WO2002099215A1 - Element structurel de construction - Google Patents
Element structurel de construction Download PDFInfo
- Publication number
- WO2002099215A1 WO2002099215A1 PCT/AU2002/000716 AU0200716W WO02099215A1 WO 2002099215 A1 WO2002099215 A1 WO 2002099215A1 AU 0200716 W AU0200716 W AU 0200716W WO 02099215 A1 WO02099215 A1 WO 02099215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- element according
- beams
- flange portion
- interior space
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/29—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
- E04C3/293—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/17—Floor structures partly formed in situ
- E04B5/23—Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
- E04B5/29—Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated the prefabricated parts of the beams consisting wholly of metal
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/20—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members
- E04C3/26—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members prestressed
Definitions
- This invention relates to a building structural element and a method of making a building structural element. More particularly this invention relates to a building structural element and method of making such an element which is used in floor systems of buildings.
- the invention may also be used for many other building uses, such as a roof deck over road tunnels, railway tracks and the like. It can be used for large multi-bay floor spaces, particularly with high floor to floor dimension and/or long spans in one or both directions and/or high floor loadings such as floor decks for retail, recreational or other use. It can also be used for bridge decks and for any other uses where long spans and/or high loads have to be carried between supports.
- One particular aspect of the invention relates to a floor beam used in the construction of floor systems of a building and is preferably made from a combination of two components, preferably made from steel, and a cementitious material such as concrete.
- Beams are generally required for floor systems of buildings that span in excess of 8 to 10 metres. This is typically the upper range or limit that floor slabs can extend without using beams for structural support. Supporting columns are usually located 6 to 9 metres apart of which a common spacing is 8.4 metres. This is a suitable office module that accommodates the widths of a column plus three spaces that may be used for vehicles located between adjacent columns and used for any parking levels below the office floors (or retail floors, institutional floors or other floors) of the building. Beams are required to span the larger dimension of a rectangular floor panel between a grid of four columns or between a pair of external columns on the outside of the building and the core or central part of a multi storey building. The core is typically used to house lift wells and other common rooms accessible by people on each floor. The floor systems spanning between these beams can and do take on many forms which depends on local availability, economies and the client's, engineer's or builder's preference or a combination of preferences of any one of these three entities.
- Floor systems that span about 8 metres in one direction between the supporting beams can vary from formed concrete slabs on conventional formwork or large table forms, concrete slabs on metal tray forms that are temporarily propped on supports, secondary steel beams at close centres (2.1 to 3.0 metres) supporting a relatively thin slab on an unpropped metal tray forms. Also there are other proprietary systems such as various stressed plank systems that may be able to span a 7 to 8 metre distance unpropped.
- the upper range of suitability for reinforced concrete shallow band beams is about 10 to 12 metres.
- the upper range of suitability is generally 12 to 14 metres.
- spans in excess of 12 to 14 metres special attention and detail is required with common solutions being presented by either a steel floor beam system or a pre-stressed concrete floor beam system.
- each beam needs substantial connections at its supports.
- the beams and the connections usually require an applied protective coating to give them resistance to fire.
- Such steel floor beams can be made to act compositely with the relatively thin floor slab that they support using shear studs, there is a small ongoing component of dead load deflection due to creep of the concrete and shear stud interface. Deflections of the steel beams due to dead loads mostly occur as soon as the loads are applied and can be allowed for by pre cambering the beam.
- floor deflections and vibrations due to transient live loads are still an inherent problem particularly for larger spans, as the composite steel beam is less stiff than a reinforced concrete or pre-stressed concrete beam that would be used for the same span.
- the other type of floor beam system that is generally used today is a post-tensioned, pre-stressed concrete floor beam system.
- They include concrete beams that have a deep aspect ratio, in other words the dimensions of the concrete beam are such that it is deeper than its width and these concrete beams are generally pre-stressed for spans in excess of 10 metres.
- the concrete beams are poured in situ with the slab that they support. Then pre-stressing is applied by post-tensioned tendons that are stressed when the concrete has attained sufficient strength usually within 3 to 6 days of pouring.
- the concrete beam and the adjacent slab panels are usually formed on large table forms that are crane lifted from floor to floor.
- connection can be a simple rebate in the face of the wall of the core and reinforcing bars at the top and bottom of the beam are screwed into ferrules anchored into the core wall.
- the beam can be seated into pockets left in the core wall.
- the pre-stressed concrete floor system is stiffer than the steel floor beam system required to span the same distance and is thus less susceptible to floor vibrations and deflections due to transient loads.
- the incremental deflection of the floor system that occurs after the floor is occupied is not only that due to live load and light weight partitions, but also a significant proportion of deflection from the dead load due to the creep component.
- Pre-stressing may balance out most of the deflection due solely to the dead load.
- the axial pre-stressing imparts a permanent axial force to the beam, there are losses of the prestress force from the resulting time-dependent shortening that will lead to further incremental deflection of the beam.
- An object of the present invention is to provide a building structural element that substantially overcomes one or more of the above disadvantages. More particularly the present invention provides a building structural element having minimal deflections and substantially maintaining pre-stressed force axially therewithin and reduces the loss of such prestress force due to axial creep that shortens beams as in prior art systems.
- a building structural element comprising:
- each beam in said pair having a first flange portion, a second flange portion and a web portion extending between said first flange portion and said second flange portion;
- a plate member adapted to engage one of said first flange portion or said second flange portion of each beam such that an interior space is defined by each beam in said pair of beams and said plate member;
- cementitious material occupies a substantial volume of said interior space and said building structural element has residual or no deflection under dead load after application of a post-tensioned pre-stressing force.
- the building structural element may further comprise one or more tendons extending along a length of the interior space defined between each beam and said plate member which may be a metal tray form soffit. Each one or more tendons may be pre-stressed to provide an upwardly directed force to counteract a portion of the dead load.
- the first flange portion of each beam may support part of a floor span after the element is secured at each end.
- the element may extend between a column and a core of a building. The element may end a short distance from the core and a short distance from the column or alternatively a short distance from a column at each end and is temporarily supported on false work at its end and possibly also at mid span.
- Each beam is preferably constructed of a metal, such as steel, and the cementitious material is preferably concrete.
- a building structural element comprising:
- each beam in said pair of beams having a top flange portion, a bottom flange portion and a web portion extending between said top flange portion and said bottom flange portion;
- a plate member adapted to engage respective bottom flange portions of each beam in said pair of beams such that an interior space is defined by each beam in said pair of beams and said plate member;
- cementitious material occupies a substantial volume of said interior space and said building structural element has a residual or no deflection under dead load after application of a post-tensioned pre-stressing force.
- the plate member may be a metal tray form soffit or other suitable horizontal soffit surface.
- a building structural element comprising:
- a building structural element comprising the steps of:
- the pouring step may be done separately or as part of pouring the adjacent floor spans which the element supports.
- the element may have its ends initially supported on temporary support structures adjacent to the permanent end supports of the beam with possible additional support(s) along the span.
- Figure 2 separated into Figures 2A and 2B, is a side sectional view taken on the line A-A of Figure 1 ;
- Figure 4 is a sectional view of the structural element in use taken on the line C-C of Figure 2;
- Figure 5 is a sectional view of a structural element in use according to a further embodiment and similar to Figure 3;
- Figures 5(a) and 5(d) are side views of the structural element in Figure 5 showing separate conditions of the structural element;
- Figure 6 is a sectional view of the further embodiment of the structural element in use similar to Figure 4;
- Figure 7 is a side sectional view showing the structural element applied to a tunnel cover
- Figure 8 is a side view of a prior art pre-cast structural element.
- Figure 9 shows a plan view and a side view of structural elements across a floor span with secondary supporting beams.
- Shown in Figure 1 is a plan view of a pair of structural elements 1 that each extend from a perimeter column 2 on an outer edge of a building and the core wall 3 in the central part of the building.
- the span of each structural element may extend up to 18 metres in length and beyond and the separation between each element 1 is dependent on the separation between each perimeter column which as previously discussed may be equivalent to fit three spaces for cars in parking levels underneath the office floors which typically may be anywhere between 6 to 9 metres.
- Between the perimeter columns 2 extends an edge beam 16 and the floor 4 extends between the adjacent elements 1.
- the edge beam 16 can incorporate an inner steel beam that stops just short of the sides of the perimeter columns 2, so as not to require any physical connection to the column 2 and is supported on the same external support frame 19 that supports the main structural element 1.
- This steel component of the edge beam 16 is precambered to take the dead loads, allowing minimal deflections along the edge of the building that may affect any facade glazing. It is to be noted that in Figure 1 although only two beams are shown any number of beams needed to support a designated floor area may be used.
- the element 1 is essentially constructed of an outer shell, typically made from steel which comprises first and second (side shell) beams 5 generally in the shape of I-beams each having a web portion 30 and at either end of the web portion 30 exists first and second flange portions 31 and 32.
- Extending at the lower portion of the element 1 is a plate member or (form tray deck soffit)13 generally made from metal and more particularly steel whereby this extends between each bottom or second flange portion 32 of the side shell beams 5 and is affixed or otherwise engaged with the flange portions 32.
- Shear studs 12 extending from the web portion 30 of the side shell beams 5 are used to obtain integral action with the cementitious material that is poured into an interior space 57 of the shell defined by each beam 5 and the plate member 13.
- Ligatures 23 generally in the form of a U-shape extend from within the floor 4 downwardly into the interior space 57 and through raised ribs of the plate member 13. This is also used for extra support for the cementitious material that is poured into the interior of the shell.
- reinforcement bars 24 are also provided within the element 1.
- a closer or spacer 15 also is positioned within the floor 4 to tie the cage structure to the side shell beams 5.
- Pre-stressed tendon elements 10 are several in number and shall be described with reference to Figure 2 hereinafter.
- the pair of beams 5, and various reinforcing for the beam can be pre-fabricated off site in a controlled production line environment and be transported to the site with its reinforcement bars 24 and ligatures 23, pre- stressed tendon elements 6, 8 and 10 and bracing 15 to keep the reinforcing elements in place.
- Tendon element 6 is a dead end anchor for one of the tendons 10 and tendon element 8 is a pressed metal form incorporating a live end anchor recess.
- the two steel side shell beams 5, coupled with bracing 25 for handling and transport, enable the complete assembly to be delivered to a site and in one simple lift, generally of around 4.5 tonnes for an 18 metre beam, be in place on pre-set support frames at its two ends, the support frames being designated by 18 and 19 and at its mid span with support frame 20.
- the element 1 may be housed adjacent to a rebate 22 in the wall 3 and the individual reinforcement bars 14 and 17 screwed into ferrules 21 that have been precast into the jump form core wall 3 for both the top and bottom reinforcing connections to respectively go to reinforcement bars 14 and 17.
- connection to the external column 2 all that is required is that the connecting reinforcing bars 14 and 17 extend the required length past the face of the column 2.
- These reinforcing bars 14 and 17 together with the beam ligatures 11 at the end sections of the element 1 are the only reinforcing steel for the element 1 that needs to be fixed on site.
- each end of each beam can be stepped up to accommodate any major service duct reticulation without impinging on the ceiling height by simply stepping up the bottom flange portion 32 of each steel side shell beam 5.
- This is more clearly shown in Figure 2 where the step 7 is shown such that the space between the step and either the core wall 3 or column 2 designated as 9 provides a space for such a service duct reticulation if required.
- This step also allows the housing of the live or jacking end for one or more pre-stressed tendons 10.
- the tendons 10 as mentioned are post-tensioned on site and may include any number as desired to be located in the interior space between each steel side shell beam 5.
- a pre-stressed tendon extends between the steps 7 in the bottom flange portion 32 and further pre-stressing tendons 10 are shown extending the full length of the beams and having a drape, in other words stressed in a concave manner and this is done to provide an uplift force or component that cancels out anywhere between 50% to 100% of the total dead load, although about 50-60% is usually sufficient for these beams, with the balance of the dead load and transient load capacity being provided by the steel shells of the prefabricated beam and the cementitious material.
- the dead load is deemed that weight comprised of the floor itself, the beams and permanent superimposed loads such as ceiling surfaces and floor finishes.
- the two steel side shell beams 5 are generally precambered so that once the temporary props are removed all of the deflection due to the dead load has been accommodated.
- the steel side shell beams 5, the pre-stressing tendons and the concrete core filling the interior space of the pair of beams 5 interact together to share the total load.
- the beams 5 and the pre-stressing tendons substantially prevent the reinforced component from taking any significant proportion of the load and certainly will not allow the concrete component to creep substantially as the pre-stressing tendons plus the precambered steel shell beams 5 between them are capable of taking the total dead load before the beam has deflected back to the horizontal.
- the floor 4 and element 1 and columns 2 could be poured the same day.
- the columns 2 may be poured whilst the floor formwork and reinforcing to the floor panels 4 between the hybrid elements 1 is being installed. It is envisaged that with a well organised work force, even for large floor areas, three day floor cycles or even less could regularly be achieved by pouring half the floor on the first day, pouring the other half on the second day and preparing columns and lift perimeter shutters etc on the third day.
- the structural element 1 is made from a single unitary or joined construction.
- the embodiment in these Figures has a generally U-shape channel formed of a pair of side walls 33 and 34 and a bottom or further portion 35 linking each of the side walls 33 and 34.
- the construction is made out of steel.
- Upper portions of the side walls 33 and 34 respectively have flange elements 36 and 37 for supporting part of the floor 4.
- the structural element can be made from either a single piece of steel plate for example utilising four folds indicated in Figure 5(a) at 38, 39, 40 and 41 (with no welding).
- the construction could be welded at point 42 and retain the four folds 38 through to 41 as shown in Figure 5(b) giving a two plate construction.
- Figure 5(c) there is shown an alternative arrangement for the structural element retaining folds 38 and 41 but welded at points 43 and 44, providing a three plate construction.
- five pieces of steel plate could be used with no folds and four welds as indicated at points 45, 46, 47 and 48.
- the invention can also be used for shorter spans using shallower side shell steel beams with or without the use of pre-stressing tendons and with or without notches in the bottom of the ends of the beam to accommodate major service duct reticulation.
- pre-stressing tendons are used for such shallow beams that do not have service duct step-ups that double as stressing anchor points then the anchors can be stressed from rebate pockets in the top of the floor that are filled in later after stressing and grouting of the tendons.
- the invention is suitable for use in road tunnels using a "cut and cover” method. This involves lifting into position each of the structural elements, which already have their reinforcement and prefabricated in place, using relatively low load capacity cranes.
- This compares to extremely heavy precast pre-stressed concrete beams 49 used in prior art systems and shown in Figure 8.
- the heavy precast pre- stressed concrete beams 49 have required extremely large cranes to be used for such lifting applications.
- the beams 49 have relatively thin flanges 50 and a topping slab 51 normally used for such applications.
- the invention is also suitable for large multi-bay floor spaces, particularly with high floor to floor dimension and/or long spans in one or both directions and/or high floor loadings such as floor decks for retail, recreational or other use.
- the building element (1) can be used to span between columns (59), to which secondary beams (60) are bolted (61), supporting the floor slab (4) between the structural elements (1).
- the structural elements can be tailored to span the self-weight of the floor structure, plus construction live load during construction as simply supported between columns.
- the structural element then forms a reinforcement concrete or pre- stressed concrete element that is continuous over several spans for the loads that need to be supported by the floor deck.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Building Environments (AREA)
- Rod-Shaped Construction Members (AREA)
- Joining Of Building Structures In Genera (AREA)
Abstract
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NZ529942A NZ529942A (en) | 2001-06-05 | 2002-06-04 | Building structural element |
| US10/479,575 US20040182027A1 (en) | 2001-06-05 | 2002-06-04 | Building structural element |
| EP02729643A EP1404930A1 (fr) | 2001-06-05 | 2002-06-04 | Element structurel de construction |
| CA002448629A CA2448629A1 (fr) | 2001-06-05 | 2002-06-04 | Element structurel de construction |
| BR0210182-3A BR0210182A (pt) | 2001-06-05 | 2002-06-04 | Elemento estrutural construtivo |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AUPR5481A AUPR548101A0 (en) | 2001-06-05 | 2001-06-05 | Building structural element |
| AUPR5481 | 2001-06-05 | ||
| AU11941/02A AU754130B1 (en) | 2001-06-05 | 2002-01-18 | Building structural element |
| AU11941/02 | 2002-01-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2002099215A1 true WO2002099215A1 (fr) | 2002-12-12 |
Family
ID=25614666
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/AU2002/000716 Ceased WO2002099215A1 (fr) | 2001-06-05 | 2002-06-04 | Element structurel de construction |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20040182027A1 (fr) |
| CN (1) | CN1239796C (fr) |
| AU (1) | AU754130B1 (fr) |
| BR (1) | BR0210182A (fr) |
| CA (1) | CA2448629A1 (fr) |
| NZ (1) | NZ529942A (fr) |
| WO (1) | WO2002099215A1 (fr) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006031001A1 (fr) * | 2004-09-15 | 2006-03-23 | Samsung Corporation | Poutre hybride du type sandwich acier-beton et systeme a structure hybride a haute resistance utilisant ladite poutre |
| FR2925088A1 (fr) * | 2007-12-18 | 2009-06-19 | Soc Civ D Brevets Matiere | Procede de realisation d'un element de construction en beton arme et element de construction ainsi realise |
| WO2009055691A3 (fr) * | 2007-10-24 | 2009-08-27 | Western Forms, Inc. | Système de poutres, plateaux et colonnes à dimensions multiples |
| WO2016005660A1 (fr) * | 2014-07-11 | 2016-01-14 | Peikko Group Oy | Poutre en acier |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2002951787A0 (en) * | 2002-10-02 | 2002-10-17 | University Of Western Sydney | A composite beam |
| US20070028541A1 (en) * | 2005-08-02 | 2007-02-08 | Mark Joseph Pasek | Prefabricated shell concrete structural components |
| CN101899878B (zh) * | 2009-05-19 | 2012-05-02 | 柳忠林 | 大跨度预应力混凝土梁板小拟框架结构的施工方法 |
| CN201962792U (zh) * | 2010-03-03 | 2011-09-07 | 柳忠林 | 大跨度预应力混凝土梁板拟框架结构 |
| KR101567741B1 (ko) * | 2015-02-16 | 2015-11-09 | 권용근 | 조립트러스 매립형 합성보 |
| DE202015104628U1 (de) | 2015-09-01 | 2016-12-05 | Pfeifer Holding Gmbh & Co. Kg | Tragbalken für Deckensysteme und Deckensystem |
| US10337196B2 (en) * | 2017-04-04 | 2019-07-02 | Reigstad & Associates, Inc. | Load-carrying concrete floor structure and method for building the load-carrying concrete floor structure |
| CN107327020A (zh) * | 2017-07-06 | 2017-11-07 | 能诚集团有限公司 | 一种混凝土构件连接结构 |
| DE102018212750A1 (de) * | 2018-07-31 | 2020-02-06 | Pfeifer Holding Gmbh & Co. Kg | Tragbalken für Deckensysteme, Deckensystem und Verfahren zu deren Herstellung |
| CN109359343B (zh) * | 2018-09-20 | 2023-06-20 | 北京电子工程总体研究所 | 一种高速大跨距柔性滑轨设计方法 |
| CN109057152B (zh) * | 2018-09-21 | 2024-05-31 | 苏州光彩建筑钢品有限公司 | 一种集成型钢类住宅的横梁结构 |
| US11732428B2 (en) * | 2018-11-30 | 2023-08-22 | Vellaisamy Thavamani Pandi | System for construction of double u and single u steel concrete composite structure for bridges |
| CN110255208B (zh) * | 2019-06-27 | 2024-04-26 | 中国能源建设集团安徽省电力设计院有限公司 | 跨越原有输煤栈桥的转运站及施工方法 |
| CA3050000A1 (fr) * | 2019-07-16 | 2021-01-16 | Invent To Build Inc. | Poutrelle en acier pouvant etre remplie de beton |
| CN111914369B (zh) * | 2020-07-30 | 2022-12-20 | 中铁二院工程集团有限责任公司 | 一种u型槽自动设计方法 |
| CN112487678B (zh) * | 2020-11-20 | 2024-07-16 | 合肥工业大学 | 一种撞击后框架结构的性能评估方法 |
| CN113123513A (zh) * | 2021-05-12 | 2021-07-16 | 多维联合集团有限公司 | 一种搭接式的包底连接组件及钢筋桁架楼承板 |
| CN215888960U (zh) * | 2021-09-06 | 2022-02-22 | 昊恒(福建)建材科技有限公司 | 钢结构横梁 |
| CN114837447B (zh) * | 2022-04-29 | 2024-09-06 | 中建二局安装工程有限公司 | 一种可推式悬挑水平防护装置及其施工方法 |
| CN115142602B (zh) * | 2022-07-21 | 2024-02-13 | 黑龙江华装清配建筑科技有限公司 | 全装配式预应力张弦楼盖体系 |
| CN115928558B (zh) * | 2023-02-21 | 2023-06-02 | 湖南大学 | 一种uhpc组合箱梁横向接缝构造及其施工方法 |
| CN117846217B (zh) * | 2024-01-11 | 2025-03-21 | 江苏开放大学(江苏城市职业学院) | 一种圈梁的免拆模构件及其使用方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1398562A (en) * | 1972-08-09 | 1975-06-25 | Taylor R | Composite and reinforced concrete structures |
| US4580380A (en) * | 1983-11-07 | 1986-04-08 | Ballard Derryl R | Composite filled interior structural box beams |
| EP0350139A2 (fr) * | 1983-11-07 | 1990-01-10 | Harumoto Iron Works Co., Ltd. | Procédé de fabrication d'un élément de construction composé |
| WO1994004756A1 (fr) * | 1992-08-14 | 1994-03-03 | Teron International Building Technologies Ltd. | Construction de ponts |
-
2002
- 2002-01-18 AU AU11941/02A patent/AU754130B1/en not_active Ceased
- 2002-06-04 BR BR0210182-3A patent/BR0210182A/pt not_active IP Right Cessation
- 2002-06-04 NZ NZ529942A patent/NZ529942A/en unknown
- 2002-06-04 WO PCT/AU2002/000716 patent/WO2002099215A1/fr not_active Ceased
- 2002-06-04 CN CNB028112539A patent/CN1239796C/zh not_active Expired - Fee Related
- 2002-06-04 US US10/479,575 patent/US20040182027A1/en not_active Abandoned
- 2002-06-04 CA CA002448629A patent/CA2448629A1/fr not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1398562A (en) * | 1972-08-09 | 1975-06-25 | Taylor R | Composite and reinforced concrete structures |
| US4580380A (en) * | 1983-11-07 | 1986-04-08 | Ballard Derryl R | Composite filled interior structural box beams |
| EP0350139A2 (fr) * | 1983-11-07 | 1990-01-10 | Harumoto Iron Works Co., Ltd. | Procédé de fabrication d'un élément de construction composé |
| WO1994004756A1 (fr) * | 1992-08-14 | 1994-03-03 | Teron International Building Technologies Ltd. | Construction de ponts |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006031001A1 (fr) * | 2004-09-15 | 2006-03-23 | Samsung Corporation | Poutre hybride du type sandwich acier-beton et systeme a structure hybride a haute resistance utilisant ladite poutre |
| WO2009055691A3 (fr) * | 2007-10-24 | 2009-08-27 | Western Forms, Inc. | Système de poutres, plateaux et colonnes à dimensions multiples |
| FR2925088A1 (fr) * | 2007-12-18 | 2009-06-19 | Soc Civ D Brevets Matiere | Procede de realisation d'un element de construction en beton arme et element de construction ainsi realise |
| WO2016005660A1 (fr) * | 2014-07-11 | 2016-01-14 | Peikko Group Oy | Poutre en acier |
Also Published As
| Publication number | Publication date |
|---|---|
| AU754130B1 (en) | 2002-11-07 |
| NZ529942A (en) | 2004-09-24 |
| US20040182027A1 (en) | 2004-09-23 |
| CN1524149A (zh) | 2004-08-25 |
| CA2448629A1 (fr) | 2002-12-12 |
| CN1239796C (zh) | 2006-02-01 |
| BR0210182A (pt) | 2004-04-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU754130B1 (en) | Building structural element | |
| AU2015246120B2 (en) | Open web composite shear connector construction | |
| US20080000177A1 (en) | Composite floor and composite steel stud wall construction systems | |
| Pessiki et al. | Review of existing precast concrete gravity load floor framing systems | |
| RU2318099C1 (ru) | Сборно-монолитный каркас многоэтажного здания и способ его возведения | |
| WO1988005484A1 (fr) | Ossature pour murs structuraux dans des constructions a plusieurs etages | |
| CA2592820A1 (fr) | Systemes de construction de planchers composites et de murs composites a tiges d'acier | |
| JP7585139B2 (ja) | 居住空間ユニット及び居住空間ユニットが組み込まれる建築物の建築方法 | |
| WO2020194205A1 (fr) | Procédé de construction pour fournir un système de superstructure postcontraint préfabriqué | |
| RU2197578C2 (ru) | Конструктивная система многоэтажного здания и способ его возведения (варианты) | |
| EP1404930A1 (fr) | Element structurel de construction | |
| CN212001725U (zh) | 一种全螺栓连接多层预制型钢混凝土剪力墙结构 | |
| US20050093190A1 (en) | Concrete structures and construction methods | |
| KR101387232B1 (ko) | 건축용 모멘트 골조 시스템 | |
| KR102347637B1 (ko) | 파셜pc 커플거더 및 그의 기둥 접합구조 | |
| CN116290373B (zh) | 一种梯形钢管混凝土柱钢框架装配式住宅体系及施工方法 | |
| JP7699007B2 (ja) | 構造物の施工方法 | |
| Shawkat et al. | SURVEY OF PRECAST STRUCTURAL SYSTEMS | |
| EA006820B1 (ru) | Сборно-монолитный железобетонный каркас многоэтажного здания | |
| JPH0350847B2 (fr) | ||
| JPH03166443A (ja) | 建築構造 | |
| CN118621947A (zh) | 一种全装配大跨度双层楼盖体系及其施工方法 | |
| CN117328578A (zh) | 一种钢-混组合连接的预制多层密肋复合墙及其连接方法 | |
| WO2023195868A1 (fr) | Procédé de montage d'un bâtiment et élément mural préfabriqué | |
| RU2083778C1 (ru) | Железобетонное стропило |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2448629 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 529942 Country of ref document: NZ |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 028112539 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2002729643 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1200400002 Country of ref document: VN |
|
| WWP | Wipo information: published in national office |
Ref document number: 2002729643 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 10479575 Country of ref document: US |
|
| WWP | Wipo information: published in national office |
Ref document number: 529942 Country of ref document: NZ |
|
| WWG | Wipo information: grant in national office |
Ref document number: 529942 Country of ref document: NZ |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: JP |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 2002729643 Country of ref document: EP |