expression of a human prolylhydroxylase-like gene or the activity of a human prolylhydroxylase-like polypeptide can be assessed using methods well known in the art, such as hybridization of nucleotide probes to prolylhydroxylase-like protein- specific mRNA, quantitative RT-PCR, immunologic detection of a human prolylhydroxylase-like polypeptide, or measurement of enzymatic activity.
- any of the pharmaceutical compositions of the invention can be administered in combination with other appropriate therapeutic agents.
- Selection of the appropriate agents for use in combination therapy can be made by one of ordinary skill in the art, according to conventional pharmaceutical, principles.
- the combination of therapeutic agents can act synergistically to effect the treatment or prevention ofthe various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
- any of the therapeutic methods described above can be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.
- Human prolylhydroxylase-like protein also can be used in diagnostic assays for detecting diseases and abnormalities or susceptibility to diseases and abnormalities related to the presence of mutations in the nucleic acid sequences that encode the enzyme. For example, differences can be determined between the cDNA or genomic sequence encoding prolylhydroxylase-like protein in individuals afflicted with a disease and in normal individuals. If a mutation is observed in some or all of the afflicted individuals but not in normal individuals, then the mutation is likely to be the causative agent ofthe disease.
- Sequence differences between a reference gene and a gene having mutations can be revealed by the direct DNA sequencing method.
- cloned DNA segments can be employed as probes to detect specific DNA segments.
- the sensitivity of this method is greatly enhanced when combined with PCR.
- a sequencing primer can be used with a double-stranded PCR product or a single-stranded template molecule generated by a modified PCR.
- the sequence determination is performed by conventional procedures using radiolabeled nucleotides or by automatic sequencing procedures using fluorescent tags.
- DNA sequence differences can be carried out by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized, for example, by high resolution gel electrophoresis. DNA fragments of different sequences can be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al, Science 230, 1242, 1985). Sequence changes at specific locations can also be revealed by nuclease protection assays, such as RNase and S 1 protection or the chemical cleavage method (e.g., Cotton et al, Proc. Natl.
- the detection of a specific DNA sequence can be performed by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes and Southern blotting of genomic DNA.
- direct methods such as gel-electrophoresis and DNA sequencing, mutations can also be detected by in situ analysis.
- Altered levels of prolylhydroxylase-like protein also can be detected in various tissues.
- Assays used to detect levels of the receptor polypeptides in a body sample, such as blood or a tissue biopsy, derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive binding assays, Western blot analysis, and ELISA assays.
- the polynucleotide of SEQ ID NO: 1 is inserted into the expression vector pCEV4 and the expression vector pCEV4-prolylhydroxylase-like protein polypeptide obtained is transfected into human embryonic kidney 293 cells. From these cells extracts are obtained and prolylhydroxylase activity is assayed by a method based on the hydroxylation-coupled decarboxylation of 2-oxo[l-14C]glutarate (Kivirikko and Myllyla, 1982).
- the reaction is performed in a final volume of 1.0 ml, which contained 10 ⁇ l of the cell extract, 0.1 mg of (Pro-Pro-Gly)10.9H2O as substrate, 0.05 ⁇ mol of FeSO4, 0.1 ⁇ mol of 2-oxo[l-14C]glutarate (100 000 d.p.m.), 1 ⁇ mol of ascorbate, 0.3 mg of catalase (Sigma), 0.1 ⁇ mol of DTT, 2 mg of bovine serum albumin (Sigma) and 50 ⁇ mol of Tris-HCI buffer adjusted to pH 7.8 at 25°C.
- the uncoupled reaction is performed as above, except that the amount of he Triton X-
- the Pichia pastoris expression vector pPICZB (Invitrogen, San Diego, CA) is used to produce large quantities of recombinant human prolylhydroxylase-like poly- peptides in yeast.
- the prolylhydroxylase-like protein-encoding DNA sequence is derived from SEQ ID NO: 1. Before insertion into vector pPICZB, the DNA sequence is modified by well known methods in such a way that it contains at its 5 '-end an initiation codon and at its 3 '-end an enterokinase cleavage site, a His6 reporter tag and a termination codon.
- the yeast is cultivated under usual conditions in 5 liter shake flasks and the recombi- nantly produced protein isolated from the culture by affinity chromatography (Ni-NTA-Resin) in the presence of 8 M urea.
- the bound polypeptide is eluted with buffer, pH 3.5, and neutralized. Separation ofthe polypeptide from the His6 reporter tag is accomplished by site-specific proteolysis using enterokinase (Invitrogen, San Diego, CA) according to manufacturer's instructions. Purified human prolylhydroxylase-like polypeptide is obtained.
- Purified prolylhydroxylase-like polypeptides comprising a glutathione-S-transferase protein and absorbed onto glutathione-derivatized wells of 96-well microtiter plates are contacted with test compounds from a small molecule library at pH 7.0 in a physiological buffer solution.
- Human prolylhydroxylase-like polypeptides comprise the amino acid sequence shown in SEQ ID NO: 2.
- the test compounds comprise a fluorescent tag.
- the samples are incubated for 5 minutes to one hour. Control samples are incubated in the absence of a test compound.
- the buffer solution containing the test compounds is washed from the wells.
- Binding of a test compound to a human prolylhydroxylase-like polypeptide is detected by fluorescence measurements of the contents of the wells.
- a test compound that increases the fluorescence in a well by at least 15% relative to fluorescence of a well in which a test compound is not incubated is identified as a compound which binds to a human prolylhydroxylase-like polypeptide.
- test compound is administered to a culture of human cells transfected with a prolylhydroxylase-like protein expression construct and incubated at 37°C for 10 to 45 minutes.
- a culture of the same type of cells that have not been transfected is incubated for the same time without the test compound to provide a negative control.
- RNA is isolated from the two cultures as described in Chirgwin et al, Biochem. 18, 5294-99, 1979).
- Northern blots are prepared using 20 to 30 ⁇ g total RNA and hybridized with a 32 P-labeled prolylhydroxylase-like protein-specific probe at 65°C in Express-hyb (CLONTECH).
- the probe comprises at least 11 contiguous nucleotides selected from the complement of SEQ ID NO: 1.
- a test compound that decreases the prolylhydroxylase-like protein-specific signal relative to the signal obtained in the absence of the test compound is identified as an inhibitor of prolylhydroxylase-like gene expression.
- a test compound is administered to a culture of human cells transfected with a prolylhydroxylase-like protein expression construct and incubated at 37°C for 10 to 45 minutes.
- a culture of the same type of cells that have not been transfected is incubated for the same time without the test compound to provide a negative control.
- Enzymatic activity is measured using the method of Kivirikko, K. I., Myllyla, T.
- a test compound which decreases the enzymatic activity of the prolylhydroxylase- like protein relative to the enzymatic activity in the absence of the test compound is identified as an inhibitor of prolylhydroxylase-like protein activity.
- RT-PCR Reverse Transcription-Polymerase Chain Reaction
- prolylhydroxylase-like protein is involved in cancer
- expression is determined in the following tissues: adrenal gland, bone mareow, brain, cerebellum, colon, fetal brain, fetal liver, heart, kidney, liver, lung, mammary gland, pancreas, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thymus, thyroid, trachea, uterus, and peripheral blood lymphocytes.
- Expression in the following cancer cell lines also is determined: DU- 145 (prostate), NCI-H125 (lung), HT-29 (colon), COLO-205 (colon), A-549 (lung), NCI-H460 (lung), HT-116 (colon), DLD-1 (colon), MDA-MD-231 (breast), LS174T (colon), ZF-75 (breast), MDA-MN-435 (breast), HT-1080, MCF-7 (breast), and U87. Matched pairs of malignant and normal tissue from the same patient also are tested.
- the initial expression panel consists of RNA samples from respiratory tissues and inflammatory cells relevant to COPD: lung (adult and fetal), trachea, freshly isolated alveolar type II cells, cultured human bronchial epithelial cells, cultured small airway epithelial cells, cultured bronchial sooth muscle cells, cultured H441 cells (Clara-like), freshly isolated neutrophils and monocytes, and cultured monocytes (macrophage-like).
- Body map profiling also is carried out, using total RNA panels purchased from Clontech.
- the tissues are adrenal gland, bone marrow, brain, colon, heart, kidney, liver, lung, mammary gland, pancreas, prostate, salivary gland, skeletal muscle, small intestine, spleen, stomach, testis, thymus, trachea, thyroid, and uterus.
- prolylhydroxylase-like protein is involved in the disease process of asthma
- the following whole body panel is screened to show predominant or relatively high expression in lung or immune tissues: brain, heart, kidney, liver, lung, trachea, bone manow, colon, small intestine, spleen, stomach, thymus, mammary gland, skeletal muscle, prostate, testis, uterus, cerebellum, fetal brain, fetal liver, spinal cord, placenta, adrenal gland, pancreas, salivary gland, thyroid, peripheral blood leukocytes, lymph node, and tonsil.
- lung and immune system cells are screened to localize expression to particular cell subsets: lung microvascular endothelial cells, bronchial/tracheal epithelial cells, bronchial/tracheal smooth muscle cells, lung fibroblasts, T cells (T helper 1 subset, T helper 2 subset, NKT cell subset, and cytotoxic T lymphocytes), B cells, mononuclear cells (monocytes and macrophages), mast cells, eosinophils, neutrophils, and dendritic cells.
- T cells T helper 1 subset, T helper 2 subset, NKT cell subset, and cytotoxic T lymphocytes
- B cells mononuclear cells (monocytes and macrophages)
- mast cells eosinophils, neutrophils, and dendritic cells.
- prolylhydroxylase-like protein is involved in CNS disorders
- tissues are screened: fetal and adult brain, muscle, heart, lung, kidney, liver, thymus, testis, colon, placenta, trachea, pancreas, kidney, gastric mucosa, colon, liver, cerebellum, skin, cortex (Alzheimer's and normal), hypothalamus, cortex, amygdala, cerebellum, hippocampus, choroid, plexus, thalamus, and spinal cord.
- Quantitative expression profiling is performed by the form of quantitative PCR analysis called "kinetic analysis” firstly described in Higuchi et al, BioTechnology 10, 413-17, 1992, and Higuchi et al, BioTechnology 11, 1026-30, 1993.
- the principle is that at any given cycle within the exponential phase of PCR, the amount of product is proportional to the initial number of template copies.
- the probe is cleaved by the 5 '-3' endonuclease activity of Taq DNA polymerase and a fluorescent dye released in the medium (Holland et al, Proc. Natl. Acad. Sci.
- the amplification of an endogenous control can be performed to standardize the amount of sample RNA added to a reaction.
- the control of choice is the 18S ribosomal RNA. Because reporter dyes with differing emission spectra are available, the target and the endogenous control can be independently quantified in the same tube if probes labeled with different dyes are used. All "real time PCR" measurements of fluorescence are made in the ABI Prism 7700.
- RNA extraction and cDNA preparation Total RNA from the tissues listed above are used for expression quantification. RNAs labeled "from autopsy” were extracted from autoptic tissues with the TRIzol reagent (Life Technologies, MD) according to the manufacturer's protocol.
- RNA Fifty ⁇ g of each RNA were treated with DNase I for 1 hour at 37°C in the following reaction mix: 0.2 U/ ⁇ l RNase-free. DNase I (Roche Diagnostics, Germany); 0.4 U/ ⁇ l
- RNase inhibitor PE Applied Biosystems, CA
- RNA is extracted once with 1 volume of phenohchloroform:- isoamyl alcohol (24:24:1) and once with chloroform, and precipitated with 1/10 volume of 3 M sodium acetate, pH5.2, and 2 volumes of ethanol.
- RNA from the autoptic tissues Fifty ⁇ g of each RNA from the autoptic tissues are DNase treated with the DNA-free kit purchased from Ambion (Ambion, TX). After resuspension and spectro- photometric quantification, each sample is reverse transcribed with the TaqMan
- RNA in the reaction mix is 200 ng/ ⁇ L. Reverse transcription is carried out with 2.5 ⁇ M of random hexamer primers.
- TaqMan quantitative analysis Specific primers and probe are designed according to the recommendations of PE Applied Biosystems; the probe can be labeled at the 5' end FAM (6-carboxy-fluorescein) and at the 3' end with TAMRA (6-carboxy- tetramethyl-rhodamine). Quantification experiments are performed on 10 ng of reverse transcribed RNA from each sample. Each determination is done in triplicate. Total cDNA content is normalized with the simultaneous quantification (multiplex PCR) of the 18S ribosomal RNA using the Pre-Developed TaqMan Assay Reagents (PDAR) Control Kit (PE Applied Biosystems, CA).
- PDAR Pre-Developed TaqMan Assay Reagents
- the assay reaction mix is as follows: IX final TaqMan Universal PCR Master Mix
- the experiment is performed on an ABI Prism 7700 Sequence Detector (PE Applied Biosystems, CA).
- fluorescence data acquired during PCR are processed as described in the ABI Prism 7700 user's manual in order to achieve better background subtraction as well as signal linearity with the starting target quantity.
- the cell line used for testing is the human colon cancer cell line HCT116.
- Cells are cultured in RPMI-1640 with 10-15% fetal calf serum at a concentration of 10,000 cells per milliliter in a volume of 0.5 ml and kept at 37°C in a 95% air/5%CO 2 atmosphere.
