WO2002017595A2 - Global network computers - Google Patents
Global network computers Download PDFInfo
- Publication number
- WO2002017595A2 WO2002017595A2 PCT/US2001/041849 US0141849W WO0217595A2 WO 2002017595 A2 WO2002017595 A2 WO 2002017595A2 US 0141849 W US0141849 W US 0141849W WO 0217595 A2 WO0217595 A2 WO 0217595A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- network
- personal computer
- microprocessors
- microprocessor
- memory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/02—Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
- H04L63/0209—Architectural arrangements, e.g. perimeter networks or demilitarized zones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
- H04L69/322—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
- H04L69/329—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
Definitions
- This invention relates generally to one or more computer networks that include computers, such as personal computers (PC's) or network computers such as servers, which have microprocessors linked by broadband transmission means and have hardware, software, firmware, and other means such that at least two parallel processing operations occur that involve at least two sets of computers in the network or in interconnected networks.
- PC's personal computers
- servers which have microprocessors linked by broadband transmission means and have hardware, software, firmware, and other means such that at least two parallel processing operations occur that involve at least two sets of computers in the network or in interconnected networks.
- This invention constitutes a form of metacomputing.
- this invention relates to one or more large networks, like the Internet, which comprise smaller networks and large numbers of interconnected computers, wherein multiple separate parallel or massively parallel processing operations involving multiple different sets of computers occur simultaneously. Even more particularly, this invention relates to one or more such networks wherein multiple parallel or massively parallel microprocessing processing operations occur separately or in an interrelated fashion, and wherein ongoing network processing linkages are established between virtually any microprocessors of separate computers connected to the network.
- this invention relates generally to a network structure or architecture that enables the shared use of network microprocessors for parallel processing, including massive parallel processing, and other shared processing such as multitasking, wherein personal computer owners provide microprocessor processing power to a network, such as for parallel or massively parallel processing or multitasking, in exchange for network linkage to other personal computers and other computers supplied by network providers such as Internet Service Providers (ISP's), including linkage to other microprocessors for parallel or other processing such as multitasking.
- ISP's Internet Service Providers
- the financial basis of the shared use between owners and providers may be whatever terms to which the parties agree, subject to governing laws, regulations, or rules, including payment from either party to the other based on periodic measurement of net use or provision of processing power like a deregulated electrical power grid or involving no payment.
- the network system may provide an essentially equivalent usage of computing resources by both users and providers since any network computer operated by either entity is potentially both a user and provider of computing resources alternately or simultaneously, assuming multitasking is operative.
- a user may have an override option exercised on the basis of, for example, a user profile, a user's credit line, or relatively instant payment.
- This invention also relates to a network system architecture including hardware and software that provides use of the Internet or other network, without cost, to users of personal computers or other computers, while also providing users with computer processing performance that at least doubles every 18 months through metacomputing means.
- This metacomputing performance increase provided by the new Grid (or Metalnternet) is in addition to other performance increases, such as those already anticipated by Moore's Law.
- microprocessor computing speeds whether measured in simple clock speed or MIPS (millions of instructions per second) or numbers of transistors per chip.
- MIPS millions of instructions per second
- performance has improved by four or five times every three years since Intel launched its X86 family of microprocessors used in the currently dominant "Wintel" standard personal computers.
- the initial Intel Pentium Pro microprocessor was introduced in 1995 and is a thousand times faster than the first IBM standard PC microprocessor, the Intel 8088, which was introduced in 1979.
- the fastest of microprocessors such as Digital Equipment Corporation's Alpha chip, and even the microprocessor of the Nintendo 64 video game system, were faster than the processor in the original Cray Y-MP supercomputer.
- Microprocessors, software, firmware, and other components are also evolving from 8-bit and 16-bit systems into the 32-bit systems that are becoming the standard today, with some 64-bit systems like the DEC Alpha already introduced and more coming, such as Intel's Itanium microprocessor in 2001, with future increases to 128-bit systems likely.
- a form of parallel processing called superscalar processing is also being employed within microprocessor design.
- microprocessors such as the Intel Pentium
- the current generation of microprocessors have more than one data path within the microprocessor in which data is processed, with two to three paths being typical now and as many as eight in 1998 in IBM's new Power 3 microprocessor chip.
- a third major development trend is the increasing size of bandwidth, which is a measure of communications power or transmission speed, in terms of units of data per second, between computers connected by a network.
- bandwidth is a measure of communications power or transmission speed, in terms of units of data per second, between computers connected by a network.
- the local area networks and telephone lines typically linking computers including personal computers have operated at speeds much lower than the processing speeds of a personal computer.
- a typical 1997 Intel Pentium operates at 100 MIPS
- the most common current Ethernet connecting PC's is roughly 10 times slower at 10 megabits per second (Mbps)
- Mbps megabits per second
- ATM ATM
- digital signal processors whose price/performance ratio has improved tenfold every two years, are also supporting the rapid increase in bandwidth.
- the increase in bandwidth reduces the need for switching, and switching speed will be greatly enhanced when practical optical switches are introduced in the near future, potentially reducing costs substantially.
- the result of this huge bandwidth increase is extraordinary: already it is technically possible to connect virtually any computer to a network with a bandwidth that equals or exceeds the computer's own internal system bus speed, even as that bus speed itself is increasing significantly.
- the principal constraint is the infrastructure, consisting mostly of connecting the "last mile" to personal computers with optical fiber or other broad bandwidth connections, which still need to be built.
- the system bus of a computer is its internal network connecting many or most of its internal components such as microprocessor, random access memory (RAM), hard drive, modem, floppy drive, and CD-ROM; for recent personal computers, the system bus has been only about 40 megabits per second, but is up to 133 megabits per second on Intel's Pentium PCI bus in 1995.
- IBM's 1998 Power3 microprocessor chip has a system bus of 1.6 gigabits per second and there is now up to a gigabit per second on Intel's Pentium PCI bus.
- a typical PC is already so fast that its microprocessor is essentially idle during most of the time the PC is in actual use, and the operating time itself is but a small fraction of those days the PC is even in use at all. Nearly all PC's are essentially idle during roughly all of their useful life.
- a microprocessor of a PC may be in an idle state 99.9% of the time, disregarding unnecessary microprocessor busywork such as executing screen saver programs, which have been made essentially obsolete by power-saving CRT monitor technology, which is now standard in the PC industry.
- PC idle time does not in effect store a PC, saving it for future use, since the principle limiting factor to continued use of today's PC's is obsolescence, not equipment failure resulting from use.
- the solution is to use those mostly idle PC's (or their equivalents or successors) to build a parallel or massively parallel processing computer or computers utilizing a very large network, like the Internet or, more specifically, like the World Wide Web (WWW), or their equivalents or eventual successors like the Grid or Metalnternet (and including Internet II and the Next Generation Internet, which are under development now and which will utilize much broader bandwidth and will coexist with the Internet, the structure of which is in ever constant hardware and software upgrade and including the Superlntemet based on essentially all optical fiber transmission) with extremely broad bandwidth connections and virtually unlimited data transmission speed.
- WWW World Wide Web
- a prime characteristic of the Internet is the very large number of computers of all sorts already linked thereto, with the future potential for an effectively universal connection.
- the Internet is a network of networks of computers that provides nearly unrestricted access worldwide.
- the currently existing and soon-to-be widely available very broad bandwidth of network communications is used to link personal computers externally in a manner at least equivalent to, and probably much faster than, the faster internal system buses of the personal computers, so that no external processing constraint is imposed on linked personal computers by data input, output, or throughput; the speed of the microprocessor itself and the internal connections or buses of the PC are the only processing constraint of the system.
- the World Wide Web is transformed into a huge virtual massively parallel processing computer or computers, with potential through its established hyperlinks connections to operate in a manner at least somewhat like a neural network or neural networks, since the speed of transmission in the broadband linkages is so great that any linkage between two microprocessors is virtually equivalent to direct, physically close connections between those microprocessors.
- digital signal processor-type microprocessors and/or analogue microprocessors may be particularly advantageous for this approach, either alone or in conjunction with conventional microprocessors and/or the new microprocessors described below.
- Networks with WWW-type hyperlinks incorporating digital signal processor-type microprocessors could operate separately from networks of conventional microprocessors or with one or more connections between such differing networks or with relatively complete integration between such differing networks. Simultaneous operation across the same network connection structure should be possible, employing non-interfering transmission links.
- the metacomputing hardware and software means of the Grid provides performance increases that are likely to at least double every eighteen months based on the doubling of personal computers shared in a typical parallel processing operation by a standard PC user, starting first with at least 2 PC's, then about 4, about 8, about 16, about 32, about 64, about 128, about 256, and about 512, for example. After about fifteen years, for example, it is anticipated that each standard PC user will likely be able to use a maximum of about 1,024 personal computers for parallel processing or any other shared computing use, while generally using for free the Internet or its successors, like the Grid (or Metalnternet).
- supercomputers experience a similar performance increase generally, but ultimately the performance increase is limited primarily by the cost of adding network linkages to available PC's, so there is definite potential for a huge leap in supercomputer performance.
- Network computer systems as described above offer almost limitless flexibility due to the abundant supply of heretofore idle connected microprocessors.
- This advantage allows "tightly coupled" computing problems, which normally are difficult to process in parallel, to be solved without knowing in advance how many processors are available (as is now necessary in relatively massively parallel processing), what they are, and their connection characteristics.
- a minimum number of equivalent processors are easily found nearby in a massive network like the Internet and assigned within the network from those multitudes available nearby.
- the number of microprocessors used are almost completely flexible, depending on the complexity of the problem, and limited only by cost.
- the existing problem of time delay is solved largely by the widespread introduction of broad bandwidth connections between computers processing in parallel.
- the state of the known art relating to this application is summarized in The Grid: Blueprint for a New Computing Infrastructure, edited by Ian Foster and Carl Kesselman, and published by Morgan Kaufman Publishers, Inc. in 1998.
- the state of the known art relating to this application is also summarized in: Scalable Parallel Computing by Kai Hwang and Zhiwei Xu, published by WCB McGraw-Hill in 1998; Parallel Programming by Barry Wilkinson and Michael Allen, published by Prentice Hall in 1998; Computer Architecture: A Quantitative Approach (2nd Edition) by David Patterson and John Hennessy, published by Morgan Kaufmann in 1996; Parallel Computer Architecture by David Culler and Jaswinder Singh, published by Morgan Kaufman in 1998; and Computer Organization and Design by John Hennessy and David Patterson, published by Morgan Kaufman in 1998.
- Figure 1 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a meter means which measures flow of computing during a shared operation such as parallel processing between a typical PC user and a network provider.
- Figure 2 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of another meter means which measures the flow of network resources, including shared processing, being provided to a typical PC user and a network provider.
- Figure 3 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of another meter means which, prior to execution, estimates the level of network resources, and their cost, of a shared processing operation requested by a typical PC user from a network provider.
- Figures 4A-4C are simplified diagrams of a section of a computer network, such as the Internet, showing in a sequence of steps an embodiment of a selection means whereby a shared processing request by a PC is matched with a standard preset number of other PC's to execute a shared operation.
- FIGS 5 A and 5B are simplified diagrams of a section of a computer network, such as the Internet, showing embodiments of a control means whereby the PC, when idled by its user, is made available to the network for shared processing operations.
- Figure 6 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a signal means whereby the PC, when idled by its user, signals its availability to the network for shared processing operations.
- Figure 7 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a receiver and or interrogator means whereby the network receives and/or queries the availability for shared processing status of a PC within the network.
- Figure 8 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a selection and/or utilization means whereby the network locates available PC's in the network that are located closest to each other for shared processing.
- Figure 9 is a simplified diagram of a section of a computer network, such as the
- Internet showing an embodiment of a system architecture for conducting a request imitated by a PC for a search using parallel processing means that utilizes a number of networked PC's.
- FIGS 10A-10I are simplified diagrams of a section of a computer network, such as the Internet, showing an embodiment of a system architecture utilizing an internal firewall to separate that part of a networked PC (including a system reduced in size to a microchip) that is accessible to the network for shared processing from a part that is kept accessible only to the PC user; also showing the alternating role that each PC in the network may play as either a master or slave in a shared processing operation involving one or more slave PC's in the network; and showing a home or business network system which can be configured as an Intranet; in addition, showing PC and PC microchips controlled by a controller (including remote) with limited or no processing capability; and showing PC and PC microchips in which an internal firewall 50 can be reconfigured by a PC user.
- a controller including remote
- Figure 11 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a system architecture for connecting clusters of PC's to each other by wireless means, to create the closest possible (and therefore fastest) connections.
- Figure 12 is a simplified diagram of a section of a computer network, such as the
- Internet showing an embodiment of a system architecture for connecting PC's to a satellite by wireless means.
- Figure 13 is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a system architecture providing a cluster of networked PC's with complete interconnectivity by wireless means.
- Figure 14A is a simplified diagram of a section of a computer network, such as the Internet, showing an embodiment of a transponder means whereby a PC can identify one or more of the closest available PC's in a network cluster to designate for shared processing by wireless means.
- Figure 14B shows clusters connected wirelessly.
- Figure 14C shows a wireless cluster with transponders and with a network wired connection to the Intemet.
- Figure 14D shows a network client/server wired system with transponders.
- Figure 15 is a simplified diagram of a section of a computer network, such as the Intemet, showing an embodiment of a routing means whereby a PC request for shared processing is routed within a network using broad bandwidth connection means to another area in a network with one or more idle PC's available.
- Figures 16A-16Z, 16AA, and 16AB show a new hierarchical network architecture for personal computers and/or microprocessors based on subdivision of parallel processing or multi-tasking operations through a number of levels down to a processing level.
- Figures 17A-17D show an internal firewall 50 with a dual function, including that of protecting Internet users (and/or other network users sharing use) of one or more slave personal computers PC 1 or microprocessors 40 from unauthorized surveillance or intervention by an owner/operator of those slave processors.
- Figures 18A-18D show designs for one or more virtual quantum computers integrated into one or more digital computers.
- Figure 19 shows special adaptations to allow the use of idle automobile computers to be powered and connected to the Internet (or other net) for parallel or multi-tasking processing.
- Figures 20A and 20B show separate broad bandwidth outputs or inputs such as an optical connection like glass fiber from each microprocessor 40 or 94.
- Figures 21A and 21B are similar to Figures 20A and 20B, but show additionally that all microprocessors of a personal computer or personal computer on a microchip can have a separate input/output communication link to a digital signal processor (DSP) or other transmission/reception connection component.
- Figure 21.C shows a H-tree configuration of binary tree networks.
- Figure 22 A shows a PC microprocessor on a microchip similar to that of Figure 2 IB, except that Figure 22 A shows microprocessors 93 and 94 each connecting to an optical wired connection 99' such as thin mirrored hollow wire or optical omniguide or optical fiber.
- an optical wired connection 99' such as thin mirrored hollow wire or optical omniguide or optical fiber.
- Figures 23A-23E show multiple firewalls 50 within a personal computer 1 or PC microchip 90.
- Figure 24 shows a hard drive with an internal firewall 50.
- Figures 25A-25D show the use for security of power interruption or data overwrite of volatile memory like DRAM and non- volatile memory like Flash or MRAM (or ovonics), respectively, of the network portion of a personal computer PCI or system on a microchip PC90.
- the new network computer utilizes PC's as providers of computing power to the network, not just users of network services. These connections between network and personal computer are enabled by a new form of computer/network financial structure that is rooted in the fact that economic resources being provided the network by PC owners (or leaser) are similar in value to those being provided by the network provider providing connectivity.
- This new network operates with a structural relationship that is roughly like that which presently exists between an electrical power utility and a small independent power generator connected to a deregulated utility's electrical power grid, wherein electrical power can flow in either direction between utility and independent generator depending on the operating decisions of both parties, and at any particular point in time each party is in either a debt or credit position relative to the other based on the net direction of that flow for a given period, and each party is billed accordingly.
- electrical power in terms of creation and transmission, is becoming a commodity bought and sold in a competitive marketplace that crosses traditional borders.
- ISP Internet service provider
- ISP Internet service provider
- telecommunication companies " television cable or broadcast companies, electrical power utilities or other related companies, satellite communications companies, or their present or future equivalents, coexistors or successors.
- connection means used in the networks of the network providers may be very broad bandwidth, including electromagnetic connections such as optical connections, including wired like fiber optic cable or wireless like optical wireless, for example, but not excluding any other electromagnetic or other means, including television coaxial cable and telephone twisted pair, as well as associated gateways, bridges, routers, and switches with all associated hardware and/or software and/or firmware and/or other components and their present or future equivalents or successors.
- the computers used by the Intemet service providers include any current or future computers, including such current examples as mainframes, minicomputers, servers, and personal computers, and their associated hardware and/or software and/or firmware and/or other components, and their present or future equivalents or successors.
- Levels of network control beyond the Internet or other network service provider also exist to control any aspect of the parallel processing network structure and function, any one of which levels may or may not control and interact directly with the PC user.
- at least one level of network control like the World Wide Web Consortium (W3C) or Intemet Society (ISOC) or other ad hoc industry consortia establish and ensure compliance with any prescribed parallel processing network standards and/or protocols and/or industry standard agreements for any hardware and/or software and/or firmware and/or other component connected to the network.
- W3C World Wide Web Consortium
- ISOC Intemet Society
- other levels of the parallel processing network control can deal with administration and operation of the network.
- These other levels of the parallel processing network control can potentially be constituted by any network entity, including those defined immediately above for network providers.
- the principal defining characteristic of the parallel processing network herein described is communication connections (including hardware and/or software and/or firmware and/or other component) of any form, including electromagnetic (such as light and radio or microwaves) and electrochemical (and not excluding biochemical or biological), between PC users and their computers, with connection (either directly or indirectly) to the largest number possible of users and their computers and microprocessors being highly advantageous, such as networks like the Internet (and Internet II and the Next Generation Internet) and WWW and equivalents and successors, like the Grid (or Metalnternet). Multiple levels of such networks will likely coexist with different technical capabilities, like Internet and Internet II, but have interconnection and therefore communicate freely between levels, for such standard network functions as electronic mail, for example.
- communication connections including hardware and/or software and/or firmware and/or other component of any form, including electromagnetic (such as light and radio or microwaves) and electrochemical (and not excluding biochemical or biological), between PC users and their computers, with connection (either directly or indirectly) to the largest number possible of users and their computers and microprocessor
- a personal computer (PC) user is defined in the broadest possible way as any individual or other entity routinely using a personal computer, which is defined as any computer, such as digital or analog or neural or quantum, particularly including personal use microprocessor-based personal computers having one or more microprocessors (each including one or more parallel processors) in their general current form, including hardware with fixed or reconfigurable circuitry (such as field-programmable gate array or FPGA) and/or electro-mechanical components (including micro or nano sized) and/or optical components, including all-optical, and/or software and/or firmware and/or any other component and their present and future equivalents or successors, such as application-specific (or several application) computers, network computers, handheld personal digital assistants, personal communicators such as telephones and pagers, wearable computers, digital signal processors, neural-based computers (including PC's), entertainment devices such as televisions and associated cable digital set-top control boxes, video tape recorders, video electronic games, videocams, compact or digital video disk (CD or DND) player/record
- Such personal computers as defined above have owners or leasers, which may or may not be the same as the computer users.
- Continuous connection of computers to the network, such as the Intemet, WWW, or equivalents or successors, is not required, since connection can also be made at the initiation of a shared processing operation.
- Parallel processing is defined as one form of shared processing involving two or more microprocessors used in solving the same computational problem or other task. Massively parallel microprocessor processing involves large numbers of microprocessors. In today's technology, massive parallel processing is probably to be considered to be about 64 microprocessors (referred to in this context as nodes) and over 7,000 nodes have been successfully tested in an Intel supercomputer design using PC microprocessors (Pentium Pros).
- Broadband wavelength or broad bandwidth network transmission is defined here to mean a transmission speed (usually measured in bits per second) that is at least high enough (or roughly at least equivalent to the internal clock speed of the microprocessor or microprocessors times the number of microprocessor channels equaling instructions per second or operations per second or calculations per second) so that the processing input and output of the microprocessor is substantially unrestricted, particularly including at peak processing levels, by the bandwidth of the network connections between microprocessors that are performing some form of parallel processing, particularly including massive parallel processing. Since this definition is dependent on microprocessor speed, it increases as microprocessor speeds increase.
- the network connection to the microchip may have bandwidth broad enough to ensure that all of the microprocessors are unrestricted by a bottleneck at the comiection during the microprocessors' peak processing levels.
- a connection means referenced above is a light wave or optical waveguide connection such as fiber optic cable, which in 1996 already provided multiple gigabit bandwidth on single fiber thread and is rapidly improving significantly on a continuing basis, so the general use of optical waveguide connections such as fiber between PCs may assure broad bandwidth for data transmission that is far greater than microprocessor and associated internal bus speed to provide data to be transmitted.
- connection means to provide broad bandwidth transmission is either wired or wireless, with wireless (especially optical) generally provided for mobile personal computers (or equivalents or successors) and as otherwise indicated below.
- Wireless connection bandwidth is also increasing rapidly and optical wireless bandwidth is considered to offer essentially the same benefit as fiber optic cable: data transmission speed that exceeds data processing speed.
- the financial basis of the shared use between owners/ leasers and providers is whatever terms to which the parties agree, subject to governing laws, regulations, or rules, including payment from either party to the other based on periodic measurement of net use or provision of processing power, in a manner like an deregulated or open market electrical power grid.
- a meter device 5 (comprising hardware and/or software and/or firmware and/or other component) to measure the flow of computing power between PC 1 user and network 2 provider, which may provide connection to the Internet and/or World Wide Web and/or Intemet II and/or any present or future equivalent or successor 3, like the Grid (or Metalnternet).
- the PC user may be measured by some net rating of the processing power being made available to the network, such as net score on one or more standard tests measuring speed or other performance characteristics of the overall system speed, such as PC Magazine's benchmark test program, ZD Winstone (potentially including hardware and/or software and/or firmware and/or other component testing) or specific individual scores for particularly important components like the microprocessor (such as MIPS or millions of instructions per second) that may be of application-specific importance, and by the elapsed time such resources were used by the network.
- net rating of the processing power being made available to the network such as net score on one or more standard tests measuring speed or other performance characteristics of the overall system speed, such as PC Magazine's benchmark test program, ZD Winstone (potentially including hardware and/or software and/or firmware and/or other component testing) or specific individual scores for particularly important components like the microprocessor (such as MIPS or millions of instructions per second) that may be of application-specific importance, and by the elapsed time such resources were used by the network.
- such a meter need measure only the time the PC was made available to the network for processing 4, which can be used to compare with time the PC used the network (which is already normally measured by the provider, as discussed below) to arrive at a net cost; potential locations of such a meter include at a network computer such as a server, at the PC, and at some point on the connection between the two. Throughput of data in any standard terms is another potential measure.
- a meter device 7 (comprised of hardware and/or software and/or firmware and/or other component) that measures the amount of network resources 6 that are being used by each individual PC 1 user and their associated cost. This includes, for example, time spent doing conventional downloading of data from sites in the network or broadcast from the network 6.
- metering devices currently exist to support billing by the hour of service or type of service, as is common in the public industry, by providers such as America Online, CompuServe, and Prodigy.
- the capability of such existing devices is enhanced to include a measure of parallel processing resources that are allocated by the Internet Service Provider or equivalent to an individual PC user from other PC users 6, also measured simply in time.
- a meter 10 also estimates to the individual PC user prospectively the amount of network resources needed to fulfill a processing request from the PC user to the network (provider or other level of network control) and associated projected cost, provides a means of approving the estimate by executing the request, and a realtime readout of the cost as it occurs (alternatively, this meter may be done only to alert 9 the PC user that a given processing request 8 falls outside normal, previously accepted parameters, such as level of cost).
- a priority or time limit and depth of search may be criteria or limiting parameters that the user can determine or set with the device, or that can be preset, for example, by the network operating system of the ISP or by the operating system of the PC or other components of the parallel processing system.
- the network may involve no payment between users and providers, with the network system (software, hardware, etc.) providing an essentially equivalent usage of computing resources by both users and providers (since any network computer operated by either entity can potentially be both a user and provider of computing resources (even simultaneously, assuming multitasking), with potentially an override option by a user (exercised on the basis, for example, of user profile or user's credit line or through relatively instant payment).
- the network system software, hardware, etc.
- the priority and extent of use of PC and other users may be controlled on a default-to-standard-of-class-usage basis by the network (provider or other) and overridden by the user decision on a basis prescribed by the specific network provider (or by another level of network control).
- a default basis is to expend up to a PC's or other user's total credit balance with the provider described above and the network provider then to provide further prescribed service on a debt basis up to some set limit for the user; different users may have different limits based on resources and/or credit history.
- a specific category of PC user based, for example, on specific microprocessor hardware owned or leased, may have access to a set maximum number of parallel PC's or microprocessors, with smaller or basic users generally having less access and vice versa.
- Specific categories of users may also have different priorities for the execution of their processing by the network other than the simplest case of first come, first served (until complete).
- a very wide range of specific structural forms between user and provider are possible, both conventional and new, based on unique features of the new network computer system of shared processing resources.
- a standard PC 1 user request 11 for a use involving parallel processing may be defaulted by system software 13, as shown in Fig. 4B, to the use of only one other essentially identical PC 1 2 microprocessor for parallel processing or multitasking, as shown in Figure 4C; larger standard numbers of PC microprocessors, such as about three PC's at the next level, as shown in later Figure 10G (which could also illustrate a PC 1 user exercising an override option to use a level of services above the default standard of one PC microprocessor, presumably at extra cost), for a total of about four, then about 8, about 16, about 32, about 64, and so on, or virtually any number in between, is made available as the network system is upgraded in simple phases over time, as well as the addition of sophisticated override options.
- PC microprocessors can be made available to the standard PC user (virtually any number), starting at about 128, for example, then about 256, then about 512, then about 1024 and so on over time, as the network and all of its components are gradually upgraded to handle the increasing numbers.
- System scalability at even the standard user level is essentially unlimited over time.
- connection to the Intemet or present or future equivalents or successors like the Grid (or Metalnternet) may be at no cost to PC users, since in exchange for such Internet access the PC users can generally make their PC, when idle, available to the network for shared processing.
- Competition between Internet Service Providers (including present and future equivalents and successors) for PC user customers may be over such factors as the convenience and quality of the access service provided and of shared processing provided at no additional cost to standard PC users, or on such factors as the level of shared processing in terms, for example, of number of slave PC's assigned on a standard basis to a master PC.
- the ISP's can also compete for parallel processing operations, from inside or outside the ISP Networks, to conduct over their networks.
- a (hardware and/or software and/or firmware and/or other) controlling device to control access to the user's PC by the network.
- the PC user could set this controller device to make the PC available to the network when not in use by the PC user.
- the PC user could set the controller device to make the PC available to the network whenever in an idle state, however momentary, by making use of multitasking hardware and/or software and/or firmware and/or other component (broadcast or "push" applications from the Internet or other network could still ran in the desktop background).
- Such shared processing can continue until the device 12 detects an application being opened 16 in the first PC (or at first use of keyboard, for quicker response, in a multitasking environment), when the device 12 signals 17 the network computer such as a server 2 that the PC is no longer available to the network, as shown in Figure 5B, so the network can then terminate its use of the first PC.
- the network computer such as a server 2 that the PC is no longer available to the network, as shown in Figure 5B, so the network can then terminate its use of the first PC.
- the transponder device is resident in the user PC and broadcasts its idle state or other status (upon change or periodically, for example) or responds to a query signal from a network device.
- transponder device 21 resident in a part of the network (such as network computer, switch, router, or another PC, for example) that receives 22 the PC device status broadcast and/or queries 26 the PC for its status, as shown in Figure 7.
- the network grid also has resident in a part of its hardware and/or software (and/or firmware and/or other components) a capacity such as to allow it to most effectively select and utilize the available user PC's to perform parallel processing initiated by PC users or the network providers or others.
- the network grid should have the (hardware and/or software and/or firmware and/or other component) capability of locating each PC accurately at the PC's position on the geographic grid lines/connection means 23 so that parallel processing occurs between PC's (PC 1 and PC 1 2 ) as close together as possible, which should not be difficult for PC's at fixed sites with a geographic location, customarily grouped together into cells 24, as shown in Figure 8, but which requires an active system for any wireless microprocessor to measure its distance from its network relay site, as discussed below in Figure 14.
- One of the primary capabilities of the Internet (or Internet II or successor, like the Grid or Metalnternet) or WWW network computer is to facilitate searches by the PC user or other user.
- searches are particularly suitable to multiple processing, since, for example, a typical search is to find a specific Internet or WWW site with specific information.
- site searches can be broken up geographically, with a different PC processor 1' allocated by the network communicating through a wired means 99 as shown (or wireless connections) to search each area, the overall area being divided into eight separate parts, as shown, which may be about equal, so that the total search would be about 1/8 as long as if one processor did it alone (assuming the PC 1 microprocessor provides control only and not parallel processing).
