WO2002075290A1 - Measuring method and device, and imaging method and device - Google Patents
Measuring method and device, and imaging method and device Download PDFInfo
- Publication number
- WO2002075290A1 WO2002075290A1 PCT/JP2002/002363 JP0202363W WO02075290A1 WO 2002075290 A1 WO2002075290 A1 WO 2002075290A1 JP 0202363 W JP0202363 W JP 0202363W WO 02075290 A1 WO02075290 A1 WO 02075290A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- series waveform
- measured
- complex
- refractive index
- predetermined frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4795—Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
Definitions
- the present invention relates to a measuring method and an apparatus for measuring a complex refractive index or a complex permittivity of an object to be measured, and a method and an apparatus for imaging an object to be measured using the same.
- a substance has a specific refractive index depending on its properties.
- the refractive index varies depending on the frequency (and therefore the wave number), and the frequency dependence of the refractive index is inherent to the substance. Therefore, it is widely used to optically measure the refractive index of a substance in order to examine the properties of the substance.
- the information obtained when measuring the transmitted or reflected light of a substance by conventional spectroscopy such as Fourier transform infrared spectroscopy (FTIR) was only the energy transmittance or the energy-reflectance.
- FTIR Fourier transform infrared spectroscopy
- the frequency dependence of the energy transmittance or the energy reflectance is measured, and the measured results are compared with the theoretical equation in a certain frequency range. Were optimized using the nonlinear least squares method.
- Terahertz spectroscopy can simultaneously obtain two pieces of information, amplitude information and phase information.
- the above-mentioned paper discloses an equation showing the relationship between the complex transmittance and the amplitude transmittance and phase difference obtained by measurement. This equation contains two values obtained from the measurement (amplitude transmittance and phase difference) and two unknowns (the real and imaginary parts of the complex index of refraction). It is possible to find the complex refractive index at each frequency by solving a system of binary equations based on the relational equation that contains. Therefore, complicated procedures such as finding the wavelength dependence of the refractive index are not required.
- the measurement method disclosed in the above-mentioned paper introduces a non-negative evaluation function (error function) that always becomes 0 when the optimum value is given when ignoring multiple reflections inside the DUT.
- error function a non-negative evaluation function
- a method of obtaining the complex refractive index by minimizing the evaluation function is adopted.
- an evaluation function is introduced for terms that are not based on multiple reflections, and terms based on multiple reflections are treated as perturbation, and complex A technique for determining the refractive index is also disclosed.
- the measurement method disclosed in the above-mentioned paper is superior to the case where a complex refractive index is measured by Fourier transform infrared spectroscopy, in that a complicated procedure such as determining the wavelength dependence of the refractive index is not required. ing. Also, in the measurement method disclosed in the above-mentioned paper, when ignoring multiple reflection, the complex refractive index is obtained by using an evaluation function, so that compared with the case of solving using a complicated equation as it is, The amount of calculation is reduced, and the measurement time can be shortened. Furthermore, when multiple reflections are considered, the shadow By treating the sound by successive approximation, the complex refractive index can be obtained stably and accurately.
- the present invention eliminates the need for complicated procedures such as finding the wavelength dependence of the refractive index, and furthermore, a measurement method capable of reducing the amount of calculation and stably and accurately measuring the complex refractive index or the complex dielectric constant.
- An object of the present invention is to provide a method and an apparatus for imaging a device under test using the same.
- a measuring method for measuring a complex refractive index or a complex dielectric constant of an object to be measured detects a terahertz pulse light generated from the terahertz pulse light and a terahertz pulse light that reaches the light source via a predetermined optical path.
- the pulsed light transmitted through the object to be measured and detected by the detecting unit and the measured object Obtaining a measurement time-series waveform that is a time-series waveform of the electric field strength of one of the pulse lights detected by the detection unit by reflecting the object, and replacing the object to be measured on the optical path.
- Electric field intensity of the pulsed light generated from the generator and detected by the detector in either the state where the predetermined sample is placed and the state where neither the DUT nor the sample is placed on the optical path.
- the calculating step includes: (a) obtaining an amplitude rate of a predetermined frequency based on an amplitude of a predetermined frequency obtained from the measured time-series waveform and an amplitude of a predetermined frequency obtained from the reference time-series waveform; The phase of the predetermined frequency obtained from the shape and the phase of the predetermined frequency obtained from the reference time-series waveform (C) a step-by-step approximation based on an equation indicating the relationship between the amplitude ratio at a predetermined frequency and the phase difference at a predetermined frequency and the complex refractive index or complex permittivity at a predetermined frequency of the device under test.
- an approximate solution of the complex refractive index or the complex permittivity is given to obtain a new approximate solution of the complex refractive index or the complex permittivity, at least light is transmitted from a medium around the measured object to the measured object.
- a new approximate solution is obtained by treating the transmittance at the time of incidence and the transmittance at the time when light exits from the measured object into the medium as known numbers determined by the given approximate solution.
- the measuring method for measuring the complex refractive index or the complex dielectric constant of an object to be measured according to the present invention is a method for detecting a terahertz pulse light which is generated from a terahertz pulse light and which reaches the light source via a predetermined optical path.
- the object to be measured When the object to be measured is placed on the optical path by using the terahertz pulse light, the object is irradiated with the terahertz pulsed light, and transmitted through the object to be measured to detect the electric field Acquiring a measurement time-series waveform that is a time-series waveform of intensity, and either a state in which a predetermined sample is arranged on the optical path instead of the object to be measured or a state in which neither the object nor the sample is arranged on the optical path. In this state, the measured light is measured based on the relationship between the reference time-series waveform, which is the time-series waveform of the electric field strength, of the pulse light generated from the generator and detected by the detector, and the measured time-series waveform.
- the reference time-series waveform which is the time-series waveform of the electric field strength
- the calculation step is as follows: (a) An amplitude ratio of a predetermined frequency, which is a ratio of an amplitude of a predetermined frequency obtained by Fourier-transforming the measured time-series waveform to an amplitude of a predetermined frequency obtained by Fourier-transforming the reference time-series waveform, is obtained.
- the above equation may reflect the multiple reflection of the terahertz pulse light inside the device under test.
- an approximate solution of the complex refractive index or the complex permittivity is given to obtain a new approximate solution of the complex refractive index or the complex permittivity
- light is transmitted from the medium around the measured object to the measured object.
- a measuring method for measuring a complex refractive index or a complex dielectric constant of an object to be measured detects a terahertz pulse light generated from the terahertz pulse light and a terahertz pulse light that reaches the light source via a predetermined optical path.
- the pulse light detected by the detector is reflected by the object and reflected by the detector.
- Obtaining a measurement time-series waveform which is a time-series waveform of the electric field strength, and, with a predetermined sample placed in place of the DUT on the optical path, reflecting the sample generated from the generator to the detector.
- the calculation stage is
- the equation is to ignore the multiple reflection of the terahertz pulse light inside the DUT, and to reflect the light reflected only once on the surface of the DUT on the detector side and on the surface opposite to the detector of the DUT. This reflects the light reflected only once at the time.
- the approximate solution of the complex refractive index or the complex permittivity is given to obtain a new approximate solution of the complex refractive index or the complex permittivity, the light is affected.
- the transmittance and reflectance when light enters the object from the medium around the object, and the light A new approximate solution is obtained by treating the transmittance and reflectivity at the time of exiting into the medium as known numbers determined by the given approximate solution.
- the above equation may reflect the multiple reflection of the terahertz pulse light inside the device under test.
- an approximate solution of the complex refractive index or the complex permittivity is given to obtain a new approximate solution of the complex refractive index or the complex permittivity
- light is transmitted from the medium around the measured object to the measured object.
- An imaging method is a method of imaging an object to be measured according to a complex refractive index or a complex dielectric constant of the object to be measured or a distribution of physical property values based on any of these.
- the above-described measurement method is applied.
- a measuring device for measuring a complex refractive index or a complex dielectric constant of an object to be measured detects a terahertz pulse light which is generated from a terahertz pulse light generating portion and reaches through a predetermined optical path and reaches the terahertz pulse light.
- a Terahertz pulse light is applied to the object under measurement with the object positioned on the optical path, so that the pulsed light transmitted through the object and detected by the detection unit and the measurement
- a measurement time-series waveform acquisition unit that acquires a measurement time-series waveform that is a time-series waveform of the electric field strength of one of the pulse lights detected by the detection unit by reflecting an object;
- Time series waveform A time-series waveform, based on the relationship between the measured time-series waveform, and a calculator for calculating the complex refractive index or the complex permittivity of the object to be measured, the arithmetic unit is determined from (a) measurement time series waveform
- An amplitude rate calculator for calculating the amplitude rate of the predetermined frequency based on the amplitude of the predetermined frequency and the amplitude of the pre
- (C) a phase difference calculator for calculating a phase difference between the phase of the predetermined frequency and the phase difference of the predetermined frequency, which is obtained from the waveform, and a complex refractive index or complex permittivity of the device under test at the predetermined frequency.
- a successive approximation unit for finding a complex refractive index or a complex permittivity by successive approximation.
- the successive approximation when obtaining a new approximate solution of the complex refractive index or the complex permittivity by giving the approximate solution of the complex refractive index or the complex permittivity in the successive approximation, at least light is reflected from a medium around the object to be measured.
- a new approximate solution is obtained by treating the transmittance when entering the object and the transmittance when light exits the medium from the object to be measured as known numbers determined by the given approximate solution.
- the measuring device for measuring the complex refractive index or the complex dielectric constant of an object to be measured includes a generation unit for the terahertz pulse light and a detection device for detecting the terahertz pulse light generated from the generation unit and arriving via a predetermined optical path.
- a measurement time-series waveform acquisition unit that obtains a measurement time-series waveform that is a time-series waveform, and a state in which a predetermined sample is arranged on the optical path instead of the object to be measured or neither the object nor the sample is arranged on the optical path In this state, based on the relationship between the measured time-series waveform and the reference time-series waveform, which is the time-series waveform of the electric field strength, of the pulsed light generated from the generator and detected by the detector, Complex refractive index or complex permittivity And a calculation unit for calculating.
- the calculation unit calculates (a) the amplitude ratio of the predetermined frequency, which is the ratio of the amplitude of the predetermined frequency obtained by Fourier transforming the measured time series waveform to the amplitude of the predetermined frequency obtained by Fourier transforming the reference time series waveform.
- the amplitude ratio calculation unit to be obtained, and (b) a phase difference for obtaining a phase difference between a phase of a predetermined frequency obtained by Fourier transforming the measurement time-series waveform and a phase of the predetermined frequency obtained by Fourier-transforming the reference time-series waveform.
- the equation ignores multiple reflections of the terahertz pulse light inside the device under test, and the successive approximation unit gives an approximate solution of the complex refractive index or complex permittivity in the successive approximation to give the complex refractive index.
- the transmittance when light enters the object from the medium around the object and the transmittance when the light exits from the object to the medium Is treated as a known number determined by the given approximate solution, thereby obtaining a new approximate solution.
- the successive approximation unit can use an expression reflecting multiple reflection of the terahertz pulse light inside the device under test. In this case, in the successive approximation, when the approximate solution of the complex refractive index or the complex permittivity is given in the successive approximation to obtain a new approximate solution of the complex refractive index or the complex permittivity, light is applied to the medium around the object to be measured.
- a measuring device for measuring a complex refractive index or a complex dielectric constant of an object to be measured detects a terahertz pulse light which is generated from a terahertz pulse light generating portion and reaches through a predetermined optical path and reaches the terahertz pulse light.
- a Terahertz pulsed light irradiating the DUT with the DUT placed on the optical path, reflecting the DUT and detecting the electric field of the pulsed light detected by the detector.
- a measurement time-series waveform acquisition unit that acquires a measurement time-series waveform that is a time-series waveform of intensity, and a sample generated from the generation unit and reflected by a predetermined sample placed on the optical path in place of the DUT.
- the calculation unit includes: ( a ) a predetermined frequency, which is a ratio of an amplitude of a predetermined frequency obtained by Fourier-transforming the measured time-series waveform to an amplitude of the predetermined frequency obtained by Fourier-transforming the reference time-series waveform; (B) the phase of the predetermined frequency obtained by Fourier transforming the measured time series waveform and the phase of the predetermined frequency obtained by Fourier transforming the reference time series waveform; A phase difference calculation unit for calculating a phase difference; and And a successive approximation unit for obtaining a complex refractive index or a complex permittivity by approximation.
- the formula ignores the multiple reflection of the terahertz pulse light inside the DUT, and reflects the light reflected only once on the surface of the DUT on the detector side and the surface on the opposite side of the detector from the DUT.
- the successive approximation unit gives a complex refractive index or complex permittivity approximate solution in the successive approximation to provide a new approximate solution of complex refractive index or complex permittivity in the successive approximation.
- a new approximate solution is obtained by treating the transmittance and reflectivity at the time of exposure and the transmittance and reflectivity when light exits from the object to be measured into the medium as known numbers determined by the given approximate solution.
- an expression reflecting multiple reflection of the terahertz pulse light inside the object to be measured can be used.
- the successive approximation when giving an approximate solution of the complex refractive index or the complex permittivity to obtain a new approximate solution of the complex refractive index or the complex permittivity in the successive approximation, light is emitted around the object to be measured.
- the transmittance and reflectivity when light enters the object from the medium, the light transmittance and reflectivity when light exits from the object to the medium, and terms based on multiple reflection are determined by the given approximate solution.
- a new approximate solution is obtained by treating it as a known number.
- An imaging apparatus is an apparatus for imaging an object to be measured in accordance with a complex refractive index or a complex dielectric constant of the object to be measured or a distribution of physical property values based on either of them. including. BRIEF DESCRIPTION OF THE FIGURES
- FIG. 1 is a schematic configuration diagram schematically illustrating an imaging device according to a first embodiment of the present invention.
- FIG. 2 is a diagram schematically illustrating a state in the vicinity of a measurement site of an object to be measured according to the first embodiment of the present invention.
- FIG. 3 is a schematic flowchart showing the operation of the control / arithmetic processing unit of the imaging device according to the first embodiment of the present invention.
- FIG. 4 is a schematic configuration diagram schematically showing an imaging device according to the second embodiment of the present invention.
- FIG. 5 is a diagram schematically showing a state near a measurement site of an object to be measured in the second embodiment of the present invention.
- FIG. 6 is a schematic flowchart showing the operation of the control / arithmetic processing unit of the imaging device according to the second embodiment of the present invention.
- FIG. 1 is a schematic configuration diagram schematically illustrating an imaging device according to a first embodiment of the present invention.
- FIG. 2 is a diagram schematically showing a state near the measurement site of the DUT 20 according to the present embodiment.
- FIG. 3 is a schematic flowchart showing the operation of the control / arithmetic processing unit 23 of the imaging apparatus according to the present embodiment.
- a femtosecond pulse light L 1 radiated from a femtosecond pulse light source 1 composed of a laser light source or the like is converted into two pulse lights L by a beam splitter 2. Divided into 2, L3.
- One of the divided pulse lights L 2 becomes a pump pulse (pulse excitation light) for exciting the terahertz light generator 7 and causing the generator 7 to generate the terahertz pulse light.
- the pump pulse L 2 After being pumped by the chopper 3, the pump pulse L 2 is guided to the terahertz light generator 7 through the plane reflecting mirrors 4, 5 and 6.
- the other split pulse light L 3 is a probe pulse for determining the timing for detecting terahertz pulse light.
- the probe pulse L3 is guided to the terahertz photodetector 11 through a plane reflecting mirror 8, a movable mirror 9 formed by combining two or three plane reflecting mirrors, and a plane reflecting mirror 10.
- the movable mirror 9 arranged on the optical path of the probe pulse L3 can be moved in the direction of the arrow X by the moving mechanism 12.
- the moving mechanism 12 is controlled by a control / arithmetic processor 23.
- the optical path length of the probe pulse L3 changes according to the amount of movement of the movable mirror 9, and the time for the probe pulse L3 to reach the detector 11 is delayed. That is, in the present embodiment, the movable mirror 9 and the moving mechanism 12 constitute a time delay device that changes the time at which the probe pulse L3 reaches the detector 11.
- the generator 7 when the generator 7 is excited by the pump pulse L2, the generator 7 emits a terahertz pulse light L4 to the tera.
- the Rutsuparusu light L 4 to Terra approximately 0. 1 X 1 0 12 from 1 0 0 X 1 0 12 optical frequency domain to Hertz is preferable.
- Terra Hertz The pulsed light L4 is condensed at the condensing position via curved mirrors 13 and 14 such as a parabolic mirror.
- a measurement site of the device under test 20 is arranged at this focusing position.
- the DUT 20 is a plate-like member having a parallel plate with a known thickness d and is made of a uniform material.
- the DUT 20 is not limited to this.For example, when locally irradiating terahertz pulse light, the thickness d may be different for each measurement site if known. .
- the device under test 20 is arranged such that the optical axis of the terahertz pulse light L4 with respect to the device under test 20 substantially matches the normal to the surface of the device under test 20.
- the incident angle distribution it is better for the incident angle distribution to be narrow, so that the smaller the angle 0 between the outermost ray of the terahertz pulse light L4 incident on the DUT 20 and the optical axis is, the better. good.
- the larger the angle S the better. Therefore, it is necessary to determine the angle 0 as necessary.
- the terahertz pulsed light L4 is incident on the DUT 20 as parallel light. It is more preferable to improve the value.
- a description will be given assuming that the terahertz pulse light is perpendicularly incident on the device under test 20, but the case of oblique incidence can be similarly considered.
- the DUT 20 can be two-dimensionally moved in the in-plane direction of the DUT 20 by a moving mechanism 26 such as a stage.
- a moving mechanism 26 such as a stage.
- the measurement site of the object 20 can be two-dimensionally scanned along the surface of the object 20.
- the terahertz pulse light L5 transmitted through the device under test 20 passes through curved mirrors 15 and 16 such as a parabolic mirror and is detected by a detector 11.
- the terahertz pulse light L5 detected by the detector 11 is converted into an electric signal and sent to the amplifier 21.
- the repetition period of the femtosecond pulse light L1 emitted from the femtosecond pulse light source 1 is on the order of several KHz to MHz. Therefore, the terahertz pulse light L4 emitted from the generator 7 is also emitted in a repetition on the order of several KHz to MHz.
- the existing detector 11 instantaneously converts the waveform of this terahertz pulse light into its It is impossible to measure the shape as it is.
- the distance between the pump pulse L 2 and the probe pulse L 3 is increased.
- a method of measuring the waveform of the terahertz pulse light L5 with a time delay that is, the so-called pump-probe method, is adopted. That is, by delaying the timing for activating the terahertz light detector 11 by a second with respect to the pump pulse L2 for activating the terahertz light generator 7, the terahertz pulse at a point in time delayed by The electric field intensity of the light L5 can be measured by the detector 11.
- the probe pulse L 3 gates the terahertz photodetector 11.
- the delay time can be gradually changed.
- the electric field strength at each delay time of the repeatedly arriving terahertz pulse light L5 can be sequentially obtained as an electric signal from the detector 11. it can.
- the terahertz photodetector 11 generates an optically excited carrier only when receiving the probe pulse L3. At this time, if an electric field of the terahertz pulse light is applied, a photoconductive current proportional to the electric field flows.
- the electric signal sent from the detector 11 to the amplifier 21 is amplified by the amplifier 21 and then A / D converted by the A / D converter 22.
- the control / arithmetic processing unit 23 when measuring the time-series waveform E (t) indicating the electric field intensity of the terahertz pulse light L5, transmits a control signal to the moving mechanism 12 to delay the signal. While gradually changing the time, the AZD converter 22 The stored data is stored in memory 23A. As a result, the entire data showing the time-series waveform E (t) of the electric field intensity of the terahertz pulsed light L5 transmitted through a certain measurement site of the device under test 20 is stored in the memory 23A.
- control / arithmetic processing unit 23 transmits a control signal to the moving mechanism 26 and sequentially scans the measurement site of the device under test 20 two-dimensionally, thereby obtaining a time-series waveform E (t) for each measurement site. ) Is stored in memory 23A.
- the device under test 20 is arranged on the optical path between the generator 7 and the detector 11 (in this embodiment, the condensing position of the terahertz pulse light L4 shown in FIG. 1).
- the time-series waveform E (t) of the electric field intensity of the terahertz pulse light measured in this state is called the measured time-series waveform Es am (t).
- the function that the arithmetic processing unit 23 takes in data from the A / D converter 22 constitutes a measurement time series waveform acquisition unit that acquires a measurement time series waveform E saB (t) for each measurement site.
- the control / arithmetic processing unit 23 performs an operation shown in FIG. 3 described later, and can be configured using, for example, a convenience store.
- the electric field strength of the terahertz pulse light is the same as when measuring the measurement time-series waveform E S (t). Measure the time series waveform E (t) of degrees in advance.
- This time-series waveform E (t) is referred to as a reference time-series waveform E rei (t).
- the reference time-series waveform E ref (t) is subjected to a Fourier transform defined by the following equation (1) to obtain a reference (reference) amplitude IE ref ( ⁇ ) I and a phase S ref ( ⁇ ) Ask for.
- the Fourier transform defined by the following equation (1) is performed on the measured time-series waveform E san (t) to obtain the amplitude IE sam ( ⁇ ) I and the phase 6 S ( ⁇ ).
- the complex amplitude transmittance t ( ⁇ ) of the device under test 20 is determined by the following equation (2). That is, while obtaining the amplitude transmittance ⁇ ( ⁇ ) which is the ratio between the amplitude 1 E S ( ⁇ ) I and the amplitude IE ref ( ⁇ )
- the complex amplitude transmittance t ( ⁇ ) of a substance can be represented by the complex refractive index ⁇ ( ⁇ ) of the substance.
- t 1 ( ⁇ ) and r 1 ( ⁇ ) are the complex transmittance and the complex reflectance when light enters the substance from the medium, respectively, and the complex transmittance and complex reflection when the light exits from the substance to the medium.
- Let the rates be t 2 ( ⁇ ) and r 2 ( ⁇ ), respectively.
- These values t 1 ( ⁇ ), r 1 ( ⁇ ), t 2 ( ⁇ ), and r 2 ( ⁇ ) are expressed by the complex refractive index ⁇ ( ⁇ ).
- the refractive index ⁇ of the medium on both sides of the DUT 20 is assumed assuming that the DUT 20 is in the air or in a vacuum. Is 1. Note that the refractive index ⁇ . It can be considered in the same way even when the value is other than 1, and it is not necessary that the mediums on the entrance side and the exit side are the same.
- ⁇ ( ⁇ ) n R ( ⁇ ) + in x ( ⁇ )
- the terahertz pulse light transmitted through the device under test 20 includes various patterns of transmitted light shown in FIGS. 2 (a) to 2 (d).
- Fig. 2 (a) shows the light that is transmitted without being reflected inside the DUT 20 (transmitted light that is not multiple reflection)
- Fig. 2 (b) is the light that is reflected twice inside the DUT 20.
- Fig. 2 (c) shows the light that is reflected and transmitted four times inside the DUT 20 (light that has been multiply reflected)
- Fig. 2 (d) ) Indicate light that is reflected and transmitted 2 k times inside the DUT 20 (light that has been k-times reflected multiple times).
- k is an integer of 0 or more.
- Equation (8) the complex amplitude transmittance t ( ⁇ ) is given by the following equation (8), where ⁇ is the angular frequency of light, d is the thickness of the DUT 20 and c is the speed of light. expressed. However, A in equation (8) was placed as shown in the following equation (9).
- the measurement of E (t) is terminated at the maximum delay time determined by the length of the moving mechanism 12. At this time, if the thickness d and the approximate refractive index of the DUT 20 are known, the number of possible multiple reflections within the maximum delay time can be known.
- the number of multiple reflections can be determined directly from the measured time-series waveform.
- Equations (14) and (15) the amplitude transmittance ⁇ ( ⁇ ) and the phase difference ⁇ ( ⁇ ) are values obtained from the measured values as described above.
- the parameter ⁇ included in Equations (14) and (15) depends on n R ( ⁇ ) and ( ⁇ ) (Equations (9), (3), (5) to (5) (7)), it is very difficult to solve equations (14) and (15) simultaneously.
- the inventor of the present invention obtains the following successive approximation for the first time by deriving the equations (14) and (15) from the equation (10) with the parameter ⁇ as shown in the equation (9). It was found that the complex refractive indices ( nR ( ⁇ ) and ⁇ ⁇ ( ⁇ )) were obtained by extremely simple calculations. That is, unlike the measurement method disclosed in the above-mentioned paper, the amount of calculation can be reduced and the complex refractive index can be stably and accurately obtained without using an evaluation function.
- Equation (3) and Equations (5) to (7) are used when calculating A. Treat the calculated A as a known number determined by the given approximate solution, and substitute it into Equations (14) and (15) to calculate the values of n R ( ⁇ ) and ( ⁇ ).
- control / calculation processing unit 23 obtains the complex refractive index for each measurement site of the DUT 20 by the above-described calculation.
- the image processing unit 24 generates image data indicating the distribution of the complex refractive index of the device under test 20 obtained by the control / arithmetic processing unit 23.
- the generated image is displayed on a display unit 25 such as a CRT.
- control and arithmetic processing unit 23 measures the reference time-series waveform E ref (t) (step S1), performs a Fourier transform on the measured reference time-series waveform Eref (t), and performs amplitude I Eref ( ⁇ )
- the control / arithmetic processing unit 23 measures the measurement time series waveform Esam (t) for each measurement site of the DUT 20 (step S3), and converts the measured measurement time series waveform Esam (t).
- step S4 Fourier transform is performed to find amplitude I Esam ( ⁇ )
- control / arithmetic processing unit 23 performs the processing of steps S6 to S10 described below for each measurement site of the DUT 20. That is, for a certain measurement site, initial approximation n R ( ⁇ ), ⁇ , set the (omega) (Step S 6), the approximate value currently set ⁇ ⁇ ( ⁇ ), ⁇ , ( ⁇ ) Then, the parameter ⁇ is calculated by the method described above (step S 7).
- the control / arithmetic processing unit 23 calculates A, the latest calculated in step S7, and the amplitude transmittance T ( ⁇ ) and the phase difference ⁇ ( ⁇ ) calculated in step S5 for the measurement site, using the formula ( 14) and by substituting the equation (1 5), a new approximate solution n R (omega) 'eta, calculates the (omega) (step S 8). Next, the control / arithmetic processing unit 23 determines whether or not the approximate solution ⁇ ( ⁇ ), ⁇ , ( ⁇ ) obtained most recently in step S8 has converged (step S8). 9).
- This determination is made, for example, by comparing the approximate solution ⁇ ⁇ ( ⁇ ), ⁇ , ( ⁇ ) obtained most recently in step S8 with the approximate solution n R ( ⁇ ), ( ⁇ ) obtained in the previous calculation. This can be performed based on whether the difference (absolute value) is equal to or less than a predetermined value.
- step S 9 If it is determined not to be converged in the step S 9, the approximate solution obtained to date in step S 8 n R ( ⁇ ), ⁇ , set the (omega) as a new approximate value (Step S 1 0) Return to step S7.
- step S9 the control / calculation processing section 23 ends the calculation for the measurement site. Thereafter, the control / arithmetic processing unit 23 controls the moving mechanism 26, and repeats the processing of steps S6 to S10 for the remaining measurement sites. If it is determined that the approximate solutions ⁇ ⁇ ( ⁇ ), ⁇ , ( ⁇ ) have converged for all the measurement sites, the converged approximate solutions n R ( ⁇ ), ⁇ , ( ⁇ ) (that is, The complex refractive index of the measurement site) is supplied to the image processing unit 24. The image processing unit 24 displays an image indicating the distribution of the complex refractive index on the display unit 25 (Step S11), and ends the operation.
- Steps S 1 and S 2 need not be performed each time the complex refractive index of the device under test 20 is measured, but may be performed at an appropriate frequency. For example, it may be performed only once at the time of product shipment.
- the amount of calculation is reduced, and the complex refractive index or the complex dielectric constant is accurately measured without using an evaluation function. Can be.
- the magnetic permeability can be regarded as 1, and therefore, there is a relationship between the complex refractive index N ( ⁇ ) and the complex permittivity ⁇ ( ⁇ ) as expressed by the following equation (16). Therefore, by substituting the complex index of refraction ⁇ ( ⁇ ) obtained by the above method into Eq. (16), The electric power ⁇ ( ⁇ ) can be obtained. If Equation (16) is substituted into Equations (3) through (15), the complex index ⁇ ( ⁇ ) can be found without finding the complex index ⁇ ( ⁇ ). It is also possible to determine the complex permittivity ⁇ ( ⁇ ).
- ⁇ ⁇ ) ⁇ ( ⁇ ) 2 ... (1 6)
- FIG. 4 is a schematic configuration diagram schematically showing an imaging device according to the second embodiment of the present invention.
- FIG. 5 is a diagram schematically showing a state near the measurement site of the DUT 20 according to the present embodiment.
- FIG. 6 is a schematic flowchart showing the operation of the control-arithmetic processing unit 23 of the imaging device according to the present embodiment.
- FIG. 4 the same or corresponding elements as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.
- the difference between the imaging device according to the present embodiment and the first embodiment described above is as follows. That is, in the first embodiment, the transmitted light of the DUT 20 is detected by the detector 11, whereas in the present embodiment, the reflected light of the DUT 20 is detected by the detector 11 1 And the operation of the control / arithmetic processing unit 23.
- the measurement time-series waveform Esam (t) regarding the transmitted light is acquired for each measurement site of the DUT 20.
- a similar method is used.
- a measurement time-series waveform Esam '(t) related to reflected light is acquired for each measurement site of the DUT 20.
- the time-series waveform E (t) of the electric field intensity of the terahertz pulse light related to the reflected light is measured in advance, as in the case of acquiring the measurement time-series waveform Esam '(t).
- This time-series waveform E (t) is called a reference time-series waveform Erei '(t).
- the reference (reference) amplitude I Eref' ( ⁇ ) I and the phase 0 ref ( ⁇ ) is calculated.
- and the phase Ssani' ( ⁇ ) are calculated by performing a Fourier transform as defined by equation (1) on the measured time-series waveform E sanT (t). I do.
- the complex amplitude reflectance r ( ⁇ ) of the device under test 20 is obtained by the following equation (17). That is, while calculating the amplitude reflectance R ( ⁇ ), which is the ratio of the amplitude I Esam '( ⁇ )
- the complex amplitude reflectance r ( ⁇ ) of a substance can also be expressed using the complex refractive index ⁇ ( ⁇ ) of the substance.
- the terahertz pulse light reflected by the device under test 20 includes various patterns of reflected light shown in FIGS. 5 (a) to 5 (d).
- FIG. 5 (a) shows light reflected only on the incident surface (the surface on the detection unit 11 side) of the device under test 20 (reflected light that is not reflected once and is not a multiple reflection inside).
- (b) is light that is reflected only once on the surface of the DUT 20 opposite to the detection unit 11 (reflected light that is reflected once inside but is not multiple reflection), and FIG. The light reflected three times inside the object 20 (light reflected multiple times).
- Figure 5 (d) shows the light reflected (2 k-1) times inside the object 20 ((k-1) ).
- k be an integer greater than or equal to 0, and refer to the light shown in Fig. 5 (b) as light multiply reflected 0 times, and the light shown in Fig. 5 (a) as light multiply reflected once.
- the number of reflections indicates the number of reflections inside the DUT 20.
- the complex amplitude reflectance r ( ⁇ ) is expressed as follows: ⁇ is the angular frequency of light, and d is the thickness of the DUT 20 , C as the speed of light, is expressed by the following equation (18).
- the parameter B in equation (18) is calculated by the following equation (19) Indicated by In Equation (18), as in the case of the first embodiment, the complex transmittance and the complex reflectance when light enters a substance from a medium are t 1 ( ⁇ ) and r 1 ( ⁇ ), respectively. And the complex transmittance and the complex reflectivity when emitted from a substance into a medium are t2 ( ⁇ ) and r2 ( ⁇ ), respectively.
- the refractive index ⁇ of the medium on both sides of the DUT 20 Is 1.
- the refractive index ⁇ . Is the same even when the value is other than 1, and the medium on the incident side and the medium on the exit side do not need to be the same.
- a mirror is used as the above-mentioned sample, like many spectroscopes.
- the signal for reference uses the spectrum of the light reflected by the mirror, and the ratio between the signal and the spectrum reflected by the device under test 20 is defined as the amplitude reflectance. Therefore, in Equation (18), the whole is multiplied by –1 in consideration of the phase inversion when the light is reflected by the mirror.
- m ′ 0 or 1
- m ′ ⁇ 2.
- Equations (2 4) and (2 5) the amplitude reflectance R ′ ( ⁇ ) and the phase difference ⁇ ′′ ( ⁇ ) are values obtained from the measured values as described above.
- R ′ ( ⁇ ) and eta depending on iota (omega) (Formula (1 9), Equation (3), equation (5) to Formula (7))
- R '(omega) and the phase difference phi "(omega) is eta kappa (omega ) And ( ⁇ )
- Equation (2 1), Eq. (4), Eq. (7) it is very difficult to solve Eqs. (24) and (25) as they are. .
- the present inventor sets the parameter ⁇ as shown in equation (19) and derives equations (24) and (25) from equation (20) for the first time. by performing the approximation, by a very simple calculation, it was found that for obtaining a stable accurately birefringence element refractive index with a relatively small amount of calculations (n R ( ⁇ ) and ⁇ ( ⁇ )).
- n R ( ⁇ ) and ( ⁇ ) are given as approximate solutions.
- this value may be used as the initial value.
- the approximate solution given the initial value is substituted into equation (19) to calculate ⁇ (that is, 1 ⁇ I and arg B).
- Equation (3) and Equations (5) to (7) are used in the calculation of parameter B.
- the amplitude reflectance R ′ ( ⁇ ) and the phase difference ⁇ ′′ ( ⁇ ) are calculated by substituting the approximate solution described above into the equation (21). In this calculation, the equations (4) and (4) are used.
- control / arithmetic processing unit 23 measures the reference time-series waveform Erei '(t) (step S21), Fourier-transforms the reference time-series waveform Eref' (t), and outputs an amplitude. I Erei '( ⁇ )
- control / arithmetic processing unit 23 measures the measurement time-series waveform Esam '(t) for each measurement site of the DUT 20 (step S23), and the measurement time-series waveform Esam' (t) ) Is Fourier-transformed to obtain an amplitude 1 Esam '( ⁇ )
- and the phase ⁇ sam '( ⁇ ) obtained in step S 24 Is used to calculate the step amplitude reflectance R ( ⁇ ) and the phase difference ⁇ ′ ( ⁇ ) (step S25).
- step S 2 6 for a measurement site, the initial approximation n R ( ⁇ ), ⁇ , sets the (omega).
- step S 2 7 approximate value n R (omega) which is currently set to calculate the ⁇ in the manner previously described in accordance with n r ( ⁇ ).
- step S 28 following step S 27, R ′ ( ⁇ ) and ⁇ ′′ ( ⁇ ) are calculated.
- step S 28 the amplitude reflection calculated in step S 25 for the measurement site concerned The ratio R ( ⁇ ) and the phase difference ⁇ ′ ( ⁇ ) are used.
- step S 29 the control / arithmetic processing unit 23 calculates the ⁇ newly calculated in step S 27 and the R ′ ( ⁇ ) and ⁇ ′′ ( ⁇ ) calculated latest in step S 28. ) Is substituted into Equations (2 4) and (2 5) to calculate a new approximate solution n R ( ⁇ ), ⁇ , ( ⁇ )
- step S 29 It is determined whether or not the approximate solution n R ( ⁇ ), ⁇ , ( ⁇ ) obtained most recently has converged. This determination is made, for example, by the approximate solution n R ( ⁇ ), ⁇ , ( ⁇ ) and the neighborhood obtained by the previous calculation. Nikai eta kappa (omega), the difference between n t (omega) (absolute value) on the basis of or less than a predetermined value, can be performed.
- step S31 If it is determined in step S30 that convergence has not occurred, in step S31, the approximate solution ⁇ ⁇ ( ⁇ ), ⁇ , ( ⁇ ) obtained most recently in step S29 is replaced with a new approximate value. And return to step S27.
- control / calculation processing section 23 ends the calculation for the measurement site. Thereafter, control, arithmetic processing unit 23 controls the moving mechanism 26 repeats the processing of steps S 26 ⁇ S 3 1 for the rest of the measurement site, for every measurement site, approximate solution eta kappa When it is determined that ( ⁇ ), ⁇ , ( ⁇ ) have converged, the converged approximate solution n R ( ⁇ ), ⁇ ⁇ ( ⁇ ) (that is, the complex refractive index of the measurement site) for each measurement site is calculated. Supply to 24 to the image processing unit. The image processing unit 24 displays an image showing the distribution of the complex refractive index on the display unit 25 (step S32), and ends the operation.
- steps S21 and S22 it is not necessary to perform the measurement every time the complex refractive index of the device under test 20 is measured, but may be performed at an appropriate frequency. For example, it may be performed only once at the time of product shipment.
- the complex refractive index or complex permittivity can be measured stably and accurately with a relatively small amount of calculation.
- the complex permittivity ⁇ ( ⁇ ) can be obtained by substituting the complex refractive index ⁇ ( ⁇ ) obtained by the method described above into equation (16). By substituting Equation (16) into Equations (3) to (7) and Equations (18) to (25), the complex refractive index ⁇ ( ⁇ ) can be obtained without calculating the complex refractive index ⁇ ( ⁇ ). As in the case of ⁇ ( ⁇ ), it is also possible to obtain the complex permittivity ⁇ ( ⁇ ).
- the complex refractive index of each measurement site of the DUT 20 is measured and its distribution is imaged. It is sufficient to measure only the complex refractive index or complex permittivity of only 20 measurement sites. No. Further, if no image is required and it is desired to measure the average complex refractive index or complex permittivity of a certain range of the device under test 20, the terahertz pulse light L4 is applied to the device under test 20 as described above. In the above embodiments, the complex refractive index was obtained as a final measurement result, but other physical property values may be used.
- the present invention can also be applied to a case where a complex refractive index or a complex permittivity is obtained as an intermediate step for obtaining the physical property value.
- a complex refractive index or a complex permittivity is obtained as an intermediate step for obtaining the physical property value.
- the frequency dependence of the complex refractive index can be theoretically determined, such as when the device under test 20 is a semiconductor, etc. (Eg, carrier density and mobility of semiconductors) can be obtained. If you want to find the carrier density and mobility of a semiconductor, you can do so immediately based on the complex index of refraction at a single frequency. In this case, if it is desired to obtain these values with higher accuracy, it is effective to calculate by the least squares method using the frequency dependence of the complex refractive index.
- a similar calculation can be made by optimizing the parameters to minimize the difference between the measured transmission and reflection spectra and the theoretical value, but the computational complexity is relatively high. Become. Therefore, as described above, the amount of calculation is reduced by calculating the complex refractive index based on the measurement result and optimizing the parameters while comparing the calculation result with the theoretical formula. Therefore, the present invention is also effective as preprocessing for parameter optimization.
- the inventor obtained a complex refractive index using an n-type silicon wafer as the object 20 according to the measurement method employed in the first embodiment described above.
- the present invention is useful in obtaining a complex refractive index.
- a complicated procedure for determining the wavelength dependence of the refractive index is not required.
- the measuring method and measuring device can be applied to a method and a device for obtaining a complex refractive index or a complex dielectric constant of a substance. Further, the present invention can be applied to a method and an apparatus for imaging an object to be measured according to the complex refractive index or the complex dielectric constant of the object to be measured or the distribution of physical property values of any of these.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
明細書 Specification
測定方法および装置、 並びに、 イメージ化方法および装置 本出願は日本国特許出願 2001年第 74551号 (2001年 3月 15日出 願) を基礎として、 その内容は引用文としてここに組み込まれる。 Measurement Method and Apparatus and Imaging Method and Apparatus This application is based on Japanese Patent Application No. 74551 (filed on Mar. 15, 2001), the contents of which are incorporated herein by reference.
技術分野 Technical field
本発明は、被測定物の複素屈折率又は複素誘電率を測定する測定方法及び装置、 並びに、 これを用いた被測定物のィメ一ジ化方法及び装置に関するものである。 背景技術 The present invention relates to a measuring method and an apparatus for measuring a complex refractive index or a complex permittivity of an object to be measured, and a method and an apparatus for imaging an object to be measured using the same. Background art
物質はその性質に依存した固有の屈折率を持つ。 屈折率は、 周波数 (したがつ て、 波数) により異なる値をとり、 その屈折率の周波数依存性も物質に固有のも のである。 そこで、 物質の性質を調べるために、 光学的に物質の屈折率を測定す ることが広く行われている。 A substance has a specific refractive index depending on its properties. The refractive index varies depending on the frequency (and therefore the wave number), and the frequency dependence of the refractive index is inherent to the substance. Therefore, it is widely used to optically measure the refractive index of a substance in order to examine the properties of the substance.
フーリエ変換赤外分光法 (FT I R法) などの従来の分光法によって物質の透 過光又は反射光を測定した場合に得られる情報は、 エネルギー透過率又はエネル ギ一反射率のみであった。その測定結果に基づいて物質の屈折率(一般に複素数) を求めるためには、 エネルギー透過率又はエネルギー反射率の周波数依存性を測 定し、 測定した結果に対して、 ある周波数領域にて理論式のパラメータを非線形 最小二乗法などを用いて最適化していた。 The information obtained when measuring the transmitted or reflected light of a substance by conventional spectroscopy such as Fourier transform infrared spectroscopy (FTIR) was only the energy transmittance or the energy-reflectance. In order to determine the refractive index (generally a complex number) of a substance based on the measurement results, the frequency dependence of the energy transmittance or the energy reflectance is measured, and the measured results are compared with the theoretical equation in a certain frequency range. Were optimized using the nonlinear least squares method.
このような手法には複雑な計算が伴うため、 解析に時間がかかるなどの問題点 があった。 また、 ある特定の周波数に対する複素屈折率のみが必要な場合であつ ても、 屈折率の周波数依存性を求めるなどの煩雑な手順が必要であつた。 Since such a method involves complicated calculations, there were problems such as a long analysis time. Even when only a complex refractive index for a specific frequency is required, complicated procedures such as finding the frequency dependence of the refractive index are required.
上述した方法とは別に、 テラへルツ分光法を利用して被測定物の複素屈折率を 測定する測定方法が、 ドュヴイラレットら (Lionel Duvillaret, Frederic Garet, and Jean-Louis Coutaz) の論文 ("AReliable Method for Extraction of Material Parameters in Terahertz Time-Domain Spectroscopy" , IEEE Journal of Selected Top i cs in Quantum Elec t ronics, Vo l. 2, No. 3, pp. 739-746 ( 1996) ) に開示され ている。 Apart from the method described above, a measurement method for measuring the complex refractive index of an object using Terahertz spectroscopy is described in a paper by Lionel Duvillaret, Frederic Garet, and Jean-Louis Coutaz ("AReliable"). Method for Extraction of Material Parameters in Terahertz Time-Domain Spectroscopy ", IEEE Journal of Selected Topics in Quantum Electronics, Vol. 2, No. 3, pp. 739-746 (1996)).
テラへルツ分光法では、 振幅情報と位相情報の 2つの情報を同時に得ることが できる。 前述した論文には、 測定により求められる振幅透過率及び位相差と複素 屈折率との関係を示す式が開示されている。 この関係式には、 測定から得られる 値が 2つ (振幅透過率と位相差)、 未知数が 2つ (複素屈折率の実部と虚部) 含ま れているので、 各周波数において、 未知数を含む関係式に基づく 2元連立方程式 を解くことにより、 各周波数における複素屈折率を求めることが可能である。 し たがって、 屈折率の波長依存性を求めるなどの煩雑な手順が不要となる。 Terahertz spectroscopy can simultaneously obtain two pieces of information, amplitude information and phase information. The above-mentioned paper discloses an equation showing the relationship between the complex transmittance and the amplitude transmittance and phase difference obtained by measurement. This equation contains two values obtained from the measurement (amplitude transmittance and phase difference) and two unknowns (the real and imaginary parts of the complex index of refraction). It is possible to find the complex refractive index at each frequency by solving a system of binary equations based on the relational equation that contains. Therefore, complicated procedures such as finding the wavelength dependence of the refractive index are not required.
しかしながら、 この場合、 2元連立方程式は非常に複雑な形になってしまうた め、 方程式を解くことは極めて困難である。 そこで、 前述した論文に開示された 測定方法では、 被測定物の内部での多重反射を無視する場合において、 最適値を 与えると 0になる常に負でない評価関数 (error func t ion) を導入し、 この評価 関数を最小化することにより複素屈折率を求める手法を採用している。 さらに、 被測定物の内部での多重反射を考慮する場合において、 多重反射に基づかない項 に関して評価関数を導入した上で、 多重反射に基づく項を摂動 (perturbat ion) として取り扱い、 逐次近似により複素屈折率を求める手法も開示されている。 こ の逐次近似においては、 複素屈折率の近似解を与えて複素屈折率の新たな近似解 を得るに際し、 多重反射に基づく項のみを、 与えた近似解にて定まる既知数とし て取り扱い、 この既知数に基づいて評価関数を最小化することにより、 新たな近 似解を得ている。 つまり、 逐次近似の際に新たな近似解を得る度に、 毎回、 評価 関数最小化を行う。 However, in this case, it is extremely difficult to solve the equations because the system of binary equations has a very complicated form. Therefore, the measurement method disclosed in the above-mentioned paper introduces a non-negative evaluation function (error function) that always becomes 0 when the optimum value is given when ignoring multiple reflections inside the DUT. However, a method of obtaining the complex refractive index by minimizing the evaluation function is adopted. In addition, when considering multiple reflections inside the device under test, an evaluation function is introduced for terms that are not based on multiple reflections, and terms based on multiple reflections are treated as perturbation, and complex A technique for determining the refractive index is also disclosed. In this successive approximation, when an approximate solution of the complex refractive index is given to obtain a new approximate solution of the complex refractive index, only the term based on the multiple reflection is treated as a known number determined by the given approximate solution. A new approximate solution is obtained by minimizing the evaluation function based on the known numbers. In other words, every time a new approximate solution is obtained during successive approximation, the evaluation function is minimized.
前述した論文に開示された測定方法は、 フーリエ変換赤外分光法等により複素 屈折率を測定する場合に比べて、 屈折率の波長依存性を求めるなどの煩雑な手順 が不要となる点で優れている。 また、 前述した論文に開示された測定方法は、 多 重反射を無視する場合に、評価関数利用することにより複素屈折率を求めるので、 複雑な形の式をそのまま用いて解く場合に比べれば、 計算量が低減され、 測定時 間の短縮化を図ることができる。 さらに、 多重反射を考慮する場合には、 その影 響を逐次近似で取り扱うことにより、 安定にかつ精度良く複素屈折率を求めるこ とができる。 The measurement method disclosed in the above-mentioned paper is superior to the case where a complex refractive index is measured by Fourier transform infrared spectroscopy, in that a complicated procedure such as determining the wavelength dependence of the refractive index is not required. ing. Also, in the measurement method disclosed in the above-mentioned paper, when ignoring multiple reflection, the complex refractive index is obtained by using an evaluation function, so that compared with the case of solving using a complicated equation as it is, The amount of calculation is reduced, and the measurement time can be shortened. Furthermore, when multiple reflections are considered, the shadow By treating the sound by successive approximation, the complex refractive index can be obtained stably and accurately.
しかしながら、 前述した論文に開示された測定方法では、 逐次近似の際に新た な近似解を得る度に評価関数を最小化する計算を行わなければならず、 複素屈折 率の測定のための計算量は非常に多くなる。 However, in the measurement method disclosed in the above-mentioned paper, the calculation for minimizing the evaluation function must be performed each time a new approximate solution is obtained in the successive approximation, and the amount of calculation for measuring the complex refractive index is required. Will be very much.
以上、 複素屈折率を測定する場合について述べたが、 周知のように複素屈折率 と複素誘電率とは一定の関係を有していることから、 被測定物の複素誘電率を測 定する場合についても同様である。 発明の開示 As described above, the case where the complex refractive index is measured has been described.Since it is well known that the complex refractive index and the complex permittivity have a fixed relationship, the case where the complex permittivity of the device under test is measured. The same applies to. Disclosure of the invention
本発明は、 屈折率の波長依存性を求めるなどの煩雑な手順が不要となり、 しか も、 計算量を低減しかつ安定して精度良く複素屈折率又は複素誘電率を測定する ことができる測定方法及び装置、 並びに、 これを用いた被測定物のイメージ化方 法及び装置を提供するものである。 The present invention eliminates the need for complicated procedures such as finding the wavelength dependence of the refractive index, and furthermore, a measurement method capable of reducing the amount of calculation and stably and accurately measuring the complex refractive index or the complex dielectric constant. An object of the present invention is to provide a method and an apparatus for imaging a device under test using the same.
本発明による、 被測定物の複素屈折率又は複素誘電率を測定する測定方法は、 テラへルツパルス光の発生部と発生部から発生して所定の光路を経て到達するテ ラヘルツパルス光を検出する検出部とを用いて、 光路上に被測定物を配置した状 態でテラヘルツパルス光を被測定物に照射することにより、 被測定物を透過して 検出部により検出されるパルス光および被測定物を反射して検出部により検出さ れるパルス光のうちのいずれか一方のパルス光の、 電場強度の時系列波形である 計測時系列波形を取得する段階と、 光路上に被測定物に代えて所定の試料を配置 した状態および光路上に被測定物も試料も配置しない状態のうちのいずれかの状 態で、 発生部から発生されて検出部にて検出されるパルス光の、 電場強度の時系 列波形である基準時系列波形と、 計測時系列波形との関係に基づいて、 被測定物 の複素屈折率又は複素誘電率を演算する演算段階とを備える。 演算段階は、 (a ) 計測時系列波形から求まる所定周波数の振幅と基準時系列波形から求まる所定周 波数の振幅とに基づいて所定周波数の振幅率を求める段階と、 ( b )計測時系列波 形から求まる所定周波数の位相と基準時系列波形から求まる所定周波数の位相と の位相差を求める段階と、 (C )所定周波数の振幅率及び所定周波数の位相差と被 測定物の所定周波数の複素屈折率又は複素誘電率との関係を示す式に基づいて、 逐次近似により複素屈折率又は複素誘電率を求める段階とを有する。 逐次近似に おいて、 複素屈折率又は複素誘電率の近似解を与えて複素屈折率又は複素誘電率 の新たな近似解を得るに際し、 少なくとも光が被測定物の周囲の媒質から被測定 物へ入射するときの透過率及び光が被測定物から媒質へ射出するときの透過率を、 与えた近似解にて定まる既知数として取り扱うことにより、新たな近似解を得る。 本発明による被測定物の複素屈折率又は複素誘電率を測定する測定方法は、 テ ラヘルツパルス光の発生部と発生部から発生して所定の光路を経て到達するテラ ヘルツパルス光を検出する検出部とを用いて、 光路上に被測定物を配置した状態 で、 テラへルツパルス光を被測定物に照射することにより被測定物を透過して検 出部により検出されるパルス光の、 電場強度の時系列波形である計測時系列波形 を取得する段階と、 光路上に被測定物に代えて所定の試料を配置した状態および 光路上に被測定物も試料も配置しない状態のうちのいずれかの状態で、 発生部か ら発生されて検出部にて検出されるパルス光の、 電場強度の時系列波形である基 準時系列波形と、 計測時系列波形との関係に基づいて、 被測定物の複素屈折率又 は複素誘電率を演算する演算段階とを備える。演算段階は、 (a )計測時系列波形 をフーリエ変換して得た所定周波数の振幅と基準時系列波形をフーリエ変換して 得た所定周波数の振幅との比である所定周波数の振幅率を求める段階と、 (b )計 測時系列波形をフーリエ変換して得た所定周波数の位相と基準時系列波形をフ一 リエ変換して得た所定周波数の位相との位相差を求める段階と、 (c )所定周波数 の振幅率及び所定周波数の位相差と被測定物の所定周波数の複素屈折率又は複素 誘電率との関係を示す式に基づいて、 逐次近似により複素屈折率又は複素誘電率 を求める段階とを有する。 式は、 テラへルツパルス光の被測定物の内部での多重 反射を無視したものであり、 逐次近似において、 複素屈折率又は複素誘電率の近 似解を与えて複素屈折率又は複素誘電率の新た 近似解を得るに際し、 光が被測 定物の周囲の媒質から被測定物へ入射するときの透過率及び光が被測定物から媒 質へ射出するときの透過率を、 与えた近似解にて定まる既知数として取り扱うこ とにより、 新たな近似解を得る。 According to the present invention, a measuring method for measuring a complex refractive index or a complex dielectric constant of an object to be measured detects a terahertz pulse light generated from the terahertz pulse light and a terahertz pulse light that reaches the light source via a predetermined optical path. By irradiating the object to be measured with terahertz pulse light in a state where the object to be measured is arranged on the optical path by using the detecting unit, the pulsed light transmitted through the object to be measured and detected by the detecting unit and the measured object Obtaining a measurement time-series waveform that is a time-series waveform of the electric field strength of one of the pulse lights detected by the detection unit by reflecting the object, and replacing the object to be measured on the optical path. Electric field intensity of the pulsed light generated from the generator and detected by the detector in either the state where the predetermined sample is placed and the state where neither the DUT nor the sample is placed on the optical path. Time series waveform of Calculating a complex refractive index or a complex permittivity of the device under test based on a relationship between the reference time-series waveform and the measured time-series waveform. The calculating step includes: (a) obtaining an amplitude rate of a predetermined frequency based on an amplitude of a predetermined frequency obtained from the measured time-series waveform and an amplitude of a predetermined frequency obtained from the reference time-series waveform; The phase of the predetermined frequency obtained from the shape and the phase of the predetermined frequency obtained from the reference time-series waveform (C) a step-by-step approximation based on an equation indicating the relationship between the amplitude ratio at a predetermined frequency and the phase difference at a predetermined frequency and the complex refractive index or complex permittivity at a predetermined frequency of the device under test. Obtaining a complex refractive index or a complex dielectric constant. In the successive approximation, when an approximate solution of the complex refractive index or the complex permittivity is given to obtain a new approximate solution of the complex refractive index or the complex permittivity, at least light is transmitted from a medium around the measured object to the measured object. A new approximate solution is obtained by treating the transmittance at the time of incidence and the transmittance at the time when light exits from the measured object into the medium as known numbers determined by the given approximate solution. The measuring method for measuring the complex refractive index or the complex dielectric constant of an object to be measured according to the present invention is a method for detecting a terahertz pulse light which is generated from a terahertz pulse light and which reaches the light source via a predetermined optical path. When the object to be measured is placed on the optical path by using the terahertz pulse light, the object is irradiated with the terahertz pulsed light, and transmitted through the object to be measured to detect the electric field Acquiring a measurement time-series waveform that is a time-series waveform of intensity, and either a state in which a predetermined sample is arranged on the optical path instead of the object to be measured or a state in which neither the object nor the sample is arranged on the optical path. In this state, the measured light is measured based on the relationship between the reference time-series waveform, which is the time-series waveform of the electric field strength, of the pulse light generated from the generator and detected by the detector, and the measured time-series waveform. Complex refractive index or complex induction And a calculation step of calculating the rate. The calculation step is as follows: (a) An amplitude ratio of a predetermined frequency, which is a ratio of an amplitude of a predetermined frequency obtained by Fourier-transforming the measured time-series waveform to an amplitude of a predetermined frequency obtained by Fourier-transforming the reference time-series waveform, is obtained. (B) obtaining a phase difference between a phase of a predetermined frequency obtained by Fourier-transforming the measured time-series waveform and a phase of a predetermined frequency obtained by Fourier-transforming the reference time-series waveform; c) Obtain the complex refractive index or complex permittivity by successive approximation based on the equation showing the relationship between the amplitude rate and the phase difference of the predetermined frequency and the complex refractive index or complex permittivity of the device under test at the predetermined frequency. And steps. The formula neglects the multiple reflection of the terahertz pulse light inside the device under test.In successive approximation, the approximate solution of the complex refractive index or complex permittivity is given to give the complex refractive index or complex permittivity. When obtaining a new approximate solution, the approximate solution given the transmittance when light enters the object from the medium around the object and the transmittance when light exits from the object to the medium. Should be treated as a known number determined by And obtain a new approximate solution.
上述した式は、 テラへルツパルス光の被測定物の内部での多重反射を反映した ものでもよい。 この場合、 逐次近似において、 複素屈折率又は複素誘電率の近似 解を与えて複素屈折率又は複素誘電率の新たな近似解を得るに際し、 光が被測定 物の周囲の媒質から被測定物へ入射するときの透過率、 光が被測定物から媒質へ 射出するときの透過率、 及び、 多重反射に基づく項を、 与えた近似解にて定まる 既知数として取り扱うことにより、 新たな近似解を得る。 The above equation may reflect the multiple reflection of the terahertz pulse light inside the device under test. In this case, in the successive approximation, when an approximate solution of the complex refractive index or the complex permittivity is given to obtain a new approximate solution of the complex refractive index or the complex permittivity, light is transmitted from the medium around the measured object to the measured object. By treating the term based on the transmittance at the time of incidence, the transmittance at the time when light exits from the DUT to the medium, and the multiple reflection as known numbers determined by the given approximate solution, a new approximate solution is obtained. obtain.
本発明による、 被測定物の複素屈折率又は複素誘電率を測定する測定方法は、 テラへルツパルス光の発生部と発生部から発生して所定の光路を経て到達するテ ラヘルツパルス光を検出する検出部とを用いて、 光路上に被測定物を配置した状 態で、 テラへルツパルス光を被測定物に照射することにより被測定物を反射して 検出部により検出されるパルス光の、 電場強度の時系列波形である計測時系列波 形を取得する段階と、 光路上に被測定物に代えて所定の試料を配置した状態で、 発生部から発生され試料を反射して検出部にて検出されるパルス光の、 電場強度 の時系列波形である基準時系列波形と、 計測時系列波形との関係に基づいて、 被 測定物の複素屈折率又は複素誘電率を演算する演算段階とを備える。演算段階は、 According to the present invention, a measuring method for measuring a complex refractive index or a complex dielectric constant of an object to be measured detects a terahertz pulse light generated from the terahertz pulse light and a terahertz pulse light that reaches the light source via a predetermined optical path. By using the detector and arranging the object on the optical path and irradiating the object with terahertz pulse light, the pulse light detected by the detector is reflected by the object and reflected by the detector. Obtaining a measurement time-series waveform, which is a time-series waveform of the electric field strength, and, with a predetermined sample placed in place of the DUT on the optical path, reflecting the sample generated from the generator to the detector. Calculating a complex refractive index or a complex permittivity of an object to be measured based on a relationship between a reference time-series waveform that is a time-series waveform of the electric field intensity of the pulsed light detected by the method and a measurement time-series waveform. Is provided. The calculation stage is
( a ) 計測時系列波形をフーリエ変換して得た所定周波数の振幅と基準時系列波 形をフーリエ変換して得た所定周波数の振幅との比である所定周波数の振幅率を 求める段階と、 ( b )計測時系列波形をフ一リェ変換して得た所定周波数の位相と 基準時系列波形をフーリエ変換して得た所定周波数の位相との位相差を求める段 階と、 (c )所定周波数の振幅率及び所定周波数の位相差と被測定物の所定周波数 の複素屈折率又は複素誘電率との関係を示す式に基づいて、 逐次近似により複素 屈折率又は複素誘電率を求める段階とを有する。 式は、 テラへルツパルス光の被 測定物の内部での多重反射を無視するとともに、 被測定物の検出部側の面で 1回 のみ反射した光及び被測定物の検出部と反対側の面で 1回のみ反射した光を反映 したものであり、 逐次近似において、 複素屈折率又は複素誘電率の近似解を与え て複素屈折率又は複素誘電率の新たな近似解を得るに際し、 光が被測定物の周囲 の媒質から被測定物へ入射するときの透過率及び反射率、 並びに、 光が被測定物 から媒質へ射出するときの透過率及び反射率を、 与えた近似解にて定まる既知数 として取り扱うことにより、 新たな近似解を得る。 (a) obtaining an amplitude rate of a predetermined frequency, which is a ratio of an amplitude of a predetermined frequency obtained by Fourier transforming the measured time-series waveform to an amplitude of a predetermined frequency obtained by Fourier-transforming the reference time-series waveform; (B) calculating a phase difference between a phase of a predetermined frequency obtained by Fourier transforming the measured time series waveform and a phase of a predetermined frequency obtained by Fourier transforming the reference time series waveform; Obtaining a complex refractive index or a complex permittivity by successive approximation based on an expression indicating a relationship between a frequency amplitude rate and a phase difference of a predetermined frequency and a complex refractive index or a complex permittivity of the device under test at a predetermined frequency. Have. The equation is to ignore the multiple reflection of the terahertz pulse light inside the DUT, and to reflect the light reflected only once on the surface of the DUT on the detector side and on the surface opposite to the detector of the DUT. This reflects the light reflected only once at the time.In the successive approximation, when the approximate solution of the complex refractive index or the complex permittivity is given to obtain a new approximate solution of the complex refractive index or the complex permittivity, the light is affected. The transmittance and reflectance when light enters the object from the medium around the object, and the light A new approximate solution is obtained by treating the transmittance and reflectivity at the time of exiting into the medium as known numbers determined by the given approximate solution.
上述した式は、 テラへルツパルス光の被測定物の内部での多重反射を反映した ものでもよい。 この場合、 逐次近似において、 複素屈折率又は複素誘電率の近似 解を与えて複素屈折率又は複素誘電率の新たな近似解を得るに際し、 光が被測定 物の周囲の媒質から被測定物へ入射するときの透過率及び反射率、 光が被測定物 から媒質へ射出するときの透過率及び反射率、 並びに、 多重反射に基づく項を、 与えた近似解にて定まる既知数として取り扱うことにより、新たな近似解を得る。 本発明によるイメージ化方法は、 被測定物の複素屈折率又は複素誘電率あるい はこれらのいずれかに基づく物性値の分布に従って、 被測定物をィメ一ジ化する 方法であって、 被検物の個々の部位の複素屈折率又は複素誘電率の測定の際に、 上述した測定方法を適用する。 The above equation may reflect the multiple reflection of the terahertz pulse light inside the device under test. In this case, in the successive approximation, when an approximate solution of the complex refractive index or the complex permittivity is given to obtain a new approximate solution of the complex refractive index or the complex permittivity, light is transmitted from the medium around the measured object to the measured object. By treating the transmittance and reflectance at the time of incidence, the transmittance and reflectance at the time when light exits from the DUT to the medium, and the term based on multiple reflection as known numbers determined by the given approximate solution , To obtain a new approximate solution. An imaging method according to the present invention is a method of imaging an object to be measured according to a complex refractive index or a complex dielectric constant of the object to be measured or a distribution of physical property values based on any of these. When measuring the complex refractive index or complex permittivity of each part of the specimen, the above-described measurement method is applied.
本発明による、 被測定物の複素屈折率又は複素誘電率を測定する測定装置は、 テラへルツパルス光の発生部と発生部から発生して所定の光路を経て到達するテ ラヘルツパルス光を検出する検出部とを含み、 光路上に被測定物を配置した状態 でテラへルツパルス光を被測定物に照射することにより、 被測定物を透過して検 出部により検出されるパルス光および被測定物を反射して検出部により検出され るパルス光のうちのいずれか一方のパルス光の、 電場強度の時系列波形である計 測時系列波形を取得する計測時系列波形取得部と、 光路上に被測定物に代えて所 定の試料を配置した状態であるいは光路上に被測定物も試料も配置しない状態で、 発生部から発生されて検出部にて検出されるパルス光の、 電場強度の時系列波形 である基準時系列波形と、 計測時系列波形との関係に基づいて、 被測定物の複素 屈折率又は複素誘電率を演算する演算部とを備え、演算部は、 (a )計測時系列波 形から求まる所定周波数の振幅と基準時系列波形から求まる所定周波数の振幅と に基づいて所定周波数の振幅率を求める振幅率演算部と、 ( b )計測時系列波形か ら求まる所定周波数の位相と基準時系列波形から求まる所定周波数の位相との位 相差を求める位相差演算部と、 (c )所定周波数の振幅率及び所定周波数の位相差 と被測定物の所定周波数の複素屈折率又は複素誘電率との関係を示す式に基づい て、 逐次近似により複素屈折率又は複素誘電率を求める逐次近似部とを有する。 逐次近似部は、 逐次近似において、 複素屈折率又は複素誘電率の近似解を与えて 複素屈折率又は複素誘電率の新たな近似解を得るに際し、 少なくとも光が被測定 物の周囲の媒質から被測定物へ入射するときの透過率及び光が被測定物から媒質 へ射出するときの透過率を、 与えた近似解にて定まる既知数として取り扱うこと により、 新たな近似解を得る。 According to the present invention, a measuring device for measuring a complex refractive index or a complex dielectric constant of an object to be measured detects a terahertz pulse light which is generated from a terahertz pulse light generating portion and reaches through a predetermined optical path and reaches the terahertz pulse light. A Terahertz pulse light is applied to the object under measurement with the object positioned on the optical path, so that the pulsed light transmitted through the object and detected by the detection unit and the measurement A measurement time-series waveform acquisition unit that acquires a measurement time-series waveform that is a time-series waveform of the electric field strength of one of the pulse lights detected by the detection unit by reflecting an object; The electric field intensity of the pulse light generated from the generator and detected by the detector with the specified sample placed in place of the DUT or with the DUT and sample not placed on the optical path Time series waveform A time-series waveform, based on the relationship between the measured time-series waveform, and a calculator for calculating the complex refractive index or the complex permittivity of the object to be measured, the arithmetic unit is determined from (a) measurement time series waveform An amplitude rate calculator for calculating the amplitude rate of the predetermined frequency based on the amplitude of the predetermined frequency and the amplitude of the predetermined frequency obtained from the reference time series waveform; and (b) the phase of the predetermined frequency obtained from the measurement time series waveform and the reference time series. (C) a phase difference calculator for calculating a phase difference between the phase of the predetermined frequency and the phase difference of the predetermined frequency, which is obtained from the waveform, and a complex refractive index or complex permittivity of the device under test at the predetermined frequency. Based on relational expression And a successive approximation unit for finding a complex refractive index or a complex permittivity by successive approximation. In the successive approximation, when obtaining a new approximate solution of the complex refractive index or the complex permittivity by giving the approximate solution of the complex refractive index or the complex permittivity in the successive approximation, at least light is reflected from a medium around the object to be measured. A new approximate solution is obtained by treating the transmittance when entering the object and the transmittance when light exits the medium from the object to be measured as known numbers determined by the given approximate solution.
本発明による被測定物の複素屈折率又は複素誘電率を測定する測定装置は、 テ ラヘルツパルス光の発生部と発生部から発生して所定の光路を経て到達するテラ ヘルツパルス光を検出する検出部とを含み、光路上に被測定物を配置した状態で、 テラへルツパルス光を被測定物に照射することにより被測定物を透過して検出部 により検出されるパルス光の、 電場強度の時系列波形である計測時系列波形を取 得する計測時系列波形取得部と、 光路上に被測定物に代えて所定の試料を配置し た状態であるいは光路上に被測定物も試料も配置しない状態で、 発生部から発生 されて検出部にて検出されるパルス光の、 電場強度の時系列波形である基準時系 列波形と、 計測時系列波形との関係に基づいて、 被測定物の複素屈折率又は複素 誘電率を演算する演算部とを備える。演算部は、 (a )計測時系列波形をフーリエ 変換して得た所定周波数の振幅と基準時系列波形をフーリエ変換して得た所定周 波数の振幅との比である所定周波数の振幅率を求める振幅率演算部と、 ( b )計測 時系列波形をフーリエ変換して得た所定周波数の位相と基準時系列波形をフーリ ェ変換して得た所定周波数の位相との位相差を求める位相差演算部と、 ( c )所定 周波数の振幅率及び所定周波数の位相差と被測定物の所定周波数の複素屈折率又 は複素誘電率との関係を示す式に基づいて、 逐次近似により複素屈折率又は複素 誘電率を求める逐次近似部とを有する。 式は、 テラへルツパルス光の被測定物の 内部での多重反射を無視したものであり、 逐次近似部は、 逐次近似において、 複 素屈折率又は複素誘電率の近似解を与えて複素屈折率又は複素誘電率の新たな近 似解を得るに際し、 光が被測定物の周囲の媒質から被測定物へ入射するときの透 過率及び光が被測定物から媒質へ射出するときの透過率を、 与えた近似解にて定 まる既知数として取り扱うことにより、 新たな近似解を得る。 逐次近似部は、 複素屈折率又は複素誘電率を求める際に、 テラへルツパルス光 の被測定物の内部での多重反射を反映した式を用いることができる。 この場合、 逐次近似部は、 逐次近似において、 複素屈折率又は複素誘電率の近似解を与えて 複素屈折率又は複素誘電率の新たな近似解を得るに際し、 光が被測定物の周囲の 媒質から被測定物へ入射するときの透過率、 光が被測定物から媒質へ射出すると きの透過率、 及び、 多重反射に基づく項を、 与えた近似解にて定まる既知数とし て取り扱うことにより、 新たな近似解を得る。 The measuring device for measuring the complex refractive index or the complex dielectric constant of an object to be measured according to the present invention includes a generation unit for the terahertz pulse light and a detection device for detecting the terahertz pulse light generated from the generation unit and arriving via a predetermined optical path. Irradiating the object with terahertz pulse light in a state where the object to be measured is placed on the optical path, the electric field intensity of the pulsed light transmitted through the object and detected by the detector A measurement time-series waveform acquisition unit that obtains a measurement time-series waveform that is a time-series waveform, and a state in which a predetermined sample is arranged on the optical path instead of the object to be measured or neither the object nor the sample is arranged on the optical path In this state, based on the relationship between the measured time-series waveform and the reference time-series waveform, which is the time-series waveform of the electric field strength, of the pulsed light generated from the generator and detected by the detector, Complex refractive index or complex permittivity And a calculation unit for calculating. The calculation unit calculates (a) the amplitude ratio of the predetermined frequency, which is the ratio of the amplitude of the predetermined frequency obtained by Fourier transforming the measured time series waveform to the amplitude of the predetermined frequency obtained by Fourier transforming the reference time series waveform. The amplitude ratio calculation unit to be obtained, and (b) a phase difference for obtaining a phase difference between a phase of a predetermined frequency obtained by Fourier transforming the measurement time-series waveform and a phase of the predetermined frequency obtained by Fourier-transforming the reference time-series waveform. An arithmetic unit, and (c) a complex refractive index by successive approximation based on an equation indicating a relationship between an amplitude rate of a predetermined frequency and a phase difference of the predetermined frequency and a complex refractive index or a complex permittivity of a predetermined frequency of the device under test. Or a successive approximation unit for obtaining a complex permittivity. The equation ignores multiple reflections of the terahertz pulse light inside the device under test, and the successive approximation unit gives an approximate solution of the complex refractive index or complex permittivity in the successive approximation to give the complex refractive index. Or, when obtaining a new approximate solution of the complex permittivity, the transmittance when light enters the object from the medium around the object and the transmittance when the light exits from the object to the medium Is treated as a known number determined by the given approximate solution, thereby obtaining a new approximate solution. When calculating the complex refractive index or the complex permittivity, the successive approximation unit can use an expression reflecting multiple reflection of the terahertz pulse light inside the device under test. In this case, in the successive approximation, when the approximate solution of the complex refractive index or the complex permittivity is given in the successive approximation to obtain a new approximate solution of the complex refractive index or the complex permittivity, light is applied to the medium around the object to be measured. By treating the transmittance based on the incident light from the object to the measured object, the transmittance when the light is emitted from the measured object to the medium, and the term based on multiple reflection as known numbers determined by the given approximate solution , Get a new approximate solution.
本発明による、 被測定物の複素屈折率又は複素誘電率を測定する測定装置は、 テラへルツパルス光の発生部と発生部から発生して所定の光路を経て到達するテ ラヘルツパルス光を検出する検出部とを含み、 光路上に被測定物を配置した状態 で、 テラへルツパルス光を被測定物に照射することにより被測定物を反射して検 出部により検出されるパルス光の、 電場強度の時系列波形である計測時系列波形 を取得する計測時系列波形取得部と、 光路上に被測定物に代えて所定の試料を配 置した状態で、 発生部から発生され試料を反射して検出部にて検出されるパルス 光の、 電場強度の時系列波形である基準時系列波形と、 計測時系列波形との関係 に基づいて、被測定物の複素屈折率又は複素誘電率を演算する演算部とを備える。 演算部は、 ( a )計測時系列波形をフ一リェ変換して得た所定周波数の振幅と基準 時系列波形をフ一リェ変換して得た所定周波数の振幅との比である所定周波数の 振幅率を求める振幅率演算部と、 ( b )計測時系列波形をフ一リェ変換して得た所 定周波数の位相と基準時系列波形をフーリエ変換して得た所定周波数の位相との 位相差を求める位相差演算部と、 (c )所定周波数の振幅率及び所定周波数の位相 差と被測定物の所定周波数の複素屈折率又は複素誘電率との関係を示す式に基づ いて、逐次近似により複素屈折率又は複素誘電率を求める逐次近似部とを有する。 式は、 テラへルツパルス光の被測定物の内部での多重反射を無視するとともに、 被測定物の検出部側の面で 1回のみ反射した光及び被測定物の検出部と反対側の 面で 1回のみ反射した光を反映したものであり、 逐次近似部は、 逐次近似におい て、 複素屈折率又は複素誘電率の近似解を与えて複素屈折率又は複素誘電率の新 たな近似解を得るに際し、 光が被測定物の周囲の媒質から被測定物へ入射すると きの透過率及び反射率、 並びに、 光が被測定物から媒質へ射出するときの透過率 及び反射率を、 与えた近似解にて定まる既知数として取り扱うことにより、 新た な近似解を得る。 According to the present invention, a measuring device for measuring a complex refractive index or a complex dielectric constant of an object to be measured detects a terahertz pulse light which is generated from a terahertz pulse light generating portion and reaches through a predetermined optical path and reaches the terahertz pulse light. A Terahertz pulsed light irradiating the DUT with the DUT placed on the optical path, reflecting the DUT and detecting the electric field of the pulsed light detected by the detector. A measurement time-series waveform acquisition unit that acquires a measurement time-series waveform that is a time-series waveform of intensity, and a sample generated from the generation unit and reflected by a predetermined sample placed on the optical path in place of the DUT. Calculates the complex refractive index or complex permittivity of the DUT based on the relationship between the reference time-series waveform, which is the time-series waveform of the electric field strength, of the pulse light detected by the detection unit, and the measured time-series waveform. And an operation unit that performs the operation. The calculation unit includes: ( a ) a predetermined frequency, which is a ratio of an amplitude of a predetermined frequency obtained by Fourier-transforming the measured time-series waveform to an amplitude of the predetermined frequency obtained by Fourier-transforming the reference time-series waveform; (B) the phase of the predetermined frequency obtained by Fourier transforming the measured time series waveform and the phase of the predetermined frequency obtained by Fourier transforming the reference time series waveform; A phase difference calculation unit for calculating a phase difference; and And a successive approximation unit for obtaining a complex refractive index or a complex permittivity by approximation. The formula ignores the multiple reflection of the terahertz pulse light inside the DUT, and reflects the light reflected only once on the surface of the DUT on the detector side and the surface on the opposite side of the detector from the DUT. The successive approximation unit gives a complex refractive index or complex permittivity approximate solution in the successive approximation to provide a new approximate solution of complex refractive index or complex permittivity in the successive approximation. When light is incident on the DUT from the medium around the DUT, A new approximate solution is obtained by treating the transmittance and reflectivity at the time of exposure and the transmittance and reflectivity when light exits from the object to be measured into the medium as known numbers determined by the given approximate solution.
逐次近似部は、 テラへルツパルス光の被測定物の内部での多重反射を反映した 式を用いることができる。 この場合、 逐次近似部は、 逐次近似において、 複素屈 折率又は複素誘電率の近似解を与えて複素屈折率又は複素誘電率の新たな近似解 を得るに際し、 光が被測定物の周囲の媒質から被測定物へ入射するときの透過率 及び反射率、光が被測定物から媒質へ射出するときの透過率及び反射率、並びに、 多重反射に基づく項を、 与えた近似解にて定まる既知数として取り扱うことによ り、 新たな近似解を得る。 For the successive approximation unit, an expression reflecting multiple reflection of the terahertz pulse light inside the object to be measured can be used. In this case, in the successive approximation, when giving an approximate solution of the complex refractive index or the complex permittivity to obtain a new approximate solution of the complex refractive index or the complex permittivity in the successive approximation, light is emitted around the object to be measured. The transmittance and reflectivity when light enters the object from the medium, the light transmittance and reflectivity when light exits from the object to the medium, and terms based on multiple reflection are determined by the given approximate solution. A new approximate solution is obtained by treating it as a known number.
本発明によるイメージ化装置は、 被測定物の複素屈折率又は複素誘電率あるい はこれらのいずれかに基づく物性値の分布に従って、 被測定物をイメージ化する 装置であって、 上述した測定装置を含む。 図面の簡単な説明 An imaging apparatus according to the present invention is an apparatus for imaging an object to be measured in accordance with a complex refractive index or a complex dielectric constant of the object to be measured or a distribution of physical property values based on either of them. including. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態によるイメージ化装置を模式的に示す概略 構成図である。 FIG. 1 is a schematic configuration diagram schematically illustrating an imaging device according to a first embodiment of the present invention.
図 2は、 本発明の第 1の実施の形態における被測定物の測定部位付近の様子を 模式的に示す図である。 FIG. 2 is a diagram schematically illustrating a state in the vicinity of a measurement site of an object to be measured according to the first embodiment of the present invention.
図 3は、 本発明の第 1の実施の形態によるイメージ化装置の制御 ·演算処理部 の動作を示す概略フロ一チャートである。 FIG. 3 is a schematic flowchart showing the operation of the control / arithmetic processing unit of the imaging device according to the first embodiment of the present invention.
図 4は、 本発明の第 2の実施の形態によるイメージ化装置を模式的に示す概略 構成図である。 FIG. 4 is a schematic configuration diagram schematically showing an imaging device according to the second embodiment of the present invention.
図 5は、 本発明の第 2の実施の形態における被測定物の測定部位付近の様子を 模式的に示す図である。 FIG. 5 is a diagram schematically showing a state near a measurement site of an object to be measured in the second embodiment of the present invention.
図 6は、 本発明の第 2の実施の形態によるイメージ化装置の制御 ·演算処理部 の動作を示す概略フロ一チャートである。 発明を実施するための最良の形態 FIG. 6 is a schematic flowchart showing the operation of the control / arithmetic processing unit of the imaging device according to the second embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明による測定方法及び装置、 並びに、 イメージ化方法及び装置につ いて、 図面を参照して説明する。 Hereinafter, a measuring method and apparatus, and an imaging method and apparatus according to the present invention will be described with reference to the drawings.
[第 1の実施の形態] [First Embodiment]
図 1は、 本発明の第 1の実施の形態によるイメージ化装置を模式的に示す概略 構成図である。 図 2は、 本実施の形態における被測定物 2 0の測定部位付近の様 子を模式的に示す図である。図 3は、本実施の形態によるイメージ化装置の制御 · 演算処理部 2 3の動作を示す概略フローチヤ一卜である。 FIG. 1 is a schematic configuration diagram schematically illustrating an imaging device according to a first embodiment of the present invention. FIG. 2 is a diagram schematically showing a state near the measurement site of the DUT 20 according to the present embodiment. FIG. 3 is a schematic flowchart showing the operation of the control / arithmetic processing unit 23 of the imaging apparatus according to the present embodiment.
本実施の形態によるイメージ化装置では、 図 1に示すように、 レーザ光源等で 構成されるフエムト秒パルス光源 1から放射されたフエムト秒パルス光 L 1が、 ビームスプリッタ 2で 2つのパルス光 L 2, L 3に分割される。 In the imaging device according to the present embodiment, as shown in FIG. 1, a femtosecond pulse light L 1 radiated from a femtosecond pulse light source 1 composed of a laser light source or the like is converted into two pulse lights L by a beam splitter 2. Divided into 2, L3.
分割された一方のパルス光 L 2は、 テラへルツ光発生器 7を励起して発生器 7 にテラへルツパルス光を発生させるためのポンプパルス (パルス励起光) となる。 ポンプパルス L 2は、チヨッパ 3によりチヨッビングされた後に、平面反射鏡 4, 5, 6を経て、 テラへルツ光発生器 7へ導かれる。 分割された他方のパルス光 L 3は、 テラへルツパルス光を検出するタイミングを定めるためのプローブパルス One of the divided pulse lights L 2 becomes a pump pulse (pulse excitation light) for exciting the terahertz light generator 7 and causing the generator 7 to generate the terahertz pulse light. After being pumped by the chopper 3, the pump pulse L 2 is guided to the terahertz light generator 7 through the plane reflecting mirrors 4, 5 and 6. The other split pulse light L 3 is a probe pulse for determining the timing for detecting terahertz pulse light.
(サンプリングパルス光) となる。 プローブパルス L 3は、 平面反射鏡 8、 2枚 もしくは 3枚の平面反射鏡が組み合わされてなる可動鏡 9、 及び平面反射鏡 1 0 を経て、 テラへルツ光検出器 1 1へ導かれる。 (Sampling pulse light). The probe pulse L3 is guided to the terahertz photodetector 11 through a plane reflecting mirror 8, a movable mirror 9 formed by combining two or three plane reflecting mirrors, and a plane reflecting mirror 10.
プローブパルス L 3の光路上に配置された可動鏡 9は、 移動機構 1 2により矢 印 X方向に移動可能となっている。 移動機構 1 2は、 制御 ·演算処理部 2 3によ り制御される。 可動鏡 9の移動量に応じて、 プローブパルス L 3の光路長が変わ り、 プローブパルス L 3が検出器 1 1へ到達する時間が遅延する。 すなわち、 本 実施の形態では、 可動鏡 9及び移動機構 1 2が、 プローブパルス L 3が検出器 1 1に到達する時間を変更する時間遅延装置を構成している。 The movable mirror 9 arranged on the optical path of the probe pulse L3 can be moved in the direction of the arrow X by the moving mechanism 12. The moving mechanism 12 is controlled by a control / arithmetic processor 23. The optical path length of the probe pulse L3 changes according to the amount of movement of the movable mirror 9, and the time for the probe pulse L3 to reach the detector 11 is delayed. That is, in the present embodiment, the movable mirror 9 and the moving mechanism 12 constitute a time delay device that changes the time at which the probe pulse L3 reaches the detector 11.
一方、 ポンプパルス L 2により発生器 7が励起されると、 発生器 7からテラへ ルツパルス光 L 4が放射される。 テラへルツパルス光 L 4としては、 概ね 0 . 1 X 1 0 12から 1 0 0 X 1 0 12ヘルツまでの周波数領域の光が望ましい。テラへルツ パルス光 L 4は、 放物面鏡等の曲面鏡 1 3 , 1 4を経て集光位置に集光される。 本実施の形態では、 この集光位置には、被測定物 2 0の測定部位が配置される。 ここでは、 被測定物 2 0は、 厚み dが既知の平行平板をなす板状部材とされ、 均 一な物質で構成されているものとする。 もっとも、 被測定物 2 0はこれに限定さ れるものではなく、 例えば、 テラへルツパルス光を局所的に照射する場合には、 厚み dは、 既知であれば測定部位ごとに異なっていてもよい。 On the other hand, when the generator 7 is excited by the pump pulse L2, the generator 7 emits a terahertz pulse light L4 to the tera. The Rutsuparusu light L 4 to Terra, approximately 0. 1 X 1 0 12 from 1 0 0 X 1 0 12 optical frequency domain to Hertz is preferable. Terra Hertz The pulsed light L4 is condensed at the condensing position via curved mirrors 13 and 14 such as a parabolic mirror. In the present embodiment, a measurement site of the device under test 20 is arranged at this focusing position. Here, it is assumed that the DUT 20 is a plate-like member having a parallel plate with a known thickness d and is made of a uniform material. However, the DUT 20 is not limited to this.For example, when locally irradiating terahertz pulse light, the thickness d may be different for each measurement site if known. .
被測定物 2 0は、 テラへルツパルス光 L 4の被測定物 2 0に対する光軸が被測 定物 2 0の面の法線とほぼ一致するように配置されている。 測定精度を高めるた めには入射角度分布が狭い方が良いので、 被測定物 2 0に入射するテラへルツパ ルス光 L 4の最も外側の光線と光軸とのなす角 0が小さい方が良い。 一方、 ィメ ージとして空間分解能を高めるためには、 角度 Sが大きい方が良い。 従って、 必 要に応じて角度 0を決定する必要がある。 The device under test 20 is arranged such that the optical axis of the terahertz pulse light L4 with respect to the device under test 20 substantially matches the normal to the surface of the device under test 20. To improve the measurement accuracy, it is better for the incident angle distribution to be narrow, so that the smaller the angle 0 between the outermost ray of the terahertz pulse light L4 incident on the DUT 20 and the optical axis is, the better. good. On the other hand, in order to increase the spatial resolution as an image, the larger the angle S, the better. Therefore, it is necessary to determine the angle 0 as necessary.
イメージが不必要な場合には、 図面には示していないが、 テラへルツパルス光 L 4が被測定物 2 0に対して平行光として入射するような照射光学系を採用した 方が、 測定精度を向上させる上でより好ましい。 以下の説明では、 テラへルツパ ルス光が被測定物 2 0に垂直に入射するものとして説明するが、 斜入射の場合も 同様に考えることができる。 If an image is not required, it is not shown in the drawing, but it is better to use an irradiation optical system in which the terahertz pulsed light L4 is incident on the DUT 20 as parallel light. It is more preferable to improve the value. In the following description, a description will be given assuming that the terahertz pulse light is perpendicularly incident on the device under test 20, but the case of oblique incidence can be similarly considered.
本実施の形態では、 被測定物 2 0は、 ステージ等の移動機構 2 6によって、 被 測定物 2 0の面内の方向に 2次元的に移動可能となっている。 これにより、 被測 定物 2 0の面に沿って、 被測定物 2 0の測定部位を 2次元的に走査することがで きる。 In the present embodiment, the DUT 20 can be two-dimensionally moved in the in-plane direction of the DUT 20 by a moving mechanism 26 such as a stage. Thus, the measurement site of the object 20 can be two-dimensionally scanned along the surface of the object 20.
被測定物 2 0を透過したテラへルツパルス光 L 5は、放物面鏡等の曲面鏡 1 5, 1 6を経て、 検出器 1 1により検出される。 検出器 1 1により検出されたテラへ ルツパルス光 L 5は、 電気信号に変換されて、 増幅器 2 1に送られる。 The terahertz pulse light L5 transmitted through the device under test 20 passes through curved mirrors 15 and 16 such as a parabolic mirror and is detected by a detector 11. The terahertz pulse light L5 detected by the detector 11 is converted into an electric signal and sent to the amplifier 21.
フエムト秒パルス光源 1から放射されるフエムト秒パルス光 L 1の繰り返し周 期は、 数 K H zから MH zオーダーである。 したがって、 発生器 7から放射され るテラへルツパルス光 L 4も、 数 K H zから M H zオーダ一の繰り返しで放射さ れる。 現存する検出器 1 1では、 このテラへルツパルス光の波形を瞬時に、 その 形状のまま計測することは不可能である。 The repetition period of the femtosecond pulse light L1 emitted from the femtosecond pulse light source 1 is on the order of several KHz to MHz. Therefore, the terahertz pulse light L4 emitted from the generator 7 is also emitted in a repetition on the order of several KHz to MHz. The existing detector 11 instantaneously converts the waveform of this terahertz pulse light into its It is impossible to measure the shape as it is.
したがって、 本実施の形態では、 同じ波形のテラへルツパルス光 L 4が数 K H zから M H zオーダ一の繰り返しで放射されることを利用して、 ポンプパルス L 2とプローブパルス L 3との間に時間遅延を設けてテラへルツパルス光 L 5の波 形を計測する方法、 いわゆるポンプ—プローブ法を採用している。 すなわち、 テ ラヘルツ光発生器 7を作動させるポンプパルス L 2に対して、 テラへルツ光検出 器 1 1を作動させるタイミングをて秒だけ遅らせることにより、 て秒だけ遅れた 時点でのテラへルツパルス光 L 5の電場強度を検出器 1 1で測定できる。 言い換 えれば、 プローブパルス L 3は、 テラへルツ光検出器 1 1に対してゲートをかけ ていることになる。 Therefore, in the present embodiment, utilizing the fact that the terahertz pulse light L 4 having the same waveform is radiated in the order of several KHz to MHz repeatedly, the distance between the pump pulse L 2 and the probe pulse L 3 is increased. A method of measuring the waveform of the terahertz pulse light L5 with a time delay, that is, the so-called pump-probe method, is adopted. That is, by delaying the timing for activating the terahertz light detector 11 by a second with respect to the pump pulse L2 for activating the terahertz light generator 7, the terahertz pulse at a point in time delayed by The electric field intensity of the light L5 can be measured by the detector 11. In other words, the probe pulse L 3 gates the terahertz photodetector 11.
可動鏡 9を徐々に移動させることにより、 遅延時間てを徐々に変えることがで きる。 上述した時間遅延装置によってゲートをかけるタイミングをずらすことに より、 繰り返し到来するテラへルツパルス光 L 5の各遅延時間てごとの時点の電 場強度を検出器 1 1から電気信号として順次得ることができる。 これにより、 テ ラヘルツパルス光 L 5の電場強度の時系列波形 E ( t ) を計測することができる。 なお、 テラへルツ光検出器 1 1は、 プローブパルス L 3を受けた時のみ光励起 キヤリアを生ずるようになつている。 この時にテラへルツパルス光の電場がかか つていれば、 その電場に比例した光伝導電流が流れる。 このとき測定される電流 J ( て ) は、 テラへルツパルス光の電場 E ( t ) と光励起キャリアの光伝導度 g ( t — て ) を用いて表すことができる。 すなわち、 J ( て ) = S E ( t ) g ( t 一 て ) d tと表すことができる。 光伝導度 g ( t — て ) は、 デルタ関数的な特性 を有するので、 測定された電流値 J ( て ) は到来するテラへルツパルス光 L 5の 電場強度 E ( t ) に比例すると考えることができる。 検出器 1 1から増幅器 2 1 に送られた電気信号は、 増幅器 2 1で増幅された後に、 A/D変換器 2 2で A / D変換される。 By gradually moving the movable mirror 9, the delay time can be gradually changed. By shifting the timing of applying the gate by the time delay device described above, the electric field strength at each delay time of the repeatedly arriving terahertz pulse light L5 can be sequentially obtained as an electric signal from the detector 11. it can. This makes it possible to measure the time-series waveform E (t) of the electric field intensity of the terahertz pulse light L5. The terahertz photodetector 11 generates an optically excited carrier only when receiving the probe pulse L3. At this time, if an electric field of the terahertz pulse light is applied, a photoconductive current proportional to the electric field flows. The measured current J (te) can be expressed using the electric field E (t) of the terahertz pulse light and the photoconductivity g (t—te) of the photoexcited carrier. That is, J (te) = SE (t) g (t) dt. Since the photoconductivity g (t—te) has a delta function characteristic, the measured current value J (te) should be considered to be proportional to the electric field strength E (t) of the incoming terahertz pulse light L5. Can be. The electric signal sent from the detector 11 to the amplifier 21 is amplified by the amplifier 21 and then A / D converted by the A / D converter 22.
本実施の形態では、 テラへルツパルス光 L 5の電場強度を示す時系列波形 E ( t ) の計測時には、 制御 ·演算処理部 2 3は、 移動機構 1 2に制御信号を送信 して、 遅延時間てを徐々に変化させながら、 AZD変換器 2 2から順次入力され るデータをメモリ 23 Aに格納する。 これによつて、 被測定物 20のある測定部 位を透過したテラへルツパルス光 L 5の電場強度の時系列波形 E ( t) を示すデ 一夕全体がメモリ 23 Aに格納される。 その後、 制御 ·演算処理部 23は、 移動 機構 26に制御信号を送信して、 被測定物 20の測定部位を 2次元的に順次走査 することにより、 各測定部位について、 時系列波形 E ( t ) を示すデ一夕全体を メモリ 23 Aに格納する。 In the present embodiment, when measuring the time-series waveform E (t) indicating the electric field intensity of the terahertz pulse light L5, the control / arithmetic processing unit 23 transmits a control signal to the moving mechanism 12 to delay the signal. While gradually changing the time, the AZD converter 22 The stored data is stored in memory 23A. As a result, the entire data showing the time-series waveform E (t) of the electric field intensity of the terahertz pulsed light L5 transmitted through a certain measurement site of the device under test 20 is stored in the memory 23A. Thereafter, the control / arithmetic processing unit 23 transmits a control signal to the moving mechanism 26 and sequentially scans the measurement site of the device under test 20 two-dimensionally, thereby obtaining a time-series waveform E (t) for each measurement site. ) Is stored in memory 23A.
本実施の形態では、 発生器 7と検出器 1 1との間の光路 (本実施の形態では、 図 1に示すテラへルツパルス光 L 4の集光位置) に被測定物 20が配置された状 態で計測されるテラへルツパルス光の電場強度の時系列波形 E (t) を、 計測時 系列波形 Es am ( t ) と呼ぶ。 In the present embodiment, the device under test 20 is arranged on the optical path between the generator 7 and the detector 11 (in this embodiment, the condensing position of the terahertz pulse light L4 shown in FIG. 1). The time-series waveform E (t) of the electric field intensity of the terahertz pulse light measured in this state is called the measured time-series waveform Es am (t).
以上の説明からわかるように、 本実施の形態では、 前述した要素 1〜 16, 2 1, 22, 26と、 制御 ·演算処理部 23が前述した移動機構 12, 26を制御 する機能と、 制御 ·演算処理部 23が A/D変換器 22からデータを取り込む機 能とが、 各測定部位について計測時系列波形 EsaB ( t) を取得する計測時系列波 形取得部を構成している。 制御 ·演算処理部 23は、 後述する図 3に示す動作を 行い、 例えば、 コンビュ一夕を用いて構成することができる。 As can be understood from the above description, in the present embodiment, the above-described elements 1 to 16, 21, 22, and 26, the function of the control / arithmetic processing unit 23 for controlling the moving mechanisms 12 and 26, and the control The function that the arithmetic processing unit 23 takes in data from the A / D converter 22 constitutes a measurement time series waveform acquisition unit that acquires a measurement time series waveform E saB (t) for each measurement site. The control / arithmetic processing unit 23 performs an operation shown in FIG. 3 described later, and can be configured using, for example, a convenience store.
ここで、 本実施の形態で採用されている、 計測時系列波形 Esam ( t) に基づい て被測定物 20の複素屈折率 N (ω) を求める手法について説明する。 Here, a method of obtaining the complex refractive index N (ω) of the DUT 20 based on the measured time-series waveform E sam (t), which is employed in the present embodiment, will be described.
発生器 7と検出器 1 1との間の光路上に被測定物 20を配置しない状態で、 計 測時系列波形 ES ( t) を計測する場合と同様に、 テラへルツパルス光の電場強 度の時系列波形 E ( t) を、 予め計測しておく。 この時系列波形 E ( t ) を基準 時系列波形 Erei ( t) と呼ぶ。 In a state where the device under test 20 is not placed on the optical path between the generator 7 and the detector 11, the electric field strength of the terahertz pulse light is the same as when measuring the measurement time-series waveform E S (t). Measure the time series waveform E (t) of degrees in advance. This time-series waveform E (t) is referred to as a reference time-series waveform E rei (t).
基準時系列波形 Eref ( t) に対して、 次式 (1) で定義されるフーリエ変換を 実行して、 参照用 (基準用) の振幅 I Eref (ω) Iと位相 Sref (ω) を求める。 また、 計測時系列波形 Esan ( t ) に対して、 次式 (1) で定義されるフーリエ変 換を実行して、 振幅 I Esam (ω) Iと位相 6S (ω) を得る。 The reference time-series waveform E ref (t) is subjected to a Fourier transform defined by the following equation (1) to obtain a reference (reference) amplitude IE ref (ω) I and a phase S ref (ω) Ask for. The Fourier transform defined by the following equation (1) is performed on the measured time-series waveform E san (t) to obtain the amplitude IE sam (ω) I and the phase 6 S (ω).
【数 1】 Ε{ω) = … ( 1 )[Equation 1] Ε {ω) =… (1)
次に、 次式 (2 ) により、 被測定物 2 0の複素振幅透過率 t (ω) を求める。 すなわち、振幅 1 ES (ω) I と振幅 I Eref (ω) | と比である振幅透過率 Τ (ω) を得るとともに、 位相 0S (ω) と位相 S ref (ω) との位相差 φ (ω) を得る。 【数 2】 Next, the complex amplitude transmittance t (ω) of the device under test 20 is determined by the following equation (2). That is, while obtaining the amplitude transmittance Τ (ω) which is the ratio between the amplitude 1 E S (ω) I and the amplitude IE ref (ω) |, the phase difference between the phase 0 S (ω) and the phase S ref (ω) Obtain φ (ω). [Equation 2]
(2) (2)
物質 (被測定物 2 0 ) の複素振幅透過率 t (ω) は、 物質の複素屈折率 Ν (ω) で表すことができる。 ここで、 光が媒質から物質に入射するときの複素透過率及 び複素反射率をそれぞれ t 1 (ω), r 1 (ω) とし、 物質から媒質へ射出するとき の複素透過率及び複素反射率をそれぞれ t 2 (ω), r 2 (ω) とする。 これらの値 t 1 (ω), r 1 (ω), t 2 (ω), r 2 (ω) は、 次式 (3 ) 〜式 (6) で示すよう に、 物質の複素屈折率 Ν (ω) を用いて表される。 ただし、 本実施の形態では、 被測定物 2 0が空気中又は真空中にあるものとして、 被測定物 2 0の両側の媒質 の屈折率 η。は 1とする。 なお、 屈折率 η。が 1以外の場合でも同様に考えること ができ、 入射側と射出側の媒質が同一である必要もない。 The complex amplitude transmittance t (ω) of a substance (the DUT 20) can be represented by the complex refractive index Ν (ω) of the substance. Here, t 1 (ω) and r 1 (ω) are the complex transmittance and the complex reflectance when light enters the substance from the medium, respectively, and the complex transmittance and complex reflection when the light exits from the substance to the medium. Let the rates be t 2 (ω) and r 2 (ω), respectively. These values t 1 (ω), r 1 (ω), t 2 (ω), and r 2 (ω) are expressed by the complex refractive index 物質 ( ω). However, in the present embodiment, the refractive index η of the medium on both sides of the DUT 20 is assumed assuming that the DUT 20 is in the air or in a vacuum. Is 1. Note that the refractive index η. It can be considered in the same way even when the value is other than 1, and it is not necessary that the mediums on the entrance side and the exit side are the same.
【数 3】 [Equation 3]
2 Two
( 3) (3)
Ν{ω) + 1 Ν {ω) + 1
【数 4】 [Equation 4]
1-Ν{ω) 1-Ν {ω)
(4) (Four)
1 + Ν{ω) 1 + Ν {ω)
【数 5】 [Equation 5]
、 2Ν(ω) , 2Ν (ω)
( 5) ( Five)
2 ' Ν{ω) + 1 2 'Ν {ω) + 1
【数 6】 (6 ) [Equation 6] (6)
Ν{ω) + 1 また、 被測定物 2 0の複素屈折率 Ν (ω) は、 ηΕ (ω), η, (ω) を実数とし て、 次式 ( 7 ) で表される。 Ν {ω) +1 The complex refractive index Ν (ω) of the device under test 20 is expressed by the following equation (7), where η Ε (ω), η, (ω) are real numbers.
【数 7】 [Equation 7]
Ν(ω) = nR (ω) + inx (ω) ··■ ( 7 ) Ν (ω) = n R (ω) + in x (ω)
被測定物 2 0を透過するテラへルツパルス光には、 図 2 ( a) 〜図 2 (d) に 示される様々なパターンの透過光が含まれる。 図 2 ( a) は、 被測定物 2 0の内 部で反射せずに透過する光 (多重反射でない透過光)、 図 2 (b) は、 被測定物 2 0の内部で 2回反射して透過する光 (1回多重反射した光)、 図 2 (c ) は、 被測 定物 2 0の内部で 4回反射して透過する光 (2回多重反射した光)、 図 2 (d) は、 被測定物 2 0の内部で 2 k回反射して透過する光 (k回多重反射した光) をそれ ぞれ示している。 ここで、 kは 0以上の整数である。 The terahertz pulse light transmitted through the device under test 20 includes various patterns of transmitted light shown in FIGS. 2 (a) to 2 (d). Fig. 2 (a) shows the light that is transmitted without being reflected inside the DUT 20 (transmitted light that is not multiple reflection), and Fig. 2 (b) is the light that is reflected twice inside the DUT 20. Fig. 2 (c) shows the light that is reflected and transmitted four times inside the DUT 20 (light that has been multiply reflected), and Fig. 2 (d) ) Indicate light that is reflected and transmitted 2 k times inside the DUT 20 (light that has been k-times reflected multiple times). Here, k is an integer of 0 or more.
m回までの多重反射を考慮すると、 複素振幅透過率 t (ω) は、 ωを光の角周 波数、 dを被測定物 2 0の厚さ、 cを光速として、 次式 (8 ) で表される。 ただ し、 式 (8 ) 中の Aは、 次式 (9 ) で示すように置いた。 Considering multiple reflections up to m times, the complex amplitude transmittance t (ω) is given by the following equation (8), where ω is the angular frequency of light, d is the thickness of the DUT 20 and c is the speed of light. expressed. However, A in equation (8) was placed as shown in the following equation (9).
【数 8】 ί(ω) = t, (ω) -ίΛωγ exp ί{Ν{ω)-ί} 8 (ω) = t, (ω) -ίΛωγ exp ί {Ν {ω) -ί}
exp ω) exp ω)
c c
【数 9】 [Equation 9]
A = ίΛω} {ω)χ A\ · exp(/ arg A) ( 9 ) A = ίΛω} (ω) χ A \ · exp (/ arg A) (9)
式 (8) に式 (2 ) 及び式 (7 ) を代入すると、 次式 (1 0 ) が得られる。 式 ( 1 0 ) は、 振幅透過率 Τ (ω) 及び位相差 φ (ω) と複素屈折率 Ν (ω) = nR (ω) + i 11 [ (ω) との関係を示す式である。 式 (1 0) は、 m= 0とすると多 重反射を無視した式となり、 m≥ 1とすると多重反射を反映した式となる。 本実施の形態では、 E ( t ) の測定は移動機構 1 2の長さによって定まる最大 遅延時間で打ち切られる。 このとき、 被測定物 2 0の厚さ dとおおまかな屈折率 がわかっていれば、 最大遅延時間内に起こりうる多重反射の回数がわかる。 多重 反射の回数は、 直接、 計測時系列波形から判別可能な場合もある。 複素屈折率の 測定精度をより高めるためには、 式 (1 0 ) 中の mを実際の多重反射の回数と一 致させることが好ましいが、 本実施の形態では、 m≥ 0の任意の整数に設定して おけばよい。 すなわち、 多重反射を無視してもよいし、 考慮してもよい。 なお、 m= 0とすると、 A= t l (ω) · t 2 (ω) となる。 By substituting the equations (2) and (7) into the equation (8), the following equation (10) is obtained. Equation (10) is an equation showing the relationship between the amplitude transmittance Τ (ω) and the phase difference φ (ω) and the complex refractive index Ν (ω) = n R (ω) + i 11 [(ω). . Equation (10) is an equation that ignores multiple reflections when m = 0, and an equation that reflects multiple reflections when m≥1. In the present embodiment, the measurement of E (t) is terminated at the maximum delay time determined by the length of the moving mechanism 12. At this time, if the thickness d and the approximate refractive index of the DUT 20 are known, the number of possible multiple reflections within the maximum delay time can be known. In some cases, the number of multiple reflections can be determined directly from the measured time-series waveform. In order to further improve the measurement accuracy of the complex refractive index, it is preferable that m in the equation (10) is matched with the actual number of multiple reflections. In the present embodiment, however, any integer of m ≥ 0 Should be set to. That is, multiple reflections may be ignored or taken into account. If m = 0, then A = tl (ω) · t2 (ω).
【数 1 0】 [Equation 10]
Τ{ω)είφ[ω] = exp ί{η„\ω)+ irij (ω)-ΐ)― d χ \A\ - exp(i arg A) ( 1 0) Τ {ω) ε ίφ [ω] = exp ί {η „\ ω) + irij (ω) -ΐ) − d χ \ A \-exp (i arg A) (1 0)
c c
式 (1 0 ) の両辺の対数をとると、 次式 (1 1 ) が得られる。 Taking the logarithm of both sides of equation (10) gives the following equation (11).
【数 1 1】 [Equation 1 1]
式 (1 1 ) の実部及び虚部について、 それぞれ次式 (1 2 ) 及び (1 3 ) の関 係が成立する。 For the real part and the imaginary part of the equation (11), the relations of the following equations (12) and (13) hold, respectively.
【数 1 2】 [Equation 1 2]
【数 1 3】 [Equation 1 3]
ηΕ (ω) は次式 (1 3) から次式 (1 4) で表され、 (ω) は式 (1 2 ) から式 (1 5 ) で表される。 η Ε (ω) is expressed by the following equation (1 4) from the following equation (1 3), and (ω) is expressed by the following equation (1 5) from the equation (1 2).
【数 1 4】 nR {ω) =― {φ{ω) - arg } + 1 … ( 1 4) [Equation 1 4] n R {ω) = ― {φ {ω)-arg} + 1… (1 4)
do) 【数 1 5】 do) [Equation 1 5]
式 (14) 及び (1 5) において、 振幅透過率 Τ (ω) 及び位相差 φ (ω) は、 前述したように測定値から求まる値である。 しかし、 式 (14) および (1 5) に含まれるパラメ一夕 Αが nR (ω) 及び (ω) に依存している (式 (9)、 式 (3)、 式 (5) 〜式 (7)) ので、 式 (14) 及び式 (1 5) を連立させて解く ことは非常に困難である。 In Equations (14) and (15), the amplitude transmittance Τ (ω) and the phase difference φ (ω) are values obtained from the measured values as described above. However, the parameter Α included in Equations (14) and (15) depends on n R (ω) and (ω) (Equations (9), (3), (5) to (5) (7)), it is very difficult to solve equations (14) and (15) simultaneously.
本発明者は、 パラメ一夕 Αを式 (9) のように置いて式 (1 0) から式 (14) 及び式 (1 5) を導くことによって初めて、 次のような逐次近似を行えば、 極め て簡単な計算により複素屈折率 (nR (ω) 及び η【 (ω)) を求めることを見出し た。 すなわち、 前述した論文に開示されている測定方法と異なり評価関数を用い ることなく、 計算量を低減しかつ安定して精度良く複素屈折率を求めることがで きる。 The inventor of the present invention obtains the following successive approximation for the first time by deriving the equations (14) and (15) from the equation (10) with the parameter 一 as shown in the equation (9). It was found that the complex refractive indices ( nR ( ω ) and η 【(ω)) were obtained by extremely simple calculations. That is, unlike the measurement method disclosed in the above-mentioned paper, the amount of calculation can be reduced and the complex refractive index can be stably and accurately obtained without using an evaluation function.
まず、 nR (ω) 及び ηι (ω) に対して、 適当な初期値を近似解として与える。 例えば、 被測定物 20の複素屈折率のおおよその値は通常既知であるので、 この 値を初期値とすることができる。 その近似解を式 (9) に代入して Α (すなわち、 I A I及び a r g A)を計算する。 Aの計算の際には、式(3)、式(5)〜式(7) を用いる。 計算した Aを、 与えた近似解により定まる既知数として取り扱って、 式 (14) 及び式 (1 5) に代入して、 nR (ω) 及び (ω) の値を計算する。 算出した nR (ω) 及び (ω) を新たな近似解として、 ηκ (ω) 及び (ω) の値が収束するまで同様の計算を繰り返すことによって、 複素屈折率 Ν (ω) = nR (ω) + i nj (ω) を求めることができる。 First, appropriate initial values are given as approximate solutions for n R (ω) and ηι (ω). For example, since the approximate value of the complex refractive index of the device under test 20 is generally known, this value can be used as an initial value. Substitute the approximate solution into equation (9) to calculate Α (ie, IAI and arg A). Equation (3) and Equations (5) to (7) are used when calculating A. Treat the calculated A as a known number determined by the given approximate solution, and substitute it into Equations (14) and (15) to calculate the values of n R (ω) and (ω). By using the calculated n R (ω) and (ω) as new approximate solutions and repeating the same calculation until the values of η κ (ω) and (ω) converge, the complex refractive index Ν (ω) = n R (ω) + i nj (ω) can be obtained.
このように、 逐次近似において、 複素屈折率の近似解を与えて複素屈折率の新 たな近似解を得るに際し、 Αを、 与えた近似解にて定まる既知数として取り扱う ことにより、 新たな近似解を得る。 つまり、 m=0の場合 (すなわち、 多重反射 を無視する場合) は、 光が被測定物 20の周囲の媒質から被測定物 20へ入射す るときの透過率 t l 及び光が被測定物 2 0から媒質へ射出するときの透過率 t 2 を、 与えた近似解にて定まる既知数として取り扱うことにより、 新たな近似解を 得る。 また、 m≥ lの場合 (すなわち、 多重反射を考慮する場合) は、 透過率 t l、 透過率 t2、 および、 多重反射に基づく項 (式 (9) 中の∑の項) を、 与えた近似 解にて定まる既知数として取り扱うことにより、 新たな近似解を得る。 As described above, in the successive approximation, when an approximate solution of the complex refractive index is given to obtain a new approximate solution of the complex refractive index, Α is treated as a known number determined by the given approximate solution. Get a solution. That is, when m = 0 (that is, when the multiple reflection is ignored), the transmittance tl and the light when the light enters the device 20 from the medium around the device 20 are measured. Transmittance t 2 when exiting from 0 to the medium By treating as a known number determined by the given approximate solution, a new approximate solution is obtained. When m≥l (ie, when multiple reflections are considered), an approximation given by the terms based on the transmittance tl, the transmittance t2, and the multiple reflection (the term ∑ in equation (9)) A new approximate solution is obtained by treating it as a known number determined by the solution.
再び図 1を参照すると、 制御 ·演算処理部 23は、 被測定物 20の各測定部位 について、 前述した演算により複素屈折率を求める。 画像処理部 24は、 制御 · 演算処理部 23により得られた被測定物 20の複素屈折率の分布を示す画像デー 夕を生成する。 生成された画像は、 CRT等の表示部 25に表示される。 Referring to FIG. 1 again, the control / calculation processing unit 23 obtains the complex refractive index for each measurement site of the DUT 20 by the above-described calculation. The image processing unit 24 generates image data indicating the distribution of the complex refractive index of the device under test 20 obtained by the control / arithmetic processing unit 23. The generated image is displayed on a display unit 25 such as a CRT.
本実施の形態おける制御 ·演算処理部 23の動作の一例について、 図 3を参照 して説明する。 制御,演算処理部 23は、 動作を開始すると、 基準時系列波形 E ref ( t) を計測し (ステップ S 1)、 計測した基準時系列波形 Eref ( t ) をフー リエ変換して振幅 I Eref (ω) |及び位相 Θ ref (ω) を求める (ステップ S 2)。 次に、 制御 ·演算処理部 23は、 被測定物 20の各測定部位について、 計測時系 列波形 Esam ( t ) を計測し (ステップ S 3)、 計測した計測時系列波形 Esam ( t ) をフーリエ変換して振幅 I Esam (ω) |及び位相 0sam (co) を求める (ステツ プ S 4)。その後、 ステップ S 2で求めた振幅 I Eref (ω) |及び位相 0 ref (ω) と、 ステップ S 4で求めた振幅 I Esam (ω) |及び位相 S sam (ω) とを用いて、 振幅透過率 Τ (ω) 及び位相差 φ (ω) を算出する (ステップ S 5)。 An example of the operation of the control / arithmetic processing unit 23 in the present embodiment will be described with reference to FIG. When the control and arithmetic processing unit 23 starts operation, it measures the reference time-series waveform E ref (t) (step S1), performs a Fourier transform on the measured reference time-series waveform Eref (t), and performs amplitude I Eref (ω) | and the phase Θ ref (ω) are obtained (step S2). Next, the control / arithmetic processing unit 23 measures the measurement time series waveform Esam (t) for each measurement site of the DUT 20 (step S3), and converts the measured measurement time series waveform Esam (t). Fourier transform is performed to find amplitude I Esam (ω) | and phase 0sam (co) (step S4). Then, using the amplitude I Eref (ω) | and the phase 0 ref (ω) obtained in step S 2 and the amplitude I Esam (ω) | and the phase S sam (ω) obtained in step S 4, The transmittance Τ (ω) and the phase difference φ (ω) are calculated (step S5).
続いて、 制御 ·演算処理部 23は、 被測定物 20の各測定部位について、 後述 するステップ S 6〜S 1 0の処理を行う。 すなわち、 ある測定部位について、 初 期の近似値 nR (ω), η, (ω) を設定し (ステップ S 6)、 現在設定されている 近似値 ηΒ (ω), η, (ω) を用いて、 前述した方法によりパラメータ Αを計算(ス テツプ S 7 ) する。 Subsequently, the control / arithmetic processing unit 23 performs the processing of steps S6 to S10 described below for each measurement site of the DUT 20. That is, for a certain measurement site, initial approximation n R (ω), η, set the (omega) (Step S 6), the approximate value currently set η Β (ω), η, (ω) Then, the parameter Α is calculated by the method described above (step S 7).
制御 ·演算処理部 23は、 ステップ S 7で最新に計算された A、 および、 当該 測定部位についてステップ S 5で算出された振幅透過率 T ( ω )及び位相差 φ ( ω ) を、 式 (14) 及び式 (1 5) に代入して、 新たな近似解 nR (ω)' η, (ω) を 算出する (ステップ S 8)。 次に、 制御 ·演算処理部 23は、 ステップ S 8で最新 に得られた近似解 ηκ (ω), η, (ω) が収束したか否かを判定する (ステップ S 9)。 この判定は、 例えば、 ステップ S 8で最新に得られた近似解 ηκ (ω), η, (ω) と前回の計算にて得られた近似解 nR (ω), (ω) との差 (絶対値) が 所定値以下であるか否かに基づいて行うことができる。 The control / arithmetic processing unit 23 calculates A, the latest calculated in step S7, and the amplitude transmittance T (ω) and the phase difference φ (ω) calculated in step S5 for the measurement site, using the formula ( 14) and by substituting the equation (1 5), a new approximate solution n R (omega) 'eta, calculates the (omega) (step S 8). Next, the control / arithmetic processing unit 23 determines whether or not the approximate solution ηκ (ω), η, (ω) obtained most recently in step S8 has converged (step S8). 9). This determination is made, for example, by comparing the approximate solution η κ (ω), η, (ω) obtained most recently in step S8 with the approximate solution n R (ω), (ω) obtained in the previous calculation. This can be performed based on whether the difference (absolute value) is equal to or less than a predetermined value.
ステップ S 9で収束していないと判定されると、 ステップ S 8で最新に得られ た近似解 nR (ω), η, (ω) を新たな近似値として設定し (ステップ S 1 0)、 ステップ S 7へ戻る。 If it is determined not to be converged in the step S 9, the approximate solution obtained to date in step S 8 n R (ω), η, set the (omega) as a new approximate value (Step S 1 0) Return to step S7.
一方、 ステップ S 9で収束したと判定されると、 制御 ·演算処理部 23は、 当 該測定部位についての演算を終了する。 その後、 制御 ·演算処理部 23は、 移動 機構 26を制御して、 残りの測定部位についてステップ S 6〜S 10の処理を繰 り返す。 全ての測定部位について、 近似解 ηκ (ω), η, (ω) が収束したと判定 すると、 各測定部位についての収束した近似解 nR (ω), η, (ω) (すなわち、 当該測定部位の複素屈折率)を画像処理部に 24に供給する。画像処理部 24は、 複素屈折率の分布を示す画像を表示部 25に表示し(ステップ S 1 1)、動作を終 了する。 On the other hand, if it is determined that the convergence has been achieved in step S9, the control / calculation processing section 23 ends the calculation for the measurement site. Thereafter, the control / arithmetic processing unit 23 controls the moving mechanism 26, and repeats the processing of steps S6 to S10 for the remaining measurement sites. If it is determined that the approximate solutions η κ (ω), η, (ω) have converged for all the measurement sites, the converged approximate solutions n R (ω), η, (ω) (that is, The complex refractive index of the measurement site) is supplied to the image processing unit 24. The image processing unit 24 displays an image indicating the distribution of the complex refractive index on the display unit 25 (Step S11), and ends the operation.
なお、 ステップ S 1 , S 2は、 被測定物 20の複素屈折率測定の度に行う必要 はなく、 適宜の頻度で行ってもよい。 例えば、 製品出荷時などに最初に 1回行う のみでもよい。 Steps S 1 and S 2 need not be performed each time the complex refractive index of the device under test 20 is measured, but may be performed at an appropriate frequency. For example, it may be performed only once at the time of product shipment.
本実施の形態によれば、 前述した論文に開示されている測定方法と異なり評価 関数を用いることなく、 計算量を低減しかつ安定して精度良く複素屈折率又は複 素誘電率を測定することができる。 According to the present embodiment, unlike the measurement method disclosed in the above-mentioned paper, the amount of calculation is reduced, and the complex refractive index or the complex dielectric constant is accurately measured without using an evaluation function. Can be.
上述した測定方法では、 基準時系列波形 Eref ( t ) の計測の際に、 テラへルツ 光の光路上に被測定物 20も他の試料も配置しなかった。 しかし、 被測定物 20 の代わりに、 既知の複素屈折率及び既知の厚みを持つ試料を光路上に配置した状 態において、 計測した時系列波形 E ( t) を、 基準時系列波形 Eref ( t ) として 用いてもよい。 In the measurement method described above, when measuring the reference time-series waveform Eref (t), neither the DUT 20 nor any other sample was placed on the optical path of the terahertz light. However, in a state where a sample having a known complex refractive index and a known thickness is arranged on the optical path instead of the DUT 20, the measured time-series waveform E (t) is changed to the reference time-series waveform Eref (t ) May be used.
また、 多くの場合透磁率は 1とみなせるため、 複素屈折率 N (ω) と複素誘電 率 ε (ω) との間には、 次式 (16) の関係がある。 したがって、 前述した方法 によって求めた複素屈折率 Ν (ω) を式 (16) に代入することにより、 複素誘 電率 ε (ω) を求めることができる。 式 ( 1 6) を式 (3) 〜式 ( 1 5) に代入 しておけば、 複素屈折率 Ν (ω) を求めることなく、 複素屈折率 Ν (ω) を求め る方法と同様に、 複素誘電率 ε (ω) を求めることも可能である。 Also, in many cases, the magnetic permeability can be regarded as 1, and therefore, there is a relationship between the complex refractive index N (ω) and the complex permittivity ε (ω) as expressed by the following equation (16). Therefore, by substituting the complex index of refraction Ν (ω) obtained by the above method into Eq. (16), The electric power ε (ω) can be obtained. If Equation (16) is substituted into Equations (3) through (15), the complex index Ν (ω) can be found without finding the complex index Ν (ω). It is also possible to determine the complex permittivity ε (ω).
【数 1 6】 [Equation 1 6]
ε{ω) = Ν(ω)2 … ( 1 6) ε {ω) = Ν (ω) 2 … (1 6)
[第 2の実施の形態] [Second embodiment]
図 4は、 本発明の第 2の実施の形態によるイメージ化装置を模式的に示す概略 構成図である。 図 5は、 本実施の形態における被測定物 2 0の測定部位付近の様 子を模式的に示す図である。図 6は、本実施の形態によるイメージ化装置の制御 - 演算処理部 2 3の動作を示す概略フローチャートである。 FIG. 4 is a schematic configuration diagram schematically showing an imaging device according to the second embodiment of the present invention. FIG. 5 is a diagram schematically showing a state near the measurement site of the DUT 20 according to the present embodiment. FIG. 6 is a schematic flowchart showing the operation of the control-arithmetic processing unit 23 of the imaging device according to the present embodiment.
図 4において、 図 1中の要素と同一又は対応する要素には同一符号を付し、 そ の重複する説明は省略する。 In FIG. 4, the same or corresponding elements as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.
本実施の形態によるィメ一ジ化装置が前述した第 1の実施の形態と異なる所は、 以下の通りである。 すなわち、 第 1の実施の形態では、 被測定物 2 0の透過光が 検出器 1 1で検出されるのに対し、 本実施の形態では、 被測定物 2 0の反射光が 検出器 1 1で検出される点と、 制御 ·演算処理部 2 3の動作である。 The difference between the imaging device according to the present embodiment and the first embodiment described above is as follows. That is, in the first embodiment, the transmitted light of the DUT 20 is detected by the detector 11, whereas in the present embodiment, the reflected light of the DUT 20 is detected by the detector 11 1 And the operation of the control / arithmetic processing unit 23.
上述した第 1の実施の形態では、 被測定物 2 0の各測定部位について、 透過光 に関する計測時系列波形 Esam ( t ) を取得していたのに対し、 本実施の形態では、 同様の手法により、 被測定物 2 0の各測定部位について、 反射光に関する計測時 系列波形 Esam' ( t ) を取得する。 In the above-described first embodiment, the measurement time-series waveform Esam (t) regarding the transmitted light is acquired for each measurement site of the DUT 20. In the present embodiment, a similar method is used. As a result, a measurement time-series waveform Esam '(t) related to reflected light is acquired for each measurement site of the DUT 20.
ここで、 本実施の形態で採用されている、 計測時系列波形 Esam' ( t ) に基づ いて被測定物 2 0の複素屈折率 N (ω) を求める手法について説明する。 Here, a method of obtaining the complex refractive index N (ω) of the device under test 20 based on the measurement time-series waveform Esam ′ (t), which is employed in the present embodiment, will be described.
発生器 7と検出器 1 1との間の光路上に、 被測定物 2 0に代えて、 既知の複素 屈折率及び既知の厚みを持つ試料を配置する。この試料の反射率は、ほぼ 1 0 0 % であることが好ましい。 この状態で、 計測時系列波形 Esam' ( t ) を取得する場 合と同様に、反射光に関するテラへルツパルス光の電場強度の時系列波形 E ( t) を予め計測しておく。 この時系列波形 E ( t) を基準時系列波形 Erei' ( t) と 呼ぶ。 基準時系列波形 Eref' ( t) に対して、 式 (1) で定義されるようなフーリエ 変換を実行することにより、 参照用 (基準用) の振幅 I Eref' (ω) I と位相 0 ref (ω) を算出する。 また、 計測時系列波形 E sanT (t) に対して、 式 (1) で定義されるようなフーリエ変換を実行することにより、 振幅 l Esam' (ω) | と位相 Ssani' (ω) を算出する。 On the optical path between the generator 7 and the detector 11, a sample having a known complex refractive index and a known thickness is placed instead of the device under test 20. The reflectivity of this sample is preferably about 100%. In this state, the time-series waveform E (t) of the electric field intensity of the terahertz pulse light related to the reflected light is measured in advance, as in the case of acquiring the measurement time-series waveform Esam '(t). This time-series waveform E (t) is called a reference time-series waveform Erei '(t). By performing a Fourier transform on the reference time-series waveform Eref '(t) as defined by equation (1), the reference (reference) amplitude I Eref' (ω) I and the phase 0 ref (ω) is calculated. The amplitude l Esam '(ω) | and the phase Ssani' (ω) are calculated by performing a Fourier transform as defined by equation (1) on the measured time-series waveform E sanT (t). I do.
さらに、 次式 (1 7) により、 被測定物 20の複素振幅反射率 r (ω) を求め る。 すなわち、 振幅 I Esam' (ω) | と振幅 | Eref' (ω) | との比である振幅 反射率 R (ω) を算出するとともに、 位相 SsanT (ω) と位相 Sref' (ω) との 位相差 (ω) を算出する。 Further, the complex amplitude reflectance r (ω) of the device under test 20 is obtained by the following equation (17). That is, while calculating the amplitude reflectance R (ω), which is the ratio of the amplitude I Esam '(ω) | to the amplitude | Eref' (ω) |, the phase SsanT (ω) and the phase Sref '(ω) Calculate the phase difference (ω).
【数 1 7】 [Equation 1 7]
物質 (被測定物 20) の複素振幅反射率 r (ω) は、 物質の複素屈折率 Ν (ω) を用いて表すこともできる。 The complex amplitude reflectance r (ω) of a substance (the device under test 20) can also be expressed using the complex refractive index Ν (ω) of the substance.
被測定物 20で反射するテラへルツパルス光には、 図 5 (a) 〜図 5 (d) に 示される様々なパターンの反射光が含まれる。 図 5 (a) は、 被測定物 20の入 射面 (検出部 1 1側の面) でのみ反射する光 (内部で 1回も反射せずに、 多重反 射でない反射光)、 図 5 (b) は、 被測定物 20の検出部 1 1と反対側の面で 1回 のみ反射する光 (内部で 1回反射するが、 多重反射でない反射光)、 図 5 (c) は、 被測定物 20の内部で 3回反射した光 (1回多重反射した光)、 図 5 (d) は、 被 測定物 20の内部で (2 k— 1) 回反射した光 ((k一 1) 回多重反射した光) を それぞれ示している。 ここで便宜上、 kを 0以上の整数とし、 図 5 (b) に示し た光を 0回多重反射した光、 図 5 (a) に示した光を— 1回多重反射した光と呼 ぶことにする。 なお、 図 5において、 反射回数は、 被測定物 20の内部での反射 回数を示している。 The terahertz pulse light reflected by the device under test 20 includes various patterns of reflected light shown in FIGS. 5 (a) to 5 (d). FIG. 5 (a) shows light reflected only on the incident surface (the surface on the detection unit 11 side) of the device under test 20 (reflected light that is not reflected once and is not a multiple reflection inside). (b) is light that is reflected only once on the surface of the DUT 20 opposite to the detection unit 11 (reflected light that is reflected once inside but is not multiple reflection), and FIG. The light reflected three times inside the object 20 (light reflected multiple times). Figure 5 (d) shows the light reflected (2 k-1) times inside the object 20 ((k-1) ). Here, for convenience, let k be an integer greater than or equal to 0, and refer to the light shown in Fig. 5 (b) as light multiply reflected 0 times, and the light shown in Fig. 5 (a) as light multiply reflected once. To In FIG. 5, the number of reflections indicates the number of reflections inside the DUT 20.
(m' - 1) 回までの多重反射 (但し、 m, >0) を考慮すると、 複素振幅反 射率 r (ω) は、 ωを光の角周波数、 dを被測定物 20の厚さ、 cを光速として、 次式 (1 8) で表される。 ただし、 式 (1 8) 中のパラメ一夕 Bは次式 (19) で示される。 なお、 式 (18) において、 第 1の実施の形態の場合と同様に、 光 が媒質から物質に入射するときの複素透過率及び複素反射率をそれぞれ t 1 ( ω ) , r 1 (ω) とし、 物質から媒質へ射出するときの複素透過率及び複素反射率をそれ ぞれ t2 (ω), r 2 (ω) としている。 また、 被測定物 20が空気中又は真空中に あるものとして、 被測定物 20の両側の媒質の屈折率 η。は 1とした。 ただし、 屈 折率 η。は 1以外の値の場合でも同様であり、入射側と射出側の媒質が同一である 必要もない。 Considering multiple reflections (m,> 0) up to (m '-1) times, the complex amplitude reflectance r (ω) is expressed as follows: ω is the angular frequency of light, and d is the thickness of the DUT 20 , C as the speed of light, is expressed by the following equation (18). However, the parameter B in equation (18) is calculated by the following equation (19) Indicated by In Equation (18), as in the case of the first embodiment, the complex transmittance and the complex reflectance when light enters a substance from a medium are t 1 (ω) and r 1 (ω), respectively. And the complex transmittance and the complex reflectivity when emitted from a substance into a medium are t2 (ω) and r2 (ω), respectively. Further, assuming that the DUT 20 is in the air or in a vacuum, the refractive index η of the medium on both sides of the DUT 20. Is 1. However, the refractive index η. Is the same even when the value is other than 1, and the medium on the incident side and the medium on the exit side do not need to be the same.
本実施の形態では、 多くの分光器と同様に、 前述した試料としてミラ一を用い る。 参照用の信号は、 ミラ一により反射された光のスペクトルを用い、 その信号 と被測定物 20により反射されたスぺクトルとの比を振幅反射率としている。 従 つて、 式 (18) では、 光がミラーで反射される際の位相反転を考慮して全体が ― 1倍されている。 In the present embodiment, a mirror is used as the above-mentioned sample, like many spectroscopes. The signal for reference uses the spectrum of the light reflected by the mirror, and the ratio between the signal and the spectrum reflected by the device under test 20 is defined as the amplitude reflectance. Therefore, in Equation (18), the whole is multiplied by –1 in consideration of the phase inversion when the light is reflected by the mirror.
【数 18】 [Equation 18]
【数 19】 [Equation 19]
B = ~tx (ω) · r- \ω) · t2 {ω) χ [ω ' exp i\ 2k-N co).-d B = ~ t x (ω) r- \ ω) t 2 (ω) χ (ω 'exp i \ 2k-N co) .- d
ん -=ο . (19) N-= ο. (19)
= |β| . exp(i arg B) 式 (18) に式 (17) を代入して整理すると、 次式 (20) が得られる。 式 (20) は、 振幅反射率 R (ω) 及び位相差 φ' (ω) と複素屈折率 Ν (ω) =η R (ω) + i n, (ω) との関係を示す式である。 式 (20) において、 m' = 0 又は 1とすると多重反射を無視したものとなり、 m' =1とすると被測定物 20 の検出部 1 1側の面で 1回のみ反射した光及び被測定物 20の検出部 1 1と反対 側の面で 1回のみ反射した光を反映したものとなり、 m' ≥ 2とすると多重反射 を反映したものとなる。 複素屈折率の測定精度をより高めるためには m' ≥ 2と することが好ましい。 しかし、 本実施の形態では、 多重反射を無視しても考慮し てもよく、 m' ≥ 1の任意の整数に設定しておけばよい。 なお、 m' = 0とする と、 B = 0になるものとする。 = | β |. exp (i arg B) By substituting equation (17) into equation (18) and rearranging, the following equation (20) is obtained. Equation (20) is an equation showing the relationship between the amplitude reflectance R (ω) and the phase difference φ ′ (ω) and the complex refractive index Ν (ω) = η R (ω) + in, (ω). In Equation (20), if m ′ = 0 or 1, multiple reflection is ignored, and if m ′ = 1, the light reflected only once on the surface of the DUT 20 on the detection unit 11 side and the measured light Reflects light reflected only once on the surface opposite to the detector 11 of object 20 and multiple reflections when m '≥ 2. Will be reflected. In order to further improve the measurement accuracy of the complex refractive index, it is preferable that m ′ ≧ 2. However, in the present embodiment, multiple reflections may be ignored or taken into consideration, and may be set to an arbitrary integer of m ′ ≧ 1. If m ′ = 0, B = 0.
【数 2 0】 [Equation 2 0]
2; {nR (ω) + in, (ω)}― d x \B\ · exp(i arg B) ( 2 0 ) 2; {n R (ω) + in, (ω)} ― dx \ B \ · exp (i arg B) (20)
c c
式 ( 2 0 ) の左辺を次式 ( 2 1 ) で示すように置き、 式 ( 2 1 ) を式 ( 2 0 ) に代入すると、 次式 (2 2 ) が得られる。 When the left side of the equation (20) is placed as shown in the following equation (21), and the equation (21) is substituted into the equation (20), the following equation (22) is obtained.
【数 2 1】 [Equation 2 1]
ω (2 1 ) ω (2 1)
【数 2 2】 [Equation 2 2]
R'( )e ίΦ ') = exp] 2i{nR (ω) + in, {ω)\—ά χ LB · expf? arg B) ( 2 2) R '() e ίΦ') = exp] 2i {n R (ω) + in, (ω) \-ά LBLBexpf? Arg B) (2 2)
c c
式 ( 2 2 ) の両辺の対数をとると、 次式 ( 2 3 ) が得られる。 Taking the logarithm of both sides of equation (2 2) gives the following equation (2 3).
【数 2 3】 [Equation 2 3]
ΙηΚ'(ω)+ίφ"(ω) = 2ί{ηκ(ω) + + iaigB ( 2 3 )ΙηΚ '(ω) + ίφ "(ω) = 2ί {η κ (ω) + + iaigB (2 3)
式 (2 3 ) の両辺の虚部と実部との関係に基づいて、 ηκ (ω) は次式 (2 4) で表され、 η, (ω) は次式 ( 2 5) で表される。 Based on the relationship between the imaginary part and the real part on both sides of equation (23), ηκ (ω) is expressed by the following equation (24), and η, (ω) is expressed by the following equation (25) You.
【数 2 4】 [Equation 2 4]
{φ"(ω)-^Β} ( 2 4) {φ "(ω)-^ Β} (2 4)
2άω 2άω
【数 2 5】 [Equation 2 5]
式 (2 4) 及び式 (2 5) において、 振幅反射率 R' (ω) 及び位相差 φ" (ω) は、 前述したように測定値から求まる値である。 しかし、 パラメータ Βが ηκ (ω) 及び η ι (ω) に依存し (式 (1 9)、 式 (3)、 式 (5 ) 〜式 (7))、 R ' (ω) 及び位相差 φ " (ω) が ηκ (ω) 及び (ω) に依存している (式 (2 1)、 式 (4)、 式 (7 )) ので、 式 (2 4) 及び式 (2 5) をそのまま解くことは非常に 困難である。 In Equations (2 4) and (2 5), the amplitude reflectance R ′ (ω) and the phase difference φ ″ (ω) are values obtained from the measured values as described above. However, when the parameter Β is η κ (ω) And eta depending on iota (omega) (Formula (1 9), Equation (3), equation (5) to Formula (7)), R '(omega) and the phase difference phi "(omega) is eta kappa (omega ) And (ω) (Equation (2 1), Eq. (4), Eq. (7)), it is very difficult to solve Eqs. (24) and (25) as they are. .
本発明者は、 パラメ一夕 Βを式 (1 9 ) のように置くとともに、 式 (2 0 ) か ら式 (2 4) 及び式 (2 5 ) を導くことによって初めて、 次のような逐次近似を 行えば、 極めて簡単な計算によって、 比較的少ない計算量で安定して精度良く複 素屈折率 (nR (ω) 及び ηι (ω)) を求めることを見出した。 The present inventor sets the parameter の as shown in equation (19) and derives equations (24) and (25) from equation (20) for the first time. by performing the approximation, by a very simple calculation, it was found that for obtaining a stable accurately birefringence element refractive index with a relatively small amount of calculations (n R (ω) and ηι (ω)).
まず、 nR (ω) 及び (ω) の適当な初期値を近似解として与える。 例えば、 被測定物 2 0の複素屈折率のおおよその値は通常既知であるので、 この値を初期 値とすればよい。 初期値を与えられた近似解を式 (1 9 ) に代入して Β (すなわ ち、 1 Β I及び a r g B) を計算する。 パラメ一夕 Bの計算の際には、 式 (3)、 式 (5 ) 〜式 (7 ) を用いる。 また、 前述した近似解を式 (2 1 ) に代入して振 幅反射率 R ' (ω) 及び位相差 φ" (ω) を計算する。 この計算の際には、 式 (4) 及び式 (7) を用いる。 このようにして計算した Β、 振幅反射率 R ' (ω) 及び位 相差 Φ" (ω) を、与えた近似解により定まる既知数として取り扱って、式(2 4) 及び式 (2 5 ) に代入して、 nR (ω) 及び (ω) の値を計算する。 この計算 により得た nR (ω) 及び (ω) を新たな近似解として用いて、 nR (ω) 及び η, (ω) の値が収束するまで同様の手順を繰り返すことによって、 複素屈折率 Ν (ω) =nR (ω) + i η, (ω) を求めることができる。 First, appropriate initial values of n R (ω) and (ω) are given as approximate solutions. For example, since the approximate value of the complex refractive index of the device under test 20 is generally known, this value may be used as the initial value. The approximate solution given the initial value is substituted into equation (19) to calculate Β (that is, 1 Β I and arg B). Equation (3) and Equations (5) to (7) are used in the calculation of parameter B. Also, the amplitude reflectance R ′ (ω) and the phase difference φ ″ (ω) are calculated by substituting the approximate solution described above into the equation (21). In this calculation, the equations (4) and (4) are used. (7) The 反射, the amplitude reflectance R ′ (ω) and the phase difference Φ ″ (ω) calculated in this way are treated as known numbers determined by the given approximate solution, and the equations (24) and (24) are used. Substituting into equation (25), the values of n R (ω) and (ω) are calculated. By using n R (ω) and (ω) obtained as a new approximate solution and repeating the same procedure until the values of n R (ω) and η, (ω) converge, complex refraction is obtained. The ratio Ν (ω) = n R (ω) + i η, (ω) can be obtained.
上述したように、 複素屈折率の近似解を与えて複素屈折率の新たな近似解を得 る逐次近似において、 パラメ一夕 Β、 振幅反射率 R' (ω) 及び位相差 φ" (ω) を、 与えた近似解にて定まる既知数として取り扱うことにより、 新たな近似解を 得る。 つまり、 m' = 1の場合 (すなわち、 多重反射を無視するとともに、 被測 定物 2 0の入射面 (検出部 1 1側の面) でのみ反射する光を反映する場合) は、 光が被測定物 2 0の周囲の媒質から被測定物 2 0へ入射するときの透過率 t 1、反 射率 r l、 および、 光が被測定物 2 0から媒質へ射出するときの透過率 t 2及び反 射率 r 2 を、 与えた近似解にて定まる既知数として取り扱うことにより、 新たな 近似解を得る。 また、 m≥ 2の場合 (すなわち、 多重反射を考慮する場合) は、 透過率 t 1、 反射率 r 1、 透過率 t 2、 反射率 r 2、 および、 多重反射に基づく項 (数 1 9中の∑の項) を、与えた近似解にて定まる既知数として取り扱うことにより、 新たな近似解を得る。 As described above, in the successive approximation to obtain a new approximate solution of the complex refractive index by giving the approximate solution of the complex refractive index, the parameter Β, the amplitude reflectance R ′ (ω), and the phase difference φ ″ (ω) Is treated as a known number determined by the given approximate solution, a new approximate solution is obtained: In the case of m '= 1 (ie, multiple reflections are ignored and the entrance surface of the DUT 20) (In the case where light reflected only on the surface of the detection unit 11 is reflected), the transmittance t 1 when light enters the device 20 from the medium around the device 20, and the reflection By treating the transmittance rl and the transmittance t2 and the reflectance r2 when light exits from the device under test 20 into the medium as known numbers determined by the given approximate solution, a new Obtain an approximate solution. When m≥2 (that is, when multiple reflection is considered), the transmittance t1, the reflectance r1, the transmittance t2, the reflectance r2, and the term based on the multiple reflection (equation 1 9) The new approximate solution is obtained by treating 項 in the above) as a known number determined by the given approximate solution.
次に、 本実施の形態おける制御 ·演算処理部 2 3の動作の一例について、 図 6 を参照して説明する。 制御 ·演算処理部 2 3は、 動作を開始すると、 基準時系列 波形 Erei' ( t ) を計測し (ステップ S 2 1)、 基準時系列波形 Eref' ( t ) をフ —リエ変換して振幅 I Erei' (ω) |及び位相 0 rei' (ω) を求める (ステップ S 2 2 )。 次に、 制御 ·演算処理部 2 3は、 被測定物 2 0の各測定部位について、 計測時系列波形 Esam' ( t ) を計測し (ステップ S 2 3)、 計測時系列波形 Esam' ( t ) をフ一リエ変換して振幅 1 Esam' (ω) |及び位相 Θ sam' (ω)を求め(ス テツプ S 2 4) る。 その後、 ステップ S 2 2で求めた振幅 I Erei' (ω) 1及び 位相 S ref' (ω) と、 ステップ S 2 4で求めた振幅 I EsanT (ω) |及び位相 θ sam' (ω) とを用いて、 ステップ振幅反射率 R (ω) 及び位相差 φ ' (ω) を算出 する (ステップ S 2 5)。 Next, an example of the operation of the control / arithmetic processing unit 23 in the present embodiment will be described with reference to FIG. When the operation starts, the control / arithmetic processing unit 23 measures the reference time-series waveform Erei '(t) (step S21), Fourier-transforms the reference time-series waveform Eref' (t), and outputs an amplitude. I Erei '(ω) | and phase 0 rei' (ω) are obtained (step S22). Next, the control / arithmetic processing unit 23 measures the measurement time-series waveform Esam '(t) for each measurement site of the DUT 20 (step S23), and the measurement time-series waveform Esam' (t) ) Is Fourier-transformed to obtain an amplitude 1 Esam '(ω) | and a phase Θ sam' (ω) (step S24). Then, the amplitude I Erei '(ω) 1 and the phase S ref' (ω) obtained in step S 22, and the amplitude I EsanT (ω) | and the phase θ sam '(ω) obtained in step S 24 Is used to calculate the step amplitude reflectance R (ω) and the phase difference φ ′ (ω) (step S25).
続いて、 制御 ·演算処理部 2 3は、 被測定物 2 0の各測定部位について、 後述 するステップ S 2 6〜S 3 1の処理を行う。 ステップ S 2 6では、 ある測定部位 について、 初期の近似値 nR (ω), η, (ω) を設定する。 次のステップ S 2 7で は、 現在設定されている近似値 nR (ω), nr (ω) に従って前述した方法で Βを 計算する。 ステップ S 2 7に続くステップ S 2 8では、 R' (ω) 及ぴ φ" (ω) を計算する。 なお、 ステップ S 2 8では、 当該測定部位についてステップ S 2 5 で算出された振幅反射率 R (ω) 及び位相差 φ ' (ω) を用いる。 Subsequently, the control / arithmetic processing unit 23 performs the processing of steps S26 to S31 described later for each measurement site of the DUT 20. In step S 2 6, for a measurement site, the initial approximation n R (ω), η, sets the (omega). In the next step S 2 7, approximate value n R (omega) which is currently set to calculate the Β in the manner previously described in accordance with n r (ω). In step S 28 following step S 27, R ′ (ω) and φ ″ (ω) are calculated. In step S 28, the amplitude reflection calculated in step S 25 for the measurement site concerned The ratio R (ω) and the phase difference φ ′ (ω) are used.
ステップ S 2 9では、 制御 ·演算処理部 2 3は、 ステップ S 2 7で最新に計算 された Β、 および、 ステップ S 2 8で最新に計算された R ' (ω) 及ぴ φ" (ω) を、 式 (2 4) 及び式 (2 5) に代入して、 新たな近似解 nR (ω), η, (ω) を 算出する。 次のステップ S 3 0では、 ステップ S 2 9で最新に得られた近似解 nR (ω), η, (ω) が収束したか否かを判定する。 この判定は、 例えば、 ステップ S 2 9で最新に得られた近似解 nR (ω), η, (ω) と前回の計算にて得られた近 似解 ηκ (ω), nt (ω) との差 (絶対値) が所定値以下であるか否かに基づいて、 行うことができる。 In step S 29, the control / arithmetic processing unit 23 calculates the に newly calculated in step S 27 and the R ′ (ω) and ぴ ″ (ω) calculated latest in step S 28. ) Is substituted into Equations (2 4) and (2 5) to calculate a new approximate solution n R (ω), η, (ω) In the next step S 30, step S 29 It is determined whether or not the approximate solution n R (ω), η, (ω) obtained most recently has converged. This determination is made, for example, by the approximate solution n R ( ω), η, (ω) and the neighborhood obtained by the previous calculation. Nikai eta kappa (omega), the difference between n t (omega) (absolute value) on the basis of or less than a predetermined value