- Phosphorothioate oligoribonucleotides are synthesized on an Applied Biosystems Model 380B DNA synthesizer using phosphoroamidite chemistry. A sequence of 24 bases complementary to the nucleotides at position 1 to 24 of SEQ ID NO: 1 is used as the test oligonucleotide. As a control, another (random) sequence is used: 5'-TCA ACT GAC TAG ATG TAC ATG GAC-3'. Following assembly and deprotection, oligonucleotides are ethanol-precipitated twice, dried, and suspended in phosphate buffered saline at the desired concentration.
- oligonucleotides Purity of the oligonucleotides is tested by capillary gel electrophoresis and ion exchange HPLC. The purified oligonucleotides are added to the culture medium at a concentration of 10 ⁇ M once per day for seven days.
- test oligonucleotide for seven days results in significantly reduced expression of human prolylhydroxylase-like protein as determined by Western blotting. This effect is not observed with the control oligonucleotide.
- the number of cells in the cultures is counted using an automatic cell counter. The number of cells in cultures treated with the test oligonucleotide (expressed as 100%) is compared with the number of cells in cultures treated with the control oligonucleotide. The number of cells in cultures treated with the test oligonucleotide is not more than 30% of control, indicating that the inhibition of human prolylhydroxylase-like protein has an anti-proliferative effect on cancer cells.
- This non-tumor assay measures the ability of a compound to reduce either the endogenous level of a circulating hormone or the level of hormone produced in response to a biologic stimulus.
- Rodents are administered test compound (p.o., i.p., i.v., i.m., or s.c).
- test compound p.o., i.p., i.v., i.m., or s.c
- Plasma is assayed for levels ofthe hormone of interest. If the normal circulating levels of the hormone are too low and/or variable to provide consistent results, the level ofthe hormone may be elevated by a pre-treatment with a biologic stimulus (i.e., LHRH may be injected i.m.
- a biologic stimulus i.e., LHRH may be injected i.m.
- Hollow fibers are prepared with desired cell line(s) and implanted intraperitoneally and/or subcutaneously in rodents. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Fibers are harvested in accordance with specific readout assay protocol, these may include assays for gene expression (bDNA, PCR, or Taqman), or a specific biochemical activity (i.e., cAMP levels. Results are analyzed by Student's t-test or
- Rodents are administered test compound (p.o., i.p., i.v., i.m., ' or s.c.) according to a predetermined schedule and for a predetermined duration (i.e.,
- mice are weighed, the target organ is excised, any fluid is expressed, and the weight of the organ is recorded. Blood plasma may also be collected. Plasma may be assayed for levels of a hormone of interest or for levels of test agent. Organ weights may be directly compared or they ' may be normalized for the body weight of the animal. Compound effects are compared to a vehicle-treated control group. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test. Significance is p value ⁇ 0.05 compared to the vehicle control group.
- Hollow fibers are prepared with desired cell line(s) and implanted infraperitoneally and/or subcutaneously in rodents. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Fibers are harvested in accordance with specific readout assay protocol.
- Cell proliferation is determined by measuring a marker of cell number (i.e., MTT or LDH). The cell number and change in cell number from the starting inoculum are analyzed by Student's t-test or Rank Sum test after the variance between groups is compared by an F-test, with significance at p ⁇ 0.05 as compared to the vehicle control group.
- Hydron pellets with or without growth factors or cells are implanted into a micropocket surgically created in the rodent cornea.
- Compound administration may be systemic or local (compound mixed with growth factors in the hydron pellet).
- Corneas are harvested at 7 days post implantation immediately following intracardiac infusion of colloidal carbon and are fixed in 10% formalin. Readout is qualitative scoring and/or image analysis. Qualitative scores are compared by Rank Sum test. Image analysis data is evaluated by measuring the area of neovascularization (in pixels) and group averages are compared by Student's t-test (2 tail). Significance is p ⁇ 0.05 as compared to the growth factor or cells only group.
- Matrigel containing cells or growth factors, is injected subcutaneously. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Matrigel plugs are harvested at predetermined time point(s) and prepared for readout. Readout is an ELISA-based assay for hemoglobin concentration and/or histological examination (i.e. vessel count, special staining for endothelial surface markers: CD31, factor-8). Readouts are analyzed by Student's t-test, after the variance between groups is compared by an F-test, with significance determined at p ⁇ 0.05 as compared to the vehicle control group.
- Tumor cells or fragments are implanted subcutaneously on Day 0.
- Vehicle and/or compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule starting at a time, usually on Day 1, prior to the ability to measure the tumor burden.
- Body weights and tumor measurements are recorded 2-3 times weekly.
- Anti- tumor efficacy may be initially determined by comparing the size of treated (T) and control (C) tumors on a given day by a Student's t-test, after the variance between groups is compared by an F-test, with significance determined at p ⁇ 0.05. The experiment may also be continued past the end of dosing in which case tumor measurements would continue to be recorded to monitor tumor growth delay.
- Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan- Meier curves from the times for individual tumors to attain the evaluation size.
- Tumor cells are injected intraperitoneally or intracranially on Day 0.
- Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule starting on Day 1. Observations of morbidity and/or mortality are recorded twice daily. Body weights are measured and recorded twice weekly. Morbidity/mortality data is expressed in terms of the median time of survival and the number of long- term survivors is indicated separately. Survival times are used to generate Kaplan- Meier curves. Significance is p ⁇ 0.05 by a log-rank test compared to the control group in the experiment.
- Tumor cells or fragments are implanted subcutaneously and grown to the desired size for treatment to begin. Once at the predetermined size range, mice are randomized into treatment groups. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Tumor and body weights are measured and recorded 2-3 times weekly. Mean tumor weights of all groups over days post inoculation are graphed for comparison. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p ⁇ 0.05 as compared to the control group.
- Tumor measurements may be recorded after dosing has stopped to monitor tumor growth delay.
- Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan-Meier curves from the times for individual tumors to attain the evaluation size. Significance is p value ⁇ 0.05 compared to the vehicle control group.
- Tumor cells or fragments, of mammary adenocarcinoma origin are implanted directly into a surgically exposed and reflected mammary fat pad in rodents. The fat pad is placed back in its original position and the surgical site is closed. Hormones may also be administered to the rodents to support the growth of the tumors. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Tumor and body weights are measured and recorded 2-3 times weekly. Mean tumor weights of all groups over days post inoculation are graphed for -5 comparison. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p ⁇ 0.05 as compared to the control group.
- Tumor measurements may be recorded after dosing has stopped to monitor tumor growth delay.
- Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan-Meier curves from the times for individual tumors to attain the 5 evaluation size. Significance is p value ⁇ 0.05 compared to the vehicle control group.
- Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ, or measuring the target organ weight. The means of these endpoints are compared by Student's t-test after 0 conducting an F-test, with significance determined at p ⁇ 0.05 compared to the control group in the experiment.
- Tumor cells or fragments, of prostatic adenocarcinoma origin are implanted directly into a surgically exposed dorsal lobe of the prostate in rodents.
- the prostate is externalized through an abdominal incision so that the tumor can be implanted specifically in the dorsal lobe while verifying that the implant does not enter the seminal vesicles.
- the successfully inoculated prostate is replaced in the abdomen 0 . and the incisions through the abdomen and skin are closed.
- Hormones may also be administered to the rodents to support the growth of the tumors.
- Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule.
- Body weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected.
- the size of the primary tumor is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope.
- An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p ⁇ 0.05 as compared to the control group. This model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor.
- Metastasis can be assessed at termination ofthe study by counting the number of visible foci per target organ (i.e., the lungs), or measuring the target organ weight (i.e., the regional lymph nodes). The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p ⁇ 0.05 compared to the control group in the experiment.
- Tumor cells of pulmonary origin may be implanted intrabronchially by making an incision through the skin and exposing the trachea.
- the trachea is pierced with the beveled end of a 25 gauge needle and the tumor cells are inoculated into the main bronchus using a flat-ended 27 gauge needle with a 90° bend.
- Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Body weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected.
- the size of the primary tumor is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope.
- An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p ⁇ 0.05 as compared to the control group.
- This model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the confralateral lung), or measuring the target organ weight. The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p ⁇ 0.05 compared to the control group in the experiment.
- Tumor cells of gastrointestinal origin may be implanted intracecally by making an abdominal incision through the skin and externalizing the intestine. Tumor cells are inoculated into the cecal wall without penetrating the lumen of the intestine using a 27 or 30 gauge needle. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Body weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected. The size of the primary tumor is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope.
- An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t- test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p ⁇ 0.05 as compared to the control group. This model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the liver), or measuring the target organ weight. The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p ⁇ 0.05 compared to the control group in the experiment.
- Tumor cells are inoculated s.c. and the tumors allowed to grow to a predetermined range for spontaneous metastasis studies to the lung or liver. These primary tumors are then excised. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule which may include the period leading up to the excision of the primary tumor to evaluate therapies directed at inhibiting the early stages of tumor metastasis. Observations of morbidity and/or mortality are recorded daily. Body weights are measured, and recorded twice weekly. Potential endpoints include survival time, numbers of visible foci per target organ, or target organ weight. When survival time is used as the endpoint the other values are not determined.
- Survival data is used to generate Kaplan-Meier curves. Significance is p ⁇ 0.05 by a log-rank test compared to the control group in the experiment. The mean number of visible tumor foci, as determined under a dissecting microscope, and the mean target organ weights are compared by Student's t-test after conducting an F-test, with significance determined at p ⁇ 0.05. compared to the control group in the experiment for both of these endpoints.
- Tumor cells are injected into the tail vein, portal vein, or the left ventricle of the heart in experimental (forced) lung, liver, and bone metastasis studies, respectively.
- Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Observations of morbidity and/or mortality are recorded daily. Body weights are measured and recorded twice weekly. Potential endpoints include survival time, numbers of visible foci per target organ, or target organ weight. When survival time is used as the endpoint the other values are not determined. Survival data is used to generate Kaplan-Meier curves. Significance is p ⁇ 0.05 by a log-rank test compared to the control group in the experiment.
- Acute pain is measured on a hot plate mainly in rats.
- Two variants of hot plate testing are used: In the classical variant animals are put on a hot surface (52 to 56°C) and the latency time is measured until the animals show nocifensive behavior, such as stepping or foot licking.
- the other variant is an increasing temperature hot plate where the experimental animals are put on a surface of neutral temperature. Subsequently this surface is slowly but constantly heated until the animals begin to lick a hind paw. The temperature which is reached when hind paw licking begins is a measure for pain threshold.
- Compounds are tested against a vehicle treated control group. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t, i.c.v., s.c, intradermal, transdermal) prior to pain testing.
- application routes i.v., i.p., p.o., i.t, i.c.v., s.c, intradermal, transdermal
- Persistent pain is measured with the formalin or capsaicin test, mainly in rats. A solution of 1 to 5% formalin or 10 to 100 ⁇ g capsaicin is injected into one hind paw ofthe experimental animal. After formalin or capsaicin application the animals show nocifensive reactions like flinching, licking and biting of the affected paw. The number of nocifensive reactions within a time frame of up to 90 minutes is a measure for intensity of pain.
- Compounds are tested against a vehicle treated control group. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal) prior to formalin or capsaicin administration.
- Neuropathic pain is induced by different variants of unilateral sciatic nerve injury mainly in rats. The operation is performed under anesthesia. The first variant of sciatic nerve injury is produced by placing loosely constrictive ligatures around the common sciatic nerve.
- the second variant is the tight ligation of about the half of the diameter of the common sciatic nerve
- a group of models is used in which tight ligations or transections are made of either the L5 and L6 spinal nerves, or the L% spinal nerve only.
- the fourth variant involves an axotomy of two of the three terminal branches of the sciatic nerve (tibial and common peroneal nerves) leaving the remaining sural nerve intact whereas the last variant comprises the axotomy of only the tibial branch leaving the sural and common nerves uninjured. Control animals are treated with a sham operation.
- the nerve injured animals develop a chronic mechanical allodynia, cold allodynioa, as well as a thermal hyperalgesia.
- Mechanical allodynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer, 1TTC
- Thermal hyperalgesia is measured by means of a radiant heat source (Plantar Test, Ugo Basile, Comerio, Italy), or by means of a cold plate of 5 to 10°C where the nocifensive reactions of the affected hind paw are counted as a measure of pain intensity.
- a further test for cold induced pain is the counting of nocifensive reactions, or duration of nocifensive responses after plantar administration of acetone to the affected hind limb.
- Inflammatory Pain Inflammatory pain is induced mainly in rats by injection of 0.75 mg carrageenan or complete Freund's adjuvant into one hind paw. The animals develop an edema with mechanical allodynia as well as thermal hyperalgesia. Mechanical allodynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer, IITC Inc. -Life Science Instruments, Woodland Hills, SA,
- Thermal hyperalgesia is measured by means of a radiant heat source (Plantar Test, Ugo Basile, Comerio, Italy, Paw thermal stimulator, G. Ozaki, University of California, USA).
- Plant Test Ugo Basile, Comerio, Italy
- Paw thermal stimulator G. Ozaki, University of California, USA
- edema measurement two methods are being used. In the first method, the animals are sacrificed and the affected hindpaws sectioned and weighed. The second method comprises differences in paw volume by measuring water displacement in a plethysmometer (Ugo Basile, Comerio, Italy).
- Compounds are tested against uninflamed as well as vehicle treated confrol groups. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal) prior to pain testing.
- application routes i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal
- Compounds are tested against diabetic and non-diabetic vehicle treated control groups. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal) prior to pain testing.