- a single PC user might need 1,000 minutes of search time to find what is requested, whereas the network computer, using multiple PC processors, might be able to complete the search in 100 minutes using 10 processors, or 10 minutes using 100 processors or 1 minute using 1,000 processors (or even 1 second using 60,000 processors), assuming performance transparency, which should be achievable, at least over time, even for massive numbers of parallel processors.
- the parallel processing network's external parallel processing may be completely scalable, with virtually no theoretical limit.
- the above examples also illustrates a tremendous potential benefit of network parallel processing. The same amount of network resources, 60,000 processor seconds, was expended in each of the equivalent examples.
- the network can provide the user with relatively immediate response with no difference in cost (or relatively little difference) — a major benefit.
- each PC user linked to the network providing external parallel processing becomes, in effect, a virtual supercomputer.
- supercomputers can experience a similar spectacular leap in performance by employing a thousand-fold (or more) increase in microprocessors above current levels. Such power will likely be required for any effective searches in the World Wide
- WWW WorldNetwork
- WWW WorldNetwork
- searching for information within the WWW will become geometrically more difficult in future years, particularly a decade hence, and it is already a very significant difficulty to find WWW sites of relevance to any given search and then to review and analyze the contents of the site.
- the capability to search with massive parallel processing can dramatically enhance the capabilities of scientific, technological and medical researchers.
- Such enhanced capabilities for searching (and analysis) can also fundamentally alter the relationship of buyers and sellers of any items and/or services.
- massive parallel network processing can make it possible to find the best price, worldwide, for any product or the most highly rated product or service (for performance, reliability, etc.) within a category or the best combination of price/performance or the highest rated product for a given price point and so on.
- the best price for the product can include best price for shipping within specific delivery time parameters acceptable to the buyer.
- such parallel processing can drastically enhance the search, worldwide, for customers potentially interested in a given product or service, providing very specific targets for advertisement. Sellers and producers can know their customers directly and interact with them directly for feedback on specific products and services to better assess customer satisfaction and survey for new product development.
- the Internet or WWW network computer system like the Grid (or Metah ternet) can put into the hands of the PC user an extraordinary new level of computer power vastly greater than the most powerful supercomputer existing today.
- the world's total of microchips was already about 350 billion in 1997, of which about 15 billion are microprocessors of some kind; most are fairly simple "appliance" type microchips running wrist watches, televisions, cameras, cars, telephones, etc.
- the Intemet/Intemet II/WWW may have a billion individual PC users, each providing an average total of at least 10 highly sophisticated microprocessors (assuming PC's with at least 4 microprocessors (or more, such as 16 microprocessors or 32, for example) and associated other handheld, home entertainment, and business devices with microprocessors or digital processing capability, like a digital signal processor or successor devices. That results in a global computer a decade from now made of at least 10 billion microprocessors, interconnected by broad bandwidth electromagnetic wave means at speeds approaching the speed of light.
- homogeneity of parallel (and multi-tasking) processing design standards for microprocessors and network, including local and Internet, may be employed, but heterogeneity is also a well established parallel processing alternative providing significant benefits compared to non-parallel processing.
- a typical supercomputer today utilizing the latest PC microprocessors has less than a hundred.
- Using network linkage to all external parallel processing a peak maximum of perhaps 1 billion microprocessors can be made available for a network supercomputer user, providing it with the power 10,000,000 times greater than is available using current conventional internal parallel processing supercomputers (assuming the same microprocessor technology).
- Figures 1-9 show embodiments of a system for a network of computers, including personal computers, comprising: means for network services including browsing functions, as well as shared computer processing such as parallel processing, to be provided to the personal computers within the network; at least two personal computers; means for at least one of the personal computers, when idled by a personal user, to be made available temporarily to provide the shared computer processing services to the network; and means for monitoring on a net basis the provision of the services to each personal computer or to the personal computer user.
- Figures 1-9 show embodiments including where the system is scalar in that the system imposes no limit to the number of the personal computers, including at least 1024 personal computers; the system is scalar in that the system imposes no limit to the number of personal computers participating in a single shared computer processing operation, including at least 256 personal computers; the network is connected to the Internet and its equivalents and successors, so that the personal computers include at least a million personal computers; the network is connected to the World Wide Web and its successors; the network includes at least one network server that participates in the shared computer processing; the monitoring means includes a meter device to measure the flow of computing power between the personal computers and the network; the monitoring means includes a means by which the personal user of the personal computer is provided with a prospective estimate of cost for the network to execute an operation requested by the personal user prior to execution of the operation by the network; the system has a control means by which to permit and to deny access to the personal computers by the network for shared computer processing; access to the personal computers by the network is limited to those
- Figures 1-9 show embodiments of a system for a network of computers, including personal computers, comprising: means for network services including browsing functions, as well as shared computer processing such as parallel processing, to be provided to the personal computers within the network; at least two personal computers; means for at least one of the personal computers, when idled by a personal user, to be made available temporarily to provide the shared computer processing services to the network; and means for maintaining a standard cost basis for the provision of the services to each personal computer or to the personal computer user.
- Figures 1-9 show embodiments including where the system is scalar in that the system imposes no limit to the number of personal computers, including at least 1,024 personal computers; the system is scalar in that the system imposes no limit to the number of the personal computers participating in a single shared computer processing operation, including at least 256 personal computers; the network is connected to the Internet and its equivalents and successors, so that the personal computers include at least a million personal computers; the standard cost is fixed; the fixed standard cost is zero; the means for maintaining a standard cost basis includes the use of making available a standard number of personal computers for shared processing by personal computers; the network is connected to the World Wide Web and its successors; the personal user can override the means for maintaining a standard cost basis so that the personal user can obtain additional network services; the system has a control means by which to permit and to deny access to the personal computers by the network for shared computer processing; the personal computers having at least one microprocessor and communicating with the network through a connection means having a speed of data transmission that is at least
- Browsing functions generally include functions like those standard functions provided by current Internet browsers, such as Microsoft Explorer 3.0 or 4.0 and Netscape Navigator 3.0 or 4.0, including at least access to searching World Wide Web or Internet sites, exchanging E-Mail worldwide, and worldwide conferencing; an intranet network uses the same browser software, but may not include access to the Internet or WWW.
- Shared processing includes parallel processing and multitasking processing involving more than two personal computers, as defined above.
- the network system is entirely scalar, with any number of PC microprocessors potentially possible.
- microprocessor or equivalent device that is designated, permanently or temporarily, to be a master 30 controlling device (comprising hardware and/or software and/of firmware and/or other component) that remains inaccessible (using, for example, a hardware and/or software and/or firmware and/or other component firewall 50) directly by the network but which controls the functions of the other slave microprocessors 40 when the network is not utilizing them.
- a typical PC 1 may have four or five microprocessors (even on a single microprocessor chip), with one master 30 and three or four slaves 40, depending on whether the master 30 is a controller exclusively (through different design of any component part), requiring four slave microprocessors 40; or the master microprocessor 30 has the same or equivalent microprocessing capability as a slave 40 and multiprocesses in parallel with the slave microprocessors 40, thereby requiring only three slave microprocessors 40.
- the number of PC slave microprocessors 40 can be increased to virtually any other number, such as at least about eight, about 16, about 32, about 64, about 128, about 256, about 512, about 1024, and so on.
- PC master microprocessors 30 may be increased. Also included is an internal firewall 50 between master 30 and slave 40 microprocessors. As shown in preceding Figures 1-9, the PC 1 in Figure 10A may be connected to a network computer 2 and to the Internet or WWW or present or future equivalent or successor 3, like the Grid (or Metalnternet).
- PC hardware components such as hard drive 61, floppy diskette drive 62, compact disk-read only memory (CD-ROM) 63, digital video disk (DND) 64, Flash memory 65, random access memory (RAM) 66, video or other display 67, graphics card 68, and sound card 69, as well as digital signal processor or processors, together with the software and/or firmware stored on or for them, can be located on either side of internal firewall 50, but such devices as the display 67, graphics card 68 and sound card 69 and those devices that both read and write and have non-volatile memory (retain data without power and generally have to be written over to erase), such as hard drive 61, Flash memory 65, floppy diskette drive 62, read/write CD-ROM 63 or DND 64 may be located on the PC user side of the internal firewall 50, where the master microprocessor is also located, as shown in Figure 10A, for security reasons; their location can be flexible, with that capability controlled such as by password-authorized access.
- CD-ROM compact disk-
- any of these devices that are duplicative (or for other exceptional needs) like a second hard drive 61' can be located on the network side of the internal firewall 50.
- RAM 66 or equivalent or successor memory which typically is volatile (data is lost when power is interrupted), should generally be located on the network side of the internal firewall 50, but some can be located with the master microprocessor to facilitate its independent use.
- ROM devices including most current CD drives (CD-ROM's) 63' or DND's (DVD-ROM) drives 64' can be safely located on the network side of the internal firewall 50, since the data on those drives cannot be altered by network users; preemptive control of use may remain with the PC user.
- CD-ROM's CD-ROM's
- DVD-ROM DND's
- RAM can be kept on the Master 30 microprocessor side of the internal firewall 50, so that the PC user can retain the ability to use a core of user PC 1 processing capability entirely separate from any network processing. If this capability is not desired, then the master 30 microprocessor can be moved to the network side of the internal firewall 50 and replaced with a simpler controller on the PC 1 user side, like the master remote controller 31 discussed below and shown in Figure 101.
- the master microprocessor 30 may also control the use of several or all other processors 60 owned or leased by the PC user, such as home entertainment digital signal processors 70, especially if the design standards of such microprocessors in the future conform to the requirements of network parallel processing as described above.
- the PC master processor uses the slave microprocessors or, if idle (or working on low priority, deferable processing), makes them available to the network provider or others to use.
- Wireless connections 100 including optical wireless, are expected to be extensively used in home or business network systems, including use of a master remote controller 31 without (or with) microprocessing capability, with broad bandwidth connections such as fiber optic cable connecting directly to at least one component such as a PC 1, shown in a slave configuration, of the home or business personal network system; that connection links the home system to the network 2 such as the Internet 3, as shown in Figure 101.
- a business system may include broadband such as fiber optic or optical wireless links to most or all personal computers PC 1 and other devices with microprocessors, such as printers, copiers, scanners, fax machines, telephone and video conferencing equipment; other wired or wireless links also can be used.
- broadband such as fiber optic or optical wireless links to most or all personal computers PC 1 and other devices with microprocessors, such as printers, copiers, scanners, fax machines, telephone and video conferencing equipment; other wired or wireless links also can be used.
- a PC 1 user can remotely access his networked PC 1 by using another networked master microprocessor 30 on another PC 1 and using a password or other access control means for entry to his own PC 1 master microprocessor 30 and files, as is common now in Intemet and other access. Alternately, a remote user can simply carry his own digitally stored files and his own master microprocessor or use another networked master microprocessor temporarily has his own.
- the PC 1 may have a single master microprocessor 30 and a single slave microprocessor 40, separated by an internal firewall 50, with both processors used in parallel or multitasking processing or with only the slave 40 so used, and connected with broad bandwidth such as optical fiber wire 99 to a network computer 2 and Intemet 3 and successors like the Grid (or Metalnternet). Virtually any number of slave microprocessors 40 is possible.
- the other non-microprocessor components shown in Figure 10A above may also be included in this simple Figure 10B configuration.
- microchips 90 are expected to integrate most or all of the other necessary computer components (or their present or future equivalents or successors), like a PC's volatile memory like RAM 66 (such as DRAM), graphics 82, sound 83, power management 84, network communications 85, and video processing 86, 5. possibly including modem 87, non-volatile memory like flash (or magnetic like MRAM or ovonic unified memory) 88, system BIOS 88', digital signal processor (DSP) or processors 89, and other components or present or future equivalents or successors) and internal bus, on a single chip 90 (silicon, plastic, or other), known in the industry as "system on a chip”.
- Such a PC microchip 90 can have the same architecture as that of 0 the PC 1 shown above in Figure 10 A: namely, a master control and/or processing unit 93 and one or more slave processing units 94 (for parallel or multitasking processing by either the PC 1 or the Network 2), separated by an internal firewall 50 and connected by broad bandwidth wire 99 such as optical fiber cable to a network computer 3 and the Internet 3 and successors like the Grid (or Metalnternet).
- microchip 90 5 can be an "appliance" system on a chip.
- the chip 90 has a single master unit 93 and at least one slave unit 94 (with the master having a controlling function only or a processing function also), separated by an internal firewall 50 and connected by broad bandwidth wire 99 such as fiber optic cable to a network computer 3 5 and the Internet 3 (and successors like the Grid or Metalnternet).
- the other non- microprocessor components shown in Figure 10A above may also be included in this simple Figure 10D configuration.
- any computer may be both a user and provider, alternatively — a dual mode operating capability. Consequently, any PC 1 within the network 2, 0 connected to the Internet 3 and successors like the Grid (or Metalnternet), can be temporarily a master PC 30 at one time initiating a parallel or multitasking processing request to the network 2 for execution by at least one slave PC 40, as shown in Figure 10E. At another time the same PC 1 can become a slave PC 40 that executes a parallel or multitasking processing request by another PC 1' that has temporarily assumed the function of master 30, as shown in Figure 10F.
- Grid or Metalnternet
- the number of PC slave processors 40 can be increased to any virtually other number, such as at least about 4; as shown, the processing system is completely scalar, so that further increases can occur to, for example, about eight, about 16, about 32, about 64, about 128, about 256, about 512, about 1024, and so on; the PC master microprocessors 30 can also be increased.
- a PC 1 can function as a slave PC 40 and be controlled by a master controller 31 , which can be remote and which can have limited or no microprocessing capability, but can as well have similar or greater capability.
- a master controller 31 is located on the PC user side of the internal firewall 50, under the control of the PC user, while the microprocessors 40 reside on the network side of the internal firewall 50.
- the master controller 31 may receive input from the PC user by local means such as keyboard, microphone, videocam or future hardware and/or software and/or firmware or other equivalent or successor interface means (as does a master processor 40) that provides input to a PC 1 or microprocessor 30 originating from a user's hand, voice, eye, nerve or nerves, or other body part; in addition, remote access by telephone, cable, wireless or other connection may also be enabled by a hardware and/or software and/or firmware and/or other means with suitable security such as password controlled access.
- local means such as keyboard, microphone, videocam or future hardware and/or software and/or firmware or other equivalent or successor interface means (as does a master processor 40) that provides input to a PC 1 or microprocessor 30 originating from a user's hand, voice, eye, nerve or nerves, or other body part; in addition, remote access by telephone, cable, wireless or other connection may also be enabled by a hardware and/or software and/or firmware and/or other means with suitable security such as password controlled access.
- a master controller unit 93' (which could be capable of being accessed by the PC user through a remote controller 31) with only a controlling capability can be located on the PC user side of the internal firewall 50, under the control of the PC user, while the slave processor units 94 would reside on the network side of the internal firewall 50.
- Figures ION and 10O show PC 1 with an internal firewall 50 that is configurable through either hardware and/or software and/or firmware and/or other means; software configuration is easiest and most typical, but active motherboard hardware configuration is possible and may present some security advantages, including a use of manual or electromechanical or other switches or locks.
- Figure ION shows a CD-ROM 63' that has been placed by a PC user on the network side of an internal firewall 50 from a previous position on the PC user side of an internal firewall 50, which was shown in Figure 10A.
- the settings of an internal firewall 50 may default to those that safely protect the PC 1 from uncontrolled access by network users, but with capability for the relatively sophisticated PC user to override such default settings and yet with proper safeguards to protect the unsophisticated user from inadvertently doing so; configuration of an internal firewall 50 may also be actively controlled by a network administrator in a local network like that of a business, where a PC user may not be the owner or leaser of the PC being used, either by remote access on the network or with a remote controller 31.
- Figures 10P and 10Q show a PC "system on a chip" 90 with an internal firewall 50 that is configurable through either hardware and/or software and/or firmware and/or other means; software configuration is easiest and most typical. Active configuration of the integrated circuits of the PC microchip 90 is also possible and may present some speed and security advantages. Such direct configuration of the circuits of the microchip 90 to establish or change its internal firewall 50 could be provided by the use of field-programmable gate arrays (or FPGA's) or their future equivalents or successors; microcircuit electromechanical or other switches or locks can also be used potentially.
- slave processing unit 94' has been moved to the PC user side of an internal firewall 50 from a network side position shown in Figures 10C and 10L.
- Figure 10Q shows the same active configuration of chip circuit using FPGA's for the simplest form of multiprocessing microchip 90 with a single slave unit 94', transferring its position to the PC user's side of an internal firewall 50 from a network side shown in Figures 10M and 10D.
- Figures 10A-10I show embodiments of a system for a network of computers, including personal computers, comprising: at least two personal computers; means for at least one personal computer, when directed by its personal user, to function temporarily as a master personal computer to initiate and control the execution of a computer processing operation shared with at least one other personal computer in the network; means for at least one other personal computer, when idled by its personal user, to be made available to function temporarily as at least one slave personal computer to participate in the execution of a shared computer processing operation controlled by the master personal computer; and means for the personal computers to alternate as directed between functioning as a master and functioning as a slave in the shared computer processing operations.
- Figures 10A-10H show embodiments including those wherein the system is scalar in that the system imposes no limit to the number of personal computers; for example, the system can include at least 256 said personal computers; the system is scalar in that the system imposes no limit to the number of personal computers participating in a single shared computer processing operation, including at least 256 said personal computers, for example; the network is connected to the Internet and its equivalents and successors, so that personal computers include at least a million personal computers, for example; the shared computer processing is parallel processing; the network is connected to the World Wide Web and its successors; a means for network services, including browsing and broadcast functions, as well as shared computer processing such as parallel processing, are provided to said personal computers within said network; the network includes at least one network server that participates in the shared computer processing; the personal computers include a transponder or equivalent or successor means so that a master personal computer can determine the closest available slave personal computers; the closest available slave personal computer is compatible with the master personal computer to execute said shared computer processing operation; the personal
- the internal firewall 50 provides a solution to a security problem by completely isolating host PC's 1 that are providing slave microprocessors to the network for parallel or other shared processing functions from any capability to access or retain information about any element about that shared processing.
- the internal firewall 50 provides security for the host PC against intrusion by outside hackers; by reducing the need for encryption and authentication, the use of internal firewalls 50 can provide a relative increase in computing speed and efficiency.
- the internal firewall 50 described above could be used in any computing device included in this application's above definition of personal computers, including those with "appliance"-type microprocessors, such as telephones, televisions or cars, as discussed above.
- Figures 10A-10I show embodiments of a system architecture for computers, including personal computers, to function within a network of computers, comprising: a computer with at least two microprocessors and having a connection means with a network of computers; the architecture for the computers including an internal firewall means for personal computers to limit access by the network to only a portion of the hardware, software, firmware, and other components of the personal computers; the internal firewall means will not permit access by the network to at least a one microprocessor having a means to function as a master microprocessor to initiate and control the execution of a computer processing operation shared with at least one other microprocessor having a means to function as a slave microprocessor; and the internal firewall means permitting access by the network to the slave microprocessor.
- the system architecture explicitly includes embodiments of, for example, the computer is a personal computer; the personal computer is a microchip; the computer has a control means by which to permit and to deny access to the computer by the network for shared computer processing; the system is scalar in that the system imposes no limit to the number of personal computers, including at least 256 said personal computers, for example; the network is connected to the Internet and its equivalents and successors, so that the personal computers include at least a million personal computers, for example; the system is scalar in that the system imposes no limit to the number of personal computers participating in a single shared computer processing operation, including at least 256 said personal computers, for example; the personal computers having at least one microprocessor and communicating with the network through a connection means having a speed of data transmission that is at least greater than a peak data processing speed of the microprocessor.
- 10M show embodiments of a system architecture for computers, including personal computers, to function within a network of computers, comprising for example: a computer with at least a controller and a microprocessor and having a connection means with a network of computers; the architecture for the computers including an internal firewall means for personal computers to limit access by the network to only a portion of the hardware, software, firmware, and other components of the personal computers; the internal firewall means will not permit access by the network to at least a one controller having a means to initiate and control the execution of a computer processing operation shared with at least one microprocessor having a means to function as a slave microprocessor; and the internal firewall means permitting access by the network to the slave microprocessor.
- the system architecture explicitly includes embodiments of, for example, the computer is a personal computer; the personal computer is a microchip; the computer has a control means by which to permit and to deny access to the computer by the network for shared computer processing; the system is scalar in that the system imposes no limit to the number of personal computers, including at least 256 said personal computers, for example; the network is connected to the Internet and its equivalents and successors, so that the personal computers include at least a million personal computers, for example; the system is scalar in that the system imposes no limit to the number of personal computers participating in a single shared computer processing operation, including at least 256 said personal computers, for example; the personal computers having at least one microprocessor and communicating with the network through a connection means having a speed of data transmission that is at least greater than a peak data processing speed of the microprocessor; and the controller being capable of remote use.
- Figures 10N-10Q show embodiments of a system architecture for computers, including personal computers, to function within a network of computers, comprising for example: a computer with at least two microprocessors and having a connection means with a network of computers; the architecture for the computers including an internal firewall means for personal computers to limit access by the network to only a portion of the hardware, software, firmware, and other components of the personal computers; the internal firewall means will not permit access by the network to at least a one microprocessor having a means to function as a master microprocessor to initiate and control the execution of a computer processing operation shared with at least one other microprocessor having a means to function as a slave microprocessor; the internal firewall means permitting access by the network to the slave microprocessor; the configuration of the internal firewall being capable of change by a user or authorized local network administrator; the change in firewall configuration of a microchip PC is made at least in part using field-programmable gate arrays or equivalents or successors.
- the system architecture explicitly includes embodiments of, for example, the computer is a personal computer; the personal computer is a microchip; the computer has a control means by which to permit and to deny access to the computer by the network for shared computer processing; the system is scalar in that the system imposes no limit to the number of personal computers, including at least 256 said personal computers; the network is connected to the Internet and its equivalents and successors, so that the personal computers include at least a million personal computers; the system is scalar in that the system imposes no limit to the number of personal computers participating in a single shared computer processing operation, including at least 256 said personal computers; the personal computers having at least one microprocessor and communicating with the network through a connection means having a speed of data transmission that may be at least greater than a peak data processing speed of the microprocessor.
- PC 1 or PC microprocessors 90 may be designed homogeneously to the same basic consensus industry standard as parallel microprocessors for PC's (or equivalents or successors) as in Figures 10A-10B or for PC "systems on a chip" discussed in Figures 10C-10D.
- the cost per microprocessor might rise somewhat initially, the net cost of computing for all users is expected to fall drastically almost instantly due to the significant general performance increase created by the new capability to use of heretofore idle "appliance" microprocessors.
- the high potential for very substantial benefit to all users may provide a powerful force to reach consensus on industry hardware, software, and other standards on a continuing basis for such basic parallel network processing designs utilizing the Internet 3 and WWW and successors.
- Such basic industry standards may be adopted at the outset of system design and for use of only the least number of shared microprocessors initially.
- Such basic industry homogeneous standards may be adopted at the outset and for the least number of shared microprocessors initially, and design improvements incorporating greater complexity and more shared microprocessors may be phased in gradually over time on a step-by-step basis, so that conversion to the Grid (or Metalntemet) or architecture at all component levels may be relatively easy and inexpensive.
- the scalability of the Grid (or Metalntemet) system architecture (both vertically and horizontally) as described herein makes this approach possible.
- Such direct fiber or wireless optic linkage and integration of volatile memory (RAM like DRAM (dynamic random access memory) or equivalent), or non- volatile memory (like flash, magnetic, such as MRAM, or ovonic memory), on the "system on a chip" microchip obviates an increasingly unwieldy number of microchip connection prongs, which is currently in the three to four hundred range in the Intel Pentium and Pentium Pro series and will reach over a thousand prongs in the 1998 IBM Power3 microprocessor.
- the internal system bus or buses of any such PC's may have a transmission speed that is at least high enough that all processing operations of the PC microprocessor or microprocessors are unrestricted (and other PC components like RAM such as DRAM) and that the microprocessor chip or chips are directly linked by fiber optic or other broad bandwidth connection, as with the system chip described above, so that the limiting factor on data throughput in the network system, or any part, is only the speed of the linked microprocessors themselves, not the transmission speed of the linkage.
- the individual user PC's may be connected to the Internet (via an Intranet intemet II/WWW or successor, like the Grid (or Metalntemet) network by any electromagnetic means, such as with the very high transmission speed provided by the broad bandwidth of optical connections like fiber optic cable.
- any electromagnetic means such as with the very high transmission speed provided by the broad bandwidth of optical connections like fiber optic cable.
- Hybrid systems using fiber optic cable for trunk lines and coaxial cable to individual users may be used.
- conventional network architecture and structures should be acceptable for good system performance, making possible a virtual complete interconnection network between users.
- the network needs the means (through hardware and/or software and/or firmware and/or other component) to provide on a continually ongoing basis the capability for each PC to know the addresses of the nearest available PC's, perhaps sequentially, from closest to farthest, for the area or cell immediately proximate to that PC and then those cells of adjacent areas.
- Network architecture that clusters PC's together is not mandatory and can be constructed by wired means.
- local network clusters 101 or cells of personal computers 1' by wireless 100 means, especially optical wireless and dense wave division multiplexing (DWDM), since physical proximity of any PC 1 to its closest other PC 1' may be easier to access directly that way, as discussed further below.
- DWDM dense wave division multiplexing
- optical wireless range is about 3 kilometers currently, large clusters communicating with broadband connections are possible.
- at least several network providers may serve any given geographic area to provide competitive service and prices.
- Those wireless PC connections may be PC-resident and capable of communicating by wireless or wired (or mixed) means with all available PC's in the cluster or cell geographic area, both proximal and potentially out to the practical limits of the wireless transmission.
- wireless PC connections 100 can be made to existing non-PC network components, such as one or more satellites 110, or present or future equivalent or successor components and the wireless transmissions can be conventional radio waves, such as infrared or microwave, or can utilize any other part of the electromagnetic wave spectrum, particularly optical, and can utilize dense wave division multiplexing (DWDM) to create numerous channels.
- DWDM dense wave division multiplexing
- such a wireless or wired approach also makes it possible to develop network clusters 101 of available PC's 1' with complete interconnectivity; i.e., each available PC 1 in the cluster 101 maybe connected wirelessly 100 (including optical wireless and DWDM) to every other available PC 1 in the cluster 101, constantly adjusting to individual PC's becoming available or unavailable. Given the speed of some wired broad bandwidth connections, like fiber optic cable, such clusters 101 with virtual complete interconnectivity is certainly a possible embodiment even for PCs with wired connections.
- such wireless systems may include a wireless device 120 comprising hardware and/or software and/or firmware and/or other component, like the PC 1 availability device described above resident in the PC, but also with a network-like capability of measuring the relative distance from each PC 1 in its cluster 101 by that PC's signal transmission by transponder or its functional equivalent and/or other means to the nearest other PC's 1' in the cluster 101.
- a wireless device 120 comprising hardware and/or software and/or firmware and/or other component, like the PC 1 availability device described above resident in the PC, but also with a network-like capability of measuring the relative distance from each PC 1 in its cluster 101 by that PC's signal transmission by transponder or its functional equivalent and/or other means to the nearest other PC's 1' in the cluster 101.
- this distance measurement could be accomplished in a conventional manner between transponder devices 120 connected to each PC in the cluster 101; for example, by measuring in effect the time delay from wireless transmission, optical or other and including DWDM, by the transponder device 120 of an interrogating signal 105 to request initiation of shared processing by a master PC 1 to the reception of a wireless transmission response 106 signaling availability to function as a slave PC from each of the idle PC's 1' in the cluster 101 that has received the interrogation signal 105.
- the first response signal 106' received by the master PC 1 is from the closest available slave PC 1" (assuming the simplest shared processing case of one slave PC and one master PC), which is selected for the shared processing operation by the requesting master PC 1, since the closer the shared microprocessor, the faster the speed of the wireless connections 100 is between sharing PC's (assuming equivalence of the connection means and other components among each of the PC's 1').
- the interrogation signal 105 may specify other selection criteria also, for example, for the closest compatible (initially perhaps defined by a functional requirement of the system to be an identical microprocessor) slave PC 1", with the first response signal 106' being selected as above.
- This same transponder approach also can be used between PC's 1 " connected by a wired 99 (or mixed wired/wireless) means, despite the fact that connection distances would generally be greater (since not line of sight, as is wireless), as shown in Figure 14A, since the speed of transmission by broad bandwidth transmission means such as fiber optic cable is so high as to offset that greater distance.
- this wired approach may be employed for such PC's already connected by broad bandwidth transmission means since additional wireless components like hardware and software are not necessary.
- a functionally equivalent transponder device 120 may be operated in wired clusters 101 in generally the same manner as described above for PC's connected in wireless clusters 101.
- Networks incorporating PC's 1 connected by both wireless and wired (or mixed) means are anticipated, like the home or business network mentioned in Figure 101, with mobile PC's or other computing devices using wireless connections.
- a local cluster 101 of a network 2 may connect wirelessly between PC's and with the network 2 through transponding means linked to wired broad bandwidth transmission means, as shown in Figure 14C.
- the same general transponder device means 120 can also be used in a wired 100 network system 2 employing network servers 98 operated, for example, by an ISP, or in any other network system architectures (including client/server or peer to peer) or any other topologies (including ring, bus, and star) either well known now in the art or their future equivalents or successors.
- network servers 98 operated, for example, by an ISP, or in any other network system architectures (including client/server or peer to peer) or any other topologies (including ring, bus, and star) either well known now in the art or their future equivalents or successors.
- the Figure 14 approach to establishing local PC clusters 101 for parallel or other shared processing avoids using network computers such as servers (and, if wireless, other network components including even connection means), so that the entire local system of PC's within a cluster 101 operates independently of network servers, routers, etc.
- network computers such as servers (and, if wireless, other network components including even connection means)
- the size of the cluster 101 could be quite large, being limited generally by PC wireless transmission power, PC wireless reception sensitivity, and local and/or other conditions affecting transmission and reception.
- one cluster 101 could communicate by wireless 100 means with adjacent, overlapping, or other clusters 101, as shown in Figure 14B, which could thereby include those beyond its own direct transmission range.
- a virtual potential parallel processing network for PC's 1 in a cluster 101 may be established before a processing request begins. This is accomplished by the transponder device 120 in each idle PC 1, a potential slave, broadcasting by transponder 120 its available state when it becomes idle and/or periodically afterwards, so that each potential master PC 1 in the local cluster 101 is able to maintain relatively constantly its own directory 121 of the idle PC's 1 closest to it that are available to function as slaves.
- the directory 121 may contain, for example, a list of about the standard use number of slave PC's 1 for the master PC (which initially probably is just one other PC 1") or a higher number, listed sequentially from the closest available PC to the farthest.
- the directory of available slave PC's 1 may be updated on a relatively up-to-date basis, either when a change occurs in the idle state of a potential slave PC in the directory 121 or periodically.
- Such ad hoc clusters 101 should be more effective by being less arbitrary geographically, since each individual PC is effectively in the center of its own ad hoc cluster. Scaling up or down the number of microprocessors required by each PC at any given time is also more seamless.
- the above described global network computer system has an added benefit of reducing the serious and growing problem of the nearly immediate obsolescence of PC and other computer hardware, software, firmware, and other components. Since the system above is the sum of its constituent parts used in parallel processing, each specific PC component becomes less critical. As long as access to the network utilizing sufficient bandwidth is possible, then all other technical inadequacies of the user's own PC can be completely compensated for by the network's access to a multitude of technically able PC's of which the user will have temporary use.
- At least one parallel processing request by at least one PC 1 in a network 2 in the Earth's western hemisphere 131 is transmitted by very broad bandwidth connection wired 99 means such as fiber optic cable to the Earth's eastern hemisphere 132 for execution by at least one PC 1' of a network 2', which is idle during the night, and the results are transmitted back by the same means to network 2 and the requesting at least one PC 1.
- Any number of individual PC's within local networks like that operated by an ISP can be grouped into clusters or cells, as is typical in the practice of the network industry. As is common in operating electrical power grids and telecommunications and computer networks, many such processing requests from many PC's and many networks could be so routed for remote processing, with the complexity of the system growing substantially over time in a natural progression.
- nighttime parallel processing can remain within a relatively local area and emphasize relatively massively parallel processing by larger entities such as business, government, or universities for relatively complicated applications that benefit from comparatively long nightly periods of largely uninterrupted use of significant numbers of slave personal computers PC 1.
- Any of the embodiments shown in Figures 1-15 can be combined with one or ⁇ more of any other of Figures 1-15 of this application to provide a useful improvement over the art.
- the new hierarchical network topology shown in Figure 16A is a simple subdivision step whereby a personal computer PC 1 (or equivalent PC on a microprocessor chip 90) or microprocessor 30 acting as a master Mi divides a given operation into two parts (for example, two halves), then sends by an optical or electrical connection such as optical fiber or wire 99 the one half parts to each of two connected available slave personal computers PC l . (or PC microprocessor 90) or microprocessor 30, as shown one processing level down as S 21 and S 22 .
- the topology of Figure 16A (and subsequent Figures 16) can be connected to the Internet 3 and World Wide Web, for example.
- Figure 16B shows that slave personal computer PC 1 (or PC microprocessor 90) or microprocessor 40 located at S 21 has temporarily adopted the same functional role as a master to repeat the same subdivision of the given operation. Therefore, having already been divided in half once in Figure 16A, the given operation is again subdivided in Figure 16B, this time in half into quarters of the original operation (for example) by S 21 , which then sends one quarter to each of two additional available slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 located at S 31 and S 32 .
- Figure 16C shows personal computers PC 1 (or PC microprocessor 90) or microprocessors 40 at S 31 and S 32 sending operational results back to S 21 after performing the processing required by the given operation, instead of repeating again the subdivision process.
- That processing action by S 31 and S 32 can be dictated by pre- established program criteria, for example by automatically defaulting to operational processing at the S 3 level after two subdivision processes as shown above, so that the operation can be processed in parallel by four available slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40.
- the criteria can be a user preference command overriding an otherwise automatic default to level three processing in order to specify some other level of processing involving more or less slave PC 1 (or PC microprocessors 90) or microprocessors 40.
- the personal computer PC 1 (or PC microprocessor 90) or microprocessor 40 acting as master Mi also can initiate the parallel processing operation (or, alternatively, a multi-tasking operation) on the basis of preset program parameters through software, hardware, or firmware or other means; parameter examples again may be pre-set automatic default or user preference override.
- Figure 16D shows operational results being passed back to the next higher level, this time from slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40, S 21 and S 22 , to master personal computer PC 1 (or PC microprocessor 90) or microprocessor 30, M l5 where the operation is completed after the S 21 and S 22 results are consolidated.
- Figure 16G shows master personal computer PC 1 (or PC microprocessor 90) or microprocessor 30, M l5 offloading by wireless connection 100, such as optical wireless and DWDM for example, the entire parallel processing operation to an available slave personal computer PC 1 (or PC microprocessor 90) or microprocessor 40 that temporarily functions as Si in the place of Mi on the first processing level for the duration of the given parallel processing (or multi-tasking) operation, the first step of which the operation is shown in Figure 16H, which is like Figure 16A except as shown.
- wireless connection 100 such as optical wireless and DWDM for example
- Figure 161 shows a personal computer PC 1 (or PC microprocessor 90) or microprocessor 40 that is executing a command to function in the slave role of S 21 for a given operation but has become unavailable, or was unavailable initially (due, for example, to interruption for another higher priority command by its user or to malfunction), when results of the given operation from a lower parallel processing level are passed to S 21 .
- S 21 (or S 31 or S 32 ) can simply offload those results to another personal computer PC 1 (or PC microprocessor 90) or microprocessor 30 (or 40) that is then available and it can become S 21 and take over the role of S 2 ⁇ in the given operation for the duration of that operation.
- the role of any unavailable or malfunctioning master or slave PC 1 or microprocessor 90, 30, or 40 can be transferred to an available functioning one.
- S 21 then completes the parallel processing operation and passes its portion of the operational results to Mi.
- Figure 16E shows the multi-processing network topology of Figures 16A-16J in a larger scale embodiment, including all personal computers PC 1 (or PC microprocessors 90) or microprocessors 30 (or 40) that are participating in a typical operation, including in this example one personal computer PC 1 (or PC microprocessor 90) or microprocessor 30 (or 40) at level one; two at level two; four at level three; and eight at level four.
- the network topology is completely scalar in that any practical number of additional processing levels or personal computers PC 1 (or PC microprocessors 90) or microprocessors 30 (or 40) can be added to those shown.
- Topologies limited to just two (or three) levels are also possible, which is the simplest case of operation processing subdivision that distinguishes over the conventional Figure 9 single level "string- together" architecture.
- the number of processing personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 doubles at each additional processing level and therefore can be represented by 2 N , where N is the last or final processing level, for the simplest case, as shown above, which is splitting one given operation into two parts such as halves between each level.
- two separate parallel processing operations can be multi-tasked on separate branches, such as S ⁇ and S 2 as shown, using the same network architecture described above.
- any practical mix of multi-tasking and/or parallel processing is possible using the above network architecture.
- Figure 16E shows the distribution of a given parallel processing (or multitasking) operation as routed through a four level virtual network, beginning at Mi.
- "Virtual” as used here means temporary, since in the next parallel operation originating at Mj it may be the case that many of the personal computers PC 1 (or microprocessors 90) or microprocessors 30 (or 40) that had been available for a previous operation would not still be available for the next operation.
- Figure 16E shows a binary tree network architecture for the initial distribution of an operation from Mi down through four slave processing levels, while Figure 16F shows the subsequent processing and accumulation of results back from there to Mi.
- Figure 16F shows an inverted view of Figure 16E to show the sequence of the operation, from Operation distribution in Figure 16E to result accumulation in Figure 16F.
- Figure 16F shows the processing slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 at the fourth level, S 4 ⁇ through S 48 , where they process the operation to produce results which are then routed back through two other levels of the virtual network to Mi.
- each slave personal computer PC 1 (or PC microprocessor 90) or microprocessor 40 has the capability to either simply pass through those results only as a direct communication link or connection; or, alternatively, for example, to consolidate those results sent from the personal computers PC 1 (or PC microprocessor 90) or microprocessors 40 at a lower level; or, to provide additional other processing based on those lower processing level results.
- Such consolidation or additional processing can reduce or eliminate duplicative data from a search or other operation producing duplicative results and can also serve to buffer the originating master Mi from overloading caused by many sets of results arriving at Mi in the Figure 9 single processing level architecture in an uncoordinated fashion from what may be a large number of slave personal computers PC 1 (or PC microprocessor 90) or microprocessors 40.
- Such a consolidation role for personal computers PC 1 (or PC microprocessor 90) or microprocessors 40 substantially reduces or eliminates the excessive custom pre-planning and synchronization problems of the conventional Figure 9 network topology discussed above.
- Figure 16K shows a simple example indicative of the extremely complicated network structure that can result from subdividing a given operation in which the complexity of the operation involved is not uniform, due to, for example, variations in the data.
- pre-set program splitting criteria can be employed that balances the processing load of each slave personal computer PC 1 (or PC microprocessor 90) or microprocessor 40.
- the complex portions of a given operation can automatically draw greater resources in the form of additional splitting of that more difficult portion of the problem, so that additional levels of parallel processing slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 can be brought into the virtual network to process the operation, as shown in the left branch of Figure 16K.
- Figure 16K is a fairly simple example, but when the same kind of dynamic network structure is applied to a virtual network using many more personal computers PC 1 (or PC microprocessor 90) or microprocessors 30 or 40 and many processing levels, involving both micro levels in PC microprocessor chips 90 and macro levels in personal computers PC 1 networks (such as shown later in Figure 20B), then the potential complexity of the virtual network increases significantly.
- each PC microprocessor chip 90 may have 64 slave microprocessors 94 on the final processing level; each personal computer PC 1 may have 64 slave PC microprocessor chips 90 at the final processing level, and the virtual network may include 64 personal computers PC 1 at the final processing level.
- Figure 16K shows an example of a highly flexible virtual network architecture that is capable of being dynamically configured in real time by the processing requirements imposed on the components of the network by a specific given operation and its associated data, as allowed by the network hardware/software/firmware architecture.
- Figures 16L and 16M show examples of other possible subdivision parallel processing methods, such as subdivision routing to three slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 at the next level down, as shown in Figure 16L, or subdivision routing to four slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40, as shown in Figure 16M. Subdivision routing to any practical number of slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 between processing levels can be done.
- routing subdivision can also vary between processing levels or even within the same processing level, as shown in Figure 16N; these exemplary variations can result from pre-set program criteria such as those that balance operational loads, like those shown previously in Figure 16K.
- the means for subdividing problems for parallel or multi-tasking processing can also vary, within at least a range of methods known in the computer and mathematical arts.
- Figure 16O shows slave personal computer PC 1 (or PC microprocessor 90) or microprocessor 40, S 41 , sending operational results to a higher processing level, S 3 ⁇ , which can then function as a router or as one or more high speed switch 42 (which can be located as 92 on a PC microprocessor 90 also, including as an all optical switch), passing through unaltered results back down to the original level to personal computer PC 1 (or PC microprocessor 90) or microprocessor 40, S 42 , as shown in Figure 16P.
- Figure 16Q demonstrates the capability for any two pair of slave personal computers PC 1 (or PC microprocessors 90) or microprocessors 40 like S 4 ⁇ and S 4 to communicate directly between each other, including wired or wirelessly 100 as shown.
- Figures 16O- 16Q show the same subsection of the network topology shown in Figure 16F (the left uppermost portion).
- a personal computer PC 1 or PC microprocessor 90 or microprocessor 30 (or 40) located on a higher processing level in the network architecture such as S 31 can process results as well as route them, as shown in Figure 16V, in which S 3 ⁇ receives results from S 4 ⁇ and S 42 at a lower processing level and then processes that data before sending its processing results to a higher level to S 21 , as shown in Figure 16W.
- Figures 16V-16W and 16O-16Q show the capability of any personal computer PC 1 (or PC microprocessor 90) or microprocessor 30 (or 40) of the Figure 16F (and 16E) network structural and functional invention to communicate with any other personal computer PC 1 (or PC microprocessor 90) or microprocessor 30 (or 40) participating in a given parallel processing (or multi-tasking) operation. That communication can take the form of simple pass-through of unmodified results or of modification of those results by processing at any level.
- Figures 16X-16Z show the applicant's new hierarchical network structure and function applied to the design of a personal computer PC 1, as discussed previously in Figures 10A and 10B.
- Figure 16X shows the simplest general design, with a master Mi microprocessor 30 and two slave S 2 ⁇ and S 22 microprocessors 40.
- Figure 16Y shows the same network structure with an additional level of slave microprocessors 40, S 31 through S 3
- Figure 16Z shows the same network structure as Figure 16Y with an additional level of slave microprocessors 40, S ⁇ through S 48 .
- this network structure is completely scalar, including any practical number of slave microprocessors 40 on any practical number of processing levels.
- FIG 16AA shows a useful embodiment in which each microprocessor 30 and 40 has, in addition to internal cache memory, its own random access memory (RAM) 66 or equivalent memory (volatile like DRAM or non- volatile like Flash memory, magnetic such as MRAM memory, or ovonic unified memory), integrated on-microchip 90 or separate off-microchip.
- RAM random access memory
- microchip RAM volatile like DRAM or non- volatile like Flash memory, magnetic such as MRAM memory, or ovonic unified memory
- cache memory SRAM
- other on-chip memory used on microprocessor chips today can be beneficial in improving the efficient operation of the microprocessor; if located off microprocessor chip, the size of such memory can substantially exceed the size of the associated microprocessor, but an on- microprocessor chip location for DRAM or Flash (or MRAM or ovonic memory), like cache (SRAM) memory, offers the best potential for improving microprocessor speed and efficiency.
- the design can also incorporate (or substitute) conventional shared memory or RAM 66' (i.e. memory used by all, or some, of the microprocessors 30 or 40 (or 90) of the personal computer PC 1).
- FIGS 16R-16T are parallel to Figures 16X-16Z above, but show PC microprocessor 90 architecture rather than macro PC 1 architecture; a PC microprocessor 90 is as earlier described in Figure 10C, a personal computer on a microchip.
- Figure 16U is like Figure 16AA, also except for showing PC microprocessor 90 architecture instead of PC 1 architecture.
- Figure 16U shows a useful embodiment in which each PC microprocessor 93 or 94 has its own integrated on-microchip (or separate off microchip) random access memory (RAM) 66 or equivalent memory (volatile like DRAM or non- volatile, like Flash memory, magnetic such as MRAM memory, or ovonic unified memory).
- RAM random access memory
- the microchip design can also incorporate (or substitute) conventional shared memory or RAM 66' (i.e. memory used by all, or some, of the PC microprocessors 93 or 94 of the personal computer PC microprocessor 90).
- Figures 16R-16U show a different and improved basic microchip architecture which can exclude or reduce the currently used superscalar approach in microprocessors to execute multiple instructions during each clock cycle.
- the Figures 16R-16U architecture is much simpler and, by integrating memory with microprocessor, reduces memory bottlenecks.
- the simplicity of the Figures 16R-16U microchip design which may have little or no superscalar components, compared to conventional superscalar designs (the inherent extreme complexity of which creates a very substantial memory overhead), can result in the use of a much greater proportion of independent, non- superscalar processors per microchip, exclusive of integrating memory or RAM 66 onto the microprocessor chip 90, as discussed in Figure 16U.
- Figures 16X-16Z and 16AA by using the same architecture for PC 1 networks as Figures 16R-16U, import the same advantage of microchip parallel processing performance to parallel processing in PC 1 networks.
- Figure 16AB shows a direct connection of optical fiber 99 from Internet 3 (or another network) to random access memory (RAM) microchip 66'. The connection may be at a central portion 140 of RAM chip 66' to provide equal access to stored data on RAM chip 66'. The direct connection can be anywhere on RAM chip 66'.
- Digital signal processor (DSP) 89 is on RAM chip 66' for connection with optical fiber 99. RAM chip 66' is for shared memory use among PC's 1 and for broadcast use. RAM chip 66' can include volatile or non- volatile (flash-type) memory. RAM chip 66' can have more than one DSP 89, such as shown in Figure 20B.
- DSP digital signal processor
- FIGS. 16A-16Z and 16AA-16AB like the preceding figures of this application, show sections of a network of personal computers PC 1 (or PC microprocessors 90) or microprocessors 30 or 40 which can be parts of the WWW or Intemet or Internet II or the Next Generation Internet (meaning connected to it) or Intranets or Extranets or other networks.
- PC 1 or PC microprocessors 90
- microprocessors 30 or 40 which can be parts of the WWW or Intemet or Internet II or the Next Generation Internet (meaning connected to it) or Intranets or Extranets or other networks.
- Figure 16R-16T and 16X-16Z all of the Figure 16 series show personal computers PC 1 and microprocessors 30 or 40 as occupying the same location. This dual representation was done for economy of presentation and to show the parallel functionality and interchangability in conceptual terms of personal computer PC 1 and microprocessors 30 or 40 in the structure of the new network. So, taking Figure 16A as an example, Mi, S 21 and S 2 show three personal computers PC 1 or, alternatively, one microprocessor 30 and two microprocessors 40.
- a personal computer PC 1 can be reduced in size to a PC microprocessor chip 90, so preceding Figures showing personal computer PC 1 also generally represent PC microprocessor chip 90.
- Figures 16A-16Z and 16AA-16AB show a mix of electrical and optical connections, including wired 99, especially connections such as optical glass fiber or omniguides, and wireless 100, especially wireless optical (and mixtures of both in a single figure), and dense wave division multiplexing (DWDM).
- wired 99 especially connections such as optical glass fiber or omniguides
- wireless 100 especially wireless optical (and mixtures of both in a single figure), and dense wave division multiplexing (DWDM).
- 99 or 100 or a mix can be used relatively interchangeably in the network inventions shown (as well as in prior figures), though in some embodiments either highest transmission speed (i.e. broadest bandwidth) or mobility (or some other factor) may dictate a use of wired or wireless.
- DWDM dense wave division multiplexing
- fiber optic wire 99 and dense wave division multiplexing may provide the most advantageous transmission means because it has the greatest bandwidth or data transmission speed, so it may be used for connections between personal computers and microchips, including direct connections, although optical wireless 100 also offers very high bandwidth, especially with dense wave division multiplexing (DWDM).
- Other wireless 100 (but also including optical wireless), including with DWDM, can be used where mobility is a paramount design criteria.
- FIG. 16 embodiments can be combined with, or modified by incorporating, any other network system architectures (including client/server or peer to peer) or any other topologies (including ring, bus, and star) either well known now in the art or their future equivalents or successors.
- any other network system architectures including client/server or peer to peer
- any other topologies including ring, bus, and star
- the parallel processing network architecture shown in the preceding Figures 16A-16Z and 16AA-16AB and in earlier figures has several features unique to its basic design that provide for the security of personal computers PC 1 (or PC microprocessor 90) or microprocessor 40 that share other computers for parallel and multi-tasking processing.
- the slave personal computers PC 1 (or microprocessors 40) each have only part of the operation (for large operations, only a very small part) and therefore unauthorized surveillance of a single PC 1 can provide only very limited knowledge of the entire operation, especially in only a relatively local area in which switching or routing was employed.
- the addresses of the slave personal computers PC 1 (or microprocessors 40) are known or traceable, and therefore are not protected by anonymity (like hackers usually are) in case of unauthorized intervention.
- cryptography can be employed, with on microprocessor chip 30, 40, or 90 hardware 55 being used in some embodiments due to efficiency, although software and firmware can also be used, or a separate PC 1 hardware-based component 56 like an encryption microchip can be used; with either encryption component 55 or 56, micro electromechanical locks can be used to prevent access other than by the direct physical user; other MicroElectroMechanical System (MEMS) devices located on microchips like PC90 can be used for access prevention or other functions. Nonetheless, these inherent strengths can be substantially reinforced, as indicated in Figures 17B-17D.
- MEMS MicroElectroMechanical System
- Figure 17A shows at least one internal firewall 50 performing its conventional function of keeping out intruders such as hackers from the Internet 3 from unauthorized access for either surveillance of, or intervention in, a user's personal computer PC 1 (or PC microprocessor 90) or master microprocessor 30.
- Figure 17B shows that, since Internet users can, as enabled by the applicant's network structure invention, use one or more of the slave microprocessors 40 of another's personal computer PC 1 (or PC microprocessor 90) for parallel (or multi-tasking) processing, the at least one internal firewall 50 has a dual function in also protecting Internet 3 use (or other shared use on a network) from unauthorized surveillance or intervention by a PC 1 owner/user who is providing the shared resources.
- FIG 17C therefore shows master M personal computer PC 1 (or PC microprocessor 90) using the slave S 2 microprocessor 40 of a different personal computer, PC 1', which is available for Internet 3 (or other net) shared use, while internal firewall 50' blocks unauthorized access into PC 1' by PC 1 (although PC 1' owner/user can always interrupt a shared operation and take back control and use of slave S' microprocessor 40, which then triggers off-loading action to compensate, as discussed above in Figures 16I-16 ).
- Figure 17D is similar to Figure 17C, but shows a PC microprocessor 90 with a slave microprocessor 94 being used by Internet 3 users (or other net), so that at least one firewall 50 serves both to deny access such as surveillance by master M microprocessor 93 to an Internet 3 parallel processing (or multi-tasking) operation on slave S microprocessor 94 and to deny access to master M microprocessor 93 by Internet 3 (or other net) users of slave S microprocessor 94.
- At least one internal firewall 50 may be implemented by non-configurable hardware at the microchip level to provide protection against tampering with the internal firewall 50 by a PC 1 user, who has easier access to software or macro hardware such as PC motherboards to alter.
- non-configurable hardware denying access from the network is the most immune to hacking from any outside source, including the Internet, and can therefore be used either for general protection or to protect an innermost kernel of the most confidential of personal files (such as passwords or financial data) and the most critical of operating system components, such as the system bios or access to file alternation.
- any of the embodiments shown in Figures 17A and 17B can be combined with one or more of any of the preceding figures of this application to provide a useful improvement over the art.
- the flexible network architectures shown earlier in Figure 16K and other Figure 16 series (and other figures) have many applications and may be used to design improvements and alternatives to the network itself.
- the flexible network can be used to simulate and design personal computers PC 1 and particularly PC microprocessor chips 90 (and other microchips), which may be static or configurable (in response to the requirements of a given operation, like the Figure 16K network architecture) or a mix.
- the Figure 16K network architecture has capabilities that substantially exceed simulating the fairly simple binary circuit structure of a typical PC microprocessor 90 or other microchip, since any personal computer PC 1 or PC microprocessor chip 90 in the Figure 16K network can simulate much more than a simple binary circuit on/off state or other simple microchip circuit.
- Any PC 1 or PC microprocessor chip 90 in a Figure 16K network can represent virtually any number of states or conditions simulating any kind of circuit, however complex it might be, the only limit being the processing time required for what can be a very large number - thousands or millions - of personal computers PC 1 or PC microprocessors 90 to process the simulation; there are only practical constraints, not theoretical ones, although increasingly large numbers of processors are expected to be phased in, as discussed before.
- One potential related application of prior described network inventions is to simulate the unique "qubit” component necessary to construct a quantum computer, as well as a virtual quantum computer itself.
- Figures 18A-18D show designs for a virtual quantum computer or computers.
- Figure 18 A shows personal computer PC 1 (or microprocessor 90) with the addition of a software program 151 simulating a "qubit” for a quantum computer or computers and thereby becoming a virtual qubit (VQ) 150, a key component of a quantum computer 153.
- VQ virtual qubit
- FIG 18B shows a personal computer PC 1 (or microprocessor 90) with a digital signal processor (DSP) 89 connected to a hardware analog device 152 simulating a qubit, with the PC 1 monitoring the qubit through the DSP 89, thereby simulating a virtual qubit (VQ) 150 for a quantum computer 153; this arrangement allows the option of simultaneous use of the PC 1 through multi-tasking for both digital and quantum computing.
- PC 1 or microprocessor 90
- DSP digital signal processor
- Figure 18C is like Figure 16A, but incorporates a virtual qubit in PC 1, so that a virtual quantum computer 153 can have any network architecture like those shown in Figures 16A-16Z and 16AA-16AB, as well as other figures of this application.
- a virtual qubits (VC) 150 network can provide complete interconnectivity, like Figure 13.
- Virtual qubits VC 150 like those described in Figures 18A & 18B can be added to or substituted for microprocessors 30 and 40 in prior Figures 16B-16Q and 16V-16AA of this application, as well as earlier figures.
- Figure 18D shows a mix of wired 99 and wireless 100 connections. Any of the embodiments shown in Figures 18 A- 18D can be combined with one or more of any of the preceding figures of this application to provide a useful improvement over the art.
- personal computers PC 1 in automobiles 170 are in actual use only a very small percentage of the time, with the average dormant period of non-use totaling as much as 90 percent or more.
- Personal computers PC 1 are now being added to some automobiles and will likely become standard equipment over the next decade or so.
- automobiles already have a very large number of microcomputers on board in the form of specialized microprocessors 35 which are likely to become general parallel processors in future designs, as discussed earlier in this application.
- Automobiles therefore form a potentially large and otherwise unused resource for massive parallel processing through the Internet 3 and other networks, as described in earlier figures.
- the engine when idle and thus generally available for network use, automobiles lack their usual power source, the engine, which of course is then off, since it is too large to efficiently provide electrical power to on board computers, except occasionally.
- the car engine can have a controller (hardware, software or firmware or combination in the PC 1 or other microprocessor 35), for example, connected to an automobile computer network 178 to automatically start the automobile engine in order to recharge the car battery 171 when the battery is low (and well before the battery is too low to start the engine), but the engine additionally needs to be controlled as above not to expend all available fuel automatically.
- the automobile 170 can be fitted with a very small auxiliary engine- power electrical power generator 177 to provide power to the automobile's computer network; the engine of the generator 177 can be fed by the main engine fuel tank and controlled as above.
- Two solutions, not mutually exclusive, to alleviate (but not solve) the lack of power problem noted above are, first, adding an additional car battery 171' for network use (at least primarily) or, second, using a single battery but adding a controller in the PC 1, for example, that prevents the existing battery 171 from being discharged to a level near or below that which is needed to start the automobile 170.
- one or more solar power generating cells or cell arrays 172 can be incorporated in an automobile's outer surface, with generally the most effective placement being on a portion of the upper horizontal surface, such as a portion of the roof, hood, or trunk.
- a focused or focusable light source 173 can provide external power to the solar panel.
- connection device 174 such as a plug for an external electrical power source can be installed on or near the outer surface of the automobile.
- a connection device 175 for an optical fiber (or other wired) external connection to the Internet 3 or other net may be used; an intermediate high transmission speed can also exist between the automobile network and a fiber optic connection to the Intemet 3.
- a wireless receiver 176 including optical wireless and/or DWDM, located near where the automobile is parked, such as in a garage, can provide connectivity from the automobile's personal computer or computers PC 1 directly to the Internet 3 or to a network in a home or business like that shown in Figure 101.
- Figure 20A is like Figure 16Y (and can be combined with Figure 16AA), but in addition shows a slave microprocessor 40 functioning as S l5 the function of master having been temporarily or permanently offloaded to it by Mi microprocessor 30.
- Figure 20A shows the processing level of slave microprocessors 40, S 3 ⁇ through S 34 , each with a separate output/input communication link to a digital signal processor (DSP) 89 or other transmission/ reception component; the transmission linkages are shown as 111, 112, 113, and 114, respectively.
- DSP digital signal processor
- the DSP 89 can be connected to a wired 99 means such as optical fiber to the Internet (or other net), although non-optical fiber wire can be used (and probably does not require a DSP 89).
- Figure 20B is like Figure 16S (and can be combined with Figure 16U), but with the same new additions described above in Figure 20 A.
- Figure 20B shows a detailed view of personal computer PC microprocessor 90 ⁇ , which is a personal computer PC on a microchip 90, including two more levels of parallel processing within the microprocessor 90.
- the two new levels of PC microprocessor 90 shown in Figure 20B are a second processing level consisting of PC microprocessors 90 2 ⁇ through 90 4 and a third processing level consisting of PC microprocessors 90 3 ⁇ through 90 3 ⁇ 6 (a third level total of 16 microprocessors 90).
- microprocessors 90 2 ⁇ through 90 24 are shown receiving respectively from the outputs 111 through 114 from four slave microprocessors 94, S 3 ⁇ through S 34 of PC microprocessor 90 ⁇ .
- PC microprocessor 90 1 is shown in detail including all slave microprocessors 94, while other PC microprocessors 90 at the second and third processing levels are not, for simplicity and conciseness of presentation. An additional processing level can be present, but is not shown for the sake of simplicity, and personal computers PC 1 like Figure 20A can be used interchangeably with PC microprocessors 90.
- Figure 20B shows that between each processing level the output links from every PC microprocessor 90 can be transmitted from slave microprocessors 94 directly to PC microprocessors 90 at the next processing level below, such as from PC microprocessor 90 21 down to PC microprocessors 90 31 through 90 34 , via the Internet 3 or other net.
- Each of the transmission/ reception links from those slave processing microprocessors 94 (S 3 ⁇ through S 4 ), shown as 111, 112, 113, and 114 for PC microprocessor 90 ⁇ , can be transmitted or received on a different channel (and can use multiplexing such as wave or dense wave division, abbreviated as DWDM) on an optical fiber line (because of its huge capacity, one optical fiber line is expected to be sufficient generally, but additional lines can be used) that may connect directly to PC microprocessor chip 90 ⁇ , which can incorporate a digital signal processor 89 or other connection component (of which there can be one or more) for connecting to the wired connection like fiber optic line, as shown, or wireless connection.
- DWDM dense wave division
- Figures 21A and 21B are like Figures 20A and 20B (and therefore also can be combined with Figures 16AA and 16U, respectively), but show additionally that all microprocessors 30, 40, 93, and 94 of PC 1 or PC 90i can have a separate input/output communication link to a digital signal processor (DSP) or other transmission reception connection component.
- DSP digital signal processor
- the additional communications linkages are shown as 141, 142, 143, and 144, which connect to Mi, Si, S 21 , and S 2 , respectively, and connect to the network, including the Internet 3, the WWW, the Grid, and equivalents or successors.
- Figures 21 A and 2 IB are schematic architectural plans of the new and unique components of the parallel processing system invention disclosed in this application and can represent either physical connections or virtual relationships independent of hardware.
- Figure 2 IB shows an embodiment in which the additional linkages lead through the Internet 3 to microprocessors PC 90 25 - 90 28 .
- the additional communications linkages 141, 142, 143, and 144, as well as the original linkages 111, 112, 113, and 114 of Figures 20A and 20B, may have a bandwidth sufficiently broad to at least avoid constraining the processing speed of microprocessors 30, 40, 93, and 94 connected to the linkages.
- the ultra high bandwidth of optical connections like optical fiber or omniguides or optical wireless may provide external connections between PC 1 and PC 90 ⁇ microprocessors that are far greater than the internal electrical connections or buses of those microprocessors, for example, by a factor of 10, or 100, or 1000, which are already possible with optical fiber, or 1,000,000, which is possible with optical omniguides, which are not limited to a relatively smaller band of wavelengths using DWDM like optical fiber; future increases will be substantial since the well established rate of increase for optical bandwidth is much greater than that for microprocessor speed and electrical connections.
- Wireless optical antennas that are positioned on the exterior of houses, buildings, or mobile reception sites, instead of inside of glass or other windows, should significantly increase the number of optical wavelengths that can be sent or received by each of the wireless optical antennas; the entire connection is freespace optical wireless, which allows for greater dense wave division multiplexing (DWDM) and thereby greater bandwidth.
- DWDM dense wave division multiplexing
- PC 1 and PC 90 ⁇ can function like the Figure 9 embodiment to efficiently perform operations that are uncoupled, so that each microprocessor Mi, S ⁇ -S 3 can operate independently without microprocessors Mi, Si, and S 2 ⁇ -S 22 being idled, as they may be in Figures 20 A and 20B.
- Another benefit is that for tightly coupled parallel operations, microprocessors Mi, Si, and S 2 ⁇ -S 22 can have broad bandwidth connections with microprocessors 30, 40, 93, or 94 that are not located on PC 1 or PC 90 ⁇ .
- Figures 21 A and 2 IB provide an architecture that allows PC 1 or PC 90 ⁇ the flexibility to function in parallel operations either like Figures 20A-20B embodiments or like the Figure 9 embodiment, depending on the type of parallel operation being performed.
- Single chip multiprocessors like PC 90 ⁇ can also perform uniprocessor operations with a speed like that of uniprocessor architectures like wide-issue superscalar or simultaneous multithreading.
- the embodiment of Figures 21 A and 21B includes broad bandwidth connection to the Internet 3 by wired means such as optical connection by fiber optic cable or omniguide or optical wireless, although other wired or non- wired means can be used with benefit, and the use of DWDM is clearly advantageous.
- FIG. 22 A and 22B Another advantage of the embodiments shown in Figures 22 A and 22B when functioning in the Figure 9 form of loosely coupled or uncoupled parallel processing or multitasking is that if PC 1 or PC 90 ⁇ is functioning as a web server and typically uses only one microprocessor to do so, it can quickly add mirror web sites using one or more additional microprocessors to meet increasing volume of visits or other use of the web site. This replication of web sites on additional microprocessors in response to increasing load can also be done using the Figure 16 form of tightly coupled parallel processing.
- PC 1 and PC 90 ⁇ or any of their microprocessors 30, 40, 93, and 94 or other components can also serve as a switch or a router, including other associated hardware/software/firmware network components.
- Binary tree configurations of microprocessors shown in Figures 16, 20, 21 A, and 21B can be laid out in 2D using an H-tree configuration, as shown in Figure 21C, and can be combined with one or more of any of the preceding figures of this application to provide a useful improvement over the art.
- Figure 22 A shows a microprocessor PC 90 ⁇ like that of Figure 2 IB, except that Figure 22A shows the microprocessors 93 and 94 each connecting to an optical wired interconnection 99' such as thin mirrored hollow wire or omniguide or optical fiber (and other very broad bandwidth connections can be used); the interconnect can include a digital signal processor 89' employed with a microlaser 150, which can be tunable, and other components to transmit and receive digital data for microprocessors 93 and 94 into the optical wired interconnects 99' such as an omniguide using, for example, a specific wavelength of light for each separate channel of each separate microprocessor 93 and 94 utilizing dense wave division multiplexing (DWDM).
- DWDM dense wave division multiplexing
- Figure 22B shows an enlargement of the digital signal processor 89' with microlaser 150 with other transmission and reception components.
- Figure 22A shows a simple bus network connection architecture between the interconnect 99' and the microprocessors 93 and 94.
- the interconnection 99' is optical and the bandwidth available is very broad, the optical connection 99' allows connections between microprocessors 93 and 94 in PC 90 ⁇ that are functionally equivalent to those shown in Figure 2 IB, which includes a representation of physical connections.
- the interconnects between microprocessors 93 and 94 like Fig. 21B are shown within the omniguide 99' shown in Figure 22A.
- the potential bandwidth of the optical interconnect 99' is so great that complete interconnection between all microprocessors 93 and 94 with PC 90 ⁇ is possible, even for a much greater number of microprocessors either in a larger PC 90 ⁇ , like Figure 16T for example, or in other PC 90s, such as PC 90 2 90 24 and 90 3 ⁇ -90 3 ⁇ 6 in Figures 20B and 21B connected to PC 90 ⁇ through a network such as the Internet 3, the WWW, or the Grid; consequently, any conventional network structure can be implemented.
- the embodiment shown in Figure 22 A has the flexibility of those of Figures 21 A and 2 IB to function in parallel operations like either the Figures 20A-20B embodiments or like the Figure 9 embodiment, depending on the type of parallel operation to be performed, or the Figure 16 embodiments.
- the optical interconnect 99' shown in Figure 22A can beneficially have a shape other than a thin wire or tube, such as an omniguide with any form or shape located above and connection to microlasers 150 at a suitable location such as on or near the upper surface of the microchip PC 90 ⁇ located at least at each microprocessor 93 and 94 or connected thereto, for example; the optical interconnect 99' and microlasers 150 and associated transmission and reception components can be located elsewhere on the microchip PC 90 ⁇ with benefit.
- An omniguide can take a waveform shape or rely exclusively on a mirrored (or semi-mirrored) surface or surfaces (or combination of both shape and mirrored surface) to guide lightwave signals such as propagated by a microlaser 150 substantially directly and/or by reflection.
- a relatively large optical interconnect 99' can enable freespace or wireless-like connections between microlasers 150; such an optical interconnect 99' can cover substantially the entire PC90 microchip or can connect multiple PC90 microchips and can connect one or more PC90 microchips to other PC components.
- random access memory (RAM) 66 can be located on microchip PC 90 ⁇ like in Figure 16U and also can be connected directly or indirectly to the optical interconnect 99' (or use non-optical connections not shown), so that the microprocessors 93 and 94 and RAM 66 can communicate with a very broad bandwidth connection, including with RAM 66 and microprocessors 93 and 94 located off microchip PC 90 ⁇ on the network including the Internet 3 and WWW. Any other component of the PC 90 microchip can be connected with the optical interconnect 99' and more than one such interconnect 99' can be used on the same PC 90 or other microchip.
- Microlasers 150 can include, for example, 5-to-20-micron-high (or other height) vertical cavity-surface-emitting lasers (VCSELs), which can beam down waveguides built into the PC90 microchip; alternatively, freespace optics can be employed; and lenses can be employed. Radio-frequency (RF) signals can also be used for similar interconnects 99'.
- VCSELs vertical cavity-surface-emitting lasers
- RF Radio-frequency
- Micro light emitting diodes LEDs
- Figure 22C is a side cross section of the microchip PC 90 ⁇ shown in Figure 22A taken at hatched line 22C (which is abbreviated).
- Figure 22C shows the location of the omniguide above the surface of the microprocessors 93 and 94 and RAM 66 and connecting them while also containing two or more microlasers 150 (associated DSP and other components not shown) proximate to each to contain the optical signal generated by the microlasers 150 so that the signal can be transmitted between microprocessors 93 and 94 and RAM 66 either directly or by being reflected off the mirrored (or semi- mirrored) surface of the omniguide 99', for example.
- microlasers 150 associated DSP and other components not shown
- Each of the microprocessors 93 and 94 (or 30 or 40) and RAM 66 (or any other memory component such as LI cache or L2 cache, for example, or other microchip component) can have one or more microlasers 150 and each such microlaser 150 can distinguish itself from other microlasers 150 on the microchip (or off it) that also generate wavelength signals by using, for example, a distinct wavelength of light for data transmission and/or utilizing wave or dense wave division multiplexing.
- Figure 22A is a top view of the microchip PC 90 ⁇ , which is a PC system on a microchip, any of which disclosed in this application can be also more generally any microchip with multiple processors.
- the microlasers 150 (and associated transmission and reception components such as DSP) that are associated with RAM (or parts of it) or other memory components can either provide data in response to direct inquiries or fetches made by a microprocessor 93 or 94 or can broadcast a continual stream of current data (continually updated and repeated in continuous cycle, for example) which is used by the microprocessor as needed.
- DSP digital signal processor
- Figure 23 A shows multiple firewalls 50, a concept indicated earlier by the at least one firewall 50 discussed in Figure 17D.
- Figure 23A shows a PCI or microchip 90 with a primary firewall 50 and additional interior firewalls 50 1 , 50 2 , and 50 3 , that are within primary firewall 50.
- interior firewall 50 3 is in the most protected position, since it is inside all the other firewalls, while the other interior firewalls 50 2 , and 50 ! are progressively less protected, since, for example, interior firewall 50 1 is protected from the outside network only by the primary firewall 50.
- the interior firewalls can also be arranged in any other way within the primary firewall 50.
- the interior firewalls can be used to separate user files from system files, for example, or to separate various hardware components from each other. In this manner, a. number of compartments can be created within the PCI or microchip 90 to more safely protect the software, hardware, and firmware of the PCI or microchip 90, just as ships have a number of separate watertight compartments to protect against flooding and avoid sinking.
- any of the primary or interior can be hardware, software, or firmware, or a combination, and can coexist in layers, so that a firewall 50, for example, may have a hardware firewall, a software firewall, and a firmware firewall, either as independent units or as integrated components.
- W 3 in Figure 23A and subsequent Figures denotes the World Wide Web.
- Figure 23B shows another embodiment of compartments created by inner firewalls within a PCI or microchip 90.
- Primary firewall 50 and interior firewall 50 1 are like Figure 23A, but interior firewalls 50 2 , 50 3 , and 50 4 are shown perpendicular to firewalls 50 and 50 1 (just to illustrate in a simplified schematic way, which may be different in an actual embodiment).
- an upper row of compartments U and U 2 can be used, for example, to bring from the network files which are first authenticated and then enter into the U 1 compartment, are decrypted, and undergo a security evaluation, such as by virus scan, before transfer to the most secure compartment U 2 . Any operations could potentially occur in any compartment, depending on the level of security desired by the user (by over-ride) for example, but an advantageous default system would allow for files with the highest levels of authentication, encryption, and other security evaluations to be allowed into the most secure compartments.
- operating system files can also be authenticated and brought from the network side of the PCI or microchip 90 into compartment O for decryption and security evaluation or other use, and then finally transferred into the most secure compartment O 2 .
- a row of compartments can be used for separating hardware, such as a master microprocessor 30 or 93 being located in compartment M 1 and a remote controller 31, for example, located in compartment M 2 .
- additional inner firewalls 50 , 50 , and 50 can be located outside the primary firewall 50, but within the network portion of the PCI or microchip 90, to separate user files in compartment U from operating system files in compartment O from hardware such a slave microprocessor in compartment S on the network side.
- an additional row is shown for hardware, including a hard drive in a compartment HD on the network side, a hard drive in compartment HD 1 on the PCI or microchip 90 user's side, and flash memory (such as system bios 88) in compartment F 2 .
- Each microprocessor 30, 40, 93, or 94 can have its own compartment in a manner like that shown in Figure 23B, as can associated memory or any other hardware component.
- Figure 23C shows an inner firewall 50 embodiment similar to Figure 23B, but Figure 23 C shows that any file or set of files, such as operating files O or user data files U or application files A, can have its own inner firewall 50° or 50 u or 50 A .
- any hardware component such as hard drive HD, also can have its own inner firewall 50 HD .
- more than one file or set of files or hardware components can be grouped together within an inner firewall, such as 50 s shown in Figure 23C.
- Figures 23D and 23E show operating system files O or application files A like those shown in Figure 23C, but organized differently in discrete layers, each separate grouping of the operating or application files having a separate firewall 50 (and optionally with as well as a PCI or PC90 firewall shown in earlier Figures), so that the firewall structure is like that of an onion.
- the operating system files O or application files A can have a parallel structure, with an innermost kernel operating system or application file located in the center, with additional features in other files in subsequent layers, from the simplest to the most complex and from the most secure and trusted to the least secure and trusted.
- an innermost operating system core O 1 may be firmware stored in a read-only memory (ROM), located in a microchip for quick access, so that a simplest version operating system with all core features can be protected absolutely from alteration and can be available almost immediately, without lengthy boot up procedures required by loading the operating system from a hard drive, for example.
- the core operating system O can include a core of the system BIOS or of the operating system kernel, for example; it would be advantageous for this core to be capable of independent operation, not dependent on components in other levels to operate at the basic core level (similarly, other levels can advantageously be independent of higher levels).
- a secondary operating system O can be software located advantageously on flash or other microchip non-volatile memory such as magnetic (or less advantageously, a hard drive or other mechanical storage media) and can consist of additional features that are more optional, such as those not always used in every session, or features that require updating, changing, or improving, such features coming from trusted sources located on a network, such as the Internet or the Web; additional portions of or upgrades to the system BIOS and the operating system kernel can, be located in O 2 , for example.
- a third level operating system O located, for example, on a hard drive can consist of additional software features that are used only occasionally and are more optional, and can be loaded as needed by a user into DRAM or magnetic memory microchip for execution, for example.
- Operating systems O 2 and O 3 can include, for example, the most recent upgrades from a known and trusted source, such as a commercial software vendor or open source software developer, that are downloaded from a network, including the Internet and the Web, or loaded from conventional memory media like CD or floppy diskette. All three levels of such operating systems O 1 , •
- a fourth level operating system O 4 can consist of special use or single use operating system add-ons, especially software coming from untrusted or unauthenticated sources on a network, such as the Internet or the Web.
- the graphical interface of the operating system can be in 2D only at the O 1 level, in 3D at the O 2 level, rendering at the O 3 level, and animation in the O 4 level; additionally, a standard format can be maintained in the O 1 and O 2 levels, with user or vender customization at the O 3 level.
- application files such as A 1 , A 2 , A 3 , and A 4 can be structured the same way as operating system files O in Figure 23D and with the same layered approach to firewalls 50 as in Figure 23D.
- Typical application software of the year 2000 can be restructured in this manner.
- kernel operating system files O 1 and O 2 can be located in any personal computer PCI or PC90, including at the level of an appliance including the simplest device, advantageously in ROM and in non- volatile read/write memory such as Flash (or magnetic such as MRAM, or ovonic memory) microchips, for example, as described in Figures 23D and 23E above.
- Inclusion of wireless connection capability is advantageous, as is the use of DWDM.
- FIGS 23D and 23E An advantage of the file and firewall structures shown in Figures 23D and 23E is that a system crash or file corruption should never occur at the simple and unalterable level O 1 or A 1 and any level above O 1 or A 1 can be recovered at a lower level, specifically the highest level at which there is a stable system or uncorrupted data.
- a word processing application program can have the most basic functions of a typewriter (i.e. storing alphanumeric, punctuation, spacing, and paragraph structure data) stored on a ROM microchip in A 1 and related user files (i.e. such as a word document)
- FIGS 23A-23E illustrate embodiments wherein a PCI or microchip 90 includes a hierarchy of firewalls.
- firewalls may be structured to allow varying degrees of access from the network side of PCI or microchip 90.
- ROM may totally deny access from the network side, effectively creating an innermost firewall.
- Hardware, software, firmware, or combinations thereof may be stractured to deny or allow a predetermined maximum level of access from the network side, effectively creating outer firewalls. Similarly, intermediate firewalls effectively may be created. Any of the embodiments shown in Figures 23A-23E can be combined with one or more of any of the preceding figures of this application to provide a useful improvement over the art.
- an inner firewall can divide any hardware component into a separate network side compartment and a separate firewall protected side compartment.
- a hard drive 61 can have a controller 61' that is divided into two compartments, HD and HD 1 , as above.
- the user side HD 1 compartment of the controller 61' can have a read capability controller r and a write capability controller w, while the network side HD compartment can be limited to a read capability controller r only.
- the user side HD 1 compartment controller can be, for example, used to control only the upper surface of the hard drive 61 platters, while the network side HD compartment controller can be used to control only the lower surface of the hard drive 61 platters, so that a single hard drive can effectively serve a dual role as both a network-accessible hard drive and a user-accessible hard drive, while maintaining a firewall 50 between them.
- the network side HD controller can optionally have a write capability also, which can be preemptively turned on or off by the PCI or microchip 90 user.
- Other relative allocations between network and user of the HD 61 platters can be made and can be configurable by the user or system administrator or not configurable.
- CD drives 63 or DVD drives 64 can have a controller 63' or 64' like that of the HD controller 61' above that is divided by a firewall 50, so that some laser beams are under network control and other laser beams are under user control, like the above hard drives.
- Floppy disk drives, "Zip" drives, and other removable disk or diskette drives can similarly be divided by a firewall 50 so that there is a physical user portion of the disk or diskette and a physical network portion of the disk or diskette, both either fixed or configurable by a user or system administrator or other authorized source.
- Memory microchips such as RAM or Flash or other can also be divided into network and user sides in a similar manner.
- volatile memory on the network side of the PCI or microchip 90 is particularly useful in eliminating viruses and other security problems originating from the network side, such as malicious hackers on the Internet.
- volatile memory like random access memory (RAM) such as DRAM on the network side can first be erased.
- volatile memory can be purged by momentarily interrupting power to the network side of the PCI or microchip 90, thereby erasing all network data so that no network data is retained when the user regains control of the network side of the PCI or microchip 90 for the user's use, except at the user's option; other conventional means may be employed.
- the operating system or the user can selectively save network side files or transfer them to the user side.
- non- volatile memory like Flash, MRAM, and ovonic memory with network data must be overwritten to obtain the same erasure-type protection, which can be a disadvantage if it takes much more time.
- network data writing must be tracked to be effectively erased.
- Any new network file on non- volatile memory with only a write-once capability can be erased by overwriting all "0's" to "l's", so that, for example, the network data written on a CD-RW or DVD-RW would be converted to all "l's” or "pits" (no unpitted writing surface within the network data sector, permanently overwriting the file); optionally, the operating system or the user can selectively save network side files or transfer them to the user side, or vice versa.
- Flash memory Since repeated overwriting will eventually degrade it.
- Figures 25A-25D show the use for security of power interruption or data overwrite of volatile memory like DRAM and non- volatile memory like Flash or MRAM (or ovonics), respectively, of the network portion (N) of a personal computer PCI or system on a microchip PC90; the network (N) portion being created within a PCI or PC90 by a firewall 50 (as described above in previous figures) and including resources that, when idled by a user, can be used by the network, including the Internet (I) or the World Wide Web.
- Such use is to prevent the unplanned or approved mixture of user and network files by either files being retained in the "swing space" (N) during the transition from use by a network user to use by the PC1 PC90 user or vice versa.
- the network portion (N) can be used safely from a security viewpoint by a user from the network, including the Intemet and the World Wide Web (and potentially including other network resources), as shown in Figure 25B, or by the PC1/PC90 user, as shown in Figure 25D, potentially including other resources from the user portion (U) of the PCI or PC90.
- the Figure 25 approach can advantageously be used as an additional feature to other conventional security measures. Any of the embodiments shown in Figures 25A-25D can be combined with one or more of any of the preceding figures of this application to provide a useful improvement over the art.
- Linux may be employed instead of Java in keeping with the more effective homogeneous approach for parallel processing systems that can scale even to the massive numbers of PCs available on the Internet and WWW
- either Java or principles employed in Java may be used with benefit, especially in certain cases like security, such as the use of "sandboxes" to provide secure execution environments for downloaded code (see page 39 of The Grid, Foster and Kesselman and associated bibliography references 238, 559, 555, and 370), although use of one or more internal firewalls as discussed earlier in Figures 10 and 17 to protect personal user files and critical hardware and software systems, such as the operating system, may provide similar capability.
- the Grid (or Metalntemet) described in this application can be developed into a commercial form using open source principles for Internet-like standards for software and hardware connections and other components.
- open source development is anticipated to be exceptionally successful, like Linux, because much of it can be freeware, although modified with one vital enhancement to provide equity for significant contributors: minimal licensing fees that are to be paid only by medium to large commercial and governmental entities at progressive rates based on financial size; the resulting funding can be used for significant financial and other awards for special research and development efforts relating to the Grid (or Metalntemet) and its open source development, particularly outstanding achievements by individuals and teams, especially independent developers and virtual teams, the awards also being progressive in terms of importance of contribution and most being peer-selected.
- the Intemet 3 and WWW (and successors or equivalents) are expected to ensure that any single design standard in widespread use, such as the Wintel standard (software/hardware) and the Apple Macintosh standard (also both), are homogeneous as to Grid (or Metalnternet) parallel processing systems as outlined in this application, since the Internet and WWW and equivalents or successors make available such a large pool of homogeneous computers with the same standard, in ever increasingly close proximity as more and more PCs and other devices go online.
- the increasingly universal connection attribute of the Intemet 3 and WWW and successors therefore create virtual homogeneity for most significant brands.
- homogeneous refers to functional design standards primarily, not physical structure, for example, when applied to hardware.
- Intel Pentium II, the Advanced Micro Devices (AMD) K6-6, and the Cyrix Mil microprocessor chips are functionally compatible and homogeneous with no need for special emulation software, although they are each structurally quite different and use different microcode at the microchip level.
- the new Transmeta microprocessors are expected to be functionally compatible and homogeneous through elaborate and highly efficient emulation, potentially an ideal microprocessor for the Grid (or
- This application encompasses all new apparatus, and methods required to operate the above described network computer system or systems, including any associated computer or network hardware, software, or firmware (or other component), both apparatus and methods, specifically included, but not limited to (in their present or future forms, equivalents, or successors): all enabling PC and network software, hardware, and firmware operating systems, user interfaces and application programs; all enabling PC and network hardware design and system architecture, including all PC and other computers, network computers such as servers, microprocessors, nodes, gateways, bridges, routers, switches, and all other components; all enabling financial and legal transactions, arrangements and entities for network providers, PC users, and/or others, including purchase and sale of any items or services on the network or any other interactions or transactions between any such buyers and sellers; and all services by third parties, including to select, procure, set up, implement, integrate, operate and perform maintenance, for. any or all parts of the foregoing for PC users, network providers, and/or others.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer And Data Communications (AREA)
Abstract
Description
Claims
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2001293215A AU2001293215A1 (en) | 2000-08-25 | 2001-08-23 | Global network computers |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US22766000P | 2000-08-25 | 2000-08-25 | |
| US60/227,660 | 2000-08-25 | ||
| US30882601P | 2001-08-01 | 2001-08-01 | |
| US60/308,826 | 2001-08-01 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2002017595A2 true WO2002017595A2 (en) | 2002-02-28 |
| WO2002017595A3 WO2002017595A3 (en) | 2002-10-03 |
Family
ID=26921637
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2001/041849 Ceased WO2002017595A2 (en) | 2000-08-25 | 2001-08-23 | Global network computers |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU2001293215A1 (en) |
| WO (1) | WO2002017595A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004042557A3 (en) * | 2002-11-06 | 2004-11-04 | Koninkl Philips Electronics Nv | Storing bios in persistent system memory |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6732141B2 (en) * | 1996-11-29 | 2004-05-04 | Frampton Erroll Ellis | Commercial distributed processing by personal computers over the internet |
| CA2312904A1 (en) * | 1997-12-19 | 1999-07-01 | Frampton E. Ellis, Iii | Firewall security protection of parallel processing in a global computer networking environment |
-
2001
- 2001-08-23 AU AU2001293215A patent/AU2001293215A1/en not_active Abandoned
- 2001-08-23 WO PCT/US2001/041849 patent/WO2002017595A2/en not_active Ceased
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004042557A3 (en) * | 2002-11-06 | 2004-11-04 | Koninkl Philips Electronics Nv | Storing bios in persistent system memory |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2002017595A3 (en) | 2002-10-03 |
| AU2001293215A1 (en) | 2002-03-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8892627B2 (en) | Computers or microchips with a primary internal hardware firewall and with multiple internal harware compartments protected by multiple secondary interior hardware firewalls | |
| US9531671B2 (en) | Computer or microchip controlled by a firewall-protected master controlling microprocessor and firmware | |
| US8555370B2 (en) | Microchips with an internal hardware firewall | |
| US8677026B2 (en) | Computers and microchips with a portion protected by an internal hardware firewalls | |
| US7035906B1 (en) | Global network computers | |
| US7606854B2 (en) | Internal hardware firewalls for microchips | |
| US8312529B2 (en) | Global network computers | |
| US8732230B2 (en) | Computers and microchips with a side protected by an internal hardware firewall and an unprotected side connected to a network | |
| US9183410B2 (en) | Computer or microchip with an internal hardware firewall and a master controlling device | |
| AU4194499A (en) | Global network computers | |
| WO2002017595A2 (en) | Global network computers | |
| WO2003025725A2 (en) | Global network computers | |
| WO2000070448A2 (en) | Multiprocessor with optical connection to a network | |
| EP1192556A2 (en) | Multiprocessor with optical connection to a network |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: JP |