[go: up one dir, main page]

WO2002008817A2 - Dispositifs d'imagerie omnidirectionnels stereoscopiques - Google Patents

Dispositifs d'imagerie omnidirectionnels stereoscopiques Download PDF

Info

Publication number
WO2002008817A2
WO2002008817A2 PCT/GB2001/003251 GB0103251W WO0208817A2 WO 2002008817 A2 WO2002008817 A2 WO 2002008817A2 GB 0103251 W GB0103251 W GB 0103251W WO 0208817 A2 WO0208817 A2 WO 0208817A2
Authority
WO
WIPO (PCT)
Prior art keywords
image
convex
reflecting
light
scene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/GB2001/003251
Other languages
English (en)
Other versions
WO2002008817A3 (fr
Inventor
Lee Scott Friend
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0018017.4A external-priority patent/GB0018017D0/en
Priority claimed from GB0019850A external-priority patent/GB0019850D0/en
Priority claimed from GB0023786A external-priority patent/GB0023786D0/en
Priority claimed from GB0104695A external-priority patent/GB2365143A/en
Priority claimed from PCT/GB2001/001115 external-priority patent/WO2001068540A2/fr
Priority claimed from GB0116391A external-priority patent/GB0116391D0/en
Application filed by Individual filed Critical Individual
Priority to AU2001272647A priority Critical patent/AU2001272647A1/en
Publication of WO2002008817A2 publication Critical patent/WO2002008817A2/fr
Publication of WO2002008817A3 publication Critical patent/WO2002008817A3/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/12Panospheric to cylindrical image transformations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0088Synthesising a monoscopic image signal from stereoscopic images, e.g. synthesising a panoramic or high resolution monoscopic image

Definitions

  • the invention relates to omnidirectional stereo photography apparatus for stills, video or film applications.
  • My GB Patent Application Nos 0018017.4 filed 21 July 2000 and 0019850.7 filed 11 August 2000 disclose omnidirectional stereoscopic viewing arrangements.
  • My GB Patent application No. 0023786.7 discloses arrangements for omnidirectional viewing which include imaging systems displaced on the same optical axis. ln omnidirectional imaging, the problem of image separation is amplified by the all round view of the sensors negating the use of cameras in a side by side configurations. The problem can further exacerbated by a 360 degree view results in image separation reversals.
  • the present invention seeks to address problems of the former type - that of image gathering without the second image sensor being visible to the first.
  • the problems of reversal can be dealt with by image processing. For authentic three-dimensional viewing we need to see round the side of an object recorded by the first sensor, and there can be no real substitute for the gathering of this information.
  • omnidirectional stereoscopic imaging apparatus comprises two imaging systems displaced on the same optical axis, one of which systems is larger than the other by a factor depending on a predetermined interocular distance.
  • omnidirectional image should be taken to include an image extending over a hemisphere, besides a sphere itself, and any image which is a major part of such an image.
  • a known fisheye or panoramic lens can provide a hemispherical field of view of a panoramic scene.
  • Parabolic convex mirrors can be used to provide similar hemispherical fields of view.
  • the imaging systems employ two convex reflecting means, one of which is larger than the other by a size factor determined by the amount of interocular distance required.
  • the main aim is to displace one recording from the next, consistently in a 360-degree horizontal axis, and ideally in a 360-degree vertical axis.
  • Interocular distances greater or less than standard 65mm separation can still achieve credible results for the purposes of hypersteroscopy- as in say in arial photography. In this instance the whole subject is too distant to give useful visible difference in a pair of stereo images with the standard 65mm separation, and an abnormal separation or greater distance is usually achieved by allowing time for the aircraft to travel an appropriate extra distance.
  • hypostereoscopy In a fixed image capture situation the distance in the separation is increased during image capture In macro or close up imaging, objects will be too displaced with standard separation, consequently the dimensional relief should be reduced by reducing the separation during the image capture this technique is referred as hypostereoscopy.
  • Each convex reflecting means may be arranged to reflect an image of a scene onto second reflecting means, the second reflecting means being arranged to reflect the image onto image sensing means.
  • the convex reflecting means can be hemispherical, parabolic, hyperbolic, ellipsoidal, or of a polygonal type where the polygon includes a plurality of planar or curved reflecting facets surrounding a central axis through the convex reflecting means. These can be whole or frusto- convex (truncated) sections.
  • the second reflecting means can be planar, concave or convex and any of the hemispherical, parabolic, hyperbolic, ellipsoidal shapes. Where the convex and second reflecting means have a curvature, these may be in confocal relationships. This embodiment may be enclosed by a transparent cover, or encased in a solid optic.
  • the two convex reflecting means may be arranged to reflect respective said images on to common second reflecting means for reflecting said images on to said image sensing means.
  • the smaller of said convex reflecting means may be co-axially mounted on the larger of the said convex reflecting means.
  • At least one of said convex reflecting means may be arranged to reflect an image of a scene directly on to image sensing means.
  • Each convex reflecting means may have one or more apertures or light ports for receiving light reflected from the second reflecting means, whereby incident light passes to the image sensing means.
  • each convex reflecting means may be of the polygonal type, including a plurality of facets surrounding a central axis through the convex reflecting means, and wherein either a central aperture is provided in the apex of the convex reflecting means, or apertures are provided at the midpoint of each facet.
  • the convex reflecting means may comprise a first set of facets, which are the sides of the polygonal convex reflector having an axis of symmetry, the second reflecting means including a second set of facets for reflecting light through a light port at the apex of the convex reflector, the second set of facets being arranged to reflect light which is incident on them only from the respective facets in the first set, whereby the image sensing means separately and respectively receives light from those parts of the panoramic scene reflected in the first set of facets of the convex reflector.
  • two fisheye lens systems can be spaced apart on the same axis, one lens system being larger than the other by the factor of the i nterocu lar d istance .
  • At least part of the smaller of said lens systems may be co-axially mounted on the larger of the said lens systems.
  • the two lens systems may be arranged to focus an image of a scene on to common image sensing means.
  • each lens system is separated into two parts, a first part being located so as to gather light from the scene whereby it is incident on image deflecting means, and the other part being located so as to receive light from the image deflecting means.
  • the first part of the smaller lens system may be mounted on the first part of the larger lens system.
  • the image deflecting means may be located within a central aperture of the first part of the larger lens system, the first part of the smaller lens system being mounted on said image deflecting means.
  • each lens system may be arranged to focus an image of a scene on to respective image sensing means.
  • omnidirectional imaging apparatus comprises two imaging systems displaced on the same optical axis by the interocular distance.
  • the two imaging systems may comprise two convex reflectors, each convex reflector preferably being arranged to reflect an image of a scene onto a second reflector, the second reflector being arranged to reflect the image onto an image sensing means.
  • each imaging system comprises means for focussing light of a different respective wavelength on to a respective image sensor.
  • one imaging system may comprise a lens system formed from Crown optical glass for focussing visible light, and the other imaging system may comprise a lens system formed from germanium for focussing infra red light. This can render the apparatus particularly suitable for night surveillance.
  • omnidirectional imaging apparatus comprises means having a surface for reflecting an omnidirectional image of a scene, means for deriving two views of the reflecting surface, which views are separated by the interocular distance.
  • the means for deriving two views of the reflecting surface can be a beam splitter, or a means of providing a binocular view, for example, where reflecting surfaces or prisms direct light on the respective right and left hand paths to lenses which focus the respective right and left images on a sensing surface.
  • the apparatus may be enclosed in a transparent cover with an air gap or fully encased in a solid glass optic, such as crown optical glass, germanium, or plastics material.
  • a solid glass optic such as crown optical glass, germanium, or plastics material.
  • Figure 1 shows an embodiment with small and large convex reflectors separated on the same optic axis
  • Figure 2 shows a generally similar embodiment, which is used for 360 x 360 viewing
  • Figs. 3, 4 and 5 show modifications of the arrangement shown in Fig. 2;
  • Fig. 6 shows an arrangement based on using flat reflecting surfaces in pyramidal or polygonal convex reflectors
  • Fig. 7 shows a 360 x 360 version of Fig. 6
  • Fig. 8 shows an alternative embodiment with convex reflectors of the same size spaced apart by the interocular distance
  • Figs. 9 and 10 show binocular arrangements for viewing a reflecting surface, useful for 360 x 180 and 360 x 360 viewing;
  • Figs. 11 and 12 show similar viewing arrangements but using fisheye lenses of different sizes spaced apart on the optic axis;
  • Fig. 13 shows another arrangement based on using flat reflecting surfaces in pyramidal or polygonal convex reflectors
  • Figs. 14, 15a, 15b and 15c show arrangements using co-axially mounted fisheye lenses of different sizes;
  • Figs. 16a and 16b shows a 360 x 360 versions of Fig. 15a and 15b respectively;
  • Figs. 17a and 17b show respective modifications of the arrangement shown in Fig. 15 with separate image sensors for the two lens systems;
  • Fig. 18 shows another arrangement using a combination of fisheye lenses and image deflecting means
  • Fig.19 shows a 360 x 360 version of Fig. 18
  • Fig. 20 shows a modification of the arrangement shown in Fig. 1 ;
  • Fig 21 shows a 360 x 360 version of Fig. 20
  • Fig. 22 shows the view from each of the back to back arrangements of Fig. 21 (in a flat display plane) and the corresponding developed left and right upper and lower fields of view in a flat plane after mapping the image signal data from polar to Cartesian co-ordinates;
  • Fig. 23 shows the view from each of the back to back arrangements of any of Figs. 2 to 4 (in a flat display plane) and the corresponding developed left and right upper and lower fields of view in a flat plane after mapping the image signal data from polar to Cartesian co-ordinates;
  • Fig. 24 shows the view from each of the back to back arrangements of Fig. 12 (in a flat display plane) and the corresponding developed left and right upper and lower fields of view in a flat plane after mapping the image signal data from polar to Cartesian co-ordinates;
  • Fig. 25 shows the view from each of the back to back arrangements of Fig. 16 (in a flat display plane) and the corresponding developed left and right upper and lower fields of view in a flat plane after mapping the image signal data from polar to Cartesian co-ordinates.
  • two differently sized mirrors are located on the same optical axis with a size difference equal to the interocular distance of 65 mm.
  • This figure may vary for the purpose of hypersteroscopy / hypostereoscopy for subject of varying distance.
  • the recorded scene strikes the larger mirror from a wider or horizontally displaced viewpoint allowing image artefacts unseen by the smaller mirror with its narrower viewing arc to be recorded.
  • the recorded signals of the different cameras are recorded and displayed at the same size and resolution, however there is clear visible differences in the scene giving the output genuine three dimensional relief..
  • Parabolic, truncated parabolic or hyperboliodal reflectors of differing sizes can be used to achieve interocular distance in either 360 degrees horizontally and up to 210 degrees vertically.
  • standard lens groupings or by the use of telecentric lens groupings.
  • Other embodiments include the use of four, six, eight or any appropriate number - sided pyramidal shaped reflectors.
  • the 2 images can be processed individually using Adobe Photoshop, utilising the Polar co ordinate filter, checking polar to rectangle option.
  • the images can be translated individually to a plane viewable image, for further use in either anyglyphical or polarising display means.
  • Figure 1 shows an embodiment where the difference in mirror size is achieved with parabolic type reflectors 1 a, 1 b, capable of recording an image hemisphere of 360 to approx. 210 degrees.
  • the drawing shows a primary mirror (1a, 1b) and secondary mirror (2a,2b) for each image ( left & right).
  • the secondary mirrors may be of plane or concave form.
  • the top camera including, for example, a lens focussing light onto a CCD
  • reflectors may be raised to allow sight over the bottom reflectors.
  • Figure 3 shows a combination utilising a camera 3c, directly onto the top reflector 1a, negating the use of a secondary reflector for the smaller mirror.
  • Figures 4 & 5 replace secondary reflectors with cameras 3d, which are directed at the primary reflectors 2a, in each image hemisphere, giving 360x360 stereo view.
  • Figure 5 we see a 360 up to 210 degree single hemisphere embodiment. This embodiment increases the vertical shift.
  • Figure 6 shows a pyramidal mirror assembly, with a means of gathering image information from each mirror face 1 d, 2d.
  • These faces or facets are part of a pyramidal or polygonal structure, only six such faces being present in Fig. 6 to simplify the drawing.
  • These facets reflect light upwardly (or downwardly) into respective reflecting systems 5a, 5b, which turn the light through two right angles before directing it through lens system 6a, 6b, onto a part of the surface of CCD 7a, 7b. Three of such ray paths can be seen in the cross section which correspond with three of the six sides or facets of this structure.
  • the apparatus is shown with a mirror assembly transmitting each scene into the centre of the apparatus.
  • Other embodiments may use prisms or fibre optical means, on, say, a four, six or eight side mirror, although it will be appreciated that the mirror may have any appropriate number of sides.
  • Figure 7 shows a back to back embodiment to allow for greater fields of view.
  • Figure 8 shows an embodiment which, if used horizontally, the interocular distance can be created in a 360x360 back to back embodiment by spacing the reflector sets at interocular distance, rather than using mirrors of differing size.
  • parabolic convex reflectors 1a, 2a reflect light onto respective planar mirrors 2a,2b, which in turn reflect light onto cameras 3a,3b.
  • Figures 9 and 10 are respective 360 x 180 and 360 x 360 arrangements in which a beam splitter or binocular means 8a,8b, views a omnidirectional image in the reflecting surface of a convex reflector 2a,2b.
  • the separation between the ray paths is the interocular distance.
  • the beam splitter or binocular arrangement can be fitted with means for adjusting the spacing between the ray paths, so as to provide an interocular distance suitable for viewing the particular panoramic scene. For example, the scene may be near or far and the distance can be adjusted accordingly.
  • a device fitted with a dual camera assembly can include a worm drive or adjustable screw to allow for Hypersteroscopy, / hyposteroscopy to adjust the distance between the 2 lenses for any extremes in the distances of the objects viewed.
  • the normal position would use the standard interocular separation of 65 mm.
  • the beam splitter described in fig 9 could be utilised in each of the four lenses.
  • the left and right images can be received on a CCD as in the previous embodiments.
  • Figs. 11 and 12 differently sized fisheye lens systems 10a, 10b, are separated by the interocular distance on the same optical axis, and one lens is larger than the other by a factor related to the interocular distance.
  • the lens systems focus their respective omnidirectional images on respective imaging devices, such as CCDs 11 a, 11b.
  • Figure 13 shows a modification of the back to back pyramidal type of structure shown in Figure 7 where the inclined outer reflecting faces or facets 12a, 12b of a convex regular pyramid reflect light incident from the surrounding scene on to upper reflector 13a, 13b which in turn reflects light downwardly through apertures 14a, 14b in the inclined faces or facets 12a, 12b.
  • Located beneath each aperture is a camera or CCD sensing system 15a, 15b which captures that part of the image reflected by the respective facet and the overhead part of reflector 13a, 13b.
  • Each aperture can be open, but in order to hide the camera lens from view the aperture may be, for example, semi-silvered so that it is partly transparent, or it can be clearly transparent.
  • Figures 14 and 15a show modifications of the fisheye lens systems shown in Figures 11 and 12.
  • Differently sized fisheye lens systems are provided on the same optical axis, one lens system being larger than the other by a factor related to the interocular distance.
  • the height of the apparatus is reduced by moulding or otherwise mounting the wide angle, or fisheye, lens 21b and part 22b of the secondary lens grouping of the smaller lens system on fisheye lens 21a of the larger lens system such that part 22b of the secondary lens grouping of the smaller lens system lies within a meniscus void 23 formed in the fisheye 21a of the larger lens system.
  • Opaque material 24 is located between the lens systems in order to prevent light cross over between the lens systems.
  • Lens 21 b, 22b passes through the void 23 with the assistance of a relay lens indicated at 22c and into a tube 25 containing, for example in the form of fibre optic means or a relay lens system and the remainder of the secondary lens grouping of the smaller lens system, for subsequent capture in the centre of the image sensor 26.
  • Light focussed by lenses 21 a, 22a of the larger lens system passes into lens grouping 25' surrounding tube 25 to be captured on the same image sensor 26.
  • Figure 16a shows a back to back embodiment to allow for greater fields of view.
  • Figure 15b shows a similar arrangement to Figure 15a, in which all of the lenses of the secondary lens grouping of the smaller lens system lie within the void 23.
  • tube 25 comprises a fibre optic bundle or optical glass rods, or relay lens and secondary groupings, as required.
  • Figure 16b shows a back to back embodiment to allow for greater fields of view.
  • Figure 15c shows a similar arrangement to Figure 15a, in which lens grouping 25' is common to both the larger and smaller lens systems.
  • Figure 17a shows an embodiment where a beam, splitter 27, for example, a planar reflector angled at 45 degrees to the optical axis of the apparatus, is located between the tube 25 and the sensor 26 in order to redirect the image captured by the smaller lens system 21 b, 22b to a separate image sensor 28.
  • the light focussed by the smaller lens system 21 b, 22b passes through a central aperture in the sensor 26 on to an additional sensor 28 located beneath sensor 26.
  • Each image sensor may comprise a CCD array with a plane, convex or concave image receiving surface to reduce optical distortion.
  • a polarising filter may be located optically in front of the sensor to reduce the incidence of reflections from a housing on the sensors.
  • the larger and smaller lens systems share common secondary lens grouping 31 and image sensor 32, the smaller fisheye lens 21 b being mounted on an insert 30 located within the void of the larger fisheye lens 21 a.
  • the outer surface of the insert 30 is reflective in order to deflect light focussed by each of the fisheye lenses 21a, 21 b on to respective portions of the secondary lens grouping 31 for focussing on the image sensor 32.
  • Figure 19 shows a back to back embodiment to allow for greater fields of view.
  • Figure 20 shows a modification of the embodiment shown in Figure 1 , which modification includes a primary parabolic mirror (1a, 1 b) for each image (left and right) and a common plane or concave mirror 2 focussed on to a CCD and lens system 3.
  • Figure 21 shows a back to back embodiment to allow for greater fields of view
  • Figure 22 illustrates a mapping operation on each image signal data received from the image sensors of the arrangement shown in Figure 21 for transformation of the data into a cartesian co-ordinate system for output to a display device.
  • each of the circular images is notionally divided into an array of pixels in a polar co-ordinate system.
  • Each of these pixels is then mapped, using look-up tables stored in the image processing apparatus which also compensate for distortion resulting from the mapping, into a cartesian co-ordinate system for display in a rectangular display.
  • this mapping technique as shown in Figure 22, four sectors, each numbered 1-4 and 5-8 in the right hand upper and lower hemispheres of view, map to rectangular areas 1 -4 and
  • FIG. 23 illustrates a mapping operation on each image signal data received from the image sensors of the arrangement shown in any of Figures 2 to 4 for transformation of the data into a cartesian co-ordinate system for output to a display device.
  • Figure 24 illustrates a mapping operation on each image signal data received from the image sensors of the arrangement shown in Figure 12, whilst Figure 25 illustrates a mapping operation on each image signal data received from the image sensors of the arrangement shown in any of Figures 16a and 16b.
  • the apparatus may use transparencies to protect the lenses and reflectors or may use a solid optic between primary and secondary mirrors.
  • the shape of such coverings should prescribe symmetry that minimises coma or stigmatism.
  • stereo display when viewed with anyglyphical glass (a red filter over the right eye and a green filter over the left) if the output signal is displayed separately with each side toned for red and green a perception of depth is given to viewer.
  • anyglyphical glass a red filter over the right eye and a green filter over the left
  • stereo computer displays by such manufacturers as Philips or Sharp another possible alternative. Whilst both these methods are in the background art, the difference between them and in this invention is the camera designs.
  • the invention can be embodied to allow up to 360x360 degree image capture in real time or live relay or transmission of video or film images suitable for multicast applications, or for range finding and targeting allowing the stereo image scene can be viewed, with minimal optical aberrations or distortions predominant in other systems, in the central annular viewing area.
  • Fibre optics or glass rods may be used in any of the described embodiments to relay the image scene, as described in my co-pending International application no. PCT/GB01/01115, the contents of which are incorporated herein by reference. Means for combining the various scenes on to a single or multiple image sensors may be provided, as also described in my International application no. PCT/GB01/01115.
  • a useful side effect of the above-described stereoscopic imaging apparatus is its ability to perceptively "overlay" information from two sensors reading different wavelength information.
  • stereoscopy can be used to overlay invisible image data such as infra red. This is made possible by a combination of a visible spectrum sensor and an invisible spectrum sensor or any other image intensifying means, and by combining the use of separate and different lens materials, such as germanium for infra red wavelengths and Crown optical glass for visible wavelengths.
  • the invisible wavelength data is seen to be overlaid on the display, for example an infra red (or heat identifying) image overlaid on a colour visible wavelength video image.
  • the two image data streams can provide a separate display of the image captured by each image sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Studio Devices (AREA)

Abstract

Appareil d'imagerie omnidirectionnel stéréoscopique qui comporte deux systèmes d'imagerie déplacés sur le même axe optique. L'un des deux systèmes d'imagerie est plus grand que l'autre, d'un facteur dépendant d'une distance inter-oculaire prédéterminée.
PCT/GB2001/003251 2000-07-21 2001-07-19 Dispositifs d'imagerie omnidirectionnels stereoscopiques Ceased WO2002008817A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001272647A AU2001272647A1 (en) 2000-07-21 2001-07-19 Stereoscopic omnidirectional imaging devices

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
GB0018017.4 2000-07-21
GBGB0018017.4A GB0018017D0 (en) 2000-03-16 2000-07-21 Imaging apparatus
GB0019850.7 2000-08-11
GB0019850A GB0019850D0 (en) 2000-03-16 2000-08-11 Imaging apparatus
GB0023786A GB0023786D0 (en) 2000-09-28 2000-09-28 Omnidirectional imaging apparatus
GB0023786.7 2000-09-28
GB0104695.2 2001-02-26
GB0104695A GB2365143A (en) 2000-07-21 2001-02-26 Omindirectional imaging apparatus with two imaging systems
GBPCT/GB01/01115 2001-03-14
PCT/GB2001/001115 WO2001068540A2 (fr) 2000-03-16 2001-03-14 Appareil d'imagerie
GB0116391A GB0116391D0 (en) 2001-01-12 2001-07-04 Omnidirectional viewing by a digital camera on a telephone
GB0116391.4 2001-07-04

Publications (2)

Publication Number Publication Date
WO2002008817A2 true WO2002008817A2 (fr) 2002-01-31
WO2002008817A3 WO2002008817A3 (fr) 2002-04-18

Family

ID=27546603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2001/003251 Ceased WO2002008817A2 (fr) 2000-07-21 2001-07-19 Dispositifs d'imagerie omnidirectionnels stereoscopiques

Country Status (2)

Country Link
AU (1) AU2001272647A1 (fr)
WO (1) WO2002008817A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334185A1 (de) * 2003-07-26 2005-02-24 BODENSEEWERK GERäTETECHNIK GMBH Kamerasystem
EP2699007A3 (fr) * 2012-08-14 2016-09-21 Young Optics Inc. Système d'affichage d'image stéréo et système de capture d'image stéréo
JP2019525509A (ja) * 2016-06-20 2019-09-05 インターナショナル インスティテュート オブ インフォメーション テクノロジー ハイデラバード 水平視差ステレオパノラマ取込方法
EP2353044B1 (fr) * 2008-10-02 2019-12-04 Yepp Australia Pty Ltd Système d'imagerie

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590704B1 (en) * 1998-06-29 2003-07-08 Canon Kabushiki Kaisha Multi-eye image sensing apparatus
US6141145A (en) * 1998-08-28 2000-10-31 Lucent Technologies Stereo panoramic viewing system
AUPP819199A0 (en) * 1999-01-15 1999-02-11 Australian National University, The Resolution invariant panoramic imaging

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334185A1 (de) * 2003-07-26 2005-02-24 BODENSEEWERK GERäTETECHNIK GMBH Kamerasystem
US7400347B2 (en) 2003-07-26 2008-07-15 BODENSEEWERK GERäTETECHNIK GMBH Camera system for monitoring a solid angle region and for detection of detailed information from the solid angle region
EP2353044B1 (fr) * 2008-10-02 2019-12-04 Yepp Australia Pty Ltd Système d'imagerie
EP2699007A3 (fr) * 2012-08-14 2016-09-21 Young Optics Inc. Système d'affichage d'image stéréo et système de capture d'image stéréo
JP2019525509A (ja) * 2016-06-20 2019-09-05 インターナショナル インスティテュート オブ インフォメーション テクノロジー ハイデラバード 水平視差ステレオパノラマ取込方法
EP3472667A4 (fr) * 2016-06-20 2020-01-08 International Institute Of Information Technology Hyderbad Système et procédé de capture d'un panorama stéréo à disparité horizontale

Also Published As

Publication number Publication date
WO2002008817A3 (fr) 2002-04-18
AU2001272647A1 (en) 2002-02-05

Similar Documents

Publication Publication Date Title
US6795109B2 (en) Stereo panoramic camera arrangements for recording panoramic images useful in a stereo panoramic image pair
US5546120A (en) Autostereoscopic display system using shutter and back-to-back lenticular screen
JP7753229B2 (ja) 強化された検知のためのパノラマカメラシステム
US7726816B2 (en) Stereoscopic display device and method
US10070055B2 (en) Devices and methods for optically multiplexed imaging
AU2008288212B2 (en) Imaging device
WO2001068540A2 (fr) Appareil d'imagerie
US20030081952A1 (en) Method and apparatus for omnidirectional three dimensional imaging
US8049776B2 (en) Three-dimensional camcorder
US9503638B1 (en) High-resolution single-viewpoint panoramic camera and method of obtaining high-resolution panoramic images with a single viewpoint
KR100220888B1 (ko) 이동 개구를 이용한 다시야 3차원 영상 구현 방법 및 시스템
JP2662252B2 (ja) 立体像表示装置
JP6907616B2 (ja) 立体画像の撮像・表示兼用装置及びヘッドマウント装置
JP2009048033A (ja) 立体画像撮像装置
JP3676916B2 (ja) 立体撮像装置および立体表示装置
JP2002191060A (ja) 3次元撮像装量
WO2002008817A2 (fr) Dispositifs d'imagerie omnidirectionnels stereoscopiques
JPH0583746A (ja) 3次元表示装置
JP3952776B2 (ja) カメラ構造及び立体カメラ
KR100485442B1 (ko) 일안식 입체 카메라 및 이를 이용한 입체 영상 시스템
GB2365143A (en) Omindirectional imaging apparatus with two imaging systems
JP2585614B2 (ja) 立体画像出力装置
KR20230169068A (ko) 렌즈 어레이 내의 크로스토크 장벽
US20060083437A1 (en) Three-dimensional image display apparatus
JP2007102201A (ja) 三次元光線入力装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: 1205A

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP