WO2002009915A1 - Continuous platform cutting apparatus and method - Google Patents
Continuous platform cutting apparatus and method Download PDFInfo
- Publication number
- WO2002009915A1 WO2002009915A1 PCT/US2000/020505 US0020505W WO0209915A1 WO 2002009915 A1 WO2002009915 A1 WO 2002009915A1 US 0020505 W US0020505 W US 0020505W WO 0209915 A1 WO0209915 A1 WO 0209915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slab
- compression roller
- platform
- roller
- belt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D3/00—Cutting work characterised by the nature of the cut made; Apparatus therefor
- B26D3/28—Splitting layers from work; Mutually separating layers by cutting
- B26D3/281—Splitting layers from work; Mutually separating layers by cutting the work being simultaneously deformed by the application of pressure to obtain profiled workpieces
Definitions
- the present invention relates to apparatus and continuous methods for shaping the surface of a slab of compressible or cellular polymer material, such as polyurethane foam.
- a blade cuts portions of the material from the slab after the slab is passed through a predetermined gap and has been compressed between a compression roller and a patterned surface of a moving platform.
- the predetermined gap preferably is created at a region where the platform is adjacent to or driven by a drive roller.
- U.S. Patent No. 4,700,447 to Spann discloses coi olute-cuttirig slabs of polyurethane foam by compressing a slab or pad of foam between a pair of rolls with opposed spaced projecting fingers arranged in a pattern and cutting the foam with a saw blade transversely just as it emerges from the rolls.
- the cut slab is then separated into two pads each with convolute-cut surfaces forming a series of peaks separated by valleys.
- the valleys formed on one pad are formed by slicing away foam which becomes a mating peak or projection on the other pad.
- Spann then shaves the peaks to form a more planar top surface.
- Spann, convolute cutting alone produces only rounded peaks and rounded valleys, and it is difficult, if not impossible, to produce a cut surface with peaks having substantially flat top surfaces or with recesses having substantially straight side walls.
- the convolute usually is intended to form the classic symmetrical and repeating "egg crate" pattern of peaks and valleys.
- the tops of the peaks must be cut or shaped in a second step.
- Compressible cellular polymer materials may also be cut using a hot wire cutter. A slab of such material is cut by moving the slab relative to one or more hot wires as shown, for example, in U.S. Patent No. 4,683,791 (Demont).
- U.S. Patent No. 4,351,211 compresses a block of foam material against a template or die having an aperture therein using a pair of plates with concave and convex portions. The compressed foam is transversely cut along the template as it is held between the plates. More complex cut regions may be obtained than when using a template without the plates with raised and depressed portions, but only one block is cut at a time.
- Other template or pattern cutting methods are shown in U.S. Patent No. 3,800,650 (Schroder) and U.S. Patent No. 3,653,291 (Babcock).
- the surface of a cellular polymer material may be shaped by molding or embossing, as opposed to cutting.
- thermoplastic material in a liquid state is injected between compressed traveling belt molds. As the belt molds travel away from the point of introduction of the thermoplastic, they are cooled, which in turns cools the thermoplastic material. The hardened molded thermoplastic material is removed from between the belts to form the finished product. Kemerer does not show a method for cutting or shaping a cellular polymer material, such as polyurethane foam.
- a method of embossing a foam surface using a patterned metallic embossing belt or band is shown in U.S. Patent 4,740,258 (Breitscheidel).
- the foam is heated and then pressed against the embossing belt.
- the belt is removed after the foam surface cools.
- the embossed surface by design has a hardened skin. No method for cutting or shaping the foam is disclosed.
- U.S. Patent No. 5,534,208 discloses a continuous rotary method for surface shaping synthetic foams in which the foam is compressed between a compression roller and a die roller having raised and recessed portions. The portions of the foam extruded into the recesses in the die roller are cut away. The compressed foam portions return to an uncompressed state after passing through the rollers. As a result, a mirror-image pattern to the pattern on the surface of the die roller is cut on the surface of the foam. The diameter of the die roller limits the length of the shaped foam article that may be formed.
- the prior art does not disclose an apparatus or a continuous method for shaping a compressible or cellular polymer material by cutting to form recesses of various depths and various symmetrical and non-symmetrical shapes. Nor does the prior art disclose a method for shaping a slab of compressible or cellular polymer material of unlimited length using a movable patterned platform, such as an endless belt, as the template for cutting the surface of the slab. Nor does the prior art disclose a method for forming a profile cut product without the hardened skin or hard spots associated with molded or embossed products.
- a continuous method for shaping a compressible or cellular polymer material, such as polyurethane foam, by cutting and removing portions of the material is disclosed.
- a slab of cellular polymer material is compressed between a compression roller and a surface of a moving patterned platform.
- the moving patterned platform is interposed between the compression roller and a cooperating surface, such as the surface of a drive roller. Because the moving patterned platform may be formed from a flexible material, the compression force preferably is applied at a region where the platform is adjacent to a solid surface of the drive roller.
- the moving patterned platform is interposed between the compression roller and a follower roller and the compression force is applied at a region where the platform is adjacent to a solid surface of the follower roller.
- a knife blade is positioned downstream from the compression roller and the point at which the compression force is applied, preferably with the blade interposed between the compression roller and the patterned platform.
- the slab surface is cut transversely by the blade just as the slab emerges from between the compression roller and the moving patterned platform, thus trimming off portions of the cellular material that filled the recesses in the patterned platform.
- the blade is positioned so that it shaves a fine scrim layer of foam from the slab surface, and makes deeper cuts into the slab in the regions in which the polymer material has filled the recesses in the patterned platform. If the patterned platform defines upstanding projections, instead of or in addition to recesses, the projections force a portion of the foam material away from the blade and less material is cut from the slab surface in those regions.
- the patterned platform may be an endless belt or a series of movable panels or plates or any other structure that may travel in a continuous circuit or path.
- the patterned platform is an endless belt
- the belt is placed over a series of rollers wherein at least one such roller is driven by a motor.
- the belt may be engaged to the roller with interconnecting gears or ribs so that the rotation of the drive roller causes the belt to travel.
- the patterned platform is formed by a series of interconnected panels, such as metal plates, the panels preferably are connected movably to a chain and sprocket drive system. Thus when the sprocket is driven, such as by a motor, the sprocket drives the chain and the panels interconnected to the chain.
- the patterned platform may define at least one recess, which may be a hole or void through the platform, but preferably is a cut-out portion that does not pass through the entire thickness of the platform.
- the recess may be provided as a simple or complex geometric shape. Where more than one recess is defined in the platform, the recesses may be of the same or different shapes, may be interconnected or separated, may be symmetrical or non-symmetrical, and may be repeating or nonrepeating on the patterned surface of the patterned platform.
- the recesses may be cut to different depths in the platform. Several separate series of different recesses may be provided on one patterned platform.
- the patterned platform may define at least one upstanding projection. The projection may be provided as a simple or complex geometric shape.
- the projections may be of the same or different shapes, may be inter-connected or separated, may be symmetrical or non- symmetrical and may be repeating or non-repeating the patterned surface of the patterned platform.
- the projections may have different heights.
- the patterned platform may include a combination of recesses and upstanding projections.
- the slab travels with the patterned platform and is compressed between the compression roller and patterned platform (with recesses), a portion of the cellular material fills the recesses in the patterned platform.
- Greater amounts of cellular material are cut from the slab in regions that have been compressed into the recesses in the patterned platform because this material has been forced to one side of the cutting edge of the blade in these regions.
- the cut portions are removed from the slab after it passes the knife.
- the resulting profile cut product has on its cut face a series of cut regions that substantially correspond in pattern and shape in mirror image to the recesses provided in the patterned platform.
- the cut regions in the slab are also cut deeper in those regions that correspond to the deeper recesses in the patterned platform.
- the depth of cut of the cut regions usually is not identical to the depth of the recesses within the patterned platform.
- an apparatus for continuously shaping a compressible or cellular polymer material, such as polyurethane foam, by cutting and removing portions of the material A compression roller and a cooperating surface, such as the surface of a driver roller, compress a slab of cellular polymer material.
- the cooperating surface is the solid surface of a drive roller.
- the moving patterned platform is interposed between the compression roller and a follower roller and the compression force is applied at a region where the platform is adjacent to a solid surface of the follower roller.
- the compression roller is motor driven.
- the patterned platform is also preferably motor driven.
- a knife blade is positioned downstream from the compression roller and the point at which the compression force is applied, preferably with the blade interposed between the compression roller and the patterned platform.
- the slab surface is cut transversely by the blade just as the slab emerges from between the compression roller and the moving patterned platform, thus trimming off those portions of the cellular material that filled the recesses in the patterned platform.
- the blade is positioned so that it shaves a fine scrim layer of material (e.g., foam) from the slab surface, and makes deeper cuts into the slab in the regions in which the polymer material has filled the recesses, but preferably the blade cuts away foam material only from those portions of the surface at which it is intended that voids or recesses be formed.
- the patterned platform defines upstanding projections, instead of or in addition to recesses, the projections force a portion of the material (e.g., foam) away from the blade and less material is cut from the slab surface in those regions.
- the cut foam product has a series of recesses or projections defined in its surface. If the drive roller drives the patterned platform at one speed and the compression roller is driven at a different speed, the blade cuts the foam material to form angled side walls that are greater than or less than 90° as measured from the base of a cut recess or the top surface of a projection formed on the surface of the cut foam slab. The difference in platform speed as compared to the compression roller speed causes one surface of the slab to enter the predetermined gap prior to the other surface of the slab.
- a profile cut cellular product in which portions have been cut from both the upper and lower surface may be formed by feeding the slab through the apparatus twice. First, one surface is cut, then the cut product is inverted and fed through the apparatus a second time to cut its opposite surface.
- FIG. 1 is a schematic perspective view of one embodiment of a continuous platform cutting apparatus that may be used to practice the invention
- FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1;
- FIG. 3 is a side elevational view of the apparatus shown in FIG. 1;
- FIG 4 is a schematic perspective view of an alternate moving platform for a continuous platform cutting apparatus that may be used to practice the invention;
- FIG. 5 is a frag ental side elevational view of a cellular polymer underlayment mat defining patterned recesses that have been cut into the mat using the continuous platform cutting apparatus and method of the invention;
- FIG. 5 A is a fragmental side elevational view in cross-section taken along line
- FIG. 6 is a top plan view of the mat of FIG. 5;
- FIG. 7 is a schematic side elevational view in partial cross-section showing a second embodiment of a continuous platform cutting apparatus that may be used to practice the invention.
- FIG. 8 is a partial schematic side elevational view in partial cross-section showing a modification to the second embodiment of FIG. 7;
- FIG. 9 is a partial schematic side elevational view in partial cross-section showing a third embodiment of a continuous platform cutting apparatus that may be used to practice the invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS
- a continuous platform profile cutting apparatus for compressible or cellular polymer materials 10 is supported on a first frame structure 12 and second frame structure 22.
- a shaft 14 is mounted for rotation to the first frame structure 12, preferably with bearings.
- a motor 16 drives the shaft 14.
- a drive roller 18 is mounted on shaft 14.
- the outer surface of the drive roller 18 may be covered or coated with a slip resistant material, such as urethane.
- Ribs or gear teeth 20 are provided around the outer end or peripheral end surfaces of the first drive roller 18. Alternatively, separate gears with suitable gear teeth may be provided at each end of the first drive roller 18.
- Shaft 24 is mounted for rotation to the second frame structure 22, preferably using bearings.
- a first follower roller 28 is mounted on shaft 24.
- the outer surface of the first follower roller 28 may be covered or coated with a slip resistant material, such as urethane.
- a patterned platform such as endless patterned belt 32, has a patterned facing surface 34 and an opposite surface 38.
- Belt 32 is mounted around the drive roller 18 and first follower roller 28.
- the belt facing surface 34 defines recesses 36, which may be simple or complex shapes, simple geometric patterns, complex patterns, symmetrical or repeating patterns or non-symmetrical and non-repeating patterns.
- Rectangular 36 and circular 37 recesses are shown by way of example in FIG. 1.
- the recesses may be provided at various depths as discussed in more detail below.
- Mating ribbed sections 39 on the outer edges of the belt opposite surface 38 mate with or engage the ribs or gear teeth 20 provided on the drive roller 18.
- the endless belt 32 travels around the drive roller 18 and the first follower roller 28.
- the mated ribbed sections 39 and ribs 20 and the frictional engagement between the contacting surfaces of the belt with the rollers keep the belt centered and aligned with the rollers as it travels a path around the rollers.
- First idler roller 40 is mounted for rotation on shaft 42 which is held by a portion 44 of the frame 12. First idler roller 40 is positioned at a point between the drive roller 18 and the first follower roller 28 to stabilize the movement of the endless belt 32.
- Compression roller 46 is provided at a point between the drive roller 18 and the first follower roller 28.
- the compression roller 46 is mounted for rotation on shaft 48.
- the shaft 48 is held in a bearing recess within a frame 52.
- Tension adjusting means 54 such as a fluid cylinder or spring or series of springs, may act on frame 52 to adjust the compression force applied.
- the outer surface 47 of the compression roller 46 contacts the opposite surface
- the outer surface 47 of the compression roller 46 may be covered or coated with a slip resistant material, such as urethane. As shown best in FIG. 2, the surface 47 of the compression roller 46 does not extend to the full outer periphery of the roller, leaving a recess into which the ribbed portions 39 extend so that the surface 47 of the roller 46 contacts the surface 38 of the belt 32. Greater slip resistance results when the amount of surface engagement between the belts 32 and the roller compression surface 47 is increased.
- Compression roller 56 with outer compression surface 60 is mounted for rotation on shaft 58.
- the shaft 58 is held within frame 62.
- a motor 57 drives shaft 58.
- the roller 56 is separated from compression roller 46, leaving a space or gap through which the endless belt 32 travels between the compression surfaces of the rollers.
- the arrow 64 in FIG. 2 indicates the force applied against the frame 62 to urge roller 56 to toward roller 46.
- knife blade 76 is held within casing 74.
- the blade 76 must have a sharp tip that is sufficiently sharp to cut cellular polymer materials, such as polyurethane foams. Because the blade 76 construction is known and understood by persons of skill in the art of cutting cellular polymer materials, such as polyurethane foams, it will not be described in detail.
- the blade 76 is positioned adjacent to the compression rollers 46, 56 so that the sharp tip of the blade is adjacent to or just beyond the point at which the outer surfaces 47, 60 of the compression rollers 46, 56 act to their greatest extent to compress material that is placed between the rollers (i.e. the predetermined gap).
- the blade 76 is also positioned between the compression surface 60 of compression roller 56 and the patterned facing surface 34 of endless belt 32 so that the blade tip is close to tangential contact with the facing surface 34.
- the blade 76 should be positioned so that it will not cut the compression surface 60 of the roller 56 or the patterned facing surface 34 of the belt 32.
- the blade 76 should not interfere with the rotation of the rollers 46, 56 or the movement of the belt 32. Blade orientation may be adjusted so that the tip of the blade is moved closer or farther from the nip between roller 46 and roller 56.
- a slab 80 of cellular material such as polyurethane foam
- the slab 80 is compressed by the rollers 46, 56.
- Knife blade 76 cuts transversely portions of the slab 80 just as the slab 80 emerges from between the compression rollers 46, 56.
- the cuts into the slab 80 are made in the regions corresponding to those regions in which slab material had been compressed within recesses 36 defined in the facing surface 34 of the belt 32.
- a portion of the material that was held within a recess in the belt is cut away from the slab before the compressed cellular material is able to recover to its uncompressed state as it emerges from the compression rollers.
- Portions of the slab surface not compressed into the recesses or voids in the facing surface 34 of the belt 32 may or may not be cut, depending upon the position of the blade 76.
- the cut-away portions 88 are removed as waste, leaving a resulting profiled cellular material 90.
- the resulting product 90 has recesses 92 substantially corresponding in shape to the recesses 36 provided in the patterned face surface 34 of the endless belt 32.
- Slabs of cellular material may thus be provided with profiled surfaces with an endless array of patterns, whether symmetrical or non-symmetrical, simple or complex, or repeating or non- repeating.
- the cut-away portion 88 might be a separate profiled cellular material product 90.
- the waste material does not fall away and contaminate the apparatus, but is carried away by the belt 32.
- the waste may then be swept or vacuumed off the belt as it continues to travel along its path defined by the position of the rollers 18, 28.
- Long slabs of cellular material may be continuously fed into and shaped by the continuous platform cutting apparatus.
- the method may be used to cut multiple products continuously from a single slab of material.
- the recesses and/or projections formed in a single patterned platform may be arranged in separate configurations for different products. Alternately, repeating recess patterns may be formed in the patterned platform.
- patterned platforms of different lengths may be used to form finished cut products of different lengths.
- FIGS. 5 and 6 An example of a profile-cut product 300 made according to the invention is shown in FIGS. 5 and 6.
- the profile cut product 300 represents a cellular polymer insulating barrier or underlayment that will be installed in the interior of a motor vehicle between the floor surface and the carpeting.
- the upper surface 310 of the imderlayment has been cut to provide complex patterns of recesses. As shown in FIG.
- the depth of the recesses 36, 37 of the belt 32 are typically a small fraction of the depth of the corresponding cuts to be made in the surface of the foam material 80.
- a shallow depression 36, 37 in the pattern belt 32 yields a much deeper depression in the foam.
- a 5/8 inch thick sheet of foam material compressed against a depression 36 of 20 thousands of an inch in the patterned belt, in the apparatus 10 described above yielded approximately a l A inch deep depression in the foam sheet 80.
- the spacing between the belt surface 34 and the roller surface 56 determines the compression factor of the foam and consequently, the ratio of patterned belt depth to foam cut depth.
- the depth of cut in the foam can be reduced for a given pattern belt recess depth or projection height by increasing the spacing between the roller surface 56 and the belt surface 34, thus reducing the compression factor.
- the cut product has recesses (or projections) formed with sidewalls substantially perpendicular (90°) to the top surface of the product.
- the angle of the cut sidewalls may be varied by driving the belt 32 at a different speed than the speed roller 56 is driven.
- the drive speed may be adjusted continually as the foam material slab 80 is introduced into the gap. In this way, side wall angles may be the same or different in different regions of the cut product.
- the recess is cut with substantially perpendicular (90°) sidewalls 340, but there is shown in phantom outline a recess cut with angled sidewalls 342.
- the cut product has recesses with side walls cut at an angle of about 110° to 115°.
- the cut angle is about 90 ° when both surfaces are driven at the same speed.
- the slab may then be inverted and fed between the compression rollers so that it may be profile-cut on the opposite surface.
- the endless belt 32 preferably is formed from a flexible material such as rubber or silicone rubber or urethane.
- the belt 32 is thick enough to withstand the compressive forces, preferably about 0.375 inches or more, and has a durometer of about 35 or higher, preferably 75 or higher, most preferably at least 90.
- the belt may be formed of fiberglass reinforced polyurethane or other composite materials suitable for endless belts with such thickness and durometer.
- the patterned platform 200 may be constructed as a continuous or endless series of inter-linked panels driven by chain and sprocket.
- the series of plates 208 preferably formed from metal or other sturdy substrate, are mounted on shafts 210.
- the shafts 210 are held for rotation within bearing sleeves 212.
- Y-shaped follower bars 214 are connected at one end to the shafts 210 and at the other two ends to members 204 holding together the links 202 of a chain.
- the chain links 202 are driven by sprockets (not shown), which in turn are driven by motors (not shown).
- the plates 208 may define one or more recesses 216, or portions of recesses 216a.
- the recesses may be cut through a portion or through the entire thickness of a plate.
- the recesses may be formed in rectangular, circular or other geometric shape.
- the recesses may be cut in non-uniform, non-symmetrical and not repeating shapes.
- the recesses need not be contained wholly within a single plate. Rather, a recess defined by one plate may complement the recess defined by an adjacent plate to form larger or more complex recess shapes.
- the slab of cellular material will be pressed against the plates by a compression roller (not shown in FIG.
- a support platform 222 is provided below the plates 208 to support the plates when compression forces are exerted on them by the compression roller.
- FIG. 7 shows a preferred embodiment of the invention.
- Like reference numerals in FIG. 7 refer to like elements as shown in FIGS. 1-3 because the apparatus 300 in FIG. 7 is similar to the apparatus 10 shown in FIGS. 1-3.
- the outer surface of the drive roller 18 is provided with teeth 20.
- the apparatus also includes follower roller 28.
- a belt 32 has a patterned surface 34 with one or more recesses 36 and has an opposite surface 38. Mating ribs or teeth 39 are proved on the opposite surface 38 of the belt. The teeth 39 engage the teeth 20 provided on the drive roller 18. As the belt travels along a path around the drive roller 18 and follower roller 28, it also contacts the outer surfaces of first and second idler rollers 40, 40'.
- a compression roller 56 mounted on a shaft 58 is provided with an outer surface 60.
- the compression roller 56 is positioned close to the outer surface of the drive roller 18 to define a predetermined gap between the outer surface 60 and the roller 18.
- the roller 56 position is adjustable, such that the outer surface 60 of the roller may be closer or farther from the outer surface of the drive roller 18 to change the gap.
- the belt 32 travels between the outer surface 60 of the compression roller 56 and the outer surface of the drive roller 18.
- a slab of compressible material 80 is fed into the gap between the patterned surface 34 of the belt 32 and the outer surface 60 of the compression roller 56.
- the gap is set to a distance that causes the compressible material to be compressed between the outer surface 60 of the compression roller 56 and the patterned surface 34 of the belt 32. Portions of the compressible material are forced into the recesses 36 formed into the patterned surface 34 of the belt 32.
- a knife blade 76 held within knife casing 74 is positioned just downstream from the gap. Just as the compressible material 80 passes through the gap, portions of the slab 80 held within the recess 36 are cut by the blade 76. The cut slab emerges with a profile-cut surface with recesses. The cut-away portions 88 are separated from the slab 80 and are carried away by the belt 32 to be removed, either by falling away, by manual removal or by vacuum.
- the apparatus in FIG. 8 shows a modification to the apparatus of FIG. 7.
- idler rollers 304 and 306, and a follower roller 308 are provided to more smoothly compress the slab 80 of compressible material between the compression roller 56 and the moving patterned endless belt 32.
- a belt 310 travels in a circuit defined by the compression roller 56 and the follower roller 308 and idler rollers 304, 306.
- a narrowing gap is defined between the belt 308 and the belt 32. The gap is widest between the follower roller 308 and the belt 32 and progressively narrows or closes between the idler roller 306 and the belt 32 and between the idler roller 304 and the belt 32.
- FIG. 9 shows a belt 32' modified to include raised projections 320 projecting from the patterned surface 34'. Some cut products are formed by cutting away a scrim or thin layer from the surface along the entire length of the slab 80. With projections 320 provided on the belt 32', cut products can be formed without cutting away material where portions of the slab passing through the predetermined gap are held to one side of the blade 76 by the projections 320.
- profile cut products might be made for a variety of end uses.
- profile cut products might be made for other vehicle interior applications, such as head liners, side panels and dash panels.
- Profile cut products might also be used for mattresses, mattress pads, pillows, furniture cushions, filters, sports equipment, footwear components and packaging. The above list is intended to be representative and not exhaustive as to all the possible applications for the invention.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Sawing (AREA)
- Crushing And Pulverization Processes (AREA)
- Formation And Processing Of Food Products (AREA)
Abstract
Description
Claims
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP00950798A EP1305148B1 (en) | 2000-07-28 | 2000-07-28 | Continuous platform cutting apparatus and method |
| AU2000263847A AU2000263847A1 (en) | 2000-07-28 | 2000-07-28 | Continuous platform cutting apparatus and method |
| DE60025923T DE60025923T2 (en) | 2000-07-28 | 2000-07-28 | DEVICE AND METHOD FOR CONTINUOUS PLATFORMS CUTTING |
| AT00950798T ATE317315T1 (en) | 2000-07-28 | 2000-07-28 | APPARATUS AND METHOD FOR CONTINUOUS PLATFORM CUTTING |
| CA002386015A CA2386015C (en) | 2000-07-28 | 2000-07-28 | Continuous platform cutting apparatus and method |
| PCT/US2000/020505 WO2002009915A1 (en) | 2000-07-28 | 2000-07-28 | Continuous platform cutting apparatus and method |
| ES00950798T ES2257308T3 (en) | 2000-07-28 | 2000-07-28 | CUTTING DEVICE WITH CONTINUOUS PLATFORM AND PROCEDURE. |
| MXPA02003265A MXPA02003265A (en) | 2000-07-28 | 2000-07-28 | Continuous platform cutting apparatus and method. |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2000/020505 WO2002009915A1 (en) | 2000-07-28 | 2000-07-28 | Continuous platform cutting apparatus and method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2002009915A1 true WO2002009915A1 (en) | 2002-02-07 |
Family
ID=21741625
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/020505 Ceased WO2002009915A1 (en) | 2000-07-28 | 2000-07-28 | Continuous platform cutting apparatus and method |
Country Status (8)
| Country | Link |
|---|---|
| EP (1) | EP1305148B1 (en) |
| AT (1) | ATE317315T1 (en) |
| AU (1) | AU2000263847A1 (en) |
| CA (1) | CA2386015C (en) |
| DE (1) | DE60025923T2 (en) |
| ES (1) | ES2257308T3 (en) |
| MX (1) | MXPA02003265A (en) |
| WO (1) | WO2002009915A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8454805B2 (en) | 2008-03-25 | 2013-06-04 | Spts Technologies Limited | Method of depositing amorphus aluminium oxynitride layer by reactive sputtering of an aluminium target in a nitrogen/oxygen atmosphere |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170328073A1 (en) | 2014-12-21 | 2017-11-16 | Palziv Ein Hanaziv Agricultural Cooperative Society Ltd. | Polymer foam sheet and barrier layer composite |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BE551358A (en) * | ||||
| US3690203A (en) * | 1969-11-14 | 1972-09-12 | Helmut Huttemann | Cutting apparatus for foam material and the like |
| US4351211A (en) * | 1980-03-25 | 1982-09-28 | Sovra S.A. | Method and apparatus for cutting blanks from foam material |
| US5819631A (en) * | 1996-08-02 | 1998-10-13 | Foamex L.P. | Synthetic foam surface contouring machine |
| WO1999004941A1 (en) * | 1997-07-23 | 1999-02-04 | Foamex L.P. | Multiple continuous platform cutting method |
| WO1999004940A1 (en) * | 1997-07-23 | 1999-02-04 | Foamex L.P. | Continuous platform cutting method |
-
2000
- 2000-07-28 ES ES00950798T patent/ES2257308T3/en not_active Expired - Lifetime
- 2000-07-28 EP EP00950798A patent/EP1305148B1/en not_active Expired - Lifetime
- 2000-07-28 WO PCT/US2000/020505 patent/WO2002009915A1/en not_active Ceased
- 2000-07-28 DE DE60025923T patent/DE60025923T2/en not_active Expired - Lifetime
- 2000-07-28 MX MXPA02003265A patent/MXPA02003265A/en active IP Right Grant
- 2000-07-28 AT AT00950798T patent/ATE317315T1/en not_active IP Right Cessation
- 2000-07-28 CA CA002386015A patent/CA2386015C/en not_active Expired - Fee Related
- 2000-07-28 AU AU2000263847A patent/AU2000263847A1/en not_active Abandoned
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BE551358A (en) * | ||||
| US3690203A (en) * | 1969-11-14 | 1972-09-12 | Helmut Huttemann | Cutting apparatus for foam material and the like |
| US4351211A (en) * | 1980-03-25 | 1982-09-28 | Sovra S.A. | Method and apparatus for cutting blanks from foam material |
| US5819631A (en) * | 1996-08-02 | 1998-10-13 | Foamex L.P. | Synthetic foam surface contouring machine |
| WO1999004941A1 (en) * | 1997-07-23 | 1999-02-04 | Foamex L.P. | Multiple continuous platform cutting method |
| WO1999004940A1 (en) * | 1997-07-23 | 1999-02-04 | Foamex L.P. | Continuous platform cutting method |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8454805B2 (en) | 2008-03-25 | 2013-06-04 | Spts Technologies Limited | Method of depositing amorphus aluminium oxynitride layer by reactive sputtering of an aluminium target in a nitrogen/oxygen atmosphere |
Also Published As
| Publication number | Publication date |
|---|---|
| MXPA02003265A (en) | 2002-09-18 |
| CA2386015A1 (en) | 2002-02-07 |
| ES2257308T3 (en) | 2006-08-01 |
| EP1305148B1 (en) | 2006-02-08 |
| DE60025923D1 (en) | 2006-04-20 |
| EP1305148A1 (en) | 2003-05-02 |
| CA2386015C (en) | 2006-09-26 |
| ATE317315T1 (en) | 2006-02-15 |
| AU2000263847A1 (en) | 2002-02-13 |
| DE60025923T2 (en) | 2006-09-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6467386B1 (en) | Multiple continuous platform cutting apparatus | |
| US6513414B1 (en) | Method of cutting a cellular polymer surface with a continuous platform cutting apparatus | |
| AU2005267399A1 (en) | Continuous forming apparatus for three-dimensional foamed products | |
| US20110212206A1 (en) | Surface shaping of compressible cellular polymers with continuous rotary apparatus | |
| US6546836B1 (en) | Continuous platform cutting apparatus for cutting a cellular polymer surface | |
| CA1137358A (en) | Rounder bars | |
| US6173638B1 (en) | Method for cutting a cellular polymer surface with multiple continuous platforms | |
| US6668698B1 (en) | Continuous platform cutting method | |
| US6675691B1 (en) | Continuous platform cutting apparatus | |
| EP1305148B1 (en) | Continuous platform cutting apparatus and method | |
| JP2003334823A (en) | Method and apparatus for continuously manufacturing foaming material layer | |
| US5022844A (en) | Apparatus for forming foldable plastic products | |
| US8844413B2 (en) | Method of making a die-cut foam object | |
| JPH0616905B2 (en) | Corrugated plate molding method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2000950798 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2002/003265 Country of ref document: MX Ref document number: 2386015 Country of ref document: CA |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWP | Wipo information: published in national office |
Ref document number: 2000950798 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2003134625 Country of ref document: RU Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2000950798 Country of ref document: EP |