WO2003052238A1 - A drilling method for maintaining productivity while eliminating perforating and gravel packing - Google Patents
A drilling method for maintaining productivity while eliminating perforating and gravel packing Download PDFInfo
- Publication number
- WO2003052238A1 WO2003052238A1 PCT/US2002/040696 US0240696W WO03052238A1 WO 2003052238 A1 WO2003052238 A1 WO 2003052238A1 US 0240696 W US0240696 W US 0240696W WO 03052238 A1 WO03052238 A1 WO 03052238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- well
- casing
- formation
- fluid
- drilling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/04—Gravelling of wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/08—Screens or liners
- E21B43/082—Screens comprising porous materials, e.g. prepacked screens
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/11—Perforators; Permeators
Definitions
- TITLE A DRILLING METHOD FOR MAINTAINING PRODUCTIVITY WHILE
- This invention relates to a method of drilling and completing a well. [0002] More particularly, this invention relates to a method for placing a means of communication between a productive formation and a well borehole without perforating and gravel packing the well borehole at sites of production. The method also relates to minimizing formation damage caused by conventional drilling, perforating, and gravel packing. The method combines and integrates elements of well drilling and construction with the well completion in a manner to reduce time, improve safety, and maximize productivity.
- One common method of well construction and completion is to drill a borehole with conventional drilling fluids, run casing into the borehole and cement the casing in place, displace the conventional drilling fluids with a clear brine, filter the brine and clean the borehole, run perforating guns in the well and perforate the casing, remove the perforating guns and re-clean the casing, re-filter to the clear brine fluids, run in the well with a gravel pack screen assembly, use high-pressure pumps place gravel pack sand between the gravel pack screen assembly into the perforation tunnels and against the formation face. This is a costly, time-consuming process.
- Formation damage is also a problem during conventional well construction and completion.
- Conventional drilling fluids can allow filtrate and solid particles to invade the formation causing restrictions in the productive pore spaces.
- Another source of formation damage is the shaped charges or explosives used in perforating. The energy from these explosives pushes the casing, cement, and formation aside when creating the perforation tunnel. This causes crushing of the formation matrix reducing the permeability and flow potential of the formation.
- Additional damage can come from the polymer gels used for controlling fluid losses after formation perforation.
- One method currently used to over come formation damage is hydraulic fracturing or frac packing. Frac packing is an attempt to use high-pressure pumping and hydraulic horse power to frac beyond any damage.
- Another method for formation damage mitigation uses acid stimulation to try and remove or dissolve formation damage caused by polymer gels or mud particle invasion. However, most mud weighting materials are solid mineral particles such as barite and bentonite that cannot be readily dissolved.
- the gravel pack assembly itself can serve as the restriction in the well borehole. This may cause unnecessary pressure drops which restrict production. Also, the gravel pack assembly may need to be removed for remedial operations. The process of removing an object from a well borehole is called fishing. These operations are costly and time consuming and not always successful resulting in a need to re-drill a portion of, or possibly the entire well.
- Another common method of well construction and completion is to drill a borehole and not run casing across the productive formation.
- This type of well construction is termed barefoot or openhole.
- Openhole completions are generally utilized after horizontal well construction. The most common practice is to run a screen assembly in the openhole section and not gravel pack on the outside of the screen between the screen and the formation. However, there has been an increasing number of openhole horizontal gravel packs performed. Formation damage is mitigated by the use of special drilling fluids termed "Drill- fri-Fluids.”
- Drill- fri-Fluids A common problem with this type of completion is the inability to isolate areas in the completion that produce water. Water production can increase to a point that limits hydrocarbon production rates.
- the screens run in the horizontal openhole generally contain a sand control filter media.
- the horizontal openhole section can act as a gravity separator during production. Because the unconsolidated formation material is not kept in place with gravel pack sand in the annulus between the screen and formation, it is free to move during production. The produced fluids having a certain velocity will carry smaller formation particles more easily and at a higher velocity than the larger formation particles.
- the filter media is usually designed on the midrange particle size based on the overall particle size distribution of the formation, the smaller formation particles tend to plug the screen's sand control filter media instead of bridging on the surface of the filter media with the larger formation particles. This plugging restricts the production potential of the well and may cause a workover or loss of hydrocarbon recovery from the reservoir.
- the present invention provides a method for drilling and completing a well, where the method achieves improved formation productivity without the need for well perforation and gravel packing.
- the present invention provides a method of well construction and completion including the steps of drilling an interval of a well into or into and through a productive formation in the presence of a fluid system adapted to control fluid loss, to be substantially non-damaging to the productive formation, and to form a filter cake having substantial flow back properties minimizing adverse affects on formation productivity.
- a casing string including at least one and preferably a plurality of laterally extendable members having a sand control medium associated therewith is run into the well so that the members can be deployed to contact sites in the productive interval, i.e., the extendable members are positioned and aligned within the productive formation interval of the well.
- the members are extended such that each member comes into contact with the filter cake and/or the productive formation at their associated sites, where the contacting in sufficient to allow productive formation fluids to flow through the member into the casing and out of the well.
- the members Once the members are deployed forming production conduits between an interior of the casing and the formation, the casing is cemented in place. After casing cementing, production tubing/equipment is run into the well borehole and the well is placed on production.
- the present invention provides a method of well construction and completion including the steps of drilling an interval of a well into or into and through a productive formation in the presence of a fluid system characterized by having a hydrostatic pressure equal to or less than the formation pressure to minimize or eliminate the formation of a filter cake on the formation face, so called under balanced or near balanced drilling.
- a casing string including at least one and preferably a plurality of laterally extendable members having a sand control medium associated therewith is run into the well so that the members can be deployed to contact sites in the productive interval, i.e., the extendable members are positioned and aligned within the productive formation interval of the well.
- the present invention provides a method of well construction and completion including the steps of drilling a first interval of a well through non-productive formations in the presence of a first fluid system.
- the first drilling fluid Prior to drilling into or into and through a productive formation, the first drilling fluid is replaced with a second fluid system adapted to control fluid loss, to be substantially non-damaging to the productive formation, and to form a filter cake having substantial flow back properties minimizing adverse affects on formation productivity.
- a second interval of the well is drilled into or into and through a productive formation in the presence of the second fluid system.
- a casing string including at least one and preferably a plurality of laterally extendable members having a sand control medium associated therewith is run into the well so that the members can be deployed to contact sites in the productive interval, i.e., the extendable members are positioned and aligned within the productive formation interval of the well.
- the present invention provides a method of well construction and completion including the steps of drilling a first interval of a well through non-productive formations in the presence of a first fluid system.
- the first drilling fluid Prior to drilling into or into and through a productive formation, the first drilling fluid is replaced with a second fluid system characterized by having a hydrostatic pressure equal to or less than the formation pressure to minimize or eliminate the formation of a filter cake on the formation face.
- a second interval of the well is drilled into or into and through a productive formation in the presence of the second fluid system, so called under balanced or near balanced drilling.
- a casing string including at least one and preferably a plurality of laterally extendable members having a sand control medium associated therewith is run into the well so that the members can be deployed to contact sites in the productive interval, i.e., the extendable members are positioned and aligned within the productive formation interval of the well.
- the members are extended such that each member comes into contact with the filter cake and/or the productive formation at their associated sites, where the contacting in sufficient to allow productive formation fluids to flow through the member into the casing and out of the well.
- the members Once the members are deployed forming production conduits between an interior of the casing and the formation, the casing is cemented in place. After casing cementing, production tubing/equipment is run into the well borehole and the well is placed on production.
- the methods of this invention can also include steps designed to remove or reduce the filter cake deposited on the formation face during the drilling operation by pumping a solvent into the well for a time sufficient to remove some or substantially all of the filter pack.
- the filter pack removal step can occur before or after member extension or before or after well cementing.
- the present invention further provides a completed well including a casing string including at least one and preferably a plurality of extended members having a sand control medium associated therewith, where the members extend out from the casing and contact sites in a productive formation forming production conduits through which formation fluid flow into an interior of the casing and out of the well.
- the member includes a casing fitting, an inner sleeve having inner sleeve stops and an outer sleeve having outer sleeve stops, where the sleeves are movable from a retracted state to an extended state when a sufficient hydraulic pressure is applied to the members.
- Figure 1 is a schematic illustrating drilling a well to a point above the anticipated productive formations
- Figure 2 depicts a schematic illustrating drilling through a productive formation with a "Drill-In Fluid" including a logging while drilling tool which can be used to determine the depth and length of productive formations;
- Figure 3 depicts a schematic illustrating the benefits of using a "drill-in-fluid" drilling fluid vs. a conventional drilling fluid;
- Figure 4 depicts a schematic illustrating running the extendable devices on the casing and positioning them across from the productive formation
- Figure 5 depicts a schematic illustrating extending the devices to contact the formation face and centralize the casing
- Figure 6 illustrates the casing been cemented into place
- Figure 7 depicts a schematic illustrating the well in a producing mode.
- a casing including at least one, but preferably a plurality of extendable members adapted to form production conduits between a productive formation and an interior of the casing.
- the members are hydraulically extendable from a retracted stated to an intended state and include a casing fitting, an inner sleeve, inner sleeve stops, an outer sleeve and outer sleeve stops, where the sleeve are movable between the retracted state and the extended state to form a telescoping conduit.
- This invention broadly relates to methods for drilling and completing a well including the step of drilling a productive interval of a well with a fluid system selected from the group consisting of a fluid system adapted to control fluid loss, to be substantially non-damaging to the productive formation, and to form a filter cake having substantial flow back properties minimizing adverse affects on formation productivity, a fluid system characterized by having a hydrostatic pressure equal to or less than the formation pressure to minimize or eliminate the formation of a filter cake on the formation face and mixtures or combinations thereof.
- casing including at least one and preferably a plurality of extendable members having a sand control medium associated therewith is run into the well so that the extendable members are positioned and aligned within the productive formation so that when extended the member form production conduits between sites of the productive formation and an interior of the casing.
- the member are extended hydraulically to fonn the conduits and the casing is cemented in place.
- the well can be placed on production. Alternatively, cementing of the casing can proceed extending of the member to form permeable elements or production conduits.
- the present invention also broadly relates to a completed oil and/or gas well including a casing having at least one, but preferably a plurality of, extendable member formed within sections of the casing, where the sections of the casing are positioned in productive formation so that the extendable members can form production conduits or permeable elements at desired sites within the productive formation once extended.
- the present invention also broadly relates to a producing oil and/or gas well including a casing having at least one, but preferably a plurality of, extendable member formed within sections of the casing, where the sections of the casing are positioned in productive formation and where the extendable members are extended to form production conduits or permeable elements at desired sites within the productive formation.
- the extendable members include a casing fitting adapted to secure the member to a portion of the wall of a casing section, an inner sleeve, an inner sleeve stop, an outer sleeve, an outer sleeve stop and a sand control medium disposed in a distal section of an interior of the inner sleeve, where the sleeves are designed to move from a retracted state to an extended state to form a telescoping conduit and a distal end is designed to contact a site of a productive formation forming a production conduit with the sand control medium interposed between the formation and an inner of the casing.
- the productive formations can be identified during well construction by utilizing logging while drilling tools or openhole electric logs.
- the extendable members which will replace the perforation and gravel pack completion are spaced out on the casing string to allow them to be aligned with the productive formations as determine by the well logs. Depending on the expected productivity of the formation generally between 1 and 12 extendable members per foot may be required to effectively drain a reservoir. In many cases 4 extendable members per foot will be adequate.
- the casing is then run into the borehole such that the extendable members are positioned opposite the productive formation.
- the extendable members are extended mechanically, or hydraulically or a combination of mechanical and hydraulic means. This allows the devices to come in contact with the filter cake and formation face. Also, the devices will help centralize the casing in the borehole. The casing is then cemented.
- the production tubing/equipment is then run into the well.
- the well may be placed on production or solvents pumped to remove the filter cake. If the well has been drilled in an under balanced or near balanced condition, there should be little if any filter cake to remove.
- Suitable fluid systems for using in drilling the intervals of a well that penetration into or into and through a productive formation include, without limitation, any fluid system comprises a fluid carrier and particles, where the particles have a particle size distribution- for forming a low permeability filter cake on a formation face as the well is drilled and where the particle size distribution is designed so that a majority of the particles in the filter cake flow back into the casing through a sand control filter medium associated with the extendable members and minimizing adverse affects on formation productivity.
- One such fluid system for drilling the productive formation is disclosed in U.S. Pat. No. 5,504,062 to Johnson, incorporated herein by reference. Those skilled in the art will recognize that these types of fluid systems have the ability to minimize filtrate and particle invasion into the formation.
- U.S. Pat. No. 5,504,062 also disclosed, a formulation of particle sizes that protect the formation and flow back through conventional gravel pack media with minimal damage to the production potential of a formation.
- These fluids have been designed for use in openhole well construction; more particularly they are used for openhole horizontal drilling.
- Other fluid systems are disclosed U.S. Pat. No.4,620,596, 4,369,843; and 4,186,803 to Mondshine, incorporated herein by reference.
- the fluid system includes sized salt particles ; which protect the formation during well construction and workover operations.
- the fluids disclosed by Mondshine have been applied as drilling fluids in horizontal openhole well construction.
- a subsea blowout preventer stack 3 may be positioned on an ocean floor 3a in offshore application.
- the well casing string 45 includes a conductor elements 4, a surface element 5, and an intermediate element 6.
- the casing string is placed in boreholes and then cemented in place.
- drilling of a well borehole 50 is continued to a target reservoir 16.
- the drilling assembly 55 includes of a drill string 7, logging while drilling formation evaluation sensors 8, a drilling motor 9, a drill string stabilizer 10, and a drill bit 11.
- the bottom hole assembly 12 includes the logging while drilling formation evaluation sensors 8, the drilling motor 9, the drill string stabilizer 10, and the drill bit 11.
- the bottom hole assembly 12 has intersected a marker formation 15.
- the marker formation 15 is a selected geological indicator that is reached prior to the borehole 50 intersecting the target formation 16.
- the marker formation 15 provides an indication of the additional drilling depth needed drill from a current bottom hole position 14 to the target formation 16.
- conventional drilling mud is displaced with a "Drill-In Fluid" selected to protect the formation in the target reservoir 16 during drilling into or into and through the target formation 16.
- the "Drill-In Fluid” displaces the conventional mud by pumping the "Drill- i Fluid" into the drill string 7 pushing the conventional drilling fluid out of the borehole 45 via return up an annulus space 13.
- the target reservoir 16 has a formation matrix 27 including solid particles 18 and pore spaces 17.
- the pore spaces 17 are the area in the formation that generally contains oil, gas, and/or water.
- FIG 3B an example of what can happen to a formation matrix 28 is graphically depicted if a conventional drilling fluid is used to drill into and through the target reservoir or formation 16.
- a filter cake 19 has been formed from on a face 28a of the matrix 28 and mud filtrate and solid particles have invaded the pore spaces 17 which can cause a reduction in well productivity.
- a formation matrix 29 is shown depicting the use of a "Drill-In Fluid" for drilling within the target reservoir 16, which forms a filter cake 20 with little or no invasion of particulate into the pore spaces 17 protecting the formation matrix 29.
- This type of fluid will minimize any negative effects on productivity.
- FIG. 4 a section 21 of the target formation or reservoir 16 is depicted showing an adjacent portion 22a of a casing 22 having an extendable member 23 aligned adjacent a site 21a of the section 21 of the target reservoir 16.
- Figure 4 shows only a single member 23, a plurality of members 23 can be associated with sections of the casing in a spaced apart configuration to provide a plurality of production conduits within the target reservoir 16 depending on the production requirements of the reservoir 16.
- four extendable members per foot of formation are used to provide an adequate number of production conduits for most formations within producing hydrocarbon reservoirs. However, lesser and greater number of extendable members can be used as well depending on the desired production level.
- an extendable member 23 is shown in its run position or retracted state.
- the extendable member 23 includes an inner sleeve 30 having an inner sleeve lip 31, an interior 32, a sand control medium 33 disposed in a distal end portion 34 of the interior 32, an outer sleeve 35 having an inner sleeve stop 36 and an outer sleeve lip 37 and a fitting 38 having an outer sleeve stop 39, where the fitting 38 is adapted to attach the member 23 to the casing 22.
- the annulus 13 maybe filled at this point with "Drill-In Fluid" or the "Drill-In Fluid" displaced with a solids free fluid.
- a filter cake 20 protects a face 21b of the formation section 21.
- annulus 13 is shown filled with a cement 24 isolating the section 21 o f the formation 16, except for flow control points associated with the extendable members 23. At this point production tubing/equipment is run into the well and the well made ready for production.
- the formation section 21 is shown producing through an interior 32 of the extendable member 23. It should be noted that fluid 26 produced from formation section 21 has removed the portion 25 of the filter cake 20 in the area constrained by the extendable member 23. The produce fluids 26 travel through the interior 32 of the extendable member 23 into an interior 22b of the casing 22. The produced fluids 26 continue up the casing 22 and eventually enter the production tubing. They produced fluids 26 which may contain oil, gas, and/or water flow to the surface via the production tubing for processing and/or sale. Should production not reach expected levels quickly enough a solvent may be used to facilitate filter cake removal.
Landscapes
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Earth Drilling (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Undergarments, Swaddling Clothes, Handkerchiefs Or Underwear Materials (AREA)
- Laying Of Electric Cables Or Lines Outside (AREA)
Abstract
Description
Claims
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/499,112 US20060108114A1 (en) | 2001-12-18 | 2002-12-18 | Drilling method for maintaining productivity while eliminating perforating and gravel packing |
| EP02797431A EP1461510B1 (en) | 2001-12-18 | 2002-12-18 | A drilling method for maintaining productivity while eliminating perforating and gravel packing |
| CA002471261A CA2471261A1 (en) | 2001-12-18 | 2002-12-18 | A drilling method for maintaining productivity while eliminating perforating and gravel packing |
| DE60219689T DE60219689T2 (en) | 2001-12-18 | 2002-12-18 | METHOD FOR DRILLING A PRODUCTION TUBE WITHOUT BORE RESOLUTION AND PACKING |
| AU2002361794A AU2002361794A1 (en) | 2001-12-18 | 2002-12-18 | A drilling method for maintaining productivity while eliminating perforating and gravel packing |
| NO20042783A NO20042783L (en) | 2001-12-18 | 2004-07-01 | Procedure for completing a well, and a supplementary well, by simultaneously eliminating perforation and gravel packing. |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US34177901P | 2001-12-18 | 2001-12-18 | |
| US60/341,779 | 2001-12-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2003052238A1 true WO2003052238A1 (en) | 2003-06-26 |
Family
ID=23338999
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2002/040696 Ceased WO2003052238A1 (en) | 2001-12-18 | 2002-12-18 | A drilling method for maintaining productivity while eliminating perforating and gravel packing |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US20060108114A1 (en) |
| EP (2) | EP1461510B1 (en) |
| AT (1) | ATE360133T1 (en) |
| AU (1) | AU2002361794A1 (en) |
| CA (1) | CA2471261A1 (en) |
| DE (1) | DE60219689T2 (en) |
| NO (1) | NO20042783L (en) |
| WO (1) | WO2003052238A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005100743A1 (en) * | 2004-04-12 | 2005-10-27 | Baker Hughes Incorporated | Completion with telescoping perforation & fracturing tool |
| WO2005124091A1 (en) * | 2004-06-14 | 2005-12-29 | Baker Hughes Incorporated | One trip well apparatus with sand control |
| US7240739B2 (en) | 2004-08-04 | 2007-07-10 | Schlumberger Technology Corporation | Well fluid control |
| US7316274B2 (en) | 2004-03-05 | 2008-01-08 | Baker Hughes Incorporated | One trip perforating, cementing, and sand management apparatus and method |
| US7703520B2 (en) | 2008-01-08 | 2010-04-27 | Halliburton Energy Services, Inc. | Sand control screen assembly and associated methods |
| US7708076B2 (en) | 2007-08-28 | 2010-05-04 | Baker Hughes Incorporated | Method of using a drill in sand control liner |
| US7841409B2 (en) | 2008-08-29 | 2010-11-30 | Halliburton Energy Services, Inc. | Sand control screen assembly and method for use of same |
Families Citing this family (82)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
| US9109429B2 (en) | 2002-12-08 | 2015-08-18 | Baker Hughes Incorporated | Engineered powder compact composite material |
| US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
| US8403037B2 (en) | 2009-12-08 | 2013-03-26 | Baker Hughes Incorporated | Dissolvable tool and method |
| US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
| US7409999B2 (en) * | 2004-07-30 | 2008-08-12 | Baker Hughes Incorporated | Downhole inflow control device with shut-off feature |
| US7726407B2 (en) * | 2006-06-15 | 2010-06-01 | Baker Hughes Incorporated | Anchor system for packers in well injection service |
| US8096351B2 (en) * | 2007-10-19 | 2012-01-17 | Baker Hughes Incorporated | Water sensing adaptable in-flow control device and method of use |
| US8312931B2 (en) | 2007-10-12 | 2012-11-20 | Baker Hughes Incorporated | Flow restriction device |
| US7942206B2 (en) | 2007-10-12 | 2011-05-17 | Baker Hughes Incorporated | In-flow control device utilizing a water sensitive media |
| US7775277B2 (en) * | 2007-10-19 | 2010-08-17 | Baker Hughes Incorporated | Device and system for well completion and control and method for completing and controlling a well |
| US8069921B2 (en) | 2007-10-19 | 2011-12-06 | Baker Hughes Incorporated | Adjustable flow control devices for use in hydrocarbon production |
| US20090101354A1 (en) * | 2007-10-19 | 2009-04-23 | Baker Hughes Incorporated | Water Sensing Devices and Methods Utilizing Same to Control Flow of Subsurface Fluids |
| US7784543B2 (en) * | 2007-10-19 | 2010-08-31 | Baker Hughes Incorporated | Device and system for well completion and control and method for completing and controlling a well |
| US7913755B2 (en) | 2007-10-19 | 2011-03-29 | Baker Hughes Incorporated | Device and system for well completion and control and method for completing and controlling a well |
| US20090101329A1 (en) * | 2007-10-19 | 2009-04-23 | Baker Hughes Incorporated | Water Sensing Adaptable Inflow Control Device Using a Powered System |
| US7789139B2 (en) * | 2007-10-19 | 2010-09-07 | Baker Hughes Incorporated | Device and system for well completion and control and method for completing and controlling a well |
| US7913765B2 (en) | 2007-10-19 | 2011-03-29 | Baker Hughes Incorporated | Water absorbing or dissolving materials used as an in-flow control device and method of use |
| US7891430B2 (en) * | 2007-10-19 | 2011-02-22 | Baker Hughes Incorporated | Water control device using electromagnetics |
| US7918272B2 (en) * | 2007-10-19 | 2011-04-05 | Baker Hughes Incorporated | Permeable medium flow control devices for use in hydrocarbon production |
| US7793714B2 (en) | 2007-10-19 | 2010-09-14 | Baker Hughes Incorporated | Device and system for well completion and control and method for completing and controlling a well |
| US8544548B2 (en) | 2007-10-19 | 2013-10-01 | Baker Hughes Incorporated | Water dissolvable materials for activating inflow control devices that control flow of subsurface fluids |
| US7775271B2 (en) | 2007-10-19 | 2010-08-17 | Baker Hughes Incorporated | Device and system for well completion and control and method for completing and controlling a well |
| US20090101344A1 (en) * | 2007-10-22 | 2009-04-23 | Baker Hughes Incorporated | Water Dissolvable Released Material Used as Inflow Control Device |
| US7918275B2 (en) | 2007-11-27 | 2011-04-05 | Baker Hughes Incorporated | Water sensitive adaptive inflow control using couette flow to actuate a valve |
| US7712529B2 (en) * | 2008-01-08 | 2010-05-11 | Halliburton Energy Services, Inc. | Sand control screen assembly and method for use of same |
| US8839849B2 (en) | 2008-03-18 | 2014-09-23 | Baker Hughes Incorporated | Water sensitive variable counterweight device driven by osmosis |
| US7992637B2 (en) | 2008-04-02 | 2011-08-09 | Baker Hughes Incorporated | Reverse flow in-flow control device |
| US8931570B2 (en) | 2008-05-08 | 2015-01-13 | Baker Hughes Incorporated | Reactive in-flow control device for subterranean wellbores |
| US7789152B2 (en) | 2008-05-13 | 2010-09-07 | Baker Hughes Incorporated | Plug protection system and method |
| US8171999B2 (en) * | 2008-05-13 | 2012-05-08 | Baker Huges Incorporated | Downhole flow control device and method |
| US7762341B2 (en) * | 2008-05-13 | 2010-07-27 | Baker Hughes Incorporated | Flow control device utilizing a reactive media |
| US8113292B2 (en) | 2008-05-13 | 2012-02-14 | Baker Hughes Incorporated | Strokable liner hanger and method |
| US8555958B2 (en) | 2008-05-13 | 2013-10-15 | Baker Hughes Incorporated | Pipeless steam assisted gravity drainage system and method |
| US7866383B2 (en) * | 2008-08-29 | 2011-01-11 | Halliburton Energy Services, Inc. | Sand control screen assembly and method for use of same |
| US7814973B2 (en) * | 2008-08-29 | 2010-10-19 | Halliburton Energy Services, Inc. | Sand control screen assembly and method for use of same |
| US8056627B2 (en) * | 2009-06-02 | 2011-11-15 | Baker Hughes Incorporated | Permeability flow balancing within integral screen joints and method |
| US8132624B2 (en) * | 2009-06-02 | 2012-03-13 | Baker Hughes Incorporated | Permeability flow balancing within integral screen joints and method |
| US8151881B2 (en) * | 2009-06-02 | 2012-04-10 | Baker Hughes Incorporated | Permeability flow balancing within integral screen joints |
| US20100300674A1 (en) * | 2009-06-02 | 2010-12-02 | Baker Hughes Incorporated | Permeability flow balancing within integral screen joints |
| US20100300675A1 (en) * | 2009-06-02 | 2010-12-02 | Baker Hughes Incorporated | Permeability flow balancing within integral screen joints |
| US8893809B2 (en) * | 2009-07-02 | 2014-11-25 | Baker Hughes Incorporated | Flow control device with one or more retrievable elements and related methods |
| US20110005759A1 (en) * | 2009-07-10 | 2011-01-13 | Baker Hughes Incorporated | Fracturing system and method |
| US8550157B2 (en) * | 2009-07-15 | 2013-10-08 | Baker Hughes Incorporated | Apparatus and method for controlling flow of solids into wellbores using filter media containing an array of three dimensional elements |
| US8550166B2 (en) * | 2009-07-21 | 2013-10-08 | Baker Hughes Incorporated | Self-adjusting in-flow control device |
| US9016371B2 (en) * | 2009-09-04 | 2015-04-28 | Baker Hughes Incorporated | Flow rate dependent flow control device and methods for using same in a wellbore |
| US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
| US8528633B2 (en) | 2009-12-08 | 2013-09-10 | Baker Hughes Incorporated | Dissolvable tool and method |
| US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
| US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
| US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
| US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
| US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
| US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
| US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
| US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
| US9643250B2 (en) | 2011-07-29 | 2017-05-09 | Baker Hughes Incorporated | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
| US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
| US9057242B2 (en) | 2011-08-05 | 2015-06-16 | Baker Hughes Incorporated | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
| US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
| US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
| US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
| US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
| US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
| US9347119B2 (en) | 2011-09-03 | 2016-05-24 | Baker Hughes Incorporated | Degradable high shock impedance material |
| US9187990B2 (en) | 2011-09-03 | 2015-11-17 | Baker Hughes Incorporated | Method of using a degradable shaped charge and perforating gun system |
| US9133695B2 (en) | 2011-09-03 | 2015-09-15 | Baker Hughes Incorporated | Degradable shaped charge and perforating gun system |
| US9010416B2 (en) | 2012-01-25 | 2015-04-21 | Baker Hughes Incorporated | Tubular anchoring system and a seat for use in the same |
| US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
| US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
| US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
| CA2936851A1 (en) | 2014-02-21 | 2015-08-27 | Terves, Inc. | Fluid activated disintegrating metal system |
| US10865465B2 (en) | 2017-07-27 | 2020-12-15 | Terves, Llc | Degradable metal matrix composite |
| US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
| US10689740B2 (en) | 2014-04-18 | 2020-06-23 | Terves, LLCq | Galvanically-active in situ formed particles for controlled rate dissolving tools |
| US9677388B2 (en) * | 2014-05-29 | 2017-06-13 | Baker Hughes Incorporated | Multilateral sand management system and method |
| US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
| US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
| US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
| US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
| WO2021138355A1 (en) * | 2019-12-31 | 2021-07-08 | Saudi Arabian Oil Company | Viscoelastic-surfactant fracturing fluids having oxidizer |
| CN113585969B (en) * | 2021-08-19 | 2024-07-02 | 北京中煤矿山工程有限公司 | Pressure-maintaining drilling method for long-distance horizontal freezing drilling mud of shallow-covered soil water-rich sand pebble stratum |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB995517A (en) * | 1963-12-11 | 1965-06-16 | Nat Petroleum Corp Ltd | Apparatus for providing ducts through casing in a well |
| US3347317A (en) | 1965-04-05 | 1967-10-17 | Zandmer Solis Myron | Sand screen for oil wells |
| US4186803A (en) | 1976-10-26 | 1980-02-05 | Texas Brine Corporation | Well completion and work over method |
| US4369843A (en) | 1976-10-26 | 1983-01-25 | Texas Brine Corporation | Well completion and work over method |
| US4620596A (en) | 1983-09-15 | 1986-11-04 | Texas United Chemical Corp. | Well drilling, workover and completion fluids |
| US4872509A (en) * | 1985-12-23 | 1989-10-10 | Petrolphysics Operators | Oil well production system using a hollow tube liner |
| US5425424A (en) | 1994-02-28 | 1995-06-20 | Baker Hughes Incorporated | Casing valve |
| US5504062A (en) | 1992-10-21 | 1996-04-02 | Baker Hughes Incorporated | Fluid system for controlling fluid losses during hydrocarbon recovery operations |
| US5505260A (en) * | 1994-04-06 | 1996-04-09 | Conoco Inc. | Method and apparatus for wellbore sand control |
| WO1996026350A1 (en) | 1995-02-14 | 1996-08-29 | Baker Hughes Incorporated | Casing with a laterally extendable tubular member and method for sand control in wells |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2707997A (en) * | 1952-04-30 | 1955-05-10 | Zandmer | Methods and apparatus for sealing a bore hole casing |
| US3326291A (en) * | 1964-11-12 | 1967-06-20 | Zandmer Solis Myron | Duct-forming devices |
| US5612293A (en) * | 1994-12-22 | 1997-03-18 | Tetra Technologies, Inc. | Drill-in fluids and drilling methods |
| US5829520A (en) * | 1995-02-14 | 1998-11-03 | Baker Hughes Incorporated | Method and apparatus for testing, completion and/or maintaining wellbores using a sensor device |
| US5756639A (en) * | 1995-07-28 | 1998-05-26 | Shell Oil Company | Copolymerization of polyetherpolyols with epoxy resins |
-
2002
- 2002-12-18 US US10/499,112 patent/US20060108114A1/en not_active Abandoned
- 2002-12-18 DE DE60219689T patent/DE60219689T2/en not_active Expired - Fee Related
- 2002-12-18 CA CA002471261A patent/CA2471261A1/en not_active Abandoned
- 2002-12-18 EP EP02797431A patent/EP1461510B1/en not_active Expired - Lifetime
- 2002-12-18 AT AT02797431T patent/ATE360133T1/en not_active IP Right Cessation
- 2002-12-18 EP EP06021293A patent/EP1772589A1/en not_active Withdrawn
- 2002-12-18 AU AU2002361794A patent/AU2002361794A1/en not_active Abandoned
- 2002-12-18 WO PCT/US2002/040696 patent/WO2003052238A1/en not_active Ceased
-
2004
- 2004-07-01 NO NO20042783A patent/NO20042783L/en not_active Application Discontinuation
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB995517A (en) * | 1963-12-11 | 1965-06-16 | Nat Petroleum Corp Ltd | Apparatus for providing ducts through casing in a well |
| US3347317A (en) | 1965-04-05 | 1967-10-17 | Zandmer Solis Myron | Sand screen for oil wells |
| US4186803A (en) | 1976-10-26 | 1980-02-05 | Texas Brine Corporation | Well completion and work over method |
| US4369843A (en) | 1976-10-26 | 1983-01-25 | Texas Brine Corporation | Well completion and work over method |
| US4620596A (en) | 1983-09-15 | 1986-11-04 | Texas United Chemical Corp. | Well drilling, workover and completion fluids |
| US4872509A (en) * | 1985-12-23 | 1989-10-10 | Petrolphysics Operators | Oil well production system using a hollow tube liner |
| US5504062A (en) | 1992-10-21 | 1996-04-02 | Baker Hughes Incorporated | Fluid system for controlling fluid losses during hydrocarbon recovery operations |
| US5425424A (en) | 1994-02-28 | 1995-06-20 | Baker Hughes Incorporated | Casing valve |
| US5505260A (en) * | 1994-04-06 | 1996-04-09 | Conoco Inc. | Method and apparatus for wellbore sand control |
| WO1996026350A1 (en) | 1995-02-14 | 1996-08-29 | Baker Hughes Incorporated | Casing with a laterally extendable tubular member and method for sand control in wells |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7316274B2 (en) | 2004-03-05 | 2008-01-08 | Baker Hughes Incorporated | One trip perforating, cementing, and sand management apparatus and method |
| CN1957156B (en) * | 2004-04-12 | 2010-08-11 | 贝克休斯公司 | Well Completion Using Telescoping Perforating and Fracturing Tools |
| GB2429478A (en) * | 2004-04-12 | 2007-02-28 | Baker Hughes Inc | Completion with telescoping perforation & fracturing tool |
| GB2429478B (en) * | 2004-04-12 | 2009-04-29 | Baker Hughes Inc | Completion with telescoping perforation & fracturing tool |
| WO2005100743A1 (en) * | 2004-04-12 | 2005-10-27 | Baker Hughes Incorporated | Completion with telescoping perforation & fracturing tool |
| US7401648B2 (en) | 2004-06-14 | 2008-07-22 | Baker Hughes Incorporated | One trip well apparatus with sand control |
| GB2429485A (en) * | 2004-06-14 | 2007-02-28 | Baker Hughes Inc | One trip well apparatus with sand control |
| GB2429485B (en) * | 2004-06-14 | 2009-06-17 | Baker Hughes Inc | One trip well apparatus with sand control |
| WO2005124091A1 (en) * | 2004-06-14 | 2005-12-29 | Baker Hughes Incorporated | One trip well apparatus with sand control |
| US7240739B2 (en) | 2004-08-04 | 2007-07-10 | Schlumberger Technology Corporation | Well fluid control |
| US7708076B2 (en) | 2007-08-28 | 2010-05-04 | Baker Hughes Incorporated | Method of using a drill in sand control liner |
| US7703520B2 (en) | 2008-01-08 | 2010-04-27 | Halliburton Energy Services, Inc. | Sand control screen assembly and associated methods |
| US7841409B2 (en) | 2008-08-29 | 2010-11-30 | Halliburton Energy Services, Inc. | Sand control screen assembly and method for use of same |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2002361794A1 (en) | 2003-06-30 |
| DE60219689T2 (en) | 2008-01-17 |
| EP1461510A1 (en) | 2004-09-29 |
| EP1461510B1 (en) | 2007-04-18 |
| US20060108114A1 (en) | 2006-05-25 |
| ATE360133T1 (en) | 2007-05-15 |
| CA2471261A1 (en) | 2003-06-26 |
| DE60219689D1 (en) | 2007-05-31 |
| NO20042783L (en) | 2004-08-27 |
| EP1772589A1 (en) | 2007-04-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1461510B1 (en) | A drilling method for maintaining productivity while eliminating perforating and gravel packing | |
| US8517098B2 (en) | Wellbore method and apparatus for completion, production and injection | |
| EP1509675B1 (en) | Method for construction and completion of injection wells | |
| US7841398B2 (en) | Gravel packing apparatus utilizing diverter valves | |
| CN1714226A (en) | Well treating process and system | |
| EP3752704B1 (en) | Curing a lost circulation zone in a wellbore | |
| US7478674B2 (en) | System and method for fracturing and gravel packing a wellbore | |
| CA2999197C (en) | Method of well completion | |
| GB2556905A (en) | Method and apparatus for plugging a well | |
| US12276182B2 (en) | Completing a wellbore | |
| US20120273200A1 (en) | Methods for treating a wellbore |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2471261 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2002797431 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2002797431 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2006108114 Country of ref document: US Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 10499112 Country of ref document: US |
|
| WWP | Wipo information: published in national office |
Ref document number: 10499112 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |
|
| WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2002797431 Country of ref document: EP |