- application routes i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal
- 6-Hydroxydopamine (6-OH-DA) Lesion. Degeneration of the dopaminergic ni- grostriatal and striatopallidal pathways is the central pathological event in Parkinson's disease. This disorder has been mimicked experimentally in rats using single/sequential unilateral stereotaxic injections of 6-OH-DA into the medium forebrain bundle (MFB).
- MFB medium forebrain bundle
- mice Male Wistar rats (Harlan Winkelmann, Germany), weighing 200 ⁇ 250 g at the beginning of the experiment, are used. The rats are maintained in a temperature- and humidity-controlled environment under a 12 h light/dark cycle with free access to food and water when not in experimental sessions. The following in vivo protocols are approved by the governmental authorities. All efforts are made to minimize animal suffering, to reduce the number of animals used, and to utilize alternatives to in vivo techniques.
- Animals are administered pargyline on the day of surgery (Sigma, St. Louis, MO, USA; 50 mg/kg i.p.) in order to inhibit metabolism of 6-OHDA by monoamine oxidase and desmethylimipramine HCI (Sigma; 25 mg/kg i.p.) in order to prevent uptake of 6-OHDA by noradrenergic terminals. Thirty minutes later the rats are anesthetized with sodium pentobarbital (50 mg/kg) and placed in a stereotaxic frame.
- Stepping Test Forelimb akinesia is assessed three weeks following lesion placement using a modified stepping test protocol.
- the animals are held by the experimenter with one hand fixing the hindlimbs and slightly raising the hind part above the surface.
- One paw is touching the table, and is then moved slowly sideways (5 s for 1 m), first in the forehand and then in the backhand direction.
- the number of adjusting steps is counted for both paws in the backhand and forehand direction of movement.
- the sequence of testing is right paw forehand and backhand adjusting stepping, followed by left paw forehand and backhand directions.
- the test is repeated three times on three consecutive days, after an initial training period of three days prior to the first testing.
- Forehand adjusted stepping reveals no consistent differences between lesioned and healthy confrol animals. Analysis is therefore restricted to backhand adjusted stepping.
- Balance .Test Balance adjustments following postural challenge are also measured during the stepping test sessions.
- the rats are held in the same position as described in the stepping test and, instead of being moved sideways, tilted by the experimenter towards the side of the paw touching the table. This maneuver results in loss of balance and the ability of the rats to regain balance by forelimb movements is scored on a scale ranging from 0 to 3. Score 0 is given for a normal forelimb placement. When the forelimb movement is delayed but recovery of postural balance detected, score 1 is given. Score 2 represents a clear, yet insufficient, forelimb reaction, as evidenced by muscle contraction, but lack of success in recovering balance, and score 3 is given for no reaction of movement. The test is repeated three times a day on each side for three consecutive days after an initial training period of three days prior to the first testing.
- Staircase Test (Paw Reaching).
- a modified version of the staircase test is used for evaluation of paw reaching behavior three weeks following primary and secondary lesion placement.
- Plexiglass test boxes with a central platform and a removable staircase on each side are used.
- the apparatus is designed such that only the paw on the same side at each staircase can be used, thus providing a measure of independent forelimb use.
- For each test the animals are left in the test boxes for 15 min.
- the double staircase is filled with 7 x 3 chow pellets (Precision food pellets, formula: P, purified rodent diet, size 45 mg; Sandown Scientific) on each side.
- MPTP leads to a marked decrease in the levels of dopamine and its metabolites, and in the number of dopaminergic terminals in the striatum as well as severe loss of the tyrosine hydroxylase (TH)-immunoreactive cell bodies in the substantia nigra, pars compacta.
- TH tyrosine hydroxylase
- mice are perfused transcardially with 0.01 M PBS (pH 7.4) for 2 min, followed by 4% paraformaldehyde (Merck) in PBS for 15 min.
- PBS pH 7.4
- PBS paraformaldehyde
- TH free-floating tyrosine hydroxylase
- Sections are mounted on to gelatin-coated slides, left to dry overnight, counter- stained with hematoxylin dehydrated in ascending alcohol concentrations and cleared in butylacetate. Coverslips are mounted on entellan.
- Labandeira-Garcia (1997), with a CR-1 Rotamex system (Columbus Instruments, Columbus, OH) comprising an IBM-compatible personal computer, a CIO-24 data acquisition card, a control unit, and a four-lane rotarod unit.
- the rotarod unit consists of a rotating spindle (diameter 7.3 cm) and individual compartments for each mouse.
- the system software allows preprogramming of session protocols with varying rotational speeds (0-80 rpm). Infrared beams are used to detect when a mouse has fallen onto the base grid beneath the rotarod.
- the system logs the fall as the end of the experiment for that mouse, and the total time on the rotarod, as well as the time ofthe fall and all the set-up parameters, are recorded.
- the system also allows a weak cunent to be passed through the base grid, to aid training.
- the object recognition task has been designed to assess the effects of experimental manipulations on the cognitive performance of rodents.
- a rat is placed in an open field, in which two identical objects are present.
- the rats inspects both objects during the first trial of the object recognition task.
- a second trial after a retention interval of for example 24 hours, one ofthe two objects used in the first trial, the 'familiar' object, and a novel object are placed in the open field.
- the inspection time at each ofthe objects is registered.
- the basic measures in the OR task is the time spent by a rat exploring the two object the second trial. Good retention is reflected by higher exploration times towards the novel than the ' 'familiar' object.
- Administration of the putative cognition enhancer prior to the first trial pre- dominantly allows assessment of the effects on acquisition, and eventually on consolidation processes.
- Administration of the testing compound after the first trial allows to assess the effects on consolidation processes, whereas administration before the second trial allows to measure effects on retrieval processes.
- the passive avoidance task assesses memory performance in rats and mice.
- the inhibitory avoidance apparatus consists of a two-compartment box with a light compartment and a dark compartment. The two compartments are separated by a guillotine door that can be operated by the experimenter. A threshold of 2 cm separates the two compartments when the guillotine door is raised. When the door is open, the illumination in the dark compartment is about 2 lux. The light intensity is about 500 lux at the center of the floor ofthe light compartment.
- Two habituation sessions, one shock session, and a retention session are given, separated by inter-session intervals of 24 hours.
- the rat In the habituation sessions and the retention session the rat is allowed to explore the apparatus for 300 sec. The rat is placed in the light compartment, facing the wall opposite to the guillotine door. After an accommodation period of 15 sec. the guillotine door is opened so that all parts of the apparatus can be visited freely. Rats normally avoid brightly lit areas and will enter the dark compartment within a few seconds.
- the guillotine door between the compartments is lowered as soon as the rat has entered the dark compartment with its four paws, and a scrambled 1 mA footshock is administered for 2 sec. The rat is removed from the apparatus and put back into its home cage. The procedure during the retention session is identical to that ofthe habituation sessions.
- the step-through latency that is the first latency of entering the dark compartment . (in sec.) during the retention session is an index of the memory performance of the animal; the longer the latency to enter the dark compartment, the better the retention is.
- Scopolamine impairs the memory performance during the retention session 24 hours later. If the test compound increases the enter latency compared with the scopolamine-treated controls, is likely to possess cognition enhancing potential.
- the Morris water escape task measures spatial orientation learning in rodents. It is a test system that has extensively been used to investigate the effects of putative therapeutic on the cognitive functions of rats and mice.
- the performance of an animal is assessed in a circular water tank with an escape platform that is submerged about 1 cm below the surface of the water. The escape platform is not visible for an animal swimming in the water tank.
- Abundant extra-maze cues are provided by the furniture in the room, including desks, computer equipment, a second water tank, the presence ofthe experimenter, and by a radio on a shelf that is playing softly.
- the animals receive four trials during five daily acquisition sessions.
- a trial is started by placing an animal into the pool, facing the wall of the tank. Each of four starting positions in the quadrants north, east, south, and west is used once in a series of four trials; their order is randomized.
- the escape platform is always in the same position.
- a trial is terminated as soon as the animal had climbs onto the escape platform or when 90 seconds have elapsed, whichever event occurs first. The animal is allowed to stay on the platform for 30 seconds. Then it is taken from the platform and the next trial is started. If an animal did not find the platform within 90 seconds it is put on the platform by the experimenter and is allowed to stay there for 30 seconds.
- an additional trial is given as a probe trial: the platform is removed, and the time the animal spends in the four quadrants is measured for 30 or 60 seconds.
- the probe trial all animals start from the same start position, opposite to the quadrant where the escape platform had been positioned during acquisition.
- rats or mice with specific brain lesions which impair cognitive functions, or animals treated with compounds such as scopolamine or MK-801, which interfere with normal learning, or aged animals which suffer from cognitive deficits, are used.
- the T-maze spontaneous alternation task assesses the spatial memory performance in mice.
- the start arm and the two goal arms of the T-maze are provided with guillotine doors which can be operated manually by the experimenter.
- a mouse is put into the start arm at the beginning of training.
- the guillotine door is closed.
- the 'forced trial' either the left or right goal arm is blocked by lowering the guillotine door.
- the mouse After the mouse has been released from the start arm, it will negotiate the maze, eventually enter the open goal arm, and return to the start position, where it will be confined for 5 seconds, by lowering the guillotine door.
- the animal can choose freely between the left and right goal arm (all guillotine-doors opened) during 14 'free choice' trials. As soon a the mouse has entered one goal arm, the other one is closed. The mouse eventually returns to the start arm and is free to visit whichever go alarm it wants after having been confined to the start arm for 5 seconds. After completion of 14 free choice trials in one session, the animal is removed from the maze. During training, the animal is never handled.
- the percent alternations out of 14 trials is calculated. This percentage and the total time needed to complete the first forced trial and the subsequent 14 free choice trials
- Cognitive deficits are usually induced by an injection of scopolamine, 30 min before the start ofthe training session. Scopolamine reduced the per-cent alternations to chance level, or below.
- a cognition enhancer which is always administered before the training session, will at least partially, antagonize the scopolamine-induced reduction in the spontaneous alternation rate.
- RNAlaterTM RNAlater
- the lung tissue is homogenised, and total RNA was extracted using a Qiagen RNeasyTM Maxi kit. Molecular Probes RiboGreenTM RNA quantitation method is used to quantify the amount of RNA in each sample.
- RNA is reverse transcribed, and the resultant cDNA is used in a real-time polymerase chain reaction (PCR).
- PCR polymerase chain reaction
- the cDNA is added to a solution containing the sense and anti-sense primers and the 6-carboxy-teframethyl-rhodamine labeled probe of the prolylhydroxylase-like protein gene.
- Cyclophilin is used as the housekeeping gene.
- the expression of the prolylhydroxylase-like protein gene is measured using the TaqMan real-time PCR system that generates an amplification curve for each sample. From this curve a threshold cycle value is calculated: the fractional cycle number at which the amount of amplified target reaches a fixed threshold.
- a sample containing many copies of the prolylhydroxylase-like protein gene will reach this threshold earlier than a sample containing fewer copies.
- the threshold is set at 0.2, and the threshold cycle CT is calculated from the amplification curve.
- the CT value for the prolylhydroxylase-like protein gene is normalized using the CT value for the housekeeping gene.
- prolylhydroxylase-like protein gene is increased by at least 3-fold between 10 minutes and 3 hours post tobacco smoke exposure compared to air exposed confrol animals.
- Test compounds are evaluated as follows. Animals are pre-freated with a test compound between 5 minutes and 1 hour prior to the tobacco smoke exposure and they are then sacrificed up to 3 hours after the tobacco smoke exposure has been completed. Control animals are pre-freated with the vehicle ofthe test compound via the route of administration chosen for the test compound.
- a test compound that reduces the tobacco smoke induced upregulation of prolylhydroxylase-like protein gene relative to the expression seen in vehicle treated tobacco smoke exposed animals is identified as an inhibitor of prolylhydroxylase-like protein gene expression.
- Rats are anesthetized by infraperitoneal administration of urethane (Sigma) at 1.25 g/kg.
- the abdomen is opened through a midline incision, and a polyethylene catheter (BECTON DICKINSON, PE50) is implanted into the bladder through the dome.
- a polyethylene catheter BECTON DICKINSON, PE50
- saline Otsuka
- Rats are anesthetized by intramuscular administration of ketamine (75 mg/kg) and xylazine (15 mg/kg).
- the abdomen is opened through a midline incision, and a polyethylene catheter (BECTON DICKINSON, PE50) is implanted into the bladder through the dome.
- the catheter is tunneled through subcutis of the animal by needle (14G) to neck.
- the inguinal region is incised, and a polyethylene catheter (BECTON DICKINSON, PE50) filled with saline (Otsuka) is inserted into a femoral vein.
- the catheter is tunneled through subcutis of the animal by needle to neck.
- the bladder catheter is connected via T-tube to a pressure transducer (Viggo-Specframed Pte Ltd, DT-XXAD) and a microinjection pump (TERUMO). Saline is infused at room temperature into the bladder at a rate of 10 ml/hr. Infravesicular pressure is recorded continuously on a chart pen recorder (Yokogawa). At least three reproducible micturition cycles are recorded before a test compound administration.
- test compounds (4) Administration of test compounds.
- a test compound dissolved in the mixture of ethanol, Tween 80 (ICN Biomedicals Inc.) and saline (1 : 1 : 8, v/v/v) is administered intravenously through the catheter.
- RNA from each cell or tissue source was first reverse transcribed. Eighty-five ⁇ g of total RNA was reverse transcribed using 1 ⁇ mole random hexamer primers, 0.5 mM each of dATP, dCTP, dGTP and dTTP (Qiagen, Hilden, Germany) and 3000 U RnaseQut (Invitrogen, Groningen, Netherlands) in a final volume of 680 ⁇ l.
- the first strand synthesis buffer and Omniscript reverse franscriptase (2 u/ ⁇ l) were obtained from (Qiagen, Hilden, Germany).
- the reaction was incubated at 37°C for 90 minutes and cooled on ice. The volume was adjusted to 6800 ⁇ l with water, yielding a final concentration of 12.5 ng/ ⁇ l of starting RNA.
- Perkin Elmer ABI Prism RTM 7700 Sequence Detection system or Biorad iCycler was used according to the manufacturer's specifications and protocols.
- PCR reactions were set up to quantitate the novel human prolyl hydroxylase and the housekeeping genes HPRT (hypoxanthine phosphoribosyltransferase), GAPDH (glyceraldehyde-3 -phosphate dehydrogenase), ⁇ -actin, and others.
- Forward and reverse primers and probes for the novel human prolyl hydroxylase were designed using the Perkin Elmer ABI Primer ExpressTM software and were synthesized by TibMolBiol (Berlin, Germany).
- the novel human prolyl hydroxylase forward primer sequence was: Primerl tgagaattacagggcgacag.
- the novel human prolyl hydroxylase reverse primer sequence was Primer2 atgtgtggcttggcttctct.
- Probe 1 ctggtgttgaagcattgcagttgg, labeled with FAM (carboxy- fluorescein succinimidyl ester) as the reporter dye and TAMRA (carb ⁇ xytefra- methylrhodamine) as the quencher, was used as a probe for the novel human prolyl hydroxylase.
- the following reagents were prepared in a total of 25 ⁇ l : lx TaqMan buffer A, 5.5 mM MgCl 2 , 200 nM of dATP, dCTP, dGTP, and dUTP, 0.025 U/ ⁇ l AmpliTaq GoldTM, 0.01 U/ ⁇ l AmpErase, and Probel ctggtgttgaagcattgcagttgg, novel human prolyl hydroxylase forward and reverse primers each at 200 nM, 200 nM , novel human prolyl hydroxylase FAM/TAMRA-labeled probe, and 5 ⁇ 1 of template cDNA. Thermal cycling parameters were 2 min at 50°C, followed by 10 min at 95°C, followed by 40 cycles of melting at 95°C for 15 sec and annealing/extending at 60°C for 1 min.
- the CT (tlireshold cycle) value is calculated as described in the "Quantitative determination of nucleic acids" section.
- the CF-value factor for threshold cycle conection
- PCR reactions were set up to quantitate the housekeeping genes (HKG) for each cDNA sample.
- CTHKG-n-mean value (CTHKGl-value + CTHKG2-value + ... + CTHKG- n- value) / n
- CTcDNA-n CT value of the tested gene for the cDNA n
- CFcDNA-n detection factor for cDNA n
- CT cor-cDNA-n CT value for a gene on cDNA n
- fetal lung fibroblast cells kidney tumor, spleen liver cinhosis, fetal kidney, prostate, postcenfral gyras, breast, adrenal gland, kidney, spleen, spinal cord, fetal lung, rectum, corpus callosum, neuroblastoma SK N MC cells, HEK 293 cells, heart ventricle (left), uterus, retina, colon, hippocampus, ileum chronic inflammation, skin, Alzheimer brain frontal lobe, MDA
- MB 231 cells (breast tumor), esophagus, aorta, ileum, bladder, heart atrium (right), mammary gland, lung, HeLa cells (cervix tumor), occipital lobe, cervix, stomach tumor, pons, trachea, thalamus, skeletal muscle, cerebral cortex, frontal lobe, placenta, parietal lobe, cerebellum, stomach, thrombocytes, liver, Alzheimer brain, cerebellum (left), Alzheimer brain, adipose, cerebral meninges, liver liver cinhosis, coronary artery sclerotic, precentral gyras, esophagus tumor, Alzheimer cerebral cortex, ovary tumor, temporal lobe, cerebellum (right), heart atrium (left), artery, penis, vein, HUVEC cells, thymus, salivary gland, cerebral peduncles, dorsal root ganglia, lung tumor,
- HEK 293 cells 85 ' heart ventricle (left) 81 uterus 80 retina 80 colon 73 hippocampus 71 ileum chronic inflammation 70 skin 69
- MDA MB 231 cells (breast tumor) 63 esophagus 62 Tissue Relative Expression aorta 60 ' ileum 58 bladder 54 heart atrium (right) 52 mammary gland 50 lung 49
- HeLa cells (cervix tumor) . 49 occipital lobe 45 cervix 43 stomach tumor 42 pons 39 trachea 37 thalamus 36 skeletal muscle 36 cerebral cortex 34 frontal lobe 32 placenta 31 parietal lobe 30 cerebellum 28 stomach 27 thrombocytes 27 liver 25
- Alzheimer cerebral cortex 22 ovary tumor 22 temporal lobe 21 cerebellum (right) 20 heart atrium (left) 19 artery 19 penis 18 vein 18
- HEP G2 cells 3 liver tumor 3 coronary Artery 2 ileum tumor 2 bone manow CD71+ cells 2
- Jurkat (T-cells) 1 substantia nigra 0 fetal heart 0 REFERENCES
- Grosl, a potential growth suppressor on chromosome 1 its identity to basement membrane-associated proteoglycan, leprecan, Kaul SC, Sugihara T, Yoshida A, Nomura H, Wadhwa R, Oncogene 2000 Jul 27;19(32):3576-83.
- the DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2- oxoglutarate- and iron-dependent dioxygenases, Aravind L, Koonin EV, Genome Biol 2001 ;2(3).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Diabetes (AREA)
- Endocrinology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Rheumatology (AREA)
- Toxicology (AREA)
- Urology & Nephrology (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2003244497A AU2003244497A1 (en) | 2002-02-04 | 2003-02-04 | Cloning of a human prolylhydroxylase-like protein |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US35319002P | 2002-02-04 | 2002-02-04 | |
| US60/353,190 | 2002-02-04 | ||
| US37867402P | 2002-05-09 | 2002-05-09 | |
| US60/378,674 | 2002-05-09 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2003066862A1 true WO2003066862A1 (fr) | 2003-08-14 |
Family
ID=27737436
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2003/001082 WO2003066862A1 (fr) | 2002-02-04 | 2003-02-04 | Clonage d'une proteine humaine de type prolylhydroxylase |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU2003244497A1 (fr) |
| WO (1) | WO2003066862A1 (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110317823A (zh) * | 2018-03-28 | 2019-10-11 | 中国科学院上海生命科学研究院 | 棉酚生物合成途径酶基因2-odd-1的功能鉴定和应用 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1074617A2 (fr) * | 1999-07-29 | 2001-02-07 | Helix Research Institute | Amorces pour la synthèse de cADN de pleine longueur et leur utilisation |
-
2003
- 2003-02-04 WO PCT/EP2003/001082 patent/WO2003066862A1/fr not_active Application Discontinuation
- 2003-02-04 AU AU2003244497A patent/AU2003244497A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1074617A2 (fr) * | 1999-07-29 | 2001-02-07 | Helix Research Institute | Amorces pour la synthèse de cADN de pleine longueur et leur utilisation |
Non-Patent Citations (9)
| Title |
|---|
| CARDINALE G J ET AL: "PROLYL HYDROXYLASE", ADVANCES IN ENZYMOLOGY AND RELATED SUBJECTS, INTERSCIENCE PUBLISHERS, NEW YORK, NY, US, vol. 41, 1974, pages 245 - 300, XP009009950, ISSN: 0065-258X * |
| DATABASE EMBL [online] EBI, Hinxton, Cambridgeshire, U.K.; 22 February 2000 (2000-02-22), ISOGAI T. & OTSUKI T.: "Homo sapiens cDNA FLJ10718 fis, clone NT2RP3001096, weakly similar to Rattus norvegicus leprecan mRNA.", XP002241840, Database accession no. AK001580 * |
| DATABASE EMBL [online] EBI, Hinxton, Cambridgeshire, U.K.; 31 October 2001 (2001-10-31), ISOGAI T ET AL: "Homo sapiens cDNA FLJ31885 fis, clone NT2RP7002982, moderately similar to Homo sapiens GROS1-L protein mRNA.", XP002241838, Database accession no. AK056447 * |
| DATABASE GENESEQ [online] EBI, Hinxton, Cambridgeshire, U.K.; 26 June 2001 (2001-06-26), OTA T ET AL: "Human cDNA sequence SEQ ID NO:11942.", XP002241841, Database accession no. AAH14459 * |
| DATABASE SWISSPROT [online] EBI, Hinxton, Cambridgeshire, U.K.; 1 October 2000 (2000-10-01), ISOGAI,T ET AL: "Hypothetical protein FLJ10718.", XP002241839, Database accession no. Q9NVI2 * |
| HANAUSKE-ABEL H M: "PROLYL 4-HYDROXYLASE, A TARGET ENZYME FOR DRUG DEVELOPMENT DESIGN OF SUPPRESSIVE AGENTS AND THE IN VITRO EFFECTS OF INHIBITORS AND PROINHIBITORS", JOURNAL OF HEPATOLOGY, MUNKSGAARD INTERNATIONAL PUBLISHERS, COPENHAGEN, DK, vol. 13, no. SUPPL 3, 1991, pages S08 - S16, XP000613849, ISSN: 0168-8278 * |
| KAUL ET AL: "GROS1, A POTENTIAL GROWTH SUPPRESSOR ON CHROMOSOME 1: ITS IDENTITY TO BASEMENT MEMBRANE-ASSOCIATED PROTEOGLYCAN, LEPRECAN", ONCOGENE, BASINGSTOKE, HANTS, GB, vol. 19, no. 32, 27 July 2000 (2000-07-27), pages 3576 - 3583, XP001080500, ISSN: 0950-9232 * |
| KIVIRIKKO K I ET AL: "PROTEIN HYDROXYLATION: PROLYL 4-HYDROXYLASE, AN ENZYME WITH FOUR COSUBSTRATES AND A MULTIFUNCTIONAL SUBUNIT", FASEB JOURNAL, FED. OF AMERICAN SOC. FOR EXPERIMENTAL BIOLOGY, BETHESDA, MD, US, vol. 3, no. 5, 1 March 1989 (1989-03-01), pages 1609 - 1617, XP000615490, ISSN: 0892-6638 * |
| WASSENHOVE-MCCARTHY D J ET AL: "MOLECULAR CHARACTERIZATION OF A NOVEL BASEMENT MEMBRANE-ASSOCIATED PROTEOGLYCAN, LEPRECAN", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 274, no. 35, 27 August 1999 (1999-08-27), pages 25004 - 25017, XP002927792, ISSN: 0021-9258 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110317823A (zh) * | 2018-03-28 | 2019-10-11 | 中国科学院上海生命科学研究院 | 棉酚生物合成途径酶基因2-odd-1的功能鉴定和应用 |
| CN110317823B (zh) * | 2018-03-28 | 2022-09-06 | 中国科学院分子植物科学卓越创新中心 | 棉酚生物合成途径酶基因2-odd-1的功能鉴定和应用 |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2003244497A1 (en) | 2003-09-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20040038365A1 (en) | Regulation of human lysosomal acid lipase | |
| WO2002066627A1 (fr) | Regulation de la dipeptidyle peptidase 8 humaine | |
| WO2003004523A1 (fr) | Regulation de la kinase humaine crik a interaction avec rho/rac | |
| US20040241156A1 (en) | Regulation of human aminopeptidase n | |
| US20030190651A1 (en) | Regulation of human phosphatidylinositol-specific phospholipase c-like enzyme | |
| EP1335973B1 (fr) | adenylate cyclase humaine | |
| US20040152092A1 (en) | Regulation of human phosphatidic acid phosphatase type 2c-like protein | |
| EP1360281B1 (fr) | Regulation de la serine/threonine proteine kinase humaine de type wee1 | |
| WO2003052088A2 (fr) | Regulation de la sialyltransferase humaine | |
| US20040241796A1 (en) | Regulation of human nek-like serine/threonine protein kinase | |
| WO2003066862A1 (fr) | Clonage d'une proteine humaine de type prolylhydroxylase | |
| WO2003018815A2 (fr) | Regulation de la grk humaine | |
| US20040136976A1 (en) | Regulation of human zinc carboxypeptidase b-like protein | |
| WO2002048324A1 (fr) | Regulation de l'enzyme e2 humaine conjuguant l'ubiquitine | |
| WO2002097074A2 (fr) | Regulation de l'enzyme de type proteine phosphatase 2c humaine | |
| WO2002055710A2 (fr) | Regulation de l'acide phosphatase pourpre humain | |
| WO2002033056A2 (fr) | Regulation de serine-threonine kinase humaine | |
| WO2002055681A2 (fr) | Regulation de la tau-tubuline kinase humaine | |
| WO2002048326A2 (fr) | Regulation de la calpaine humaine | |
| US20040157282A1 (en) | Regulation of human dual specificity protein phosphatase 7-like protein | |
| WO2002090543A2 (fr) | Régulation de la protéine semblable à celle de type 2c de la phosphatase de l'acide phosphatidique humain | |
| US20040043375A1 (en) | Regulation of human serine-threonine protein kinase | |
| WO2003057870A1 (fr) | Proteine humaine analogue a la phosphatase de l'acide phosphatidique de type 2 | |
| WO2003000874A2 (fr) | Regulation de la proteine kinase serine/threonine humaine nek3 | |
| WO2002083887A2 (fr) | Regulation de la proteine de type methionine aminopeptidase humaine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: JP |
|
| WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |