WO2002092936A2 - Preform for manufacturing a material having a plurality of voids and method of making same - Google Patents
Preform for manufacturing a material having a plurality of voids and method of making same Download PDFInfo
- Publication number
- WO2002092936A2 WO2002092936A2 PCT/US2002/015915 US0215915W WO02092936A2 WO 2002092936 A2 WO2002092936 A2 WO 2002092936A2 US 0215915 W US0215915 W US 0215915W WO 02092936 A2 WO02092936 A2 WO 02092936A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laminate
- voids
- beaded
- beaded preform
- beads
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/58—Moulds
- B29C44/583—Moulds for making articles with cavities
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
- B29B15/122—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/06—Rod-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/12—Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/32—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
- E04C2/324—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material with incisions or reliefs in the surface
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/30—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
- E04C2/34—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
Definitions
- the present invention relates to the design and manufacture of materials, and more particularly to a preform component used to generate voids, pores, or cavities in any material especially engineered materials.
- This invention relates in general to the ability to establish a plurality of organized voids in a material, and also to load bearing structures and structures that provide an enhanced trade-off between the stress that can be safely carried in relation to the amount of material required for the structure.
- voids have been created in materials using a number of existing foaming techniques. These foaming techniques produce materials having voids which are unorganized; i.e., the voids are randomly positioned as well as randomly placed. Moreover, a number of the voids in these materials are not enclosed - they are interconnected with adjacent voids.
- Having voids which are organized non-interconnected voids is especially important in stress steering materials. Stress steering materials allow for forces placed on a structure to be resolved largely into compressive forces.
- the present invention provides methods and apparatuses for creating organized vorasity (voids positioned in a predetermined arrangement) in any material.
- the voids created using these novel methods and apparatus may be of any size, shape, and spacing, and may also be interconnected or each may be entirely enclosed.
- the spacing of the voids in a particular material may be symmetrical and/or asymmetrical to attain a desired material characteristic.
- the voids must be arranged in a particular symmetrical arrangement.
- materials with predetermined mo ⁇ hologies that inco ⁇ orate voids including the patented stress-steering materials that utilize a plurality of symmetrically arrayed, uniform voids to resolve forces imposed on a structure primarily into a compressive rather than tensile stress, may be manufactured using the unique and novel components and methods according to the present invention.
- preforms, examples of voided structures, as well as the manufacturing apparatuses and methods according to the present invention are also disclosed in a corresponding provisional application, filed concurrently with the present application by the same applicant and commonly owned with the present application, entitled, "Preform For Manufacturing A Material Having A Plurality of Voids And Method Of Making The Same", filed by Express Mail, Label No. EK715814181US, with a date of deposit of May 17, 2001, the entire disclosure of which is inco ⁇ orated herein by reference.
- voids are inco ⁇ orated into a material through the use of either a preform material component or texturizing, or a combination of the two.
- the voids may be created in a material using known manufacturing methods.
- a beaded preform for forming a plurality of voids in an engineered material includes a plurality of adjacently positioned beads.
- a method for manufacturing a beaded preform for forming a plurality of voids in an engineered material includes extruding a preform material out a first opening to produce an extruded preform material and calendaring the extruded preform material to form a plurality of adjacently positioned beads thereon.
- a method for manufacturing a coated, beaded preform for forming a plurality of voids in an engineered material includes providing a first flow of an extruding coating material to die, providing a beaded preform within the first flow, where the beaded preform is coated with the coating material, and extruding the first flow with the beaded preform from an opening to form a tow.
- a method for producing an engineered material having a plurality of voids includes guiding a plurality of beaded preforms into a supply of a first material, coating the plurality of beaded preforms with the first material, shaping the coated preforms into a predetermined form and consolidating the form.
- a method for producing an engineered structure comprised of a plurality of organized voids using a continuous casting apparatus includes guiding a beaded preform comprising a plurality of adjacently positioned beads into a matrix material, the material matrix held in a first container, guiding the matrix material into a space having a predetermined distance, whereby a product is formed having a predetermined thickness substantially equal to the distance.
- a method for forming a composite having a plurality of organized voids arranged therein includes imparting a first array of first voids upon a first laminate, whereby openings to the first voids are formed on a first side of the first laminate, and assembling the first laminate with a second laminate.
- a laminate for assembly into a composite material includes a texture comprising a plurality of recesses on a first side, where the recesses correspond to a plurality of projections on a second side of the laminate.
- a method of manufacturing an engineered material having a plurality of organized voids includes guiding a beaded preform comprising a plurality of spaced apart beads within a continuous cast of molten material.
- a method of manufacturing an engineered material having a plurality of organized voids includes providing a beaded preform comprising a strand of adjacently positioned beads into any one of the following manufacturing processes:
- additive manufacturing atomistic manufacturing, layered manufacturing including fused deposition modeling, stereo-lithography, optical fabrication, solid base (ground) curing, plasma spray forming, sputtering, vapor deposition,
- deformation and forming including bulk deformation processes including impression- die forging, open-die forging, coining, piercing, hubbing, fullering and edging, roll forging, ring rolling, direct extrusion, indirect extrusion, hydrostatic extrusion and impact extrusion,
- sheet metal forming processes including shearing, bulging, rubber forming, high- energy-rate forming, supe ⁇ lastic forming, deep drawing, embossing,
- material removal including cutting, grinding, electrical discharge machining, water- jet machining, abrasive-jet machining, chemical machining and electrochemical machining and grinding,
- casting including permanent molds including slush casting, pressure casting, insert molding, centrifugal casting and infiltration casting, expendable molds including vacuum casting, ceramic-mold casting, plaster-mold casting, shell-mold casting and sand casting, gel-casting, injection molding, compression molding, transfer molding, insert molding, particulate material processing including sintering, cold isostatic pressing, and hot isostatic pressing, and
- Fig. 1 illustrates a first, closed cell architecture of a stress steering structure created by preforms according to the present invention, in which all of the figurative TRDs have a void at their respective centers.
- Fig. 2 illustrates a second, open-cell architecture of a stress steering structure created by preforms according to the present invention, in which every other figurative TRD is removed.
- Fig. 3 illustrates a third, combination, open-cell, closed cell architecture of a stress steering structure created by preforms according to the present invention, in which figureative TRDs have a void at their respective centers.
- Fig. 4 illustrates a fourth, combination, open-cell, closed cell architecture of a stress steering structure created by preforms according to the present invention, in which figureative TRDs have a void at their respective centers.
- Fig. 5A illustrates a string of pearls which resemble a preform according to the present invention.
- Fig. 5B illustrates a schematic view of a beaded filament preform according to a first embodiment of the present invention.
- Fig. 6 A illustrates a schematic view of the beaded filament preform according to the first embodiment of the present invention, having a single sized bead positioned at a first spacing.
- Fig. 6B illustrates a schematic view of the beaded filament preform according to the first embodiment of the present invention, having a larger sized bead interspaced between a smaller sized bead.
- Fig. 6C illustrates a schematic view of the beaded filament preform according to the first embodiment, having a larger sized bead interspaced between a smaller sized bead, and positioned adjacent thereto.
- Fig. 7 A illustrates a schematic view of the beaded filament preform according to the first embodiment of the present invention, where filaments are horizontally a ⁇ anged in a grouping typical of a laminate material.
- Fig. 7B illustrates a schematic view of the beaded filament preform according to the first embodiment of the present invention, where filaments are diagonally arranged in a grouping typical of a laminate material.
- Fig. 7C illustrates a schematic view of the beaded filament preform according to the first embodiment of the present invention, where filaments are horizontally arranged in a grouping typical of a laminate material, and where two different sized beads are used.
- Fig. 7D illustrates a schematic view of the beaded filament preform according to the first embodiment of the present invention, similar to Fig. 7C, except the filaments are diagonally arranged.
- Fig. 8 illustrates a schematic view of the beaded filament preform according to the first embodiment of the present invention, illustrating beads of a filament prior to processing within a material having an oblong shape so that a properly shaped spherical void will be formed as a result.
- Fig. 9 illustrates a cross-sectional view of an engineered material manufactured by assembling together a plurality of filaments according to the first embodiment of the present invention.
- Fig. 10 illustrates a cross-sectional view of another engineered material manufactured by assembling together a plurality of filaments according to the first embodiment of the present invention.
- Fig. 11 A illustrates a cylindrical tow using a filament preform according to the first embodiment of the present invention.
- Fig. 1 IB illustrates a square-column tow using a filament preform according to the first embodiment of the present invention.
- Fig. 12A illustrates a laminate manufactured by assembling a plurality of tows as illustrated in Fig. 11 A.
- Fig. 12B illustrates a laminate manufactured by assembling a plurality of tows as illustrated in Fig. 11B.
- Fig. 13 A illustrates a plurality of tows, as shown in Fig. 11 A, assembled to form a fabric.
- Fig. 13B illustrates a plurality of tows, as shown in Fig. 1 IB, assembled to form a fabric.
- Fig. 13C illustrates a plurality of tows and laminates assembled together to form a fabric.
- Fig. 13D illustrates a plurality of laminates.
- Fig. 14 illustrates beaded filaments and mats aligned for processing to form a laminate/fabric.
- Fig. 15 illustrates an first extrusion/spinning process for manufacturing the beaded filament preform according to the present invention.
- Fig. 16 illustrates a second extrusion process for manufacturing the beaded filament preform according to the present invention.
- Fig. 17 illustrates a first extrusion process for manufacturing the beaded mat preform according to the present invention.
- Fig. 18 illustrates a second extrusion process for manufacturing the beaded mat preform according to the present invention.
- Fig. 19 illustrates a first extrusion process for manufacturing a tow according to the present invention.
- Fig. 20 illustrates a second extrusion process for manufacturing a tow according to the present invention.
- Fig. 21 illustrates a first extrusion process for manufacturing a laminate with the preform mat according to the present invention.
- Fig. 22 illustrates a second extrusion process for manufacturing a laminate with the preform mat according to the present invention.
- Fig. 23 illustrates a preform according to the present invention used to produce a material using a continuous casting process.
- Figs. 24-25 illustrate a preform according to the present invention used to produce a laminate or fabric using a pultrusion process.
- Figs. 26 illustrates a texturized material according to a second embodiment of the present invention with a first organization of dimples.
- Fig. 27 illustrates a texturized material according to a second embodiment of the present invention with a second organization of dimples.
- Fig. 28 illustrates a texturized material according to a second embodiment of the present invention with a third organization of dimples.
- Fig. 29 illustrates various structures capable of being manufactured using the preform materials according to the first and second embodiments of the present invention.
- a beaded preform according to the present invention is a precursor component for inco ⁇ oration into a material to form predetermined symmetrical or asymmetrical positioned or otherwise organized voids, or pores, to establish, for example, a material having organized vorasity.
- An example of such a material is a stress steering structure for resolving imposed loads primarily into compressive stress. Two-dimensional cross-sections of such three- dimensional stress steering structures are shown in Figs. 1-4.
- the preforms may be sacrificial (i.e., preliminary), permanent, or a combination thereof.
- sacrificial preforms the bead material which forms the voids is eliminated at some point after inco ⁇ oration into the base material, generally during further processing.
- permanent preforms the bead material remains in the voids, although it may be altered or reformed in some way during processing.
- the beads of the preforms may be of any shape and size required to produce a desired engineered material, and may be hollow or solid, and any combination thereof. Generally, the beads are shaped such that they will produce a void having a particular void volume and/or shape after processing.
- the beaded preforms are preferably made in one of two basic forms: filaments and mats, either of which may be rigid or flexible. These preforms may be further assembled into tows and laminates by applying a coating to the filaments and mats, respectively.
- a filament 2 preform according to the present invention is similar to a strand of beads (Fig. 5A) and comprises a strand 4 of spaced apart beads 6 (Fig. 5B).
- the spacing may be asymmetrical, but is generally organized and/or symmetrical, with a pattern of predetermined distances.
- the beads may be equally sized, randomly sized, or (also) a repeating pattern of particularly shaped beads as shown in Figs. 6A-6C.
- Mats 8 are two-dimensional arrays of assembled filaments 2 as shown in Figs. 7 A - 7D, although they may be formed by assembling a plurality of beads in other ways to form a two- dimensional array. As shown in the figures, vertical and horizontal spacing of the beads are generally provided in an organized, predetermined distance and pattern.
- Fig. 8 illustrates a beaded filament having oblong shaped beads.
- the beads are formed in such shapes so that when inco ⁇ orated into a particular material, the voids, and thus the beads themselves if permanent, end up having a spherical shape after processing.
- Such processing which benefits from these types of filaments may be a casting process, where high temperatures and/or compression rolling effect the shape of the preform, and thus, the shape of the void created whether or not the preform is sacrificial or not.
- Mats and filaments may be assembled to form a fabric, resulting in, for example, material cross-sections illustrated in Figs. 9-10 having voids 12 and 14 (Fig. 9) and voids 16 (Fig. 10). As shown in Fig. 14, such a fabric laminate may include alternating layers of mats 8 and filaments 2 with a surface material 11 covering the top and bottom.
- Tows 18 are formed by coating a filament 2, generally, with a type of matrix material (e.g., thermosetting resin) 3.
- laminates 20 are generally formed by coating a mat with a matrix material, or may be manufactured by assembling a plurality of tows 2 (Figs. 12A-12B), or by coating an assemblage of a plurality of filaments arranged in an array.
- Tows and laminates, as well as filaments and mats may also include cutting and positioning guides (e.g., recesses, protrusions), so that they may be easily cut, arranged and assembled for a particular application in intermediate and final product materials.
- cutting and positioning guides e.g., recesses, protrusions
- Intermediate and final products may be manufactured from composites 22 of tows and laminates (Figs. 13A-13D, and 14).
- a composite fabric may be made is by weaving, knitting, and otherwise assembling together a plurality of tows, a plurality of laminates, or a combination thereof.
- Composites, including fabrics, may be continuous (e.g., tapes) and discontinuous and may be manufactured for both intermediate materials and finished products.
- composites may be manufactured into slabs, blooms, billets, panels, boards, and sheets (see Fig. 29).
- the void pattern of material e.g., a stress steering structure
- a stress steering structure may be inco ⁇ orated into a fabric by weaving, braiding, and knitting tows, such that the advantages of this structure are captured at two different levels.
- the structure and material of the beads and coatings may be comprised of stress steering structures (i.e., voided structures) such that, the advantages of the stress steering structures are now captured at three levels.
- a void created by a preform component may be used to house devices for intelligent materials for use in intelligent structures.
- sensors, actuators, MEMS, and other devices may be inco ⁇ orated within a void of a structural element of a bridge, or a wing of an aircraft, for example, to supply information regarding the performance of the element/bridge or to induce an internal force on the structure to change its shape or change a characteristic of the element (e.g., change the shape of the wing of an aircraft to create more lift).
- the device may be used in place of one or more of the beads in a filament or mat or inco ⁇ orated in one or more of the beads.
- the preforms according to the present invention are produced using conventional manufacturing processes. Accordingly, Applicant has provided a comprehensive list of manufacturing processes which may be used to manufacture the preforms according to the present invention, examples of which are illustrated in Figs. 15-18. These include various casting, deformation, and forming processes for metals; blow molding, compression molding (cold/hot), transfer molding, cold molding, injection molding, reaction injection molding, thermoforming, rotational molding, and foam molding for plastics; pressure casting, slip casting, isostatic pressing, plasma spray forming, roll pressing, injection molding, and gelcasting for ceramics; and infiltration casting, filament winding, and isostatic pressing for composites.
- FIG. 15 One example of producing the novel preforms according to the present invention is shown in Fig. 15 and is described as follows.
- filaments may be produced by a spinning process 31, in which extruded material is forced through a die 32 (spinneret) containing many small holes 34. The beads are added thereafter by shape rolling 36, or preferably by inline drawing 38 and calendaring operations on the filaments with embossed rollers 40. Drawing thins the filaments thereby increasing their tensile strength in anticipation of further processing. The finished filaments are gathered on a take up spool 39. Filaments may also be produced by using rotary extrusion as shown in Fig. 16.
- Mats generally begin as extruded tape castings with beading added inline by calendaring with embossed rollers (as preferably done with filaments) as shown in Figs. 17- 18. As shown, material is extruded out an extruder die 42 to produce a mat of material containing no beads. From there the 2D array enters into a calendaring operation, which adds beads with embossed rollers 40. However, beaded filaments may be used to form the mats by organizing a plurality of filaments into a mesh or by properly aligning a plurality of filaments in an array with an extruded matrix material. The latter process is similar to continuous preform casting (see below).
- the matrix material may include a reinforcement material and may also be a composite.
- Tows generally begin as beaded filaments and are generally formed inline in an extruding operation, for example, by coating filaments with an extruded matrix material as shown in Figs. 19 and 20. Such processes are commonly used for wire and cable coating.
- the extruded coating material 43 is applied to a beaded filament 2 in a die body 44.
- the filament is introduced into the die body through a core tube 46.
- a guider tip 48 aligns the beaded filament 2 within an opening 50 of a die 52.
- Unconsolidated tows may then be superimposed (or otherwise organized) and fused, joined, or bonded inline to form other preforms and structures such as laminates and fabrics.
- Laminates generally begin as mats (or filaments/tows) and are generally formed inline in extruding operations as shown in Figs. 21-22, for example, by coating mats with an extruded matrix material.
- the coating material may also contain reinforcement material and may also be another form of composite.
- the coating material may also be applied in multiple layers, be functionally graded material, and be organized in a hierarchical structure.
- unconsolidated laminates may be superimposed and fused or otherwise bonded to form composites, other preforms, and structures such as fabrics.
- These combinations may be formed mechanically via inter-laminate connectors or mechanical fasteners (e.g., snap fits or tongues and grooves), or may be bonded via an adhesive, fusion bonding and welding (e.g., ultrasonic, microwave, rf welding, induction). It is worth noting that during the bonding process, sacrificial preforms are generally eliminated.
- Plastic-matrix preform laminates may be melted slightly on their surfaces to achieve consolidation.
- superimposed metal-matrix preform laminates may be subjected to compression rolling to enhance consolidation as well as the quality of the final product.
- Laminates and fabrics according to the present invention may be manufactured using the filaments and mats in, for example, a pultrusion process as shown in Fig. 24, a continuous casting process as shown in Fig. 23, and a continuous extrusion process as shown in Fig. 25.
- all of the aforementioned processes to manufacture the preforms according to the present invention may be continuous or batch processes and may be automated to produce continuous or discontinuous preforms of high quality and uniformity.
- Filaments, mats, tows, laminates, and fabrics according to the present invention may be used to create materials, including stress steering materials, in a variety of additional manufacturing processes.
- Applicant has provided the following list of manufacturing processes in which preforms according to the present invention may be used. These include: Additive Manufacturing:
- layered manufacturing including fused deposition modeling, stereo- lithography, optical fabrication, solid base (Ground) curing, plasma spray forming, sputtering, vapor deposition;
- sheet metal forming processes including shearing, bulging, rubber forming, high-energy-rate forming, supe ⁇ lastic forming, deep drawing, embossing;
- material removal including cutting, grinding, electrical discharge machining, water-jet machining, abrasive-jet machining, chemical machining and electrochemical machining and grinding;
- permanent molds including slush casting, pressure casting, insert molding, centrifugal casting and infiltration casting;
- expendable molds including vacuum casting, ceramic-mold casting, plaster- mold casting, shell-mold casting and sand casting;
- the preforms according to the present invention are ideally suited for producing engineered materials using a continuous material manufacturing process, i.e., continuous (preform) casting and continuous extrusion manufacturing processes.
- Continuous preform casting utilizes two long established manufacturing processes used for casting a continuous tape of material — pultrusion and continuous casting.
- these manufacturing processes produce materials having a constant cross- section with shapes including round, rectangular, tabular, plate, sheet, and structural products.
- the processes are modified to include preform fixtures for channeling filaments and/or mats into proper alignment with a matrix material (and optional continuous, reinforcement such as fibers).
- the fixtures may also be used to contour the preform/matrix combination.
- the production flow in continuous preform casting may be uninterrupted from the introduction of the preforms into a molten material to the output of engineered products.
- the initial feedstock is a fluid (or a melt): molten metals, monomer solutions, slips, and slurries.
- Post casting processes vary depending on the choice of the matrix material, with ceramics being sintered and metals being generally rolled. The following is an example of a continuous casting process. In the continuous casting process, for example, as illustrated in Fig.
- a continuous mat 8 (and/or filament) is fed into a tundish 60 of a casting apparatus 57 where molten material 59 and the mat flow out of the tundish through a water-cooled, continuous mold 62.
- the mold generally determines the thickness and/or profile of the resulting material, but not the length, and may be positioned vertically, horizontally or at another angle, depending on the desired material flow.
- the mat/material composition flows down a discharge rack 63 and is cooled.
- the cast can be further processed into final form, through various inline applications of heat and mechanical force (e.g., pinch rolling 64, reheating 66) to give it the desired shape, size, physical properties, and surface qualities.
- inline applications include pinch rolling, reheating/cooling, and the like.
- a sizing area 67 sizes the slab of material to a particular size, whereby a cut-off torch 65 (or other cutting device appropriate for the particular cast material) is used to cut the slab into a plurality of pieces.
- the size, shape, alignment, and composition of the beaded preforms according to the present invention for inclusion in such a casting process may be structured and organized in anticipation of alterations resulting from the process to achieve the desired array of voids in the final product.
- characteristics of the preforms substantially match with the mechanics of the continuous processing process to produce the desired product.
- preforms can be organized for extreme (or bulk) deformation processes, these are equally well suited for near net shape casting, or thin-slab casting, for example.
- metals are known materials which are used in a continuous casting process
- continuous casting of plastics and ceramics can be achieved through a variation of the basic tape casting process.
- a liquid resin material usually acrylic syrup
- the gasket retains the liquid resin and defines the thickness of the tape.
- a similar process may be used to produce metal and ceramic tapes, as well as combination tapes that are a mix or alloy of all three types of basic materials, i.e., metals, plastics, and ceramics.
- Laminates and fabrics according to the present invention may be easily manufactured using this process by using a preform fixture to supplement, or in place of, the gasket.
- Preforms according to the present invention may also be fabricated as expendable patterns in mold casting.
- a pattern, or copy, in one piece or in sections, of a product to be made by casting is used to establish the shape and dimensions of the mold cavity. While the matrix materials of patterns are expendable, these patterns contain the beaded preforms according to the present invention (that may be either sacrificial or permanent).
- the casting processes that may use expendable preform patterns are lost foam and investment casting as explained below.
- the pattern is made of expendable polystyrene (EPS) beads. As the molten metal is poured into the mold, it replaces the EPS pattern, which vaporizes.
- EPS expendable polystyrene
- PS polystyrene
- PS preform slabs may be made by continuous preform casting or continuous extrusion processes using a PS solution as feedstock.
- the slabs may be formed by introducing a foaming agent into a PS solution, or melt, that then is properly integrated with beaded filaments and/or mats to form a continuous tape.
- the tape may pass between belts or plates with a specific gap between them while the foaming agent expands the tape to fill the gap, fixing the dimensions of the tape.
- This PS continuous tape may be cooled and cut into the slabs.
- the slabs may be partially or fully expanded, depending on the choice of subsequent casting procedures.
- the beaded filaments and/or mats are aligned in the PS solution or melt to reconcile the degree of expansion with the geometry of the void array desired in the final product.
- slabs may be converted into EPS preform patterns in heated molds or dies that burn away excess material from the slabs to conform each one to the shape of the desired pattern.
- a slab can be expanded within a heated mold to conform to the shape of the mold cavity, or an oversized slab can be forged in a heated die to the desired shape.
- pattern shapes may be cut out of the slabs using conventional woodworking equipment and, if necessary, these shapes may be assembled with glue to form the final pattern.
- Squeeze Casting is a combination of casting and forging.
- forging means squeezing, or pressing, an unconsolidated feedstock into a predetermined shape.
- casting preform feedstock according to the present invention is placed in the bottom section of a preheated die. A heated upper die then descends, applying pressure throughout the duration of consolidation of the feedstock.
- intricate shapes can be produced at pressures that are far less than would normally be required for hot or cold forging. Accordingly, tows and laminates can be consolidated by the heat and pressure and shaped by the die to form the final product, while the void space created by the beaded preforms can be preserved (although these preforms may be sacrificed in the process).
- thermo-mechanical processing of the casting feedstock during squeezing produces a forged microstructure that has enhanced ductility over the original cast microstructure.
- a liquid (or thixotropic material) is forced around a preform pattern(s) in a mold.
- Thixotropic materials eliminate the need to introduce a precise amount of molten metal into the die since chunks of solid matrix material are used and these have been heated into a semi-solid (liquid plus solid) state.
- the thixotropic material Because of the properties of the thixotropic material, it can be handled mechanically, like a solid, but shaped at low pressures because it flows like a liquid when agitated or squeezed.
- An additional advantage of the material is that the absence of a turbulent flow minimizes gas pickup and entrapment.
- the material since the material is already partially solid, solidification shrinkage and related undesirable porosity is reduced. For example, semi-solid metal flows in a viscous manner, allowing thin-cast sections to be filled rapidly without jetting and spraying of liquid metal that would normally occur. Pultrusion
- plastic resins are typically the matrix material used in pultrusion.
- Pultrusion is a cost-effective automated process for continuous production of composite materials of constant cross-sectional area such as round, rectangular, tabular, plate, sheet, and structural products. Recent innovations, however, have also allowed pultrusion fabrication of composites with varying cross-sectional areas.
- Pultrusion may be used to manufacture both laminates and fabrics containing the preforms according to the present invention (Fig. 24). Accordingly, fixtures 73 are provided in a pultrusion system to properly align the preforms with the matrix material consistent with the profile and architecture of the desired product.
- pultrusion as shown in Figs. 24-25 generally includes a fiber delivery system 69, a resin bath 74, preform fixtures/heated die 76, synchronized pullers 78, and a cut-off device 80 (e.g., torch, saw, and the like).
- a cut-off device 80 e.g., torch, saw, and the like.
- One or more bundles of continuous filaments 2 are guided through delivery fixtures 73 that align the preforms with a matrix material and contour the combination of components into a desired shape.
- the composition may then be pulled through one or more heated dies 76 (fixed or floating) for further shaping, compacting, and solidifying of the matrix material and for eliminating sacrificial filaments, mats, and/or weaves. Thereafter, the fabricated material is cooled and cut to length for further fabrication into intermediate and finished products.
- Continuous Extrusion may be used in coordination with pultrusion (extruding apparatus 31 as shown in Fig. 25) to yield a continuous process whereby preforms are created through extrusion, and organized into final products using pultrusion.
- Extrusion (as previously described) is a process that forces a continuous stream of material into a shaping tool (a die), or into some other subsequent shaping process, to form a filament, mat, and laminate according to the present invention.
- laminates may be formed through either post extrusion coating of beaded filaments and mats with a matrix material, or post extrusion addition of texture to a tape.
- the tape may be either texturized with patterns that are applied by (for example) calendaring, or excised through (for example) selective laser burnout.
- Batch processing technologies also may be used to fabricate preforms according to the present invention, as well as engineered intermediate goods and consumer products including those having a stress steering structure.
- Such batch processes include additive manufacturing (AM) and particulate manufacturing technology.
- AM additive manufacturing
- particulate manufacturing technology The former is solely a batch process, while the latter may also be a continuous process.
- additive Manufacturing is a family of processes that involve creating 3D objects by automatically placing 2D layers of material on top of each other under computer control. The advantage is that a structure's geometric complexity has little impact on the fabrication process. Within this family are processes currently known as Rapid Prototyping and Solid Freeform Fabrication, or Layered Manufacturing, among others. These include purely additive processes, such as Selective Laser Sintering and Laser Metal Deposition, and hybrid methods like Shape Deposition Manufacturing, which involves both material deposition and removal operations.
- AM processes reproduce preforms layer-by-layer in an uninterrupted sequence.
- a fabric according to the present invention may be produced as a series of alternating layers of solid mass and layers containing either beads (sacrificial or permanent) or actual voids.
- An attractive and powerful feature of AM as used in conjunction with the present invention is the capability to endow products with varying macro- and microstructures. Accordingly, this technology may be employed to inco ⁇ orate actual voids and preform materials in fabrics, and to make heterogeneous and hierarchical compositions.
- AM technology utilizing 3D printing may also be used which brings the potential for production of intermediate and finished fabrics according to the present invention to create functional parts and products made out of plastic, metal, and ceramic powders.
- Particulate manufacturing technology is a process by which fine powdered materials (metals, plastics, and ceramics, among others) are blended, pressed into a desired shape (compacted), and then heated (sintered) in a controlled atmosphere to bond the contacting surfaces of the particles and establish the desired properties.
- Fine powdered materials metal, plastics, and ceramics, among others
- heated (sintered) in a controlled atmosphere to bond the contacting surfaces of the particles and establish the desired properties.
- Properly sized, shaped, and positioned, filaments and mats according to the present invention may be inco ⁇ orated in this process by swrounding the preforms with powdered material and compacting this composition into a "green" fabric for later sintering into a final engineered product.
- One advantage of this process is the ability of the assembled material to keep its shape before and during sintering.
- the "green" fabric may be heated just below the melting point of the matrix material, right below its liquid melt point. Consequently, the compact would not loose its shape. Thus, the void space would be preserved because the compacted particles would melt only slightly and bond to form the final product. During sintering, of course, any sacrificial preforms may be eliminated.
- the sintered product may be re-pressed, which in general may make the product more accurate with a better surface finish.
- the voids also may be impregnated, for example, in an oil bath. This process is very similar to continuous casting as described above, except that the matrix material is a powder, not a melt.
- Particulate technology may be used to form fabrics to be used as expendable patterns for lost foam and investment casting, as well as preforms for squeeze casting.
- Particle technology is the basis of various ceramic and polymer resin processing techniques, including tape casting of ceramics and plastics.
- the voids for engineered structures may also be provided by inco ⁇ orating a texture onto a laminate. Examples of such textures are illustrated in Figs. 26-28.
- dimples 78 are imparted onto a surface of a material. Such dimples may be involve the entire thickness of the material, in that, dimples are present on one side (i.e., shallow openings), and corresponding protruding areas on the other side of the material.
- a pattern of texture may be inco ⁇ orated into one or both surfaces of a laminate, depending on the void array to be realized in the final engineered product. Texturizing may also impart tape cutting and laminate stacking guides so that the laminates may be assembled into a composite and final products more easily (as with tows and laminate detailed above).
- Textures may be added to laminates through imprinting and excising (i.e., the removal of material).
- imprinting is used to impart a required texture according to the present invention on a laminate surface. Imprinting redistributes the material of the laminate, so the material is not wasted (as it is through excising). Accordingly, void precursors in laminate surfaces may be the result of (1) localized material compression which redistributes material out-of-plane (e.g., forged indentures), or (2) redistribution of the material of the laminate in-plane (e.g. by shape rolling).
- a thixotropic laminate material is used during the imprinting of the texture.
- the laminate is imprinted when the laminar material is heated to a "green" state so that the material easily redistributes itself.
- metals like aluminum and steel e.g., foils
- plastics could be imprinted inline, for example, during plastic film casting
- ceramics could be imprinted inline during tape casting when the tape is in a green, unfired state.
- An advantage of texturizing tape castings to produce patterned laminates is the ability to consolidate tapes using heat, pressure, and dwell time to form a monolithic composite structure comprising many layers (which may be of different base compositions to produce functionally-graded products, for example). This advantage may be enhanced by drawing and texturizing the unconsolidated tapes as a continuation of the tape casting line while the tapes are still heated.
- Composites formed of textured laminates are generally preferably formed using mechanical and adhesive joining as well as welding. This is especially true of texturized metals, although metals may be heated and compressed to achieve consolidation. Texturized ceramic laminates, on the other hand, must be sintered.
- Texturized plastic laminates may be welded, as well, using microwave, ultrasonic, rf, and induction techniques.
- Induction welding uses the heat generated by a metal filler in the plastic moving through a magnetic field to heat the plastic material.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Textile Engineering (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
- Panels For Use In Building Construction (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Adornments (AREA)
Abstract
Description
Claims
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020037014956A KR100773307B1 (en) | 2001-05-17 | 2002-05-17 | Preform for producing a material having a plurality of voids and a method of manufacturing the same |
| JP2002590187A JP2004526889A (en) | 2001-05-17 | 2002-05-17 | Preform for producing a material having a large number of voids and method for producing the same |
| CA002447571A CA2447571A1 (en) | 2001-05-17 | 2002-05-17 | Preform for manufacturing a material having a plurality of voids and method of making same |
| EP02734479A EP1397567A2 (en) | 2001-05-17 | 2002-05-17 | Preform for manufacturing a material having a plurality of voids and method of making the same |
| AU2002305647A AU2002305647B2 (en) | 2001-05-17 | 2002-05-17 | Preform for manufacturing a material having a plurality of voids and method of making same |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US29190401P | 2001-05-17 | 2001-05-17 | |
| US09/860,349 US6767619B2 (en) | 2001-05-17 | 2001-05-17 | Preform for manufacturing a material having a plurality of voids and method of making the same |
| US60/291,904 | 2001-05-17 | ||
| US09/860,349 | 2001-05-17 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| WO2002092936A2 true WO2002092936A2 (en) | 2002-11-21 |
| WO2002092936A8 WO2002092936A8 (en) | 2003-01-03 |
| WO2002092936A3 WO2002092936A3 (en) | 2003-02-27 |
Family
ID=26967042
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2002/015915 Ceased WO2002092936A2 (en) | 2001-05-17 | 2002-05-17 | Preform for manufacturing a material having a plurality of voids and method of making same |
Country Status (7)
| Country | Link |
|---|---|
| EP (1) | EP1397567A2 (en) |
| JP (1) | JP2004526889A (en) |
| KR (1) | KR100773307B1 (en) |
| CN (1) | CN1263932C (en) |
| AU (1) | AU2002305647B2 (en) |
| CA (1) | CA2447571A1 (en) |
| WO (1) | WO2002092936A2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117020222A (en) * | 2023-07-18 | 2023-11-10 | 江苏普特瑞精密机械有限公司 | Forming method of multi-material heterogeneous complex thin-wall metal member |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20130096045A (en) * | 2012-02-21 | 2013-08-29 | 엘지전자 주식회사 | Porous metal structure and fabrication method thereof |
| KR102097418B1 (en) * | 2018-12-24 | 2020-04-07 | 한국기계연구원 | Method for fabricating woven fabric using imprinting |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3135044A (en) * | 1959-06-04 | 1964-06-02 | United Aircraft Corp | Lightwight porous structures and methods of making same |
| DE3217593A1 (en) * | 1982-05-11 | 1983-11-17 | Wilhelm Ing.(grad.) 7441 Neckartenzlingen Mack | Heat and sound damping which can breathe |
| US5175975A (en) * | 1988-04-15 | 1993-01-05 | Midwest Research Institute | Compact vacuum insulation |
| US5157893A (en) * | 1988-04-15 | 1992-10-27 | Midwest Research Institute | Compact vacuum insulation |
-
2002
- 2002-05-17 KR KR1020037014956A patent/KR100773307B1/en not_active Expired - Fee Related
- 2002-05-17 EP EP02734479A patent/EP1397567A2/en not_active Withdrawn
- 2002-05-17 AU AU2002305647A patent/AU2002305647B2/en not_active Ceased
- 2002-05-17 JP JP2002590187A patent/JP2004526889A/en active Pending
- 2002-05-17 CN CNB028120698A patent/CN1263932C/en not_active Expired - Fee Related
- 2002-05-17 WO PCT/US2002/015915 patent/WO2002092936A2/en not_active Ceased
- 2002-05-17 CA CA002447571A patent/CA2447571A1/en not_active Abandoned
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN117020222A (en) * | 2023-07-18 | 2023-11-10 | 江苏普特瑞精密机械有限公司 | Forming method of multi-material heterogeneous complex thin-wall metal member |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2002305647B2 (en) | 2007-02-08 |
| CA2447571A1 (en) | 2002-11-21 |
| WO2002092936A8 (en) | 2003-01-03 |
| WO2002092936A3 (en) | 2003-02-27 |
| JP2004526889A (en) | 2004-09-02 |
| EP1397567A2 (en) | 2004-03-17 |
| KR100773307B1 (en) | 2007-11-09 |
| CN1263932C (en) | 2006-07-12 |
| KR20040036687A (en) | 2004-04-30 |
| CN1526046A (en) | 2004-09-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7927528B2 (en) | Preform for manufacturing a material having a plurality of voids and method of making the same | |
| US6585151B1 (en) | Method for producing microporous objects with fiber, wire or foil core and microporous cellular objects | |
| CA2326784C (en) | Method for producing forms and foamed metal forms | |
| EP0822876B1 (en) | Process for compacting and sintering a powdered metal preform | |
| US6254998B1 (en) | Cellular structures and processes for making such structures | |
| US20200338818A1 (en) | Method and apparatus for additive manufacturing | |
| US20050260398A1 (en) | Methods and systems for manufacturing a structure having organized areas | |
| AU2002305647B2 (en) | Preform for manufacturing a material having a plurality of voids and method of making same | |
| AU2002305647A1 (en) | Preform for manufacturing a material having a plurality of voids and method of making same | |
| US20060119017A1 (en) | Method for making ceramic work piece and cermet work piece | |
| CN108580891A (en) | A kind of rapid three dimensional printing forming method | |
| WO2005061208A1 (en) | Methods and systems for manufacturing a structure having organized areas | |
| AU2007200404A1 (en) | Preform for manufacturing a material having a plurality of voids and methods of making the same | |
| JP2679871B2 (en) | Method for producing accurately sized articles by sintering | |
| Greulich | Rapid prototyping and fabrication of tools and metal parts by laser sintering of metal powders | |
| JPH03275268A (en) | Method for manufacturing fiber-reinforced metal thin sheet | |
| CN118238406A (en) | Additive manufacturing method by reverse pattern plate making molding | |
| Kathuria | Laser-assisted rapid prototyping in Japan | |
| JPH0665605A (en) | Production of functionally gradient material | |
| Black | Shape Modifying: Retaining Material | |
| JPH02125823A (en) | Apparatus for preform of short fiber for producing composite material | |
| JP2007524756A (en) | Method for manufacturing a metal tool having controlled porosity | |
| JPH0327859A (en) | Production of fiber reinforced composite metallic material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| AK | Designated states |
Kind code of ref document: C1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: C1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| CFP | Corrected version of a pamphlet front page |
Free format text: UNDER (54) PUBLISHED TITLE REPLACED BY CORRECT TITLE |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2447571 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2002305647 Country of ref document: AU Ref document number: 2002590187 Country of ref document: JP Ref document number: PA/A/2003/010521 Country of ref document: MX Ref document number: 1020037014956 Country of ref document: KR Ref document number: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2002734479 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 028120698 Country of ref document: CN |
|
| WWP | Wipo information: published in national office |
Ref document number: 2002734479 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |