REGULATION OF HUMAN MEMBRANE-LIKE SERINE PROTEASE
This application incorporates by reference co-pending provisional application Serial No. 60/351,376 filed January 28, 2002 and Serial No. 60/405,299 filed August 23, 2002.
FIELD OF THE INVENTION
The invention relates to the regulation of human membrane-like serine protease activity to provide therapeutic effects.
BACKGROUND OF THE INVENTION
Metastasizing cancer cells invade the extracellular matrix using plasma membrane protrusions that contact and dissolve the matrix with proteases. Agents which inhibit such protease activity can be used to suppress metastases. Proteases also are expressed during development, when degradation of the extracellular matrix is desired. In cases where appropriate extracellular matrix degradation does not occur, supplying a molecule with a protease activity can provide the necessary enzymatic activity. Thus, there is a need in the art for identifying new proteases and methods of regulating extracellular matrix degradation.
BRIEF SUMMARY OF THE INVENTION
It is an object of the invention to provide reagents and methods of regulating a human membrane-like serine protease. This and other objects of the invention are provided by one or more of the embodiments described below.
One embodiment of the invention is a membrane-like serine protease polypeptide comprising an amino acid sequence selected from the group consisting of:
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 2;
the amino acid sequence shown in SEQ ID NO: 2;
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 5;
the amino acid sequence shown in SEQ ID NO: 5;
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 7;
the amino acid sequence shown in SEQ ID NO:7;
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 9; and
the amino acid sequence shown in SEQ ID NO: 9.
Yet another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation. A test compound is contacted with a membrane-like serine protease polypeptide comprising an amino acid sequence selected from the group consisting of:
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 2;
the amino acid sequence shown in SEQ LD NO: 2;
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 5;
the amino acid sequence shown in SEQ D NO: 5;
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 7;
the amino acid sequence shown in SEQ ID NO:7;
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 9; and
the amino acid sequence shown in SEQ ID NO: 9.
Binding between the test compound and the membrane-like serine protease polypeptide is detected. A test compound which binds to the membrane-like serine protease polypeptide is thereby identified as a potential agent for decreasing extracellular matrix degradation. The agent can work by decreasing the activity of the membrane-like serine protease.
Another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation. A test compound is contacted with a polynucleotide encoding a membrane-like serine protease polypeptide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:
nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1;
the nucleotide sequence shown in SEQ ID NO: 1;
nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 4;
the nucleotide sequence shown in SEQ ID NO: 4;
nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 6;
the nucleotide sequence shown in SEQ ID NO: 6;
nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 8; and
the nucleotide sequence shown in SEQ ID NO : 8.
Binding of the test compound to the polynucleotide is detected. A test compound which binds to the polynucleotide is identified as a potential agent for decreasing extracellular matrix degradation. The agent can work by decreasing the amount of the membrane-like serine protease through interacting with the membrane-like serine protease mRNA.
Another embodiment of the invention is a method of screening for agents which regulate extracellular matrix degradation. A test compound is contacted with a membrane-like serine protease polypeptide comprising an amino acid sequence selected from the group consisting of:
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 2;
the amino acid sequence shown in SEQ ID NO: 2;
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 5;
the amino acid sequence shown in SEQ ID NO: 5;
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ LD NO: 7;
the amino acid sequence shown in SEQ ID NO: 7;
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 9; and
the amino acid sequence shown in SEQ TD NO: 9.
A membrane-like serine protease activity of the polypeptide is detected. A test compound which increases membrane-like serine protease activity of the polypeptide relative to membrane-like serine protease activity in the absence of the test compound is thereby identified as a potential agent for increasing extracellular matrix degradation. A test compound which decreases membrane-like serine protease activity of the polypeptide relative to membrane-like serine protease activity in the absence of the test compound is thereby identified as a potential agent for decreasing extracellular matrix degradation.
Even another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation. A test compound is contacted with a membrane-like serine protease product of a polynucleotide which comprises a nucleotide sequence selected from the group consisting of:
nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1;
the nucleotide sequence shown in SEQ ID NO: 1;
nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 4;
the nucleotide sequence shown in SEQ ID NO: 4;
nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ LD NO: 6;
the nucleotide sequence shown in SEQ ID NO: 6;
nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 8; and
the nucleotide sequence shown in SEQ ID NO: 8.
Binding of the test compound to the membrane-like serine protease product is detected. A test compound which binds to the membrane-like serine protease product is thereby identified as a potential agent for decreasing extracellular matrix degradation.
Still another embodiment of the invention is a method of reducing extracellular matrix degradation. A cell is contacted with a reagent which specifically binds to a polynucleotide encoding a membrane-like serine protease polypeptide or the product encoded by the polynucleotide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:
nucleotide sequences which are at least about 50%> identical to the nucleotide sequence shown in SEQ ID NO: 1;
the nucleotide sequence shown in SEQ ID NO: 1;
nucleotide sequences which are at least . about 50%) identical to the nucleotide sequence shown in SEQ ID NO: 4;
the nucleotide sequence shown in SEQ ID NO: 4;
nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 6;
the nucleotide sequence shown in SEQ LD NO: 6;
nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 8; and
the nucleotide sequence shown in SEQ LD NO: 8.
Membrane-like serine protease activity in the cell is thereby decreased.
The invention thus provides a human membrane-like serine protease that can be used to identify test compounds that may act, for example, as activators or inhibitors at the enzyme's active site. Human membrane-like serine protease and fragments thereof also are useful in raising specific antibodies that can block the enzyme and effectively reduce its activity.
BRIEF DESCRIPTION OF THE FIGURES
Fig. 1 shows the DNA-sequence encoding a membrane-like serine protease Polypeptide (SEQ ID NO: 1).
Fig. 2 shows the amino acid sequence deduced from the DNA- sequence of Fig.1 (SEQ ID NO:2). Fig. 3 shows the DNA-sequence encoding a membrane-like serine protease Polypeptide (SEQ ID NO:3).
Fig. 4 shows the DNA-sequence encoding a membrane-like serine protease Polypeptide (SEQ TD NO:4).
Fig. 5 shows the amino acid sequence deduced from the DNA- sequence of Fig.4 (SEQ ID NO:5).
Fig. 6 shows the DNA-sequence encoding a membrane-like serine protease Polypeptide (SEQ ID NO:6).
Fig. 7 shows the amino acid sequence deduced from the DNA- sequence of Fig.6 (SEQ LD NO:7) Fig. 8 shows the DNA-sequence encoding a membrane-like serine protease Polypeptide (SEQ- D NO:8)
Fig. 9 shows the amino acid sequence deduced from the DNA- sequence of Fig.8 (SEQ TD NO:9)
DETAILED DESCRIPTION OF THE INVENTION
The invention relates to an isolated polynucleotide from the group consisting of:
a) a polynucleotide encoding a membrane-like serine protease polypeptide comprising an amino acid sequence selected from the group consisting of: amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 2; the amino acid sequence shown in SEQ TD NO: 2; amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ TD NO: 5; the amino acid sequence shown in SEQ ID NO:5;
amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO:7; the amino acid sequence shown in SEQ LD NO:7; amino acid sequences which are at least about 33% identical to the amino acid sequence shown in SEQ ID NO: 9; and the amino acid sequence shown in SEQ ID NO:9. b) a polynucleotide comprising the sequence of SEQ ID NOS: 1, 4, 6 or 8; c) a polynucleotide which hybridizes under stringent conditions to a polynucleotide specified in (a) and (b) and encodes a membrane-like serine protease polypeptide; d) a polynucleotide the sequence of which deviates from the polynucleotide sequences specified in (a) to (c) due to the degeneration of the genetic code and encodes a membrane-like serine protease polypeptide; and e) a polynucleotide which represents a fragment, derivative or allelic variation of a polynucleotide sequence specified in (a) to (d) and encodes a membranelike serine protease polypeptide.
Furthermore, it has been discovered by the present applicant that a novel membranelike serine protease, particularly a human membrane-like serine protease, can be used in therapeutic methods to treat cancer, COPD, osteoporosis, a CNS disorder, a cardiovascular disorder, a genitourinary disorder or a gastrointestinal disorder. BLAST alignments show very good similarity with epithin, as well as with other cell surface serine proteases, such as mast cell protease 6. All active site residues for serine protease are present. Fibronectin domains also are present, indicating a cell surface association. The protein also contains other typical protease domains, such as Kringle and apple domains.
Human membrane-like serine protease is 32% identical over 839 amino acids to
ST14 mouse suppressor of tumorgenicity 14 (SEQ LD NO:3) (EC 3.4.21) (FIG. 1). It has excellent similarity to dual specificity protein phosphatase 6 (DUS6J3UMAN) and localized to Chromosome 3p21.3, a region of potential tumor suppressor genes
involved in lung cancer, breast cancer, and other forms of cancer and an area frequently deleted in many types of cancer. It is interesting to note that protein phosphatase 2, regulatory subunit B (B56), gamma isoform, is localized adjacent to this phosphatase.
Human membrane-like serine protease of the invention is expected to be useful for the same purposes as previously identified membrane-like serine protease enzymes. Human membrane-like serine protease is believed to be useful in therapeutic methods to treat disorders such as cancer, COPD, osteoporosis, CNS disorders, cardiovascular disorders, genitourinary disorders, and gastrointestinal disorders. Human membranelike serine protease also can be used to screen for human membrane-like serine protease activators and inhibitors.
Polypeptides
Human membrane-like serine protease polypeptides according to the invention comprise at least 6, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, '725, 750, 775, 800, 825, or 843 contiguous amino acids selected from the amino acid sequence shown in SEQ ID NO:2 or a biologically active variant thereof, as defined below. A membrane-like serine protease polypeptide of the invention therefore can be a portion of a membrane-like serine protease protein, a full-length membrane-like serine protease protein, or a fusion protein comprising all or a portion of a membrane-like serine protease protein.
Biologically active variants
Human membrane-like serine protease polypeptide variants which are biologically active, e.g., retain a membrane-like serine protease activity, also are human membrane-like serine protease polypeptides. Preferably, naturally or non-naturally occurring human membrane-like serine protease polypeptide variants have amino
acid sequences which are at least about 33, 35, 40, 45, 50, 55, 60, 65, or 70, preferably about 75, 80, 85, 90, 96, 96, or 98% identical to the amino acid sequence shown in SEQ ID NO: 2 or a fragment thereof. Percent identity between a putative human membrane-like serine protease polypeptide variant and an amino acid sequence of SEQ ID NO:2. is determined by conventional methods. See, for example, Altschul et al, Bull. Math. Bio. 48:603 (1986), and Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA §9:10915 (1992). Briefly, two amino acid sequences are aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of 1, and the "BLOSUM62" scoring matrix of Henikoff & Henikoff, 1992.
Those skilled in the art appreciate that there are many established algorithms available to align two amino acid sequences. The "FASTA" similarity search algorithm of Pearson & Lipman is a suitable protein alignment method for examining the level of identity shared by an amino acid sequence disclosed herein and the amino acid sequence of a putative variant. The FASTA algorithm is described by Pearson & Lipman, Proc. Nat'l Acad. Sci. USA 55:2444(1988), and by Pearson, Meth. Enzymol. 183:63 (1990). Briefly, FASTA first characterizes sequence similarity by identifying regions shared by the query sequence (e.g., SEQ LD NO: 2) and a test sequence that have either the highest density of identities (if the ktup variable is 1) or pairs of identities (if ktup=2), without considering conservative amino acid substitutions, insertions, or deletions. The ten regions with the highest density of identities are then rescored by comparing the similarity of all paired amino acids using an amino acid substitution matrix, and the ends of the regions are "trimmed" to include only those residues that contribute to the highest score. • If there are several regions with scores greater than the "cutoff value (calculated by a predetermined formula based upon the length of the sequence the ktup value), then the trimmed initial regions are examined to determine whether the regions can be joined to form an approximate alignment with gaps. Finally, the highest scoring regions of the two amino acid sequences are aligned using a modification of the
Needleman-Wunsch- Sellers algorithm (Needleman & Wunsch, J Mol. Biol.48:444
(1970); Sellers, SIAM J. Appl. Math.26:181 (1974)), which allows for amino acid insertions and deletions. Preferred parameters for FASTA analysis are: ktup=l, gap opening penalty=10, gap extension penalty=l, and substitution matrix=BLOSUM62. These parameters can be introduced into a FASTA program by modifying the scoring matrix file ("SMATRLX"), as explained in Appendix 2 of Pearson, Meth. Enzymol.
183:63 (1990).
FASTA • can also be used to determine the sequence identity of nucleic acid molecules using a ratio as disclosed above. For nucleotide sequence comparisons, the ktup value can range between one to six, preferably from three to six, most preferably three, with other parameters set as default.
Variations in percent identity can be due, for example, to amino acid substitutions, insertions, or deletions. Amino acid substitutions are defined as one for one amino acid replacements. They are conservative in nature when the substituted amino acid has similar structural and/or chemical properties. Examples of conservative replacements are substitution of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine.
Amino acid insertions or deletions are changes to or within an amino acid sequence.
They typically fall in the range of about 1 to 5 amino acids. Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immunological activity of a human membrane-like serine protease polypeptide can be found using computer programs well known in the art, such as DNASTAR software.
The invention additionally, encompasses membrane-like serine protease polypeptides that are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications can be carried out by known
techniques including, but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, N8 protease, ΝaBH4, acetylation, foraiylation, oxidation, reduction, metabolic synthesis in the presence of tunicamycin, etc.
Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or' O-linked carbohydrate chains, processing of N- terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of prokaryotic host cell expression. The membrane-like serine protease polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the protein.
The invention also provides chemically modified derivatives of membrane-like serine protease polypeptides that may provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (see U.S. Patent No. 4,179,337). The chemical moieties for derivitization can be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol, and the like. The polypeptides can be modified at random or predetermined positions within the molecule and can include one, two, three, or more attached chemical moieties.
Whether an amino acid change or a polypeptide modification results in a biologically active membrane-like serine protease polypeptide can readily be . determined by assaying for enzymatic activity, as described for example, in Example 4.
Fusion proteins
Fusion proteins are useful for generating antibodies against membrane-like serine protease polypeptide amino acid sequences and for use in various assay systems. For example, fusion proteins can be used to identify proteins that interact with portions of a human membrane-like serine protease polypeptide. Protein affinity chromatography or library-based assays for protein-protein interactions, such as the yeast two- hybrid or phage display systems, can be used for this purpose. Such methods are well known in the art and also can be used as drug screens.
A human membrane-like serine protease polypeptide fusion protein comprises two polypeptide segments fused together by means of a peptide bond. The first polypeptide segment comprises at least 6, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, or 843 contiguous amino acids of SEQ
ID NO:2 or of a biologically active variant, such as those described above. The first polypeptide segment also can comprise full-length membrane-like serine protease protein.
The second polypeptide segment can be a full-length protein or a protein fragment.
Proteins commonly used in fusion protein construction include β-galactosidase, β- glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horseradish peroxidase (HRP), and chloramphenicol acetyltransferase (CAT). Additionally, epitope tags are used in fusion protein constructions, including histidine (His) tags, FLAG tags, influenza hemagglutmiή (HA) tags, Myc tags, VSV- G tags, and thioredoxin (Trx) tags. Other fusion constructions can include maltose binding protein (MBP), S-tag, Lex a DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP16 protein fusions. A fusion protein also can be engineered to contain a cleavage site located between the membrane-like serine protease polypeptide-encoding sequence and the
heterologous protein sequence, so that the membrane-like serine protease polypeptide can be cleaved and purified away from the heterologous moiety.
A fusion protein can be synthesized chemically, as is known in the art. Preferably, a fusion protein is produced by covalently linking two polypeptide segments or by standard procedures in the art of molecular biology. Recombinant DNA methods can be used to prepare fusion proteins, for example, by making a DNA construct which comprises coding sequences selected from SEQ ID NO:l in proper reading frame with nucleotides encoding the second polypeptide segment and expressing the DNA construct in a host cell, as is known in the art. Many kits for constructing fusion proteins are available from companies such as Promega Corporation (Madison, WT), Stratagene (La Jolla, CA), CLONTECH (Mountain View, CA), Santa Cruz Biotechnology (Santa Cruz, CA), MBL International Corporation (MIC; Watertown, MA), and Quantum Biotechnologies (Montreal, Canada; 1-888-DNA-KITS).
Identification of species homologs
Species homologs of human membrane-like serine protease polypeptide can be obtained, using membrane-like serine protease polypeptide polynucleotides (described below) to make suitable probes or primers for screening cDNA expression libraries from other species, such as mice, monkeys, or yeast, identifying cDNAs which encode homologs of membrane-like serine protease polypeptide, and expressing the cDNAs as is known in the art.
Polynucleotides
A human membrane-like serine protease polynucleotide can be single- or double- stranded and comprises a coding sequence or the complement of a coding sequence for a membrane-like serine protease polypeptide. A coding sequence for human membrane-like serine protease is shown in SEQ LD NO: 1.
Degenerate nucleotide sequences encoding human membrane-like serine protease polypeptides, as well as homologous nucleotide sequences which are at least about 50, 55, 60, 65, 70, preferably about 75, 90, 96, 98, or 99% identical to the nucleotide sequence shown in SEQ ID NO:l or its complement also are membrane-like serine protease polynucleotides. Percent sequence identity between the sequences of two polynucleotides is determined using computer programs such as ALIGN which employ the FASTA algorithm, using an affine gap search with a gap open penalty of -12 and a gap extension penalty of -2. Complementary DNA (cDNA) molecules, species homologs, and variants of membrane-like serine protease polynucleotides that encode biologically active membrane-like serine protease polypeptides also are membrane-like serine protease polynucleotides. Polynucleotide fragments comprising at least 8, 9, 10, 11, 12, 15, 20, or 25 contiguous nucleotides of SEQ ID NO:l or its complement also are membrane-like serine protease polynucleotides. These fragments can be used, for example, as hybridization probes or as antisense oligonucleotides .
Identification of polynucleotide variants and homologs
Variants and homologs of the membrane-like serine protease polynucleotides described above also are membrane-like serine protease polynucleotides. Typically, homologous membrane-like serine protease polynucleotide sequences can be identified by hybridization of candidate polynucleotides to known membrane-like serine protease polynucleotides under stringent conditions, as is known in the art.
For example, using the following wash conditions~2X SSC (0.3 M NaCI, 0.03 M sodium citrate, pH 7.0), 0.1%> SDS, room temperature twice, 30 minutes each; then
2X SSC, 0.1% SDS, 50 °C once, 30 minutes; then IX SSC, room temperature twice,
10 minutes each—homologous sequences can be identified which contain at most about 25-30%) basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15%ι basepair mismatches.
Species homologs of the membrane-like serine protease polynucleotides disclosed herein also can be identified by making suitable probes or primers and screening cDNA expression libraries from other species, such as mice, monkeys, or yeast. Human variants of membrane-like serine protease polynucleotides can be identified, for example, by screening human cDNA expression libraries. It is well known that the Tm of a double-stranded DNA decreases by 1-1.5 °C with every 1% decrease in homology (Bonner et al., J. Mol. Biol. 81, 123 (1973). Variants of human membrane-like serine protease polynucleotides or membrane-like serine protease polynucleotides of other species can therefore be identified by hybridizing a putative homologous membrane-like serine protease polynucleotide with a polynucleotide having a nucleotide sequence of SEQ ID NO:l or the complement thereof to form a test hybrid. The melting temperature of the test hybrid is compared with the melting temperature of a hybrid comprising polynucleotides having perfectly complementary nucleotide sequences, and the number or percent of basepair mismatches within the test hybrid is calculated.
Nucleotide sequences which hybridize to membrane-like serine protease polynucleotides or their complements following stringent hybridization and/or wash conditions also are membrane-like serine protease polynucleotides. Stringent wash conditions are well known and understood in the art and are disclosed, for example, in
Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2d ed., 1989, at pages 9.50-9.51.
Typically, for stringent hybridization conditions a combination of temperature and salt concentration should be chosen that is approximately 12-20 °C below the calculated Tm of the hybrid under study. The Tm of a hybrid between a membranelike serine protease polynucleotide having a nucleotide sequence shown in SEQ LD NO:l or the complement thereof and a polynucleotide sequence which is at least about 50, preferably about 75, 90, 96, or 98%> identical to one of those nucleotide sequences can be calculated, for example, using the equation of Bolton and
McCarthy, Proc. Natl. Acad. Sci. U.S.A. 48, 1390 (1962):
Tm = 81.5 °C - 16.6(log10[Na+]) + 0.41(%G + C) - 0.63(%)formamide) - 600//), where I = the length of the hybrid in basepairs.
Stringent wash conditions include, for example, 4X SSC at 65 °C, or 50%o formamide, 4X SSC at 42 °C, or 0.5X SSC, 0.1% SDS at 65 °C. Highly stringent wash conditions include, for example, 0.2X SSC at 65 °C.
Preparation of polynucleotides
A human membrane-like serine protease polynucleotide can be isolated free of other cellular components such as - membrane components, proteins, and lipids. Polynucleotides can be made by a cell and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated membrane-like serine protease polynucleotides. For example, restriction enzymes and probes can be used to isolate polynucleotide fragments, which comprise membrane-like serine protease nucleotide sequences. Isolated polynucleotides are in preparations that are free or at least 70, 80, or 90%) free of other molecules.
Human membrane-like serine protease cDNA molecules can be made with standard molecular biology techniques, using membrane-like serine protease mRNA as a template. Human membrane-like serine protease cDNA molecules can thereafter be replicated using molecular biology techniques known in the art and disclosed in manuals such as Sambrook et al. (1989). An amplification technique, such as PCR, can be used to obtain additional copies of polynucleotides of the invention, using either human genomic DNA or cDNA as a template.
Altematively, synthetic chemistry techniques can be used to synthesize membranelike serine protease polynucleotides. The degeneracy of the genetic code allows alternate nucleotide sequences to be synthesized which will encode a human membrane-like serine protease polypeptide having, for example, an amino acid sequence shown in SEQ ID NO:2 or a biologically active variant thereof.
Extending polynucleotides
Various PCR-based methods can be used to extend the nucleic acid sequences disclosed herein to detect upstream sequences such as promoters and regulatory elements. For example, restriction-site PCR uses universal primers to retrieve unknown sequence adjacent to. a known locus (Sarkar, PCR Methods Applic. 2, 318-322, 1993). , Genomic DNA is first amplified in the presence of a primer to a linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.
Inverse PCR also can be used to amplify or extend sequences using divergent primers based on a known region (Triglia et al., Nucleic Acids Res. 16, 8186, 1988). Primers can be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, Minn.), to be 22-30 nucleotides in length, to have a GC content of 50%) or more, and to anneal to the target sequence at temperatures about 68-72 °C. The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template. Another method which can be used is capture PCR, which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom et al, PCR Methods Applic. 1, 111-119,
1991). In this method, multiple restriction enzyme digestions and ligations also can
be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR.
Another method which can be used to retrieve unknown sequences is that of Parker et al, Nucleic Acids Res. 19, 3055-3060, 1991). Additionally, PCR, nested primers, and PROMOTERFINDER libraries (CLONTECH, Palo Alto, Calif.) can be used to walk genomic DNA (CLONTECH, Palo Alto, Calif.). This process avoids the need to screen libraries and is useful in finding intron/exon junctions.
When screemng for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. Randomly-primed libraries are preferable, in that they will contain more sequences which contain the 5' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries can be useful for extension of sequence into 5 ' non-transcribed regulatory regions.
Commercially available capillary electrophoresis systems can be used to analyze the size or confirm the nucleotide sequence of PCR or sequencing products. For example, capillary sequencing can employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) that are laser activated, and detection of the emitted wavelengths by a charge coupled device camera. Output/light intensity can be converted to electrical signal using appropriate software (e.g. GENOTYPER and Sequence NAVIGATOR, Perkin Elmer), and the entire process from loading of samples to computer analysis and electronic data display can be computer controlled. Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA that might be present in limited amounts in a particular sample.
Obtaining Polynucleotides
Human membrane-like serine protease polypeptides can be obtained, for example, by purification from human cells, by expression of membrane-like serine protease polynucleotides, or by direct chemical synthesis.
Protein purification
Human membrane-like serine protease polypeptides can be purified from any human cell that expresses the receptor, including host cells that have been transfected with membrane-like serine protease polynucleotides. A purified membrane-like serine protease polypeptide is separated from other compounds that normally associate with the membrane-like serine protease polypeptide in the cell, such as certain proteins, carbohydrates, or lipids, using methods well-known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis.
Human membrane-like serine protease polypeptide can be convemently isolated as a complex with its associated G protein, as described in the specific examples, below.
A preparation of purified membrane-like serine protease polypeptides is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS- polyacrylamide gel electrophoresis.
Expression of polynucleotides
To express a human membrane-like serine protease polynucleotide, the polynucleotide can be inserted into an expression vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods which are well known to those skilled in the art can be used to construct expression vectors
containing sequences encoding membrane-like serine protease polypeptides and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook et al. (1989) and in Ausubel et ai., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John
Wiley & Sons, New York, N.Y., 1989.
A variety of expression vector/host systems can be utilized to contain and express sequences encoding a human membrane-like serine protease polypeptide. These include, but are not limited to, microorganisms, such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors, insect cell systems infected with virus expression vectors (e.g., baculovirus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids), or animal cell systems.
The control elements or regulatory sequences are those non-translated regions of the vector — enhancers, promoters, 5' and 3' untranslated regions — wliich interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, can be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORTl plasmid (Life
Technologies) and the like can be used. The baculovirus polyhedrin promoter can be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO, and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) can be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a
nucleotide sequence encoding a human membrane-like serine protease polypeptide, vectors based on SV40 or EBV can be used with an appropriate selectable marker.
Bacterial and yeast expression systems
In bacterial systems, a number of expression vectors can be selected depending upon the use intended for the membrane-like serine protease polypeptide. For example, when a large quantity of a human membrane-like serine protease polypeptide is needed for the induction of antibodies, vectors that direct high-level expression of fusion proteins that are readily purified can be used. Such vectors include, but are not limited to, multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene). In a BLUESCRIPT vector, a sequence encoding the membrane-like serine protease polypeptide can be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of β-galactosidase so that a hybrid protein is produced. pIN vectors (Van Heeke &
Schuster, J. Biol. Chem. 264, 5503-5509, 1989) or pGEX vectors (Promega, Madison, Wis.) also can be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble" and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems can be designed to include heparin, thrombin, or factor Xa protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.
In the yeast Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH can be used. For reviews, see Ausubel et al. (1989) and Grant et al., Methods Enzymol. 153, 516-544, 1987.
Plant and insect expression systems
If plant expression vectors are used, the expression of sequences encoding membrane-like serine protease polypeptides can be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of
CaMV can be used alone or in combination with the omega leader sequence from TMV (Takamatsu, EMBO J. 6, 307-311, 1987). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters can be used (Coruzzi et al, EMBO J. 3, 1671-1680, 1984; Broglie et al, Science 224, 838-843, 1984; Winter et al, Results Probl. Cell Differ. 17, 85-105, 1991). These constructs can be introduced into plant cells by direct DNA transformation or by pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (e.g., Hobbs or Murray, in MCGRAW HILL YEARBOOK OF SCIENCE AND TECHNOLOGY, McGraw Hill, New York, N ., pp. 191-196, 1992).
An insect system also can be used to express a human membrane-like serine protease polypeptide. For example, in one such system Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. Sequences encoding membrane-like serine protease polypeptides can be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of membrane-like serine protease polypeptides will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses can then be used to infect S. frugiperda cells or Trichoplusia larvae in which membrane-like serine protease polypeptides can be expressed (Engelhard et al, Proc. Nat. Acad. Sci. 91, 3224-3227, 1994).
Mammalian expression systems
A number of viral-based expression systems can be used to express membrane-like serine protease polypeptides in mammalian host cells. For example, if an adenovirus
is used as an expression vector, sequences encoding membrane-like serine protease polypeptides can be ligated into an adenovirus transcription translation complex comprising the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome can be used to obtain a viable virus which is capable of expressing a human membrane-like serine protease polypeptide in infected host cells (Logan & Shenk, Proc. Natl. Acad. Sci. 81, 3655-3659, 1984). If desired, transcription enhancers, such as the Rous sarcoma virus (RS V) enhancer, can be used to increase expression in mammalian host cells.
Human artificial chromosomes (HACs) also can be used to deliver larger fragments of DNA than can be contained and expressed in a plasmid. HACs of 6M to 10M are constructed and delivered to cells via conventional delivery methods (e.g. , liposomes, polycationic amino polymers, or vesicles).
Specific initiation signals also can be used to achieve- more efficient translation of sequences encoding membrane-like serine protease polypeptides. Such signals include the ATG imtiation codon and adjacent sequences. In cases where sequences encoding a human membrane-like serine protease polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals (including the ATG initiation codon) should be provided. The initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers that are appropriate for the particular cell system which is used (see Scharf et al, Results Probl. Cell Differ. 20, 125-162, 1994).
Host cells
A host cell strain can be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed membrane-like serine protease polypeptide in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the polypeptide also can be used to facilitate correct insertion, folding and/or function. Different host cells that have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and
WI38) are available from the American Type Culture Collection (ATCC; 10801 University Boulevard, Manassas, VA 20110-2209) and can be chosen to ensure the correct modification and processing of the foreign protein.
Stable expression is prefened for long-term, high-yield production of recombinant proteins. For example, cell lines which stably express membrane-like serine protease polypeptides can be transformed using expression vectors which can contain viral origins of replication aήd/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells can be allowed to grow for 1-2 days in an enriched medium before they are switched to a selective medium. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells that successfully express the introduced membrane-like serine protease sequences. Resistant clones of stably transformed cells can be proliferated using tissue culture teclmiques appropriate to the cell type. See, for example, ANIMAL CELL CULTURE,
R.I. Freshney, ed., 1986.
Any number of selection systems can be used to recover transformed cell lines.
These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler et al, Cell 11, 223-32, 1977) and adenine phosphoribosylrransferase (Lowy et al, Cell 22, 817-23, 1980) genes that can be employed in tk~ or aprf cells,
respectively. Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate (Wigler et al, Proc. Natl. Acad. Sci. 77, 3567-70, 1980), npt confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin et al, J. Mol. Biol. 150, 1-14, 1981), and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murray, 1992, supra). Additional selectable genes have been described. For example, trpB allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Natl. Acad. Sci. 85, 8,047-51, 1988). Visible markers such as anthocyanins, β-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, can be used to identify transformants and to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes et al, Methods Mol. Biol. 55, 121-131, 1995).
Detecting expression
Although the presence of marker gene expression suggests that the membrane-like serine protease polynucleotide is also present, its presence and expression may need to be confirmed. For example, if a sequence encoding a human membrane-like serine protease polypeptide is inserted within a marker gene sequence, transformed cells containing sequences which encode an membrane-like serine protease polypeptide can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding an membrane-like serine protease polypeptide under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the membrane-like serine protease polynucleotide.
Alternatively, host cells which contain a human membrane-like serine protease polynucleotide and which express a human membrane-like serine protease polypeptide can be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations
and protein bioassay or immunoassay techniques that include membrane, solution, or chip-based technologies for the detection and/or quantification of nucleic acid or protein. For example, the presence of a polynucleotide sequence encoding an membrane-like serine protease polypeptide can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments of polynucleotides encoding a human membrane-like serine protease polypeptide. Nucleic acid amplification-based assays involve the use of oligonucleotides selected from sequences encoding an membrane-like serine protease polypeptide to detect transformants which contain an membrane-like serine protease polynucleotide.
A variety of protocols for detecting and measuring the expression of a human membrane-like serine protease polypeptide, using either polyclonal or monoclonal antibodies specific for the polypeptide, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay using monoclonal antibodies reactive to two non-interfering epitopes on a human membrane-like serine protease polypeptide can be used, or a competitive binding assay can be employed. These and other assays are described in Hampton et al, SEROLOGICAL METHODS: A LABORATORY MANUAL, APS Press, St. Paul, Minn., 1990) and Maddox et al, J. Exp. Med. 158, 1211-1216, 1983).
A wide variety of labels and conjugation techniques are known by those skilled in the art and can be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding membrane-like serine protease polypeptides include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, sequences encoding a human membrane-like serine protease polypeptide can be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and can be used to synthesize RNA probes in vitro by addition of labeled nucleotides and an appropriate RNA polymerase such as T7, T3, or SP6. These procedures can be
conducted using a variety of commercially available kits (Amersham Pharmacia Biotech, Promega, and US Biochemical). Suitable reporter molecules or labels which can be used for ease of detection include radionuclides, enzymes, and fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
Expression and purification of polypeptides
Host cells transfonned with nucleotide sequences encoding a human membrane-like serine protease polypeptide can be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The polypeptide produced by a transformed cell can be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode membrane-like serine protease polypeptides can be designed to contain signal sequences which direct secretion of soluble membrane-like serine protease polypeptides through a prokaryotic or eukaryotic cell membrane or which direct the membrane insertion of membrane-bound membrane-like serine protease polypeptide.
As discussed above, other constructions can be used to join a sequence encoding a human membrane-like serine protease polypeptide to a nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.). Inclusion of cleavable linker sequences' such as those specific for Factor Xa or enterokinase (Invitrogen, San Diego, CA) between the purification domain and the membrane-like serine protease polypeptide also can be used to facilitate purification. One such expression vector provides for expression of a fusion protein containing a human membrane-like serine protease polypeptide and
6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification by IMAC (immobilized metal ion affinity chromatography, as described in Porath et al, Prot. Exp. Puri 3, 263-281, 1992), while the enterokinase cleavage site provides a means for purifying the membrane- like serine protease polypeptide from the fusion protein. Vectors that contain fusion proteins are disclosed in Kroll et al, DNA Cell Biol 12, 441-453, 1993.
Chemical synthesis
Sequences encoding a human membrane-like serine protease polypeptide can be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers et al, Nucl. Acids Res. Symp. Ser. 215-223, 1980; Horn et al. Nucl. Acids Res. Symp. Ser. 225-232, 1980). Alternatively, a human membrane-like serine protease polypeptide itself can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques (Merrifield, J Am. Chem. Soc. 85, 2149-2154, 1963; Roberge et al, Science 269, 202-204, 1995). Protein synthesis can be performed using manual techniques or by automation. Automated synthesis can be achieved, for example, using Applied Biosystems 431 A Peptide Synthesizer (Perkin Elmer). Optionally, fragments of membrane-like serine protease polypeptides can be separately synthesized and combined using chemical methods to produce a full-length molecule.
The newly synthesized peptide can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, PROTEINS: STRUCTURES AND
MOLECULAR PRINCIPLES, WH Freeman and Co., New York, NY., 1983). The composition of a synthetic membrane-like serine protease polypeptide can be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; see Creighton, supra). Additionally, any portion of the amino acid sequence of the membrane-like serine protease polypeptide can be altered during
direct synthesis and/or combined using chemical methods with sequences from other proteins to produce a variant polypeptide or a fusion protein.
As will be understood by those of skill in the art, it may be advantageous to produce membrane-like serine protease polypeptide-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons prefened by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce an RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.
The nucleotide sequences disclosed herein can be engineered using methods generally known in the art to alter membrane-like serine protease polypeptide- encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the polypeptide or mRNA product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides can be used to engineer the nucleotide sequences. For example, site-directed mutagenesis can be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth.
Antϊbodies
Any type of antibody known in the art can be generated to bind specifically to an epitope of a human membrane-like serine protease polypeptide. "Antibody" as used herein includes intact immunoglobulin molecules, as well as fragments thereof, such as Fab, F(ab')2, and Fv, which are capable of binding an epitope of a human membrane-like serine protease polypeptide. Typically, at least 6, 8, 10, or 12 contiguous amino acids are required to form an epitope. However, epitopes which involve non-contiguous amino acids may require more, e.g., at least 15, 25, or 50 amino acids.
An antibody which specifically binds to an epitope of a human membrane-like serine protease polypeptide can be used therapeutically, as well as in immunochemical assays, such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art.
Various immunoassays can be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays are well known in the art. Such immunoassays typically involve the measurement of complex formation between an immunogen and an antibody that specifically binds to the immunogen.
Typically, an antibody that specifically binds to a human membrane-like serine protease polypeptide provides a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay. Preferably, antibodies that specifically bind to membranelike serine protease polypeptides do not detect other proteins in immunochemical assays and can immunoprecipitate a human membrane-like serine protease polypeptide from solution.
Human membrane-like serine protease polypeptides can be used to immunize a mammal, such as a mouse, rat, rabbit, guinea pig, monkey, or human, to produce
polyclonal antibodies. If desired, a human membrane-like serine protease polypeptide can be conjugated to a carrier protein, such as bovine serum albumin, thyro- globulin, and keyhole limpet hemocyanin. Depending on the host species, various adjuvants can be used to increase the immunological response. Such adjuvants include, but are not limited to, Freund's adjuvant, mineral gels (e.g., aluminum hydroxide), and surface active substances (e.g. lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol). Among adjuvants used in humans, BCG (bacilli Calmette-Gueriή) and Corynebacterium parvum are especially useful.
Monoclonal antibodies that specifically bind to a human membrane-like serine protease polypeptide can be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These techniques include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler et al, Nature 256,
495-497, 1985; Kozbor et al, J. Immunol. Methods 81, 31-42, 1985; Cote et al, Proc. Natl. Acad. Sci. 80, 2026-2030, 1983; Cole et al, Mol. Cell Biol. 62, 109-120, 1984).
In addition, techniques developed for the production of "chimeric antibodies," the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison et al, Proc. Natl. Acad. Sci. 81, 6851-6855, 1984; Neuberger et al, Nature 312, 604-608, 1984; Takeda et al, Nature 314, 452-454, 1985). Monoclonal and other antibodies also can be "humanized" to prevent a patient from mounting an immune response against the antibody when it is used therapeutically. Such antibodies may be sufficiently similar in sequence to human antibodies to be used directly in therapy or may require alteration of a few key residues. Sequence differences between rodent antibodies and human sequences can be minimized by replacing residues which differ from those in the human sequences by site directed mutagenesis of individual residues or by grating of entire complementarity determining regions. Alternatively,
humanized antibodies can be produced using recombinant methods, as described in GB2188638B. Antibodies that specifically bind to a human membrane-like serine protease polypeptide can contain antigen binding sites which are either partially or fully humanized, as disclosed in U.S. 5,565,332.
Alternatively, techniques described for the production of single chain antibodies can be adapted using methods known in the art to produce single chain antibodies that specifically bind to membrane-like serine protease polypeptides. Antibodies with related specificity, but of distinct idiotypic composition, can be generated by chain shuffling from random combinatorial immunoglobin libraries (Burton, Proc. Natl.
Acad. Sci. 88, 11120-23, 1991).
Single-chain antibodies also can be constructed using a DNA amplification method, such as PCR, using hybridoma cDNA as a template (Thirion et al, 1996, Eur. J. Cancer Prev. 5, 507-11). Single-chain antibodies can be mono- or bispecific, and can be bivalent or tetravalent. Construction of tetravalent, bispecific single-chain antibodies is taught, for example, in Coloma & Morrison, 1997, Nat. Biotechnol. 15, 159-63. Construction of bivalent, bispecific single-chain antibodies is taught in Mallender & Noss, 1994, J. Biol. Chem. 269, 199-206.
A nucleotide sequence encoding a single-chain antibody can be constructed using manual or automated nucleotide synthesis, cloned into an expression construct using standard recombinant DΝA methods, and introduced into a cell to express the coding sequence, as described below. Alternatively, single-chain antibodies can be produced directly using, for example, filamentous phage technology (Verhaar et al,
1995, Int. J. Cancer 61, 497-501; Νicholls et al, 1993, J Immunol. Meth. 165, 81- 91).
Antibodies which specifically bind to membrane-like serine protease polypeptides also can be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents
as disclosed in the literature (Orlandi et al, Proc. Natl. Acad. Sci. 86, 3833-3837, 1989; Winter et al, Nature 349, 293-299, 1991).
Other types of antibodies can be constructed and used therapeutically in methods of the invention. For example, chimeric antibodies can be constructed as disclosed in
WO 93/03151. Binding proteins which are derived from immunoglobulins and which are multivalent and multispecific, such as the "diabodies" described in WO 94/13804, also can be prepared.
Antibodies according to the invention can be purified by methods well known in the art. For example, antibodies can be affinity purified by passage over a column to which a human membrane-like serine protease polypeptide is bound. The bound antibodies can then be eluted from the column using a buffer with a high salt concentration.
Antisense oligonucleotides
Antisense oligonucleotides are nucleotide sequences that are complementary to a specific DNA or RNA sequence. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form complexes and block either transcription or translation. Preferably, an antisense oligonucleotide is at least 11 nucleotides in length, but can be at least 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. Antisense oligonucleotide molecules can be provided in a DNA construct and introduced into a cell as described above to decrease the level of membrane-like serine protease gene products in the cell.
Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides can be synthesized manually or by an automated synthesizer, by covalently linking the 5' end of one nucleotide with the 3' end of another nucleotide with non-phosphodiester intemucleotide linkages such
- '6 -
alkylphosphonates, phosphorothioates, phosphorodithioates, alkylphosphonothioates, alkylphosphonates, phosphoramidates, phosphate esters, carbamates, acetamidate, carboxymethyl esters, carbonates, and phosphate triesters. See Brown, Meth. Mol. Biol. 20, 1-8, 1994; Sonveaux, Meth. Mol. Biol. 26, 1-72, 1994; Uhlmann et al, Chem. Rev. 90, 543-583, 1990.
Modifications of membrane-like serine protease gene expression can be obtained by designing antisense oligonucleotides that will form duplexes to the control, 5', or regulatory regions of the membrane-like serine protease gene. Oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are prefened. Similarly, inhibition can be achieved using "triple helix" base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or chaperons. Therapeutic advances using triplex DNA have been described in the literature (e.g., Gee et al, in Huber & Carr,
MOLECULAR AND IMMUNOLOGIC APPROACHES, Futura. Publishing Co., Mt. Kisco, N.Y., 1994). An antisense oligonucleotide also can be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
Precise complementarity is not required for successful complex formation between an antisense oligonucleotide and the complementary sequence of a human membrane-like serine protease polynucleotide. Antisense oligonucleotides which comprise, for example, 2, 3, 4, or 5 or more stretches of contiguous nucleotides which are precisely complementary to a membrane-like serine protease polynucleo- tide, each separated by a stretch of contiguous nucleotides which are not complementary to adjacent membrane-like serine protease nucleotides, can provide sufficient targeting specificity for membrane-like serine protease mRNA. Preferably, each stretch of complementary contiguous nucleotides is at least 4, 5, 6, 7, or 8 or more nucleotides in length. Non-complementary intervening sequences are prefer- ably 1, 2, 3, or 4 nucleotides in length. One skilled in the art can easily use the calculated melting point of an antisense-sense pair to determine the degree of
mismatching which will be tolerated between a particular antisense oligonucleotide and a particular membrane-like serine protease polynucleotide sequence.
Antisense oligonucleotides can be modified without affecting their ability to hybridize to a human membrane- like serine protease polynucleotide. These modifications can be internal or at one or both ends of the antisense molecule. For example, internucleoside phosphate linkages can be modified by adding cholesteryl or diamine moieties with varying numbers of carbon residues between the amino groups and terminal ribose. Modified bases and/or sugars, such as arabinose instead of ribose, or a 3', 5 '-substituted oligonucleotide in which the 3' hydroxyl group or the 5' phosphate group are substituted, also can be employed in a modified antisense oligonucleotide. These modified oligonucleotides can be prepared by methods well known in the art. See, e.g., Agrawal et al, Trends Biotechnol. 10, 152-158, 1992; Uhlmann et al, Chem. Rev. 90, 543-584, 1990; Uhlmann et al, Tetrahedron. Lett. 215, 3539-3542, 1987.
Ribozymes
Ribozymes are RNA molecules with catalytic activity. See, e.g., Cech, Science 236, 1532-1539; 1987; Cech, Ann. Rev. Biochem. 59, 543-568; 1990, Cech, Curr. Opin.
Struct. Biol. 2, 605-609; 1992, Couture & Stinchcomb, Trends Genet. 12, 510-515, 1996. Ribozymes can be used to inhibit gene function by cleaving an RNA sequence, as is known in the art (e.g., Haseloff et al, U.S. Patent 5,641,673). The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
Examples include engineered hammerhead motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of specific nucleotide sequences.
The coding sequence of a human membrane-like serine protease polynucleotide can be used to generate ribozymes that will specifically bind to mRNA transcribed from
the membrane-like serine protease polynucleotide. Methods of designing and constructing ribozymes which can cleave other RNA molecules in trans in a highly sequence specific maimer have been developed and described in the art (see Haseloff et al. Nature 334, 585-591, 1988). For example, the cleavage activity of ribozymes can be targeted to specific RNAs by engineering a discrete "hybridization" region into the ribozyme. The hybridization region contains a sequence complementary to the target RNA and thus specifically hybridizes with the target (see, for example, Gerlach et al, EP 321,201).
Specific ribozyme cleavage sites within a human membrane-like serine protease
RNA target can be identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target RNA containing the cleavage site can be evaluated for secondary structural features which may render the target inoperable. SuitabiHty of candidate membrane-like serine protease RNA targets also can be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays. Longer complementary sequences can be used to increase the affinity of the hybridization sequence for the target. The hybridizing and cleavage regions of the ribozyme can be integrally related such that upon hybridizing to the target RNA through the complementary regions, the- catalytic region of the ribozyme can cleave the target.
Ribozymes can be introduced into cells as part of a DNA construct. Mechanical methods, such as microinjection, liposome-mediated transfection, electroporation, or calcium phosphate precipitation, can be used to introduce a ribozyme-containing DNA construct into cells in which it is desired to decrease membrane-like serine protease expression. Alternatively, if it is desired that the cells stably retain the DNA construct, the construct can be supplied on a plasmid and maintained as a separate element or integrated into the genome of the cells, as is known in the art. A ribozyme-encoding DNA construct can include transcriptional regulatory elements,
such as a promoter element, an enhancer or UAS element, and a transcriptional terminator signal, for controlling transcription of ribozymes in the cells.
As taught in Haseloff et al, U.S. Patent 5,641,673, ribozymes can be engineered so that ribozyme expression will occur in response to factors that induce expression of a target gene. Ribozymes also can be engineered to provide, an additional level of regulation, so that destruction of mRNA occurs only when both a ribozyme and a target gene are induced in the cells.
Differentially expressed genes
Described herein are methods for the identification of genes whose products interact with human membrane-like serine protease. Such genes may represent genes that are differentially expressed in disorders including, but not limited to, cancer, COPD, osteoporosis, CNS disorders, cardiovascular disorders, gehitourinary disorders, and gastrointestinal disorders. Further, such genes may represent genes that are differentially regulated in response to manipulations relevant to the progression or treatment of such diseases. Additionally, such genes may have a temporally modulated expression, increased or decreased at different stages of tissue or organism development. A differentially expressed gene may also have its expression modulated under control versus experimental conditions. In addition, the human membrane-like serine protease gene or gene product may itself be tested for differential expression.
The degree to which expression differs in a normal versus a diseased state need only be large enough to be visualized via standard characterization techniques such as differential display techniques. Other such standard characterization techniques by which expression differences may be visualized include but are not limited to, quantitative RT (reverse transcriptase), PCR, and Northern analysis.
To identify differentially expressed genes total RNA or, preferably, mRNA is isolated from tissues of interest. For example, RNA samples are obtained from tissues of experimental subjects and from conesponding tissues of control subjects. Any RNA isolation technique that does not select against the isolation of mRNA may be utilized for the purification of such RNA samples. See, for example, Ausubel et al, ed., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, Inc. New York, 1987-1993. Large numbers of tissue samples may readily be processed using techniques well known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomczynski, U.S. Patent 4,843,155.
Transcripts within the collected RNA samples that represent RNA produced by differentially expressed genes are identified by methods well known to those of skill in the art. They include, for example, differential screening (Tedder et al, Proc. Natl. Acad. Sci. U.S.A. 85, 208-12, 1988), subrractive hybridization (Hedrick et al, Nature 308, 149-53; Lee et al, Proc. Natl. Acad. Sci. U.S.A. 88, 2825, 1984), and, preferably, differential display (Liang & Pardee, Science 257, 961-11, 1992; U.S. Patent 5,262,311).
The differential expression information may itself suggest relevant methods for the treatment of disorders involving the human membrane-like serine protease. For example, treatment may include a modulation of expression of the differentially expressed genes and/or the gene encoding the human membrane-like serine protease. The differential expression information may indicate whether the expression or activity of the differentially expressed gene or gene product or the human membrane- like serine protease gene or gene product are up-regulated or down-regulated.
Screening methods
The invention provides assays for screening test compounds that bind to or modulate the activity of a human membrane-like serine protease polypeptide or a human membrane-like serine protease polynucleotide. A test compound preferably binds to
a human membrane-like serine protease polypeptide or polynucleotide. More preferably, a test compound decreases or increases enzymatic activity by at least about 10, preferably about 50, more preferably about 75, 90, or 100%o relative to the absence of the test compound.
Test compounds
Test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity. The compounds can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, and can be produced recombinantly, or synthesized by chemical methods known in the art. If desired, test compounds can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one-compound" library method, and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer, or small molecule libraries of compounds. See Lam, Anticancer Drug Des. 12, 145, 1997.
Methods for the synthesis of molecular libraries are well known in the art (see, for example, DeWitt et al, Proc. Natl Acad. Sci. U.S.A. 90, 6909, 1993; Erb et al. Proc. Natl. Acad. Sci. U.S.A. 91, 11422, 1994; Zuckermann et al, J. Med. Chem. 37, 2678, 1994; Cho et al, Science 261, 1303, 1993; Carell et al, Angew. Chem. Int. Ed. Engl.
33, 2059, 1994; Carell et al, Angew. Chem. Int. Ed. Engl. 33, 2061; Gallop et al, J. Med. Chem. 37, 1233, 1994). Libraries of compounds can be presented in solution (see, e.g., Houghten, BioTechniques 13, 412-421, 1992), or on beads (Lam, Nature 354, 82-84, 1991), chips (Fodor, Nature 364,- 555-556, 1993), bacteria or spores (Ladner, U.S. Patent 5,223,409), plasmids (Cull et al, Proc. Nat Acad. Sci. U.S.A.
89, 1865-1869, 1992), or phage (Scott & Smith, Science 249, 386-390, 1990; Devlin,
Science 249, 404-406, 1990); Cwirla et al, Proc. Natl. Acad. Sci. 97, 6378-6382, 1990; Felici, J Mol. Biol. 222, 301-310, 1991; and Ladner, U.S. Patent 5,223,409).
High throughput screening
Test compounds can be screened for the ability to bind to membrane-like serine protease polypeptides or polynucleotides or to affect membrane-like serine protease activity or membrane-like serine protease gene expression using high throughput screening. Using high throughput screemng, many discrete compounds can be tested in parallel so that large numbers of test compounds can be quickly screened. The most widely established techniques utilize 96-well microtiter plates. The wells of the microtiter plates typically require assay volumes that range from 50 to 500 μl. In addition to the plates, many instruments, materials, pipettors, robotics, plate washers, and plate readers are commercially available to fit the 96-well format.
Alternatively, "free format assays," or assays that have no physical barrier between samples, can be used. For example, an assay using pigment cells (melanocytes) in a simple homogeneous assay for combinatorial peptide libraries is described by Jayawickreme et al, Proc. Natl Acad. Sci. U.S.A. 19, 1614-18 (1994). The cells are placed under agarose in petri dishes, then beads that carry combinatorial compounds are placed on the surface of the agarose. The combinatorial compounds are partially released the compounds from the beads. Active compounds can be visualized as dark pigment areas because, as the compounds diffuse locally into the gel matrix, the active compounds cause the cells to change colors.
Another example of a free format assay is described by Chelsky, "Strategies for Screening Combinatorial Libraries: Novel and Traditional Approaches," reported at the First Annual Conference of The Society for Biomolecular Screening in Philadelphia, Pa. (Nov. 7-10, 1995). Chelsky placed a simple homogenous enzyme assay for carbonic anhydrase inside an agarose gel such that the enzyme in the gel would cause a color change throughout the gel. Thereafter, beads carrying
combinatorial compounds via a photolinker were placed inside the gel and the compounds were partially released by UN-light. Compounds that inhibited the enzyme were observed as local zones of inhibition having less color change.
Yet another example is described by Salmon et al, Molecular Diversity 2, 57-63
(1996). In this example, combinatorial libraries were screened for compounds that had cytotoxic effects on cancer cells growing in agar.
Another high throughput screening method is described in Beutel et al, U.S. Patent 5,976,813. In this method, test samples are placed in a porous matrix. One or more assay components are then placed within, on top of, or at the bottom of a matrix such as a gel, a plastic sheet, a filter, or other form of easily manipulated solid support. When samples are introduced to the porous matrix they diffuse sufficiently slowly, such that the assays can be performed without the test samples running together.
Binding assays
For binding assays, the test compound is preferably a small molecule that binds to and occupies, for example, the active site of the membrane-like serine protease polypeptide, such that normal biological activity is prevented. Examples of such small molecules include, but are not limited to, small peptides or peptide-like molecules.
In binding assays, either the test compound or the membrane-like serine protease polypeptide can comprise a detectable label, such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase. Detection of a test compound that is bound to the membranelike serine protease polypeptide can then be accomplished, for example, by direct counting of radioemmission, by scintillation counting, or by determining conversion of an appropriate substrate to a detectable product.
Alternatively, binding of a test compound to a human membrane-like serine protease polypeptide can be determined without labeling either of the interactants. For example, a microphysiometer can be used to detect binding of a test compound with a human membrane-like serine protease polypeptide. A microphysiometer (e.g., Cytosensor™) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between a test compound and a human membrane-like serine protease polypeptide (McConnell et al, Science 257, 1906-1912, 1992).
Determining the ability of a test compound to bind to a human membrane- like serine protease polypeptide also can be accomplished using a technology such as real-time Bimolecular Interaction Analysis (BIA) (Sjolander & Urbaniczky, Anal. Chem. 63, 2338-2345, 1991, and Szabo et al, Curr. Opm. Struct. Biol. 5, 699-705, 1995). BIA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore™). Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
In yet another aspect of the invention, a human membrane-like serine protease polypeptide can be used as a "bait protein" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent 5,283,317; Zervos et al, Cell 72, 223-232, 1993; Madura et al, J. Biol. Chem. 268, 12046-12054, 1993; Bartel et al, BioTechniques 14, 920-924, 1993; Iwabuchi et al, Oncogene 8, 1693-1696, 1993; and Brent W094/10300), to identify other proteins which bind to or interact with the membrane-like serine protease polypeptide and modulate its activity.
The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. For example, in one construct, polynucleotide encoding a human membrane-like serine protease polypeptide can be fused to a
polynucleotide encoding the DNA binding domain of a lαiown transcription factor (e.g., GAL-4). In the other construct a DNA sequence that encodes an unidentified protein ("prey" or "sample") can be fused to a polynucleotide that codes for the activation domain of the lαiown transcription factor. If the "bait" and the "prey" proteins are able to interact in vivo to form an protein-dependent complex, the
DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ), which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected, and cell colonies containing the functional transcription factor can be isolated and used to obtain the
DNA sequence encoding the protein that interacts with the membrane-like serine protease polypeptide.
It may be desirable to immobilize either the membrane-like serine protease poly- peptide (or polynucleotide) or the test compound to facilitate separation of bound from unbound forms of one or both of the interactants, as well as to accommodate automation of the assay. Thus, either the membrane-like serine protease polypeptide (or polynucleotide) or the test compound can be bound to a solid support. Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads (including, but not limited to, latex, polystyrene, or glass beads). Any method known in the art can be used to attach the polypeptide (or polynucleotide) or test compound to a solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached respectively to the polypeptide (or polynucleotide) or test compound and the solid support. Test compounds are preferably bound to the solid support in an array, so that the location of individual test compounds can be tracked. Binding of a test compound to a human membrane-like serine protease polypeptide (or polynucleotide) can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.
In one embodiment, the membrane-like serine protease polypeptide is a fusion protein comprising a domain that allows the membrane-like serine protease polypeptide to be bound to a solid support. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and the non-adsorbed membrane-like serine protease polypeptide; the mixture is then incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components. Binding of the interactants can be determined either directly or indirectly, as described above. Alternatively, the complexes can be dissociated from the solid support before binding is determined.
Other techniques for immobilizing proteins or polynucleotides on a solid support also can be used in the screening assays of the invention. For example, either a human membrane-like serine protease polypeptide (or polynucleotide) or a test compound can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated membrane-like serine protease polypeptides (or polynucleotides) or test compounds can be prepared from biotin-NHS(N- hydroxysuccinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, 111.) and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).
Alternatively, antibodies which specifically bind to a membrane-like serine protease polypeptide, polynucleotide, or a test compound, but which do not interfere with a desired binding site, such as the active site of the membrane-like serine protease polypeptide, can be derivatized to the wells of the plate. Unbound target or protein can be trapped in the wells by antibody conjugation.
Methods for detecting such complexes, in addition to those described above for the
GST-immobilized complexes, include immunodetection of complexes using anti- bodies which specifically bind to the membrane-like serine protease polypeptide or test compound, enzyme-linked assays which rely on detecting an activity of the
membrane-like serine protease polypeptide, and SDS gel electrophoresis under non- reducing conditions.
Screening for test compounds which bind to a human membrane-like serine protease polypeptide or polynucleotide also can be carried out in an intact cell. Any cell which comprises a membrane-like serine protease polypeptide or polynucleotide can be used in a cell-based assay system. A membrane-like serine protease polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Binding of the test compound to a membrane-like serine protease polypeptide or polynucleotide is determined as described above.
Enzymatic activity
Test compounds can be tested for the ability to increase or decrease the enzymatic activity of a human membrane-like serine protease polypeptide. Enzymatic activity can be measured, for example, as described in Example 4.
Enzyme assays can be carried out after contacting either a purified membrane-like serine protease polypeptide, a cell membrane preparation, or an intact cell with a test compound. A test compound that decreases enzymatic activity of a human membrane-like serine protease polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100%> is identified as a potential therapeutic agent for decreasing membrane-like serine protease activity. A test compound which increases enzymatic activity of a human membrane-like serine protease polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for increasing human membrane-like serine protease activity.
Gene expression
In another embodiment, test compounds that increase or decrease membrane-like serine protease gene expression are identified. A membrane-like serine protease polynucleotide is contacted with a test compound, and the expression of an RNA or polypeptide product of the membrane-like serine protease polynucleotide is determined. The level of expression of appropriate mRNA or polypeptide in the presence of the test compound is compared to the level of expression of mRNA or polypeptide in the absence of the test compound. The test compound can then be identified as a modulator of expression based on this comparison. For example, when expression of mRNA or polypeptide is greater in the presence of the test compound than in its absence, the test compound is identified as a stimulator or enhancer of the mRNA or polypeptide expression. Alternatively, when expression of the mRNA or polypeptide is less in the presence of the test compound than in its absence, the test compound is identified as an inhibitor of the mRNA or polypeptide expression.
The level of membrane-like serine protease mRNA or polypeptide expression in the cells can be determined by methods well known in the art for detecting mRNA or polypeptide. Either qualitative or quantitative methods can be used. The presence of polypeptide products of a human membrane-like serine protease polynucleotide can be determined, for example, using a variety of techniques known in the art, including immunochemical methods such as radioimmunoassay, Western blotting, and immunohistochemistry. Alternatively, polypeptide synthesis can be determined in vivo, in a cell culture, or in an in vitro translation system by detecting incorporation of labeled amino acids into a human membrane-like serine protease polypeptide.
Such screening can be carried out either in a cell-free assay system or in an intact cell. Any cell that expresses a human membrane-like serine protease polynucleotide can be used in a cell-based assay system. The membrane-like serine protease polynucleotide can be naturally occurring in the cell or can be introduced using
techniques such as those described above. Either a primary culture or an established cell line, such as CHO or human embryonic kidney 293 cells, can be used.
Pharmaceutical compositions
The invention also provides pharmaceutical compositions that can be administered to a patient to achieve a therapeutic effect. Pharmaceutical compositions of the invention can comprise, for example, a human membrane-like serine protease polypeptide, membrane-like serine protease polynucleotide, ribozymes or antisense oligonucleotides, antibodies which specifically bind to a membrane-like serine protease polypeptide, or mimetics, activators, or inhibitors of a human membranelike serine protease polypeptide activity. The compositions can be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. The compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones.
In addition to the active ingredients, these pharmaceutical compositions can contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries that facilitate processing of the active compounds into preparations which can be used pharmaceutically. Pharmaceutical compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means. Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the phannaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents can be added, such as the cross-linked polyvinyl pynolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.
Dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpynolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments can be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.
Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
Pharmaceutical formulations suitable for parenteral administration can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions can contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
Additionally, suspensions of the active compounds can be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Non-lipid polycationic amino polymers also can be used for delivery. Optionally, the suspension also can contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
The pharmaceutical compositions of the present invention can be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. The pharmaceutical composition can be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the conesponding free base forms. In other cases, the preferred preparation can be a lyophilized powder which can contain any or all of the following: 1-50 mM histidine, 0.1%-2%> sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
Further details on teclmiques for formulation and administration can be found in the latest edition of REMINGTON'S PHARMACEUTICAL SCIENCES (Maack Publishing Co., Easton, Pa.). After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of administration.
Therapeutic indications and methods
Human membrane-like serine protease can be regulated to treat cancer, COPD, osteoporosis, CNS disorders, cardiovascular disorders, genitourinary disorders, and gastrointestinal disorders.
Cancer
The novel human membrane type serine protease is highly expressed in the following cancer tissues: ovary tumor, stomach tumor, esophagus tumor, colon tumor, uterus tumor, and ileum tumor. The expression in the above mentioned tissues and in particular the differential expression between diseased tissue stomach tumor and healthy tissue stomach; between diseased tissue esophagus tumor and healthy tissue esophagus, between diseased tissue colon tumor and healthy tissue colon, between diseased tissue uterus tumor and healthy tissue uterus demonstrates that the novel human membrane type serine protease or mRNA can be used to diagnose cancer. Additionally, the activity of the novel human membrane type serine protease can be modulated to treat cancer.
Cancer disorders within the scope of the invention comprise any disease of an organ or tissue in mammals characterized by poorly controlled or uncontrolled multiplication of normal or abnormal cells in that tissue and its effect on the body as a whole. Cancer diseases within the scope of the invention comprise benign neoplasms, dysplasias, hyperplasias as well as neoplasms showing metastatic growth or any other transformations, e.g., leukoplakias, which often precede a breakout of cancer. Cells and tissues are cancerous when they grow more rapidly than normal cells, displacing or spreading into the surrounding healthy tissue or any other tissues of the body described as metastatic growth, assume abnormal shapes and sizes, show changes in their nucleocytoplasmatic ratio, nuclear polychromasia, and finally may cease.
Cancerous cells and tissues may affect the body as a whole when causing paraneoplastic syndromes or if cancer occurs within a vital organ or tissue, normal function will be impaired or halted, with possible fatal results. The ultimate involvement of a vital organ by cancer, either primary or metastatic, may lead to the death of the mammal affected. Cancer tends to spread, and the extent of its spread is usually related to an individual's chances of surviving the disease. Cancers are generally said to be in one of three stages of growth: early, or localized, when a tumor is still confined to the tissue of origin, or primary site; direct extension, where cancer cells from the tumour have invaded adjacent tissue or have spread only to regional lymph nodes; or metastasis, in which cancer cells have migrated to distant parts of the body from the primary site, via the blood or lymph systems, and have established secondary sites of infection. Cancer is said to be malignant because of its tendency to cause death if not treated.
Benign tumors usually do not cause death, although they may if they interfere with a normal body function by virtue of their location, size, or paraneoplastic side effects. Hence, benign tumors fall under the definition of cancer within the scope of the invention as well. In general, cancer cells divide at a higher rate than do normal cells, but the distinction between the growth of cancerous and normal tissues is not so much the rapidity of cell division in the former as it is the partial or complete loss of growth restraint in cancer cells and their failure to differentiate into a useful, limited tissue of the type that characterizes the functional equilibrium of growth of normal tissue.
Cancer tissues may express certain molecular receptors and probably are influenced by the host's susceptibility and immunity and it is lαiown that certain cancers of the breast and prostate, for example, are considered dependent on specific hormones for their existence. The term "cancer" under the scope of the invention is not limited to simple benign neoplasia but includes any other benign and malign neoplasia, such as 1) carcinoma, 2) sarcoma, 3) carcinosarcoma, 4) cancers of the blood-forming tissues, 5) tumors of nerve tissues including the brain, and 6) cancer of skin cells.
Carcinoma occurs in epithelial tissues, which cover the outer body (the skin) and line mucous membranes and the inner cavitary structures of organs e.g. such as the breast, lung, the respiratory and gastrointestinal tracts, the endocrine glands, and the genitourinary system. Ductal or glandular elements may persist in epithelial tumors, as in adenocarcinomas, e.g., thyroid adenocarcinoma, gastric adenocarcinoma, and uterine adenocarcinoma. Cancers of the pavement-cell epithelium of the skin and of certain mucous membranes, such as cancers of the tongue, lip, larynx, urinary bladder, uterine cervix, or penis, may be termed epidermoid or squamous-cell carcinomas of the respective tissues and are within the scope of the definition of cancer as well.
Sarcomas develop in connective tissues, including fibrous tissues, adipose (fat) tissues, muscle, blood vessels, bone, and cartilage such as osteogenic sarcoma, liposarcoma, fibrosarcoma, and synovial sarcoma.
Carcinosarcoma is cancer that develops in both epithelial and connective tissue. Cancer disease within the scope of this definition may be primary or secondary, whereby primary indicates that the cancer originated in the tissue where it is found rather than was established as a secondary site through metastasis from another lesion. Cancers and tumor diseases within the scope of this definition may be benign or malign and may affect all anatomical structures of the body of a mammal. By example, to they comprise cancers and tumor diseases of I) the bone marrow and bone marrow derived cells (leukemias), II) the endocrine and exocrine glands, such as the thyroid, parathyroid, pituitary, adrenal glands, salivary glands, and pancreas
III) the breast, such as benign or malignant tumors in the mammary glands of either a male or a female, the mammary ducts, adenocarcinoma, medullary carcinoma, comedocarcinoma, Paget's disease of the nipple, inflammatory carcinoma of the young woman, IN) the lung, N) the stomach, NI) the liver and spleen, Nil) the small intestine, VIII) the colon, LX) the bone and its supportive and connective tissues such as malignant or benign bone tumour, such as malignant osteogenic sarcoma, benign
osteoma, cartilage tumors, malignant chondrosarcoma or benign chondroma,; bone marrow tumors such as malignant myeloma or benign eosinophilic granuloma, as well as metastatic tumors from bone tissues at other locations of the body; X) the mouth, throat, larynx, and the esophagus, XI) the urinary bladder and the internal and external organs and structures of the urogenital system of male and female such as the ovaries, uterus, cervix of the uterus, testes, and prostate gland, XII) the prostate, XIII) the pancreas, such as ductal carcinoma of the pancreas; XIV) the lymphatic tissue such as lymphomas and other tumors of lymphoid origin, XV) the skin, XVI) cancers and tumor diseases of all anatomical structures belonging to the respiratory systems including thoracal muscles and linings, XVII) primary or secondary cancer of the lymph nodes, XVIII) the tongue and of the bony structures of the hard palate or sinuses, XVIN) the mouth, cheeks, neck and salivary glands, XX) the blood vessels including the heart and their linings, XXI) the smooth or skeletal muscles and their ligaments and linings, XXII) the peripheral, the autonomous, the central nervous system including the cerebellum, and XXIII) the adipose tissue.
Cancer is a disease fundamentally caused by oncogenic cellular transformation. There are several hallmarks of transformed cells that distinguish them from their normal counterparts and underlie the pathophysiology of cancer. These include uncontrolled cellular proliferation, unresponsiveness to normal death-inducing signals (immortalization), increased cellular motility and invasiveness, increased ability to recruit blood supply through induction of new blood vessel formation (angiogenesis), genetic instability, and dysregulated gene expression. Various combinations of these aberrant physiologies, along with the acquisition of drag-resistance frequently lead to an intractable disease state in which organ failure and patient death ultimately ensue.
Most standard cancer therapies target cellular proliferation and rely on the differential proliferative capacities between transformed and normal cells for their efficacy. This approach is hindered by the facts that several important normal cell types are also highly proliferative and that cancer cells frequently become resistant to
these agents. Thus, the therapeutic indices for traditional anti-cancer therapies rarely exceed 2.0.
The advent of genomics-driven molecular target identification has opened up the possibility of identifying new cancer-specific targets for therapeutic intervention that will provide safer, more effective treatments for cancer patients. Thus, newly discovered tumor-associated genes and their products can be tested for their role(s) in disease and used as tools to discover and develop innovative therapies. Genes playing important roles in any of the physiological processes outlined above can be characterized as cancer targets.
Genes or gene fragments identified through genomics can readily be expressed in one or more heterologous expression systems to produce functional recombinant proteins. These proteins are characterized in vitro for their biochemical properties and then used as tools in high-throughput molecular screening programs to identify chemical modulators of their biochemical activities. Agonists and/or antagonists of target protein activity can be identified in this manner and subsequently tested in cellular and in vivo disease models for anti-cancer activity. Optimization of lead compounds with iterative testing in biological models and detailed pharmacokinetic and toxicological analyses form the basis for drug development and subsequent testing in humans.
Serine proteases and cancer treatment
The complex process of tumor cell metastasis requires a number of prerequisites.
Following malignant transformation with concomitant cell cycle dysregulation, a metastatic phenotype is dependent on an altered behavior at various cellular levels. Most commonly, expression of certain adhesion molecules is altered. A reduced expression of adhesion molecules wliich are responsible for cell-to-cell interactions is observed. Simultaneously, a distinct pattern of integrin-mediated, cell-to-matrix interactions are found. These changes result in an increased migratory ability of the
cells, which further depends on the controlled degradation of extracellular matrix components by proteases.
In particular, the matrix metalloproteinases and the serine proteases are known to be responsible for the extracellular matrix degradation. Only those tumor cells wliich fulfill all the requirements mentioned above are able to leave the site of the primary tumor, to migrate towards the blood and lymphatic vessels, to enter the circulation and, finally, to cause distant organ metastasis.
Angiogenesis, the formation of new blood vessels, is essential for tumor growth.
Angiogenesis is a complex process requiring proliferation of endothelial cells from pre-existing blood vessels, breakdown of extracellular matrix and migration of endothelial cells. Thus, growth and development of blood vessels within tumors requires the same factors that are essential for tumor cell invasion.
Inhibitors of matrix metalloproteases and/or serine proteases are expected to be efficacious in limiting angiogenesis, invasion and metastasis by malignant cells.
Osteoporosis
Osteoporosis is a disease characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk. It is the most common human metabolic bone disorder. Established osteoporosis includes the presence of fractures. Bone turnover occurs by the action of two major effector cell types within bone: the osteoclast, which is responsible for bone resorption, and the osteoblast, which synthesizes and mineralizes bone matrix. The actions of osteoclasts and osteoblasts are highly co-ordinated. Osteoclast precursors are recruited to the site of turnover; they differentiate and fuse to form mature osteoclasts which then resorb bone. Attached to the bone surface, osteoclasts produce an acidic microenvironment in a tightly defined junction between the specialized osteoclast border membrane and the bone
matrix, thus allowing the localized solubilization of bone matrix. This in turn facilitate the proteolysis of demineralized bone collagen. Matrix degradation is thought to release matrix-associated growth factor and cytokines, which recruit osteoblasts in a temporally and spatially controlled fashion. Osteoblasts synthesize and secrete new bone matrix proteins, and subsequently mineralize this new matrix. In the normal skeleton this is a physiological process which does not result in a net change in bone mass. In pathological states, such as osteoporosis, the balance between resorption and formation is altered such that bone loss occurs. See WO 99/45923.
The osteoclast itself is the direct or indirect target of all currently available osteoporosis agents with the possible exception of fluoride. Antiresorptive therapy prevents further bone loss in treated individuals. Osteoblasts are derived from multi- potent stem cells which reside in bone marrow and also gives rise to adipocytes, chondrocytes, fibroblasts and muscle cells. Selective enhancement of osteoblast activity is a highly desirable goal for osteoporosis therapy since it would result in an increase in bone mass, rather than a prevention of further bone loss. An effective anabolic therapy would be expected to lead to a significantly greater reduction in fracture risk than cunently available treatments.
The agonists or antagonists to the newly discovered polypeptides may act as antiresorptive by directly altering the osteoclast differentiation, osteoclast adhesion to the bone matrix or osteoclast function of degrading the bone matrix. The agonists or antagonists could indirectly alter the osteoclast function by interfering in the synthesis and/or modification of effector molecules of osteoclast differentiation or function such as cytokines, peptide or steroid hormones, proteases, etc.
The agonists or antagonists to the newly discovered polypeptides may act as anabolics by directly enhancing the osteoblast differentiation and /or its bone matrix forming function. The agonists or antagonists could also indirectly alter the
osteoblast function by enhancing the synthesis of growth factors, peptide or steroid hormones or decreasing the synthesis of inhibitory molecules.
The agonists and antagonists may be used to mimic, augment or inhibit the action of the newly discovered polypeptides which may be useful to treat osteoporosis, Paget's disease, degradation of bone implants particularly dental implants.
COPD
Chronic obstructive pulmonary (or airways) disease (COPD) is a condition defined physiologically as airflow obstraction that generally results from a mixture of emphysema and peripheral airway obstraction due to chronic bronchitis (Senior & Shapiro, Pulmonary Diseases and Disorders, 3d ed., New York, McGraw-Hill, 1998, pp. 659-681, 1998; Barnes, Chest 117, 10S-14S, 2000). Emphysema is characterized by destruction of alveolar walls leading to abnormal enlargement of the air spaces of the lung. Chronic bronchitis is defined clinically as the presence of chronic productive cough for three months in each of two successive years. In COPD, airflow obstraction is usually progressive and is only partially reversible. By far the most important risk factor for development of COPD is cigarette smoking, although the disease does occur in non-smokers.
Chronic inflammation of the airways is a key pathological feature of COPD (Senior & Shapiro, 1998). The inflammatory cell population comprises increased numbers of macrophages, neutrophils, and CD8+ lymphocytes. Inhaled irritants, such as cigarette smoke, activate macrophages which are resident in the respiratory tract, as well as epithelial cells leading to release of chemokines (e.g., interleukin-8) and other chemotactic factors. These chemotactic factors act to increase the neutro- phil/monocyte trafficking from the blood into the lung tissue and airways. Neutrophils and monocytes recraited into the airways can release a variety of potentially damaging mediators such as proteolytic enzymes and reactive oxygen species. Matrix degradation and emphysema, along with airway wall tl ickening,
surfactant dysfunction, and mucus hypersecretion, all are potential sequelae of this inflammatory response that lead to impaired airflow and gas exchange.
COPD is characterized by damage to the lung extracellular matrix and emphysema can be viewed as the pathologic process that affects the lung parenchyma. This process eventually leads to the destraction of the airway walls resulting in permanent airspace enlargement (Senior and Shapiro, in PULMONARY DISEASES AND DISORDERS, 3rd ed., New York, McGraw-Hill, 1998, pp. 659 - 681, 1998). The observation that inherited deficiency of al-antitrypsin (al-AT), the primary inhibitor of neutrophil elastase, predisposes individuals to early onset emphysema, and that intrapulmonary instillation of elastolytic enzymes in experimental animals causes emphysema, led to the elastase:antielastase hypothesis for the pathogenesis of emphysema (Eriksson, Acta Med. Scand. 177 (Suppl), 431, 1965, Gross, J Occup. Med. 6, 481-84, 1964). This in turn led to the concept that destraction of elastin in the lung parenchyma is the basis of the development of emphysema.
A broad range of immune and inflammatory cells including neutrophils, macrophages, T lymphocytes and eosinophils contain proteolytic enzymes that could contribute to the destruction of lung extracellular matrix (Shapiro, 1999). In addition, a number of different classes of proteases have been identified that have the potential to contribute to lung matrix destruction. These include serine proteases, matrix metalloproteinases and cysteine proteases. Of these classes of enzymes, a number can hydrolyze elastin and have been shown to be elevated in COPD patients (neutrophil elastase, MMP-2, 9, 12) (Culpitt et al, Am. J. Respir. Crit. Care Med. 160, 1635-39, 1999, Shapiro, Am. J. Crit. Care Med. 160 (5), S29 - S32,1999).
It is expected that in the future novel members of the existing classes of proteases and new classes of proteases will be identified that play a significant role in the damage of the extracellular lung matrix including elastin proteolysis. Novel protease targets therefore remain very attractive therapeutic targets.
Proteases and treatment of COPD
COPD is characterized by damage to the lung extracellular matrix and emphysema can be viewed as the pathologic process that affects the lung parenchyma. This process eventually leads to the destruction of the airway walls resulting in permanent airspace enlargement Senior and Shapiro, in PULMONARY DISEASES AND DISORDERS, 3rd ed., New York, McGraw-Hill, 1998, pp. 659-81,1998). The observation that inherited deficiency of αl-antitrypsin (αl-AT), the primary inhibitor of neutrophil elastase, predisposes individuals to early onset emphysema, and that intrapulmonary instillation of elastolytic enzymes in experimental animals causes emphysema, led to the elastase:antielastase hypothesis for the pathogenesis of emphysema (Eriksson, Acta Med. Scand. 177 (Suppl): 432, 1965, Gross, J Occup. Med 6, 481-84, 1964). This in turn led to the concept that destruction of elastin in the lung parenchyma is the basis of the development of emphysema.
A broad range of immune and inflammatory cells including neutrophils, macrophages, T lymphocytes and eosinophils contain proteolytic enzymes that could contribute to the destraction of lung extracellular matrix. Shapiro, Am. J. Crit. Care Med, 160(5), S29 - S32, 1999. In addition, a number of different classes of proteases have been identified that have the potential to contribute to lung matrix destruction.
These include serine proteases, matrix metalloproteinases and cysteine proteases. Of these classes of enzymes, a number can hydrolyze elastin and have been shown to be elevated in COPD patients (neutrophil elastase, MMP-2, 9, 12) (Culpitt et al.,. Am. J. Respir. Crit. Care Med. 160, 1635-39, 1999; Shapiro, 1999).
It is expected that in the future novel members of the existing classes of proteases and new classes of proteases will be identified that play a significant role in the damage of the extracellular lung matrix including elastin proteolysis. Novel protease targets therefore remain very attractive therapeutic targets.
CNS disorders
The novel human membrane type serine protease is highly expressed in the following brain tissues: Alzheimer cerebral cortex, Alzheimer brain frontal lobe, corpus callosum, cerebral cortex, frontal lobe, pons, occipital lobe, substantia nigra, temporal lobe, thalamus, precentral gyrus, parietal lobe, neuroblastoma SH5Y cells, Alzheimer brain, brain, hippocampus, cerebellum (right), neuroblastoma IMR32 cells. The expression in brain tissues and in particular the differential expression between diseased tissue Alzheimer cerebral cortex and healthy tissue cerebral cortex, between diseased tissue Alzheimer brain frontal lobe and healthy tissue frontal lobe, between diseased tissue Alzheimer brain and healthy tissue brain demonstrates that the novel human membrane type serine protease or mRNA can be used to diagnose nervous system diseases. Additionally, the activity of the novel human membrane type serine protease can be modulated to treat nervous system diseases.
Central and peripheral nervous system disorders also can be treated, such as primary and secondary disorders after brain injury, disorders of mood, anxiety disorders, disorders of thought and volition, disorders of sleep and wakefulness, diseases of the motor unit, such as neurogenic and myopathic disorders, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and processes of peripheral and chronic pain.
Pain that is associated with CNS disorders also can be treated by regulating the activity of human membrane-like serine protease. Pain which can be treated includes that associated with central nervous system disorders, such as multiple sclerosis, spinal cord injury, sciatica, failed back surgery syndrome, traumatic brain injury, epilepsy, Parkinson's disease, post-stroke, and vascular lesions in the brain and spinal cord (e.g., infarct, hemorehage, vascular malformation). Non-central neuropathic pain includes that associated with post mastectomy pain, reflex sympathetic dystrophy (RSD), trigeminal neuralgiaradioculopathy, post-surgical pain, HJN/ALDS related pain, cancer pain, metabolic neuropathies (e.g., diabetic neuropathy,
vasculitic neuropathy secondary to connective tissue disease), paraneoplastic polyneuropathy associated, for example, with carcinoma of lung, or leulcemia, or lymphoma, or carcinoma of prostate, colon or stomach, trigeminal neuralgia, cranial neuralgias, and post-herpetic neuralgia. Pain associated with cancer and cancer treatment also can be treated, as can headache pain (for example, migraine with aura, migraine without aura, and other migraine disorders), episodic and chronic tension-type headache, tension-type like headache, cluster headache, and chronic paroxysmal hemicrania.
This invention further pertains to the use of novel agents identified by the screemng assays described above. Accordingly, it is within the scope of this invention to use a test compound identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a modulating agent, an antisense nucleic acid molecule, a specific antibody, ribozyme, or a human membrane-like serine protease polypeptide binding molecule) can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
Cardiovascular disorders
The novel human membrane type serine protease is highly expressed in the following cardiovascular related tissues: coronary artery smooth muscle primary cells, fetal heart, heart atrium (right), heart atrium (left), and mterventricular septum. Expression in the above-mentioned tissues demonstrates that the novel human membrane type serine protease or mRNA can be used to diagnose cardiovascular diseases. Additionally, the activity of the novel human membrane type serine protease can be modulated to treat cardiovascular diseases.
Cardiovascular diseases include the following disorders of the heart and the vascular system: congestive heart failure, myocardial infarction, ischemic diseases of the heart, all kinds of atrial and ventricular anhythmias, hypertensive vascular diseases, and peripheral vascular diseases.
Heart failure is defined as a pathophysiologic state in which an abnormality of cardiac function is responsible for the failure of the heart to pump blood at a rate commensurate with the requirement of the metabolizing tissue. It includes all forms of pumping failure, such as high-output and low-output, acute and chronic, right- sided or left-sided, systolic or diastolic, independent of the underlying cause.
Myocardial infarction (MI) is generally caused by an abrupt decrease in coronary blood flow that follows a thrombotic occlusion of a coronary artery previously nanowed by arteriosclerosis. MI prophylaxis (primary and secondary prevention) is included, as well as the acute treatment of MI and the prevention of complications.
Ischemic diseases are conditions in which the coronary flow is restricted resulting in a perfusion which inadequate to meet the myocardial requirement for oxygen. This group of diseases includes stable angina, unstable angina, and asymptomatic ischemia.
Arrhythmias include all forms of atrial and ventricular tachyanhythmias (atrial tachycardia, atrial flutter, atrial fibrillation, atrio-ventricular reentrant tachycardia, preexcitation syndrome, ventricular tachycardia, ventricular flutter, and ventricular fibrillation), as well as bradycardic forms of arrhythmias.
Vascular diseases include primary as well as all kinds of secondary arterial hypertension (renal, endocrine, neurogenic, others). The disclosed gene and its product may be used as drug targets for the treatment of hypertension as well as for the prevention of all complications. Peripheral vascular diseases are defined as vascular diseases in which arterial and/or venous flow is reduced resulting in an
imbalance between blood supply and tissue oxygen demand. It includes chronic peripheral arterial occlusive disease (PAOD), acute arterial thrombosis and embolism, inflammatory vascular disorders, Raynaud's phenomenon, and venous disorders.
Genitourinary disorders
The novel human membrane type serine protease is highly expressed in the following tissues of the genitourinary system: ovary tumor, penis, placenta, uterus tumor, ovary, bladder, and uterus. The expression in the above-mentioned tissues demonstrates that the novel human membrane type serine protease or mRNA can be used to diagnose genitourinary disorders. Additionally, the activity of the novel human membrane type serine protease can be modulated to treat genitourinary disorders.
Genitourological disorders comprise benign and malign disorders of the organs constituting the genitourological system of female and male, renal diseases such as acute or chronic renal failure, immunologically mediated renal diseases such as renal transplant rejection, lupus nephritis, immune complex renal diseases, glomeralo- pathies, nephritis, toxic nephropathy, obstructive uropathies such as benign prostatic hyperplasia (BPH), neurogenic bladder syndrome, urinary incontinence such as urge-, stress-, or overflow incontinence, pelvic pain, and erectile dysfunction.
Gastrointestinal disorders
The novel human membrane type serine protease is highly expressed in the following tissues of the gastrointestinal system: small intestine, stomach tumor, stomach, esophagus tumor, colon tumor, colon, ileum, ileum tumor, and esophagus. The expression in the above mentioned tissues and in particular the differential expression between diseased tissue ileum tumor and healthy tissue ileum demonstrates that the novel human membrane type serine protease or mRNA can be used to diagnose
gastrointestinal disorders. Additionally, the activity of the novel human membrane type serine protease can be modulated to treat gastrointestinal disorders.
Gastrointestinal disorders comprise primary or secondary, acute or chronic diseases of the organs of the gastrointestinal tract which may be acquired or inherited, benign or malignant or metaplastic, and which may affect the organs of the gastrointestinal tract or the body as a whole. They include but are not limited to disorders of the esophagus, such as achalasia, vigoruos achalasia, dysphagia, cricopharyngeal inco- ordination, pre-esophageal dysphagia, diffuse esophageal spasm, globus sensation, Barrett's metaplasia, and gastroesophageal reflux. They also include disorders of the stomach and duodenum, such as functional dyspepsia, inflammation of the gastric mucosa, gastritis, stress gastritis, chronic erosive gastritis, atrophy of gastric glands, metaplasia of gastric tissues, gastric ulcers, duodenal ulcers, and neoplasms of the stomach. Gastrointestinal disorders also include disorders of the pancreas, such as acute or chronic pancreatitis, insufficiency of the exocrinic or endocrinic tissues of the pancreas like steatorehea, diabetes, neoplasms of the exocrine or endocrine pancreas (e.g., multiple endocrine neoplasia syndrome, ductal adenocarcinoma, cystadenocarcinoma, islet cell tumors, insulinoma, gastrinoma, carcinoid tumors, and glucagonoma), Zollinger-EUison syndrome, Vipoma syndrome, and malabsorption syndrome. Gastrointestinal disorders also include disorders of the bowel, such "as chronic inflammatory diseases of the bowel, Crohn's disease, ileus, dianhea and constipation, colonic inertia, megacolon, malabsorption syndrome, and ulcerative colitis, functional bowel disorders, such as irritable bowel syndrome, neoplasms of the bowel, such as familial polyposis, adenocarcinoma, primary malignant lymphoma, carcinoid tumors, Kaposi's sarcoma, polyps, and cancer of the colon and rectum.
A reagent which affects membrane-like serine protease activity can be administered to a human cell, either in vitro or in vivo, to reduce membrane-like serine protease activity. The reagent preferably binds to an expression product of a human membrane-like serine protease gene. If the expression product is a protein, the
reagent is preferably an antibody. For treatment of human cells ex vivo, an antibody can be added to a preparation of stem cells that have been removed from the body. The cells can then be replaced in the same or another human body, with or without clonal propagation, as is known in the art.
In one embodiment, the reagent is delivered using a liposome. Preferably, the liposome is stable in the animal into which it has been administered for at least about 30 minutes, more preferably for at least about 1 hour, and even more preferably for at least about 24 hours. A liposome comprises a lipid composition that is capable of targeting a reagent, particularly a polynucleotide, to a particular site in an animal, such as a human. Preferably, the lipid composition of the liposome is capable of targeting to a specific organ of an animal, such as the lung, liver, spleen, heart brain, lymph nodes, and skin.
A liposome useful in the present invention comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to deliver its contents to the cell. Preferably, the transfection efficiency of a liposome is about 0.5 μg of DNA per 16 nmole of liposome delivered to about 106 cells, more preferably about 1.0 μg of DNA per 16 nmole of liposome delivered to about 106 cells, and even more preferably about 2.0 μg of DNA per 16 nmol of liposome delivered to about 106 cells. Preferably, a liposome is between about 100 and 500 nm, more preferably between about 150 and 450 nm, and even more preferably between about 200 and 400 nm in diameter.
Suitable liposomes for use in the present invention include those liposomes standardly used in, for example, gene delivery methods known to those of skill in the art. More preferred liposomes include liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to polyethylene glycol. Optionally, a liposome comprises a compound capable of targeting the liposome to a particular cell type, such as a cell-specific ligand exposed on the outer surface of the liposome.
Complexing a liposome with a reagent such as an antisense oligonucleotide or ribozyme can be achieved using methods that are standard in the art (see, for example, U.S. Patent 5,705,151). Preferably, from about 0.1 μg to about 10 μg of polynucleotide is combined with about 8 nmol of liposomes, more preferably from about 0.5 μg to about 5 μg of polynucleotides are combined with about 8 nmol liposomes, and even more preferably about 1.0 μg of polynucleotides is combined with about 8 nmol liposomes.
In another embodiment, antibodies can be delivered to specific tissues in vivo using receptor-mediated targeted delivery. Receptor-mediated DNA delivery techniques are taught in, for example, Findeis et al. Trends in Biotechnol. 11, 202-05 (1993); Chiou et al, GENE THERAPEUTICS: METHODS AND APPLICATIONS OF DIRECT GENE TRANSFER (J.A. Wolff, ed.) (1994); Wu & Wu, J. Biol. Chem. 263, 621-24 (1988); Wu et al, J. Biol. Chem. 269, 542-46 (1994); Zenke et al, Proc. Natl. Acad. Sci.
U.S.A. 87, 3655-59 (1990); Ψu et al, J. Biol. Chem. 266, 338-42 (1991).
Determination of a therapeutically effective dose
The determination of a therapeutically effective dose is well within the capability of those skilled in the art. A therapeutically effective dose refers to that amount of active ingredient which increases or decreases enzymatic activity relative to the enzymatic activity which occurs in the absence of the therapeutically effective dose.
For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs. The animal model also can be used to determine the appropriate concentration range and route of admimstration. Such information can then be used to determine useful doses and routes for administration in humans.
Therapeutic efficacy and toxicity, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population), can be determined by standard pharmaceutical procedures in cell cultures or experimental animals. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50.
Pharmaceutical compositions that exhibit large therapeutic indices are prefened. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage fonn employed, sensitivity of the patient, and the route of administration.
The exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and admimstration are adjusted to provide sufficient levels of the active ingredient or to maintain the desired effect.
Factors that can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.
Normal dosage amounts can vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
If the reagent is a single-chain antibody, polynucleotides encoding the antibody can be constructed and introduced into a cell either ex vivo or in vivo using well- established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome- mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, "gene gun," and DEAE- or calcium phosphate-mediated transfection.
Effective in vivo dosages of an antibody are in the range of about 5 μg to about 50 μg/kg, about 50 μg to about 5 mg/kg, about 100 μg to about 500 μg/kg of patient body weight, and about 200 to about 250 μg/kg of patient body weight. For admimstration of polynucleotides encoding single-chain antibodies, effective in vivo dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 μg to about 2 mg, about 5 μg to about 500 μg, and about 20 μg to about 100 μg of DNA.
If the expression product is mRNA, the reagent is preferably an antisense oligonucleotide or a ribozyme. Polynucleotides that express antisense oligonucleotides or ribozymes can be introduced into cells by a variety of methods, as described above.
Preferably, a reagent reduces expression of a human membrane-like serine protease gene or the activity of a membrane-like serine protease polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100%> relative to the absence of the reagent. The effectiveness of the mechanism chosen to decrease the level of expression of a human membrane-like serine protease gene or the activity of a human membrane-like serine protease polypeptide can be assessed using methods well known in the art, such as hybridization of nucleotide probes to membrane-like serine protease-specific mRNA, quantitative RT-PCR, immunologic detection of a human membrane-like serine protease polypeptide, or measurement of enzymatic activity.
In any of the embodiments described above, any of the pharmaceutical compositions of the invention can be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy can be made by one of ordinary skill in the art, according to conventional phannaceutical principles. The combination of therapeutic agents can act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
Any of the therapeutic methods described above can be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.
Diagnostic methods
Human membrane-like serine protease also can be used in diagnostic assays for detecting diseases and abnonnalities or susceptibility to diseases and abnormalities related to the presence of mutations in the nucleic acid sequences that encode the enzyme. For example, differences can be determined between the cDNA or genomic sequence encoding membrane-like serine protease in individuals afflicted with a disease and in normal individuals. If a mutation is observed in some or all of the afflicted individuals but not in normal individuals, then the mutation is likely to be the causative agent of the disease.
Sequence differences between a reference gene and a gene having mutations can be revealed by the direct DNA sequencing method. In addition, cloned DNA segments can be employed as probes to detect specific DNA segments. The sensitivity of this method is greatly enhanced when combined with PCR. For example, a sequencing primer can be used with a double-stranded PCR product or a single-stranded template molecule generated by a modified PCR. The sequence determination is performed
by conventional procedures using radiolabeled nucleotides or by automatic sequencing procedures using fluorescent tags.
Genetic testing based on DNA sequence differences can be carried out by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized, for example, by high resolution gel electrophoresis. DNA fragments of different sequences can be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al, Science 230, 1242, 1985). Sequence changes at specific locations can also be revealed by nuclease protection assays, such as RNase and S 1 protection or the chemical cleavage method (e.g., Cotton et al, Proc. Natl. Acad. Sci. USA 85, 4397-4401, 1985). Thus, the detection of a specific DNA sequence can be performed by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes and Southern blotting of genomic DNA. In addition to direct methods such as gel-electrophoresis and DNA sequencing, mutations can also be detected by in situ analysis.
Altered levels of membrane-like serine protease also can be detected in various tissues. Assays used to detect levels of the receptor polypeptides in a body sample, such as blood or a tissue biopsy, derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive binding assays, Western blot analysis, and ELISA assays.
All patents and patent applications cited in this disclosure are expressly incorporated herein by reference. The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples, which are provided for purposes of illustration only and are not intended to limit the scope of the invention.
EXAMPLE 1
Detection of membrane-like serine protease activity
The polynucleotide of SEQ ID NO: 1 is inserted into the expression vector pCEV4 and the expression vector pCEV4-serine protease polypeptide obtained is transfected into human embryonic kidney 293 cells. Protease activity of cellular extracts from the fransfacted cells are measured using thiobenzylester substrates, as described in U.S. Patent 5,500,344. For monitoring enzyme activities from granules and column fractions, assays are performed at room temperature using 0.5 mM 5,5'-dithiobis-(2- nitrobenzoic acid) (DTNB) (Sigma) to detect the HSBzl leaving group ( 4ι0 =13600
M"1 cm"1).
Furthermore, BLT-esterase activity is estimated using a microtiter assay (Green and Shaw, Anal. Biochem. 93, 223-226, 1979). Briefly, 50 μl of sample is added to 100 μl of 1 mM DTNB, made up in 10 mM HEPES, 1 mM CaCl2, 1 mM MgCl2, pH
7.2. The reaction is initiated by the addition of 50 μl of BLT (Sigma) to give a final concentration of 500 μM. For Metase determinations, 50 μl of dilutions of the sample in 0.1 M HEPES, 0.05 M CaCl2, pH 7.5, are added to 100 μl of 1 mM DTNB, and the reaction is initiated by the addition of 50 μl of Boc-Ala-Ala-Met-S Benzyl (Bzl) to give a final concentration of 150 μM. The duration of the assay depends on color development, the rate of which is measured (O.D.410) on a Dynatech MR 5000 microplate reader. Controls of sample and DTNB alone or DTNB and substrate alone are run.
Additionally, peptide thiobenzyl ester substrates are used to measure protease activities. The chymase substrate Suc-Phe-Leu-Phe-SBzl is purchased from BACHEM Bioscience Inc., Philadelphia, Pa. Z-Arg-SBzl (the tryptase substrate, Kam et al, J. Biol. Chem. 262, 3444-3451, 1987); Boc-Ala-Ala-AA-SBzl (AA=Asp, Met, Leu, Nle, or Ser), and Suc-Ala-Ala-Met-SBzl (Odake et al, Biochemistry 30, 2217-2227, 1991); Harper et al, Biochemistry 23, 2995-3002, 1984) are synthesized previously. Boc-Ala-Ala-Asp-SBzl is the subsfrate for Asp-ase and peptide
thiobenzyl esters containing Met, Leu or Nle are substrates for Met-ase SP. Assays are performed at room temperature in 0.1 M, HEPES buffer, pH 7.5, containing 0.01 M CaCl2 and 8%> Me2O using 0.34 mM 4,4'-dithiodipyridme (Aldrithiol-4, Aldrich Chemical Co., Milwaukee, Wis.) to detect HSBzl leaving group that reacts with 4,4'- dithiodipyridine to release thiopyridone (324=19800 M"1 cm"1, Grasetti and Munay,
Arch. Biochem. Biophys. 119, 41-49, 1967). The initial rates are measured at 324 nm using a Beckman 35 spectrophotometer when 10-25 μl of an enzyme stock solution is added to a cuvette containing 2.0 ml of buffer, 150 μl of 4,4'-dithiodipyridine, and 25 μl of substrate. The same volume of substrate and 4,4'-dithiodipyridine are added to the reference cell in order to compensate for the background hydrolysis rate of the substrates. Initial rates are measured in duplicate for each substrate concentration and are averaged in each case. Substrate concentrations are 100-133 μM. The matriptase-like serine protease activity of the polypeptide of SEQ ID NO: 2 is shown.
EXAMPLE 2
Expression of recombinant human membrane-like serine protease
The Pichia pastoris expression vector pPICZB (Invitrogen, San Diego, CA) is used to produce large quantities of recombinant human membrane-like serine protease polypeptides in yeast. The membrane-like serine protease-encoding DNA sequence is derived from SEQ LD NO: 1. Before insertion into vector pPICZB, the DNA sequence is modified by well known methods in such a way that it contains at its 5 '-end an initiation codon and at its 3 '-end an enterokinase cleavage site, a His6 reporter tag and a termination codon. Moreover, at both termini recognition sequences for restriction endonucleases are added and after digestion of the multiple cloning site of pPICZ B with the conesponding restriction enzymes the modified DNA sequence is ligated into pPICZB. This expression vector is designed for inducible expression in Pichia pastoris, driven by a yeast promoter. The resulting pPICZ/md-His6 vector is used to transform the yeast.
The yeast is cultivated under usual conditions in 5 liter shake flasks and the recombinantly produced protein isolated from the culture by affinity chromatography (Ni-NTA-Resin) in the presence of 8 M urea. The bound polypeptide is eluted with buffer, pH 3.5, and neutralized. Separation of the polypeptide from the His6 reporter tag is accomplished by site-specific proteolysis using enterokinase (Invitrogen, San
Diego, CA) according to manufacturer's instructions. Purified human membranelike serine protease polypeptide is obtained.
EXAMPLE 3 Identification of test compounds that bind to membrane-like serine protease polypeptides
Purified membrane-like serine protease polypeptides comprising a glutathione-S- transferase protein and absorbed onto glutathione-derivatized wells of 96-well micro- titer plates are contacted with test compounds from a small molecule library at pH
7.0 in a physiological buffer solution. Human membrane-like serine protease polypeptides comprise the amino acid sequence shown in SEQ ID NO:2. The test compounds comprise a fluorescent tag. The samples are incubated for 5 minutes to one hour. Control samples are incubated in the absence of a test compound.
The buffer solution containing the test compounds is washed from the wells. Binding of a test compound to a human membrane-like serine protease polypeptide is detected by fluorescence measurements of the contents of the wells. A test compound that increases the fluorescence in a well by at least 15% relative to fluorescence of a well in which a test compound is not incubated is identified as a compound which binds to a human membrane-like serine protease polypeptide.
EXAMPLE 4
Identification of a test compound which decreases membrane-like serine protease gene expression
A test compound is administered to a culture of human cells transfected with a membrane-like serine protease expression construct and incubated at 37 °C for 10 to 45 minutes. A culture of the same type of cells that have not been transfected is incubated for the same time without the test compound to provide a negative control.
RNA is isolated from the two cultures as described in Chirgwin et al, Biochem. 18,
5294-99, 1979). Northern blots are prepared using 20 to 30 μg total RNA and hybridized with a 32P-labeled membrane-like serine protease-specific probe at 65 ° C in Express-hyb (CLONTECH). The probe comprises at least 11 contiguous nucleotides selected from the complement of SEQ ID NO:l. A test compound that decreases the membrane-like serine protease-specific signal relative to the signal obtained in the absence of the test compound is identified as an inhibitor of membrane-like serine protease gene expression.
EXAMPLE 5 Identification of a test compound which decreases membrane-like serine protease activity
Cellular extracts from the human colon cancer cell line HCT116 are contacted with test compounds from a small molecule library and assayed for membrane-like serine protease activity. Control extracts, in the absence of a test compound, also are assayed. Protease activity can be measured using thiobenzylester substrates, as described in U.S. Patent 5,500,344. For monitoring enzyme activities from granules and column fractions, assays are performed at room temperature using 0.5 mM 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) (Sigma) to detect the HSBzl leaving group (ε410 =13600 M"1 cm"1).
BLT-esterase activity is estimated using a microtiter assay (Green and Shaw, Anal. Biochem. 93, 113-116, 1979). Briefly, 50 μl of sample is added to 100 μl of 1 mM DTNB, made up in 10 mM HEPES, 1 mM CaCl2, 1 mM MgCl2, pH 7.2. The reaction is initiated by the addition of 50 μl of BLT (Sigma) to give a final concentration of 500 μM. For Metase determinations, 50 μl of dilutions of the sample in 0.1 M HEPES, 0.05 M CaCl2, pH 7.5, are added to 100 μl of 1 mM DTNB, and the reaction is initiated by the addition of 50 μl of Boc-Ala-Ala-Met-S Benzyl (Bzl) to give a final concentration of 150 μM. The duration of the assay depends on color development, the rate of which is measured (O.D. 10) on a Dynatech MR 5000 microplate reader. Controls of sample and DTNB alone or DTNB and substrate alone are run.
For more sensitive comparisons of enzymatic activities, peptide thiobenzyl ester substrates are used to measure protease activities. The chymase substrate Suc-Phe-Leu-Phe-SBzl is purchased from BACHEM Bioscience Inc., Philadelphia,
Pa. Z-Arg-SBzl (the tryptase substrate, Kam et al, J. Biol. Chem. 262, 3444-3451, 1987); Boc-Ala-Ala-AA-SBzl (AA=Asp, Met, Leu, Nle, or Ser), and Suc-Ala-Ala-Met-SBzl (Odake et al, Biochemistry 30, 1111-1111, 1991); Harper et al, Biochemistry 23, 2995-3002, 1984) are synthesized previously. Boc-Ala-Ala-Asp-SBzl is the substrate for Asp-ase and peptide thiobenzyl esters containing Met, Leu or Nle are substrates for Met-ase SP. Assays are performed at room temperature in 0.1 M, HEPES buffer, pH 7.5, containing 0.01 M CaCl2 and 8% Me2O using 0.34 mM 4,4'-dithiodipyridine (Aldrithiol-4, Aldrich Chemical Co., Milwaukee, Wis.) to detect HSBzl leaving group that reacts with 4,4'-dithiodipyridine to release thiopyridone (ε324=19800 M"1 cm"1, Grasetti and
Munay, Arch. Biochem. Biophys. 119, 41-49, 1967). The initial rates are measured at 324 nm using a Beckman 35 spectrophotometer when 10-25 μl of an enzyme stock solution is added to a cuvette containing 2.0 ml of buffer, 150 μl of 4,4'-dithiodipyridine, and 25 μl of substrate. The same volume of substrate and 4,4'-dithiodipyridine are added to the reference cell in order to compensate for the background hydrolysis rate of the substrates. Initial rates are measured in duplicate
for each substrate concentration and are averaged in each case. Substrate concentrations are 100-133 μM.
A test compound which decreases membrane-like serine protease activity of the extract relative to the control extract by at least 20% is identified as a membrane-like serine protease inhibitor.
EXAMPLE 6
Tissue-specific expression of membrane-like serine protease
The qualitative expression pattern of membrane-like serine protease in various tissues is determined by Reverse Transcription-Polymerase Chain Reaction (RT- PCR).
Quantitative expression profiling
To demonstrate that membrane-like serine protease is involved in cancer, expression is detennined in the following tissues: adrenal gland, bone manow, brain, cerebellum, colon, fetal brain, fetal liver, heart, kidney, liver, lung, mammary gland, pancreas, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thymus, thyroid, trachea, uterus, and peripheral blood lymphocytes. Expression in the following cancer cell lines also is determined: DU- 145 (prostate), NCI-H125 (lung), HT-29 (colon), COLO-205 (colon), A-549 (lung), NCI-H460 (lung), HT-116 (colon), DLD-1 (colon), MDA-MD-231 (breast), LS174T (colon), ZF-75 (breast), MDA-MN-435 (breast), HT-1080, MCF-7 (breast), and U87.
Matched pairs of malignant and normal tissue from the same patient also are tested.
To demonstrate that membrane-like serine protease is involved in the disease process of COPD, the initial expression panel consists of RNA samples from respiratory tissues and inflammatory cells relevant to COPD: lung (adult and fetal), trachea, freshly isolated alveolar type II cells, cultured human bronchial epithelial cells,
cultured small airway epithelial cells, cultured bronchial sooth muscle cells, cultured H441 cells (Clara-like), freshly isolated neutrophils and monocytes, and cultured monocytes (macrophage-like). Body map profiling also is carried out, using total RNA panels purchased from Clontech. The tissues are adrenal gland, bone manow, brain, colon, heart, kidney, liver, lung, mammary gland, pancreas, prostate, salivary gland, skeletal muscle, small intestine, spleen, stomach, testis, thymus, trachea, thyroid, and uterus.
To demonstrate that membrane-like serine protease is involved in CNS disorders, the following tissues are screened: fetal and adult brain, muscle, heart, lung, kidney, liver, thymus, testis, colon, placenta, frachea, pancreas, kidney, gastric mucosa, colon, liver, cerebellum, skin, cortex (Alzheimer's and normal), hypothalamus, cortex, amygdala, cerebellum, hippocampus, choroid, plexus, thalamus, and spinal cord.
Quantitative expression profiling is performed by the form of quantitative PCR analysis called "kinetic analysis" firstly described in Higuchi et al, BioTechnology 10, 413-17, 1992, and Higuchi et al, BioTechnology 11, 1026-30, 1993. The principle is that at any given cycle within the exponential phase of PCR, the amount of product is proportional to the initial number of template copies.
If the amplification is performed in the presence of an internally quenched fluorescent oligonucleotide (TaqMan probe) complementary to the target sequence, the probe is cleaved by the 5 '-3' endonuclease activity of Taq DNA polymerase and a fluorescent dye released in the medium (Holland et al, Proc. Natl. Acad. Sci.
U.S.A. 88, 7276-80, 1991). Because the fluorescence emission will increase in direct proportion to the amount of the specific amplified product, the exponential growth phase of PCR product can be detected and used to determine the initial template concentration (Heid et al, Genome Res. 6, 986-94, 1996, and Gibson et al, Genome Res. 6, 995-1001, 1996).
The amplification of an endogenous control can be performed to standardize the amount of sample RNA added to a reaction. In this kind of experiment, the control of choice is the 18S ribosomal RNA. Because reporter dyes with differing emission spectra are available, the target and the endogenous control can be independently quantified in the same tube if probes labeled with different dyes are used.
All "real time PCR" measurements of fluorescence are made in the ABI Prism 7700.
RNA extraction and cDNA preparation. Total RNA from the tissues Usted above are used for expression quantification. RNAs labeled "from autopsy" were extracted from autoptic tissues with the TRIzol reagent (Life Technologies, MD) according to the manufacturer's protocol.
Fifty μg of each RNA were treated with DNase I for 1 hour at 37°C in the following reaction mix: 0.2 U/μl RNase-free DNase I (Roche Diagnostics, Germany); 0.4 U/μl
RNase inhibitor (PE Applied Biosystems, CA); 10 mM Tris-HCl pH 7.9; lOmM MgCl2; 50 mM NaCI; and 1 mM DTT.
After incubation, RNA is extracted once with 1 volume of phenolxhloro- form:isoamyl alcohol (24:24:1) and once with chloroform, and precipitated with 1/10 volume of 3 M sodium acetate, pH5.2, and 2 volumes of ethanol.
Fifty μg of each RNA from the autoptic tissues are DNase treated with the DNA-free kit purchased from Ambion (Ambion, TX). After resuspension and spectrophoto- metric quantification, each sample is reverse transcribed with the TaqMan Reverse
Transcription Reagents (PE Applied Biosystems, CA) according to the manufacturer's protocol. The final concentration of RNA in the reaction mix is 200ng/μL. Reverse transcription is carried out with 2.5μM of random hexamer primers.
TaqMan quantitative analysis. Specific primers and probe are designed according to the recommendations of PE Applied Biosystems; the probe can be labeled at the 5'
end FAM (6-carboxy-fluorescein) and at the 3' end with TAMRA (6-carb- oxy-tetramethyl-rhodamine). Quantification experiments are performed on 10 ng of reverse transcribed RNA from each sample. Each determination is done in triplicate.
Total cDNA content is normalized with the simultaneous quantification (multiplex
PCR) of the 18S ribosomal RNA using the Pre-Developed TaqMan Assay Reagents (PDAR) Control Kit (PE Applied Biosystems, CA).
The assay reaction mix is as follows: IX final TaqMan Universal PCR Master Mix (from 2X stock) (PE Applied Biosystems, CA); IX PDAR control - 18S RNA (from
20X stock); 300 nM forward primer; 900 nM reverse primer; 200 nM probe; 10 ng cDNA; and water to 25 μl.
Each of the following steps are carried out once: pre PCR, 2 minutes at 50° C, and 10 minutes at 95°C. The following steps are carried out 40 times: denaturation, 15 seconds at 95°C, annealing/extension, 1 minute at 60°C.
The experiment is performed on an ABI Prism 7700 Sequence Detector (PE Applied Biosystems, CA). At the end of the run, fluorescence data acquired during PCR are processed as described in the ABI Prism 7700 user's manual in order to achieve better background subtraction as well as signal linearity with the starting target quantity.
EXAMPLE 7
Proliferation inhibition assay: Antisense oligonucleotides suppress the growth of cancer cell lines
The cell line used for testing is the human colon cancer cell line HCT116. Cells are cultured in RPMI-1640 with 10-15% fetal calf serum at a concentration of 10,000 cells per milliliter in a volume of 0.5 ml and kept at 37 °C in a 95% air/5%>CO2 atmosphere.
Phosphorothioate oligoribonucleotides are synthesized on an Applied Biosystems
Model 380B DNA synthesizer using phosphoroamidite chemistry. A sequence of 24 bases complementary to the nucleotides at position 1 to 24 of SEQ JX> NO:l is used as the test oligonucleotide. As a control, another (random) sequence is used: 5' -TCA ACT GAC TAG ATG TAC ATG GAC-3'. Following assembly and deprotection, oligonucleotides are ethanol-precipitated twice, dried, and suspended in phosphate buffered saline at the desired concentration. Purity of the oligonucleotides is tested by capillary gel electrophoresis and ion exchange HPLC. The purified oligonucleotides are added to the culture medium at a concentration of 10 μM once per day for seven days.
The addition of the test oligonucleotide for seven days results in significantly reduced expression of human membrane-like serine protease as determined by Western blotting. This effect is not observed with the control oligonucleotide. After 3 to 7 days, the number of cells in the cultures is counted using an automatic cell counter. The number of cells in cultures treated with the test oligonucleotide
(expressed as 100%) is compared with the number of cells in cultures treated with the control oligonucleotide. The number of cells in cultures treated with the test oligonucleotide is not more than 30% of control, indicating that the inhibition of human membrane-like serine protease has an anti-proliferative effect on cancer cells.
EXAMPLE 8
In vivo testing of compounds/target validation
Acute Mechanistic Assays
Reduction in Mitogenic Plasma Hormone Levels
This non-tumor assay measures the ability of a compound to reduce either the endogenous level of a circulating hormone or the level of hormone produced in response to a biologic stimulus. Rodents are administered test compound (p.o., i.p., i.v., i.m., or s.c). At a predetermined time after administration of test compound, blood plasma is collected. Plasma is assayed for levels of the hormone of interest. If the normal circulating levels of the hormone are too low and/or variable to provide consistent results, the level of the hormone may be elevated by a pre-treatment with a biologic stimulus (i.e., LHRH may be injected i.m. into mice at a dosage of 30 ng/mouse to induce a burst of testosterone synthesis). The timing of plasma collection would be adjusted to coincide with the peak of the induced hormone response. Compound effects are compared to a vehicle-treated control group. An F- test is preformed to determine if the variance is equal or unequal followed by a Student's t-test. Significance is p value < 0.05 compared to the vehicle control group.
Hollow Fiber Mechanism of Action Assay
Hollow fibers are prepared with desired cell line(s) and implanted intraperitoneally and/or subcutaneously in rodents. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Fibers are harvested in accordance with specific readout assay protocol, these may include assays for gene expression (bDNA, PCR, or Taqman), or a specific biochemical activity (i.e., cAMP levels. Results are analyzed by Student's t-test or Rank Sum test after the variance between groups is compared by an F-test, with significance at p < 0.05 as compared to the vehicle control group.
Subacute Functional In Vivo Assays
Reduction in Mass of Hormone Dependent Tissues
This is another non-tumor assay that measures the ability of a compound to reduce the mass of a hormone dependent tissue (i.e., seminal vesicles in males and uteri in females). Rodents are administered test compound (p.o., i.p., i.v., i.m., or s.c.) according to a predetermined schedule and for a predetermined duration (i.e., 1 week). At termination of the study, animals are weighed, the target organ is excised, any fluid is expressed, and the weight of the organ is recorded. Blood plasma may also be collected. Plasma may be assayed for levels of a hormone of interest or for levels of test agent. Organ weights may be directly compared or they may be normalized for the body weight of the animal. Compound effects are compared to a vehicle-treated control group. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test. Significance is p value < 0.05 compared to the vehicle control group.
Hollow Fiber Proliferation Assay
Hollow fibers are prepared with desired cell line(s) and implanted intraperitoneally and/or subcutaneously in rodents. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Fibers are harvested in accordance with specific readout assay protocol. Cell proliferation is determined by measuring a marker of cell number (i.e., MTT or LDH). The cell number and change in cell number from the starting inoculum are analyzed by Student's t-test or Rank Sum test after the variance between groups is compared by an F-test, with significance at p < 0.05 as compared to the vehicle control group.
Anti-angiogenesis Models
Corneal Angiogenesis
Hydron pellets with or without growth factors or cells are implanted into a micropocket surgically created in the rodent cornea. Compound administration may be systemic or local (compound mixed with growth factors in the hydron pellet). Corneas are harvested at 7 days post implantation immediately following intracardiac infusion of colloidal carbon and are fixed in 10%> formalin. Readout is qualitative scoring and/or image analysis. Qualitative scores are compared by Rank Sum test.
Image analysis data is evaluated by measuring the area of neovascularization (in pixels) and group averages are compared by Student's t-test (2 tail). Significance is p < 0.05 as compared to the growth factor or cells only group.
Matrigel Angiogenesis
Matrigel, containing cells or growth factors, is injected subcutaneously. Compounds are administered p.o., i.p., i.v., i.m., or s.c. Matrigel plugs are harvested at predetermined time point(s) and prepared for readout. Readout is an ELISA-based assay for hemoglobin concentration and/or histological examination (i.e. vessel count, special staining for endothelial surface markers: CD31, factor-8). Readouts are analyzed by Student's t-test, after the variance between groups is compared by an F- test, with significance determined at p < 0.05 as compared to the vehicle control group.
Primary Antitumor Efficacy
Early Therapy Models
Subcutaneous Tumor
Tumor cells or fragments are implanted subcutaneously on Day 0. Nehicle and/or compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule starting at a time, usually on Day 1, prior to the ability to measure the tumor burden. Body weights and tumor measurements are recorded 2-3 times weekly.
Mean net body and tumor weights are calculated for each data collection day. Anti- tumor efficacy may be initially determined by comparing the size of treated (T) and control (C) tumors on a given day by a Student's t-test, after the variance between groups is compared by an F-test, with significance determined at p < 0.05. The experiment may also be continued past the end of dosing in which case tumor measurements would continue to be recorded to monitor tumor growth delay. Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan- Meier curves from the times for individual tumors to attain the evaluation size.
Significance is p < 0.05.
Intraperitoneal/Intracranial Tumor Models
Tumor cells are injected intraperitoneally or intracranially on Day 0. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule starting on Day 1. Observations of morbidity and/or mortality are recorded twice daily. Body weights are measured and recorded twice weekly. Morbidity/mortality data is expressed in terms of the median time of survival and the number of long- term survivors is indicated separately. Survival times are used to generate Kaplan-
Meier curves. Significance is p < 0.05 by a log-rank test compared to the control group in the experiment.
Established Disease Model
Tumor cells or fragments are implanted subcutaneously and grown to the desired size for treatment to begin. Once at the predetermined size range, mice are randomized into treatment groups. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Tumor and body weights are measured and recorded 2-3 times weekly. Mean tumor weights of all groups over days post inoculation are graphed for comparison. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p < 0.05 as compared to the control group. Tumor measurements may be recorded after dosing has stopped to monitor tumor growth delay. Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan-Meier curves from the times for individual tumors to attain the evaluation size. Significance is p value< 0.05 compared to the vehicle control group.
Orthotopic Disease Models
Mammary Fat Pad Assay
Tumor cells or fragments, of mammary adenocarcinoma origin, are implanted directly into a surgically exposed and reflected mammary fat pad in rodents. The fat pad is placed back in its original position and the surgical site is closed. Honnones may also be administered to the rodents to support the growth of the tumors. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Tumor and body weights are measured and recorded 2-3 times weekly.
Mean tumor weights of all groups over days post inoculation are graphed for comparison. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p < 0.05 as compared to the control group.
Tumor measurements may be recorded after dosing has stopped to monitor tumor growth delay. Tumor growth delays are expressed as the difference in the median time for the treated and control groups to attain a predetermined size divided by the median time for the control group to attain that size. Growth delays are compared by generating Kaplan-Meier curves from the times for individual tumors to attain the evaluation size. Significance is p value< 0.05 compared to the vehicle control group. In addition, this model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ, or measuring the target organ weight. The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p < 0.05 compared to the control group in the experiment.
Intraprostatic Assay
Tumor cells or fragments, of prostatic adenocarcinoma origin, are implanted directly into a surgically exposed dorsal lobe of the prostate in rodents. The prostate is externalized through an abdominal incision so that the tumor can be implanted specifically in the dorsal lobe while verifying that the implant does not enter the seminal vesicles. The successfully inoculated prostate is replaced in the abdomen and the incisions through the abdomen and skin are closed. Hormones may also be administered to the rodents to support the growth of the tumors. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Body weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected. The size of the primary tumor
is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p < 0.05 as compared to the control group. This model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the lungs), or measuring the target organ weight (i.e., the regional lymph nodes). The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p < 0.05 compared to the control group in the experiment.
Intrabronchial Assay
Tumor cells of pulmonary origin may be implanted intrabronchially by making an incision through the skin and exposing the trachea. The trachea is pierced with the beveled end of a 25 gauge needle and the tumor cells are inoculated into the main bronchus using a flat-ended 27 gauge needle with a 90° bend. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Body weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected. The size of the primary tumor is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope. An F-test is preformed to determine if the variance is equal or unequal followed by a Student's t-test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p < 0.05 as compared to the control group. This model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor. Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the contralateral lung), or measuring the target organ weight. The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p < 0.05 compared to the control group in the experiment.
Intracecal Assay
Tumor cells of gastrointestinal origin may be implanted intracecally by making an abdominal incision through the skin and externalizing the intestine. Tumor cells are inoculated into the cecal wall without penetrating the lumen of the intestine using a 27 or 30 gauge needle. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Body weights are measured and recorded 2-3 times weekly. At a predetermined time, the experiment is terminated and the animal is dissected. The size of the primary tumor is measured in three dimensions using either a caliper or an ocular micrometer attached to a dissecting scope. An F-test is preformed to detennine if the variance is equal or unequal followed by a Student's t- test to compare tumor sizes in the treated and control groups at the end of treatment. Significance is p < 0.05 as compared to the control group. This model provides an opportunity to increase the rate of spontaneous metastasis of this type of tumor.
Metastasis can be assessed at termination of the study by counting the number of visible foci per target organ (i.e., the liver), or measuring the target organ weight. The means of these endpoints are compared by Student's t-test after conducting an F-test, with significance determined at p < 0.05 compared to the control group in the experiment.
Secondary (Metastatic) Antitumor Efficacy
Spontaneous Metastasis
Tumor cells are inoculated s.c. and the tumors allowed to grow to a predetermined range for spontaneous metastasis studies to the lung or liver. These primary tumors are then excised. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule which may include the period leading up to the excision of the primary tumor to evaluate therapies directed at inhibiting the early stages of tumor metastasis. Observations of morbidity and/or mortality are recorded daily.
Body weights are measured and recorded twice weekly. Potential endpoints include survival time, numbers of visible foci per target organ, or target organ weight. When survival time is used as the endpoint the other values are not determined. Survival data is used to generate Kaplan-Meier curves. Significance is p < 0.05 by a log-rank test compared to the control group in the experiment. The mean number of visible tumor foci, as determined under a dissecting microscope, and the mean target organ weights are compared by Student's t-test after conducting an F-test, with significance determined at p < 0.05 compared to the control group in the experiment for both of these endpoints.
Forced Metastasis
Tumor cells are injected into the tail vein, portal vein, or the left ventricle of the heart in experimental (forced) lung, liver, and bone metastasis studies, respectively. Compounds are administered p.o., i.p., i.v., i.m., or s.c. according to a predetermined schedule. Observations of morbidity and/or mortality are recorded daily. Body weights are measured and recorded twice weekly. Potential endpoints include survival time, numbers of visible foci per target organ, or target organ weight. When survival time is used as the endpoint the other values are not determined. Survival data is used to generate Kaplan-Meier curves. Significance is p < 0.05 by a log-rank test compared to the control group in the experiment. The mean number of visible tumor foci, as determined under a dissecting microscope, and the mean target organ weights are compared by Student's t-test after conducting an F-test, with significance at p < 0.05 compared to the vehicle control group in the experiment for both endpoints.
EXAMPLE 9
In vivo testing of compounds/target validation
Pain
Acute pain. Acute pain is measured on a hot plate mainly in rats. Two variants of hot plate testing are used: In the classical variant animals are put on a hot surface (52 to 56 °C) and the latency time is measured until the animals show nocifensive behavior, such as stepping or foot licking. The other variant is an increasing temperature hot plate where the experimental animals are put on a surface of neutral temperature.
Subsequently this surface is slowly but constantly heated until the animals begin to lick a hind paw. The temperature which is reached when hind paw licking begins is a measure for pain threshold.
Compounds are tested against a vehicle treated control group. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal) prior to pain testing.
Persistent pain. Persistent pain is measured with the formalin or capsaicin test, mainly in rats. A solution of 1 to 5% formalin or 10 to 100 μg capsaicin is injected into one hind paw of the experimental animal. After formalin or capsaicin application the animals show nocifensive reactions like flinching, licking and biting of the affected paw. The number of nocifensive reactions within a time frame of up to 90 minutes is a measure for intensity of pain.
Compounds are tested against a vehicle treated control group. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal) prior to formalin or capsaicin admimstration.
Neuropathic pain. Neuropathic pain is induced by different variants of unilateral sciatic nerve injury mainly in rats. The operation is performed under anesthesia. The
first variant of sciatic nerve injury is produced by placing loosely constrictive ligatures around the common sciatic nerve. The second variant is the tight ligation of about the half of the diameter of the common sciatic nerve. In the next variant, a group of models is used in which tight ligations or transections are made of either the L5 and L6 spinal nerves, or the L% spinal nerve only. The fourth variant involves an axotomy of two of the three terminal branches of the sciatic nerve (tibial and common peroneal nerves) leaving the remaining sural nerve intact whereas the last variant comprises the axotomy of only the tibial branch leaving the sural and common nerves uninjured. Control animals are treated with a sham operation.
Postoperatively, the nerve injured animals develop a chronic mechanical allodynia, cold allodynioa, as well as a thermal hyperalgesia. Mechanical allodynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer, IITC Inc.-Life Science Instruments, Woodland Hills, SA, USA; Electronic von Frey System, Somedic Sales AB, Hδrby, Sweden). Thermal hyperalgesia is measured by means of a radiant heat source (Plantar Test, Ugo Basile, Comerio, Italy), or by means of a cold plate of 5 to 10 °C where the nocifensive reactions of the affected hind paw are counted as a measure of pain intensity. A further test for cold induced pain is the counting of nocifensive reactions, or duration of nocifensive responses after plantar administration of acetone to the affected hind limb. Chronic pain in general is assessed by registering the circadanian rhythms in activity (Surjo and Arndt, Universitat zu Kδln, Cologne, Germany), and by scoring differences in gait (foot print patterns; FOOTPRINTS program, Klapdor et al., 1997. A low cost method to analyze footprint patterns. J. Neurosci. Methods 75, 49-54).
Compounds are tested against sham operated and vehicle treated control groups. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal) prior to pain testing.
Inflammatory Pain. Inflammatory pain is induced mainly in rats by injection of 0.75 mg carrageenan or complete Freund's adjuvant into one hind paw. The animals
develop an edema with mechanical allodynia as well as thermal hyperalgesia. Mechanical allodynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer, IITC Inc.-Life Science Instruments, Woodland Hills, SA, USA). Thermal hyperalgesia is measured by means of a radiant heat source (Plantar Test, Ugo Basile, Comerio, Italy, Paw thermal stimulator, G. Ozaki, University of California, USA). For edema measurement two methods are being used. In the first method, the animals are sacrificed and the affected hindpaws sectioned and weighed. The second method comprises differences in paw volume by measuring water displacement in a plethysmometer (Ugo Basile, Comerio, Italy).
Compounds are tested against uninflamed as well as vehicle treated control groups. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal) prior to pain testing.
Diabetic neuropathic pain. Rats treated with a single intraperitoneal injection of 50 to 80 mg/kg streptozotocin develop a profound hyperglycemia and mechanical allodynia within 1 to 3 weeks. Mechanical allodynia is measured by means of a pressure transducer (electronic von Frey Anesthesiometer, IITC Inc.-Life Science Instruments, Woodland Hills, SA, USA).
Compounds are tested against diabetic and non-diabetic vehicle treated control groups. Substance application is performed at different time points via different application routes (i.v., i.p., p.o., i.t., i.c.v., s.c, intradermal, transdermal) prior to pain testing.
Parkinson's disease
6-Hydroxydopamine (6-OH-DA) Lesion. Degeneration of the dopaminergic nigrostriatal and striatopallidal pathways is the central pathological event in Parkinson's disease. This disorder has been mimicked experimentally in rats using
single/sequential unilateral stereotaxic injections of 6-OH-DA into the medium forebrain bundle (MFB).
Male Wistar rats (Harlan Winkelmann, Germany), weighing 200±250 g at the beginning of the experiment, are used. The rats are maintained in a temperature- and humidity-controlled environment under a 12 h light/dark cycle with free access to food and water when not in experimental sessions. The following in vivo protocols are approved by the governmental authorities. All efforts are made to minimize animal suffering, to reduce the number of animals used, and to utilize alternatives to in vivo techniques .
Animals are administered pargyline on the day of surgery (Sigma, St. Louis, MO, USA; 50 mg/kg i.p.) in order to inhibit metabolism of 6-OHDA by monoamine oxidase and desmethylimipramine HCl (Sigma; 25 mg/kg i.p.) in order to prevent uptake of 6-OHDA by noradrenergic terminals. Thirty minutes later the rats are anesthetized with sodium pentobarbital (50 mg/kg) and placed in a stereotaxic frame. In order to lesion the DA nigrostriatal pathway 4 μl of 0.01%> ascorbic acid-saline containing 8 μg of 6-OHDA HBr (Sigma) are injected into the left medial fore-brain bundle at a rate of 1 μl/min (2.4 mm anterior, 1.49 mm lateral, -2.7 mm ventral to Bregma and the skull surface). The needle is left in place an additional 5 min to allow diffusion to occur.
Stepping Test. Forelimb akinesia is assessed three weeks following lesion placement using a modified stepping test protocol. In brief, the animals are held by the experimenter with one hand fixing the hindlimbs and slightly raising the hind part above the surface. One paw is touching the table, and is then moved slowly sideways (5 s for 1 m), first in the forehand and then in the backhand direction. The number of adjusting steps is counted for both paws in the backhand and forehand direction of movement. The sequence of testing is right paw forehand and backhand adjusting stepping, followed by left paw forehand and backhand directions. The test is repeated three times on three consecutive days, after an initial training period of three days
prior to the first testing. Forehand adjusted stepping reveals no consistent differences between lesioned and healthy control animals. Analysis is therefore restricted to backhand adjusted stepping.
Balance Test. Balance adjustments following postural challenge are also measured during the stepping test sessions. The rats are held in the same position as described in the stepping test and, instead of being moved sideways, tilted by the experimenter towards the side of the paw touching the table. This maneuver results in loss of balance and the ability of the rats to regain balance by forelimb movements is scored on a scale ranging from 0 to 3. Score 0 is given for a normal forelimb placement.
When the forelimb movement is delayed but recovery of postural balance detected, score 1 is given. Score 2 represents a clear, yet insufficient, forelimb reaction, as evidenced by muscle contraction, but lack of success in recovering balance, and score 3 is given for no reaction of movement. The test is repeated three times a day on each side for three consecutive days after an initial training period of three days prior to the first testing.
Staircase Test (Paw Reaching). A modified version of the staircase test is used for evaluation of paw reaching behavior three weeks following primary and secondary lesion placement. Plexiglass test boxes with a central platform and a removable staircase on each side are used. The apparatus is designed such that only the paw on the same side at each staircase can be used, thus providing a measure of independent forelimb use. For each test the animals are left in the test boxes for 15 min. The double staircase is filled with 7 x 3 chow pellets (Precision food pellets, formula: P, purified rodent diet, size 45 mg; Sandown Scientific) on each side. After each test the number of pellets eaten (successfully retrieved pellets) and the number of pellets taken (touched but dropped) for each paw and the success rate (pellets eaten/pellets taken) are counted separately. After three days of food deprivation (12 g per animal per day) the animals are tested for 11 days. Full analysis is conducted only for the last five days.
MPTP treatment. The neurotoxin l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) causes degeneration of mesencephalic dopaminergic (DAergic) neurons in rodents, non-human primates, and humans and, in so doing, reproduces many of the symptoms of Parkinson's disease. MPTP leads to a marked decrease in the levels of dopamine and its metabolites, and in the number of dopaminergic terminals in the striatum as well as severe loss of the tyrosine hydroxylase (TH)-immunoreactive cell bodies in the substantia nigra, pars compacta.
In order to obtain severe and long-lasting lesions, and to reduce mortality, animals receive single injections of MPTP, and are then tested for severity of lesion 7-10 days later. Successive MPTP injections are administered on days 1, 2 and 3. Animals receive application of 4 mg/kg MPTP hydrochloride (Sigma) in saline once daily. All injections are intraperitoneal (i.p.) and the MPTP stock solution is frozen between injections. Animals are decapitated on day 11.
Immunohistology. At the completion of behavioral experiments, all animals are anaesthetized with 3 ml thiopental (1 g/40 ml i.p., Tyrol Phanna). The mice are perfused transcardially with 0.01 M PBS (pH 7.4) for 2 min, followed by 4% paraformaldehyde (Merck) in PBS for 15 min. The brains are removed and placed in 4% paraformaldehyde for 24 h at 4 °C. For dehydration they are then transfened to a
20%) sucrose (Merck) solution in 0.1 M PBS at 4 °C until they sink. The brains are frozen in methylbutan at -20 °C for 2 min and stored at -70 °C. Using a sledge microtome (mod. 3800-Frigocut, Leica), 25 μm sections are taken from the genu of the corpus callosum (AP 1.7 mm) to the hippocampus (AP 21.8 mm) and from AP 24.16 to AP 26.72. Forty-six sections are cut and stored in assorters in 0.25 M Tris buffer (pH 7.4) for immunohistochemistry.
A series of sections is processed for free-floating tyrosine hydroxylase (TH) immunohistochemistry. Following three rinses in 0.1 M PBS, endogenous peroxidase activity is quenched for 10 min in 0.3%> H2O2 ±PBS. After rinsing in
PBS, sections are preincubated in 10% normal bovine serum (Sigma) for 5 min as
blocking agent and transfened to either primary anti-rat TH rabbit antiserum (dilution 1:2000).
Following overnight incubation at room temperature, sections for TH immuno- reactivity are rinsed in PBS (2 xlO min) and incubated in biotinylated anti-rabbit immunoglobulin G raised in goat (dilution 1:200) (Vector) for 90 min, rinsed repeatedly and transfened to Vectastain ABC (Vector) solution for 1 h. 3, .3' -Diaminobenzidine tetrahydrochloride (DAB; Sigma) in 0.1 M PBS, supplemented with 0.005%) H2O2, serves as chromogen in the subsequent visualization reaction. Sections are mounted on to gelatin-coated slides, left to dry overnight, counter-stained with hematoxylin dehydrated in ascending alcohol concentrations and cleared in butylacetate. Coverslips are mounted on entellan.
Rotarod Test. We use a modification of the procedure described by Rozas and Labandeira-Garcia (1997), with a CR-1 Rotamex system (Columbus Instruments,
Columbus, OH) comprising an IBM-compatible personal computer, a CIO-24 data acquisition card, a control unit, and a four-lane rotarod unit. The rotarod unit consists of a rotating spindle (diameter 7.3 cm) and individual compartments for each mouse. The system software allows preprogramming of session protocols with varying rotational speeds (0-80 rpm). Infrared beams are used to detect when a mouse has fallen onto the base grid beneath the rotarod. The system logs the fall as the end of the experiment for that mouse, and the total time on the rotarod, as well as the time of the fall and all the set-up parameters, are recorded. The system also allows a weak current to be passed through the base grid, to aid training.
Dementia
The object recognition task. The object recognition task has been designed to assess the effects of experimental manipulations on the cognitive performance of rodents. A rat is placed in an open field, in which two identical objects are present. The rats inspects both objects during the first trial of the object recognition task. In a second
trial, after a retention interval of for example 24 hours, one of the two objects used in the first trial, the 'familiar' object, and a novel object are placed in the open field. The inspection time at each of the objects is registered. The basic measures in the OR task is the time spent by a rat exploring the two object the second trial. Good retention is reflected by higher exploration times towards the novel than the
'familiar' object.
Administration of the putative cognition enhancer prior to the first trial predominantly allows assessment of the effects on acquisition, and eventually on consolidation processes. Administration of the testing compound after the first trial allows to assess the effects on consolidation processes, whereas administration before the second trial allows to measure effects on retrieval processes.
The passive avoidance task. The passive avoidance task assesses memory performance in rats and mice. The inhibitory avoidance apparatus consists of a two-compartment box with a light compartment and a dark compartment. The two compartments are separated by a guillotine door that can be operated by the experimenter. A threshold of 2 cm separates the two compartments when the guillotine door is raised. When the door is open, the illumination in the dark compartment is about 2 lux. The light intensity is about 500 lux at the center of the floor of the light compartment.
Two habituation sessions, one shock session, and a retention session are given, separated by inter-session intervals of 24 hours. In the habituation sessions and the retention session the rat is allowed to explore the apparatus for 300 sec. The rat is placed in the light compartment, facing the wall opposite to the guillotine door. After an accommodation period of 15 sec. the guillotine door is opened so that all parts of the apparatus can be visited freely. Rats normally avoid brightly lit areas and will enter the dark compartment within a few seconds.
In the shock session the guillotine door between the compartments is lowered as soon as the rat has entered the dark compartment with its four paws, and a scrambled 1 mA footshock is administered for 2 sec The rat is removed from the apparatus and put back into its home cage. The procedure during the retention session is identical to that of the habituation sessions.
The step-through latency, that is the first latency of entering the dark compartment (in sec.) during the retention session is an index of the memory performance of the animal; the longer the latency to enter the dark compartment, the better the retention is. A testing compound in given half an hour before the shock session, together with
1 mg*kg_1 scopolamine. Scopolamine impairs the memory performance during the retention session 24 hours later. If the test compound increases the enter latency compared with the scopolamine-treated controls, is likely to possess cognition enhancing potential.
The Morris water escape task. The Morris water escape task measures spatial orientation learning in rodents. It is a test system that has extensively been used to investigate the effects of putative therapeutic on the cognitive functions of rats and mice. The performance of an animal is assessed in a circular water tank with an escape platform that is submerged about 1 cm below the surface of the water. The escape platform is not visible for an animal swimming in the water tank. Abundant extra-maze cues are provided by the furniture in the room, including desks, computer equipment, a second water tank, the presence of the experimenter, and by a radio on a shelf that is playing softly.
The animals receive four trials during five daily acquisition sessions. A trial is started by placing an animal into the pool, facing the wall of the tank. Each of four starting positions in the quadrants north, east, south, and west is used once in a series of four trials; their order is randomized. The escape platform is always in the same position. A trial is terminated as soon as the animal had climbs onto the escape platform or when 90 seconds have elapsed, whichever event occurs first. The animal is allowed
to stay on the platform for 30 seconds. Then it is taken from the platform and the next trial is started. If an animal did not find the platform within 90 seconds it is put on the platform by the experimenter and is allowed to stay there for 30 seconds. After the fourth trial of the fifth daily session, an additional trial is given as a probe trial: the platform is removed, and the time the animal spends in the four quadrants is measured for 30 or 60 seconds. In the probe trial, all animals start from the same start position, opposite to the quadrant where the escape platform had been positioned during acquisition.
Four different measures are taken to evaluate the performance of an animal during acquisition training: escape latency, traveled distance, distance to platfonn, and swimming speed. The following measures are evaluated for the probe trial: time (s) in quadrants and traveled distance (cm) in the four quadrants. The probe trial provides additional infonnation about how well an animal learned the position of the escape platform. If an animal spends more time and swims a longer distance in the quadrant where the platform had been positioned during the acquisition sessions than in any other quadrant, one concludes that the platform position has been learned well.
In order to assess the effects of putative cognition enhancing compounds, rats or mice with specific brain lesions which impair cognitive functions, or animals treated with compounds such as scopolamine or MK-801, which interfere with normal learning, or aged animals which suffer from cognitive deficits, are used.
The T-maze spontaneous alternation task. The T-maze spontaneous alternation task (TeMCAT) assesses the spatial memory performance in mice. The start arm and the two goal arms of the T-maze are provided with guillotine doors which can be operated manually by the experimenter. A mouse is put into the start arm at the beginning of training. The guillotine door is closed. In the first trial, the 'forced trial', either the left or right goal arm is blocked by lowering the guillotine door. After the mouse has been released from the start arm, it will negotiate the maze, eventually enter the open goal arm, and return to the start position, where it will be confined for
5 seconds, by lowering the guillotine door. Then, the animal can choose freely between the left and right goal arm (all guillotine-doors opened) during 14 'free choice' trials. As soon a the mouse has entered one goal arm, the other one is closed. The mouse eventually returns to the start arm and is free to visit whichever go alarm it wants after having been confined to the start arm for 5 seconds. After completion of 14 free choice trials in one session, the animal is removed from the maze. During training, the animal is never handled.
The percent alternations out of 14 trials is calculated. This percentage and the total time needed to complete the first forced trial and the subsequent 14 free choice trials
(in s) is analyzed. Cognitive deficits are usually induced by an injection of scopolamine, 30 min before the start of the training session. Scopolamine reduced the per-cent alternations to chance level, or below. A cognition enhancer, which is always administered before the training session, will at least partially, antagonize the scopolamine-induced reduction in the spontaneous alternation rate.
EXAMPLE 10
Identification of test compound efficacy in an animal model of COPD
All mice are exposed to the smoke from 2 unfiltered cigarettes per day for 6 days per week for 14 weeks. Non-smoking, age-matched animals are used as controls. Animals are orally dosed with test compound or vehicle 1 hour before and 7 hours after smoke exposure. This twice-daily dosing regime is continued throughout the smoke exposure period. On day 7 of the weekly exposure, animals are given only 1 dose of test compound and are not exposed to cigarette smoke.
After the smoke exposure period, the mice are killed, their lungs inflated with phosphate-buffered formalin via their trachea, and then the lungs and heart are removed en bloc and fixed at 4°C for 48 hours. The lungs are then prepared for paraffin wax sectioning, and 4 mm sections are cut and mounted on glass slides.
Sections are then stained with haematoxylin and eosin. Morphometric analysis of
lung sections is done by calculation of the Linear Mean Intercept (LMI) parameter using a semi-automated computer image analysis system. Each slide (1 per mouse) contains several sections originating from multiple lobes. Twelve non-overlapping areas (each area covering 1.53 x 10-3 cm2) are randomly selected for LMI analysis. The 12 areas cover a minimum of two lobes per slide. Non-parenchymal components (airways, blood vessels) are excluded from the analysis to prevent artifactual enor. The mean intercept length is calculated for each mouse. Development of emphysema is seen as an increase in LMI.
LMI data are expressed as the median and statistical comparisons are done using the non-parametric Mann-Witney U-test. A 'p' value of <=0.05 is considered to be statistically significant. The potency of a test compound is evaluated by comparison of the tobacco smoke induced increase in LMI in animals dosed with either the test compound or just the vehicle used for adminisfration of the compound.
EXAMPLE 11
Identification of test compound efficacy in an in vitro functional test relevant to
COPD
The potency of test compounds is evaluated by measuring the inhibition of elastolysis induced by human alveolar macrophages. The cells are isolated from bronchoalveolar lavage samples taken from non-smokers, disease-free smokers, and smokers with COPD. Macrophage suspensions are added to test wells coated with tritiated elastin and incubated at 37°C for 3h to allow adherence of the cells. The wells are then carefully washed to remove non-adherent cells and fresh medium is added to each well. The cells are incubated at 37°C for up to 72 hours in the presence or absence of test compound. Every 24 hours the medium in each well is removed for analysis and replaced by fresh medium. Radioactivity released into the medium is measured by liquid scintillation counting and the rate of elastin degradation is calculated. The potency of a test compound is evaluated by
comparing the rate of elastolysis measured with cells incubated in the presence or absence of the compound.
EXAMPLE 12 Inhibition of extracellular matrix degradation by antisense oligonucleotides
The cell line used for testing is the human colon cancer cell line HCT116. Cells are cultured in RPMI-1640 with 10-15% fetal calf serum at a concentration of 10,000 cells per milliliter in a tissue culture dish on a substrate comprising extracellular matrix components at 37 °C in a 95% air/5% CO2 atmosphere.
Phosphorothioate oligoribonucleotides are synthesized on an Applied Biosystems Model 380B DNA synthesizer using phosphoroamidite chemistry. The test oligonucleotide is a sequence of 24 bases: 5'-CGG-GTC-GCA-ACA-CTA-CCT-CAT- TTA-3' (complementary to the nucleotides are positions 1-24 of SEQ ID NO:l). As a control, another (random) sequence 5'-TCA-ACT-GAC-TAG-ATG-TAC-ATG- GAC-3' is used. Following assembly and deprotection, oligonucleotides are ethanol- precipitated twice, dried, and suspended in phosphate buffered saline (PBS) at the desired concentration. Purity of these oligonucleotides is tested by capillary gel electrophoresis and ion exchange HPLC. The purified oligonucleotides are added to the culture medium at a concentration of 10 μM once a day for seven days.
The addition of the test oligonucleotide for seven days results in significantly reduced expression of the human membrane-like serine protease as determined by Western blotting. This effect is not observed with the control oligonucleotide. After
3 to 7 days, the integrity of the extracellular matrix substrate is examined using a microscope. The extracellular matrix in the test dishes is largely intact, whereas in the confrol dishes, degradation of the extracellular matrix substrate has occurred, indicating that inhibition of human membrane-like serine protease has an effect on the ability of cancer cells to degrade exfracellular matrix.
EXAMPLE 13
Treatment of a breast tumor with a reagent which specifically binds to a membrane like serine protease gene product
Synthesis of antisense membrane-like serine protease oligonucleotides comprising at least 11 contiguous nucleotides selected from the complement of SEQ ID NO: 16 is performed on a Pharmacia Gene Assembler series synthesizer using the phosphoramidite procedure (Uhlmann et al, Chem. Rev. 90, 534-83, 1990). Following assembly and deprotection, oligonucleotides are ethanol-precipitated twice, dried, and suspended in phosphate-buffered saline (PBS) at the desired concentration.
Purity of these oligonucleotides is tested by capillary gel elecfrophoreses and ion exchange HPLC. Endotoxin levels in the oligonucleotide preparation are determined using the Limulus Amebocyte Assay (Bang, Biol. Bull. (Woods Hole, Mass.) 105, 361-362, 1953).
An aqueous composition containing the antisense oligonucleotides at a concentration of 0.1-100 μM is injected directly into a breast tumor with a needle. The needle is placed in the tumors and withdrawn while expressing the aqueous composition within the tumor.
The breast tumor is monitored over a period of days or weeks. Additional injections of the antisense oligonucleotides can be given during that time. Metastasis of the breast tumor is suppressed due to decreased membrane-like serine protease activity of the breast tumor cells.
EXAMPLE 14
In vivo target validation
Effects on plasma cholesterol levels including HDL cholesterol are typically assessed in humanized apo-AI transgenic mice. Modulation of human target proteins can be determined in conesponding transgenic mice (e.g., CETP transgenic mice). Tri-
glyceride lowering is usually evaluated in ob/ob mice or Zucker rats. Animals are fed with normal diets or modified diets (e.g., enriched by 0.5 % cholesterol 20% coconut oil). Standard protocols consist of oral applications once daily for 7 to 10 days at doses ranging from 0,1 to 100 mg/kg. The compounds are dissolved (e.g., in Solutol/Ethanol/saline mixtures) and applied by oral gavage or intravenous injection.
Before and at the end of the application period, blood samples are typically drawn by retroorbital punctuation. Plasma cholesterol and triglyceride levels are determined with standardized clinical diagnostic kits (e.g., INFINITY™ cholesterol reagent and INFLNITYTM triglyceride reagent; Sigma, St. Louis). HDL cholesterol is determined after phosphotungstic acid precipitation of non-HDL lipoproteins or FPLC gel filtration with post-column derivatization of cholesterol using the reagents mentioned above. Plasma levels of human apolipoprotein-AI in relevant humanized transgenic mice are measured by immunoturbidimetry (Sigma).
Long-term anti-atherosclerotic potency of drug candidates are evaluated in Apo E- knockout mice. Therefore, animals are fed a standard chow diet (4,5 % fat) or a Western diet (20 % fat) containing 1 to 100 mg/kg of the respective compounds for 3 to 5 month. Arterial lesions are quantified in serial cryosections of the proximal aorta by staining with Oil Red O and counterstaining with hematoxylin. Lesion area size is determined using an digital imaging system.
EXAMPLE 15
In vivo testing of cardiovascular effects of test compounds Hemodynamics in anesthetized rats
Male Wistar rats weighing 300-350 g (Harlan Winkelmann, Borchen, Germany) are anesthetized with thiopental "Nycomed" (Nycomed, Munich, Germany) 100 mg kg-1 i.p. A tracheotomy is performed, and catheters are inserted into the femoral artery for blood pressure and heart rate measurements (Gould pressure transducer and recorder, model RS 3400) and into the femoral vein for substance administration.
The animals are ventilated with room air and their body temperature is controlled. Test compounds are administered orally or intravenously.
Hemodynamics in conscious SHR
Female conscious SHR (Moellegaard/Denmark, 220 - 290 g) are equipped with implantable radiotelemetry, and a data aquisition system (Data Sciences, St. Paul, MN, USA), comprising a chronically implantable transducer/transmitter unit equipped with a fluid-filled catheter is used. The transmitter is implanted into the peritoneal cavity, and the sensing catheter is inserted into the descending aorta.
Single administration of test compounds is performed as a solution in Transcutol®/ Cremophor®/ H2O (10/20/70 = v/v/v) given orally by gavage. The animals of control groups only receive the vehicle. Before treatment, mean blood pressure and heart rate of treated and untreated control groups are measured.
Hemodynamics in anesthetized dogs
Studies are performed on anesthetized dogs of either sex (body weight between 20- 30 kg). Anesthesia is initiated by slow intravenous injection of 25 mg kg-1 sodium thiopental (Trapanal®, Byk Gulden, Konstanz, Germany). The anesthesia is continued and maintained throughout the experiment by continuous infusion of
0.04 mg kg-1 h-1 fentanyl (Fentanyl®, Janssen, Neuss, Germany) and 0.25 mg kg-1 h-1 droperidol (DihydrobenzperidolR, Janssen, Neuss, Germany). During this anaesthesia, heart rate is as low as 35-40 bpm due to increased vagal tone. Therefore, a parasympathetic blockade is achieved by intermittent injections of atropine (0.1 mg per animal) (AtropinsulfatR, Eifelfango, Bad Neuenahr, Germany). After intubation the animals are artificially ventilated at constant volume (EngstrδmR 300, Engstrδm,
Sweden) with room air enriched with 30% oxygen to maintain an end-tidal CO2 concentration of about 5%> (NormocapR, Datex, Finland).
The following catheters are implanted for measurement of cardiovascular parameters: a tip catheter for recording of left ventricular pressure is inserted into the ventricle via the carotid artery (PC350, Millar Instruments, Houston, TX, USA), a hollow catheter is inserted into the femoral artery and connected to a strain gauge (type 4-327-1, Telos Medical, Upland, CA, USA for recording of arterial blood pressure, two venous catheters are inserted into either femoral vein and one additional catheter into a forearm vein for application of the anesthetic and drugs, respectively, and an oxymetry catheter for recording of oxygen saturation is inserted into the coronary sinus via the jugular vein (Schwarzer IVΗ4, Munchen, Germany).
After a left-sided thoracotomy the ramus circumflexus of the left coronary artery (LCX) is freed from connective tissue, and an electromagnetic flow probe (Gould Statham, Oxnard, CA, USA) is applied for measurement of coronary blood flow. Arterial blood pressure, electrocardiogram (lead II), left ventricular pressure, first derivative of left ventricular pressure (dP/dt), heart rate, coronary blood flow, and oxygen saturation in the coronary sinus are continuously recorded on a pen recorder (Brash, Gould, Cleveland, OH, USA). The maximum of dP/dt is used as measure of left ventricular contractility (dP/dtmax). After completion of the instrumentation, an interval of 60 min is allowed for stabilization before the test compound is intravenously applied as bolus injections. Care is taken that all measured cardiovascular parameters have returned to control level before injection of the next dose. Each dose of the test compound is tested at least three times in different animals. The order of injection of the different doses is randomized in each animal.
EXAMPLE 16
Bladder outlet obstruction model
Wistar rats are anesthetized intraperitoneally with ketamine. The abdomen is opened through a midline incision and the bladder and the proximal urethra are exposed. A constant degree of urethral obstruction is produced by tying a ligature around the
urethra and a catheter with an outer diameter of 1 mm. The abdominal well is closed and the animals allowed to recover.
After 6 weeks, the rats are anesthetized with ketamine, and the ligature around the urethra is carefully removed to normalize the outlet resistance and enable repetitive micturition. A polyethylene catheter is implanted in the bladder through the dome, and exteriorized at the scapular level. Animals are then allowed to recover for at least 48 hours.
Cytometric investigation is performed without anesthesia two days after bladder catheter implantation in control and obstracted animals. The bladder catheter was connected via a T-tube to a strain gauge and a microinjection pump. The conscious rats are held under partial restraint in a restraining device. Warmed saline is infused into the bladder at a rate of 3 ml/hr for control and obstructed animals. The rate of infusion is increased from 3 to 10 ml/hr to obtain similar interval times between micturitions in obstracted and control rats. Overactivity of the obstructed bladders is assessed by measuring the cystometric parameters such as basal pressure, peak micturition pressure, threshold pressure, micturition interval, amplitude and frequency of spontaneous activity and micturition slope. Lluel et al, J. Urol. 160, 2253-57, 1998.
EXAMPLE 17
Expression profiling
Total cellular RNA was isolated from cells by one of two standard methods: 1) guanidine isothiocyanate/cesium chloride density gradient centrifugation [Kellogg et al. (1990)]; or with the Tri-Reagent protocol according to the manufacturer's specifications (Molecular Research Center, Inc., Cincinnati, Ohio). Total RNA prepared by the Tri-reagent protocol was treated with DNAse I to remove genomic DNA contamination.
For relative quantitation of the mRNA distribution, total RNA from each cell or tissue source was first reverse transcribed. Eighty-five μg of total RNA was reverse transcribed using 1 μmole random hexamer primers, 0.5 mM each of dATP, dCTP, dGTP and dTTP (Qiagen, Hilden, Germany) and 3000 U RnaseQut (Invitrogen, Groningen, Netherlands) in a final volume of 680 μl. The first strand synthesis buffer and Omniscript reverse transcriptase (2 u/μl) were obtained from (Qiagen, Hilden, Germany). The reaction was incubated at 37° C for 90 minutes and cooled on ice. The volume was adjusted to 6800 μl with water, yielding a final concentration of 12.5 ng/μl of starting RNA.
For relative quantitation of the distribution of mRNA in cells and tissues the Perkin Elmer ABI Prism R™ 7700 Sequence Detection system or Biorad iCycler was used according to the manufacturer's specifications and protocols. PCR reactions were set up to quantitate expression of the test gene and the housekeeping genes HPRT (hypoxanthine phosphoribosyltransferase), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), β -actin, and others. Forward and reverse primers and probes were designed using the Perkin Elmer ABI Primer Express™ software and were synthesized by TibMolBiol (Berlin, Germany). The forward primer sequence was: Primerl gtggtgcctcagtcatctcc The reverse primer sequence was Primer2 ctgacagcctgtttccatga. Probel agggagtggcttctttctgcagcc, labeled with FAM
(carboxyfluorescein succinimidyl ester) as the reporter dye and TAMRA (carboxytetramethylrhodamine) as the quencher, was used as a probe. The following reagents were prepared in a total of 25 μl: lx TaqMan buffer A, 5.5 mM MgCl2, 200 nM of dATP, dCTP, dGTP, and dUTP, 0.025 U/μl AmpliTaq Gold™, 0.01 U/ μl AmpErase, and Probel agggagtggcttctttctgcagcc, forward and reverse primers each at 200 nM, 200 nM, FAM/TAMRA-labeled probe, and 5 μ 1 of template cDNA. Thermal cycling parameters were 2 min at 50° C, followed by 10 min at 95° C, followed by 40 cycles of melting at 95° C for 15 sec and annealing/extending at 60° C for 1 min.
- Ill -
Calculation of corrected CT values
The CT (threshold cycle) value is calculated as described in the "Quantitative determination of nucleic acids" section. The CF-value (factor for threshold cycle conection) is calculated as follows:
1. PCR reactions were set up to quantitate the housekeeping genes (HKG) for each cDNA sample.
2. CTHKG- values (threshold cycle for housekeeping gene) were calculated as described in the "Quantitative determination of nucleic acids" section.
3. CTHKG-mean values (CT mean value of all HKG tested on one cDNAs) of all HKG for each cDNA are calculated (n = number of HKG):
CTHKG-n-mean value = (CTHKGI -value + CTκκG2-value + ... + CTHKG-Π- value) / n
4. CTpanne] mean value (CT mean value of all HKG in all tested cDNAs) =
(CTHKGI -mean value + CTHKG2- ean value + ...+ CTHKG-y-mean value) / y (y = number of cDNAs) 5. CFcDNA-n (conection factor for cDNA n) = CTpannel-mean value - CTHKG-n- mean value 6. CTcDNA-n (CT value of the tested gene for the cDNA n) + CFCDNA-Π (conection factor for cDNA n) = CT COΓ-CDNA-Π (conected CT value for a gene on cDNA n) Calculation of relative expression
Definition: highest CTcor-cDNA-n ≠ 40 is defined as CTCOΓ-ODNA [high] Relative Expression = 2 (CTcor-cDNA[hi^ " CTCOΓ-C DNA-„)
The following tissues were tested: Alzheimer cerebral cortex, Alzheimer brain frontal lobe, corpus callosum, cerebral cortex, frontal lobe, coronary artery smooth muscle primary cells, skin, pons, occipital lobe, substantia nigra, temporal lobe, thalamus, ovary tumor, small intestine, precenfral gyrus, penis, parietal lobe, fetal kidney, neuroblastoma SH5Y cells, fetal lung, Alzheimer brain, placenta, brain,
hippocampus, stomach tumor, cerebellum (right), stomach, fetal heart, spinal cord, esophagus tumor, bone manow CD71+ cells, HEP G2 cells, kidney tumor, colon tumor, heart atrium (right), lung right mid lobe, neuroblastoma IMR32 cells, cord blood CD71+ cells, bone marrow CD33+ cells, cerebellum (left), rectum, uterus tumor, bone manow stromal cells, glial tumor H4 cells + APP, colon, heart atrium
(left), ileum, ileum chronic inflammation, ileum tumor, ovary, glial tumor H4 cells, retina, fetal liver, mterventricular septum, bone marrow CD34+ cells, bladder, fetal brain, mammary gland, fetal brain, fetal lung fibroblast LMR-90 cells, HEK CNS + APP, tonsilla cerebelli, liver tumor, breast, cerebral peduncles, Jurkat (T-cells), thymus, vermis cerebelli, trachea, breast tumor, uterus, bone marrow, pericardium, heart, lung tumor, leukocytes (peripheral blood), liver, thyroid tumor, lung right upper lobe, cervix, aorta, lung COPD, liver cinhosis, fetal aorta, spleen, lung right lower lobe, neuroblastoma SK-N-MC cells, lung, heart ventricle (left), HEK 293 cells, postcentral gyrus, cerebellum, esophagus, pancreas liver cinhosis, coronary artery sclerotic, skeletal muscle, pancreas, adrenal gland, lymph node, spleen liver cinhosis, prostate BPH, adipose, HEK CNS, kidney, HeLa cells (cervix tumor), thyroid, dorsal root ganglia, ureter, salivary gland, cerebral meninges, HUNEC cells, aorta sclerotic, artery, testis, corpus cavernosum, bone marrow CD 15+ cells, erythrocytes, thrombocytes, coronary artery, MDA MB 231 cells (breast tumor), vein.
The results are shown in Table 1.
Tissue Relative
Expression
Alzheimer cerebral cortex 5078
Alzheimer brain frontal lobe 4545 corpus callosum 4124 cerebral cortex 3822 frontal lobe 2385 coronary artery smooth muscle 1992 primary cells skin 1992 pons 1846 occipital lobe 1783
substantia nigra 1758 temporal lobe 1596 thalamus 1333 ovary tumor 1243 small intestine 1209 precenfral gyrus 1017 penis 982 parietal lobe 969 fetal kidney 760 neuroblastoma SH5Y cells 719 fetal lung 709
Alzheimer brain 699 placenta 699 brain 613 hippocampus 592 stomach tumor 580 cerebellum (right) 534 stomach 530 fetal heart 481 spinal cord 437 esophagus tumor 362 bone manow CD71+ cells 357
HEP G2 cells 355 kidney tumor 333 colon tumor 326 heart atrium (right) 324 lung right mid lobe 302 neuroblastoma IMR32 cells 294 cord blood CD71+ cells 252 bone manow CD33+ cells 205 cerebellum (left) 194 rectum 189 uterus tumor 185 bone manow stromal cells 177 glial tumor H4 cells + APP 170 colon 161 heart atrium (left) 159 ileum 141 ileum chronic inflammation 136 ileum tumor 132 ovary 117 glial tumor H4 cells 115 retina 109 fetal liver 107 mterventricular septum 104 bone marrow CD34+ cells 101
bladder 101 fetal brain 94 mammary gland 94 fetal brain 94 fetal lung fibroblast IMR-90 cells 89
HEK CNS + APP 88 tonsilla cerebelli 87 liver tumor 83 breast 75 cerebral peduncles 71
Jurkat (T-cells) 66 thymus 64 vermis cerebelli 57 trachea 53 breast tumor 48 uterus 48 bone manow 47 pericardium 47 heart 43 lung tumor 42 leukocytes (peripheral blood) 41 liver 40 thyroid tumor 39 lung right upper lobe 38 cervix 37 aorta 35 lung COPD 33 liver cinhosis 32 prostate 31 fetal aorta 29 spleen 26 lung right lower lobe 24 neuroblastoma SK-N-MC cells 23 lung 21 heart ventricle (left) 20
HEK 293 cells 15 postcentral gyrus 15 cerebellum 15 esophagus 15 pancreas liver cinhosis 14 coronary artery sclerotic 13 skeletal muscle 12 pancreas 1 adrenal gland 12 lymph node 12 spleen liver cinhosis 10
prostate BPH 10 adipose 9
HEK CNS 9 kidney 9
HeLa cells (cervix tumor) 9 thyroid 8 dorsai root ganglia 7 ureter 6 salivary gland 6 cerebral meninges 5
HUVEC cells 5 aorta sclerotic 4 artery 3 testis 3 corpus cavernosum 2 bone manow CD 15+ cells 2 erythrocytes 1 thrombocytes 1 coronary artery 1
MDA MB 231 cells (breast 0 tumor) vein
REFERENCES
1. Nicolson (1988) Organ specificity of tumor metastasis: Role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Met. Rev. 7, 143-188.
2. Liotta et al (1983) Tumor invasion and the extracellular matrix. Lab. Invest. 49, 639-649.
3. Vlodavsky et al. (1987) Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into sub endothelial extracellular matrix. Proc. Natl. Acad. Sci. USA 84, 1191-1196:
4. Folkman et al. (1980) A heparin-binding angiogenic protein—basic fibroblast growth factor— is stored within basement membrane. Am. J. Pathol. 130, 393400.
5. Cardon-Cardo et al. (1990) Expression of basic fibroblast growth factor in normal human tissues. Lab. Invest. 63, 832-840. 6. Vlodavsky et al. (1991) Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem. Sci. 16, 168-111.
I. Vlodavsky et al (1993) Extracellular matrix-bound growth factors, enzymes and plasma proteins. In BASEMENT MEMBRANES: CELLULAR AND MOLECULAR ASPECTS Rohrbach & Timpl, eds., pp327-343. Academic Press Inc., Orlando, Fla. 8. Ross (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s.
N twre (Lond). 362, 801-809.
9. McCarthy et al. (1986). Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells. J. Cell Biol. 102, 179-
88. 10. Van Muijen et al. (1995) Properties of metastasizing and non-metastasizing human melanoma cells. Recent Results in Cancer Research 139, 104-22.
I I. Price et al. (1997) The Biochemistry of Cancer Dissemination, in Critical Reviews in Biochemistry and Mol. Biol. 32, 175-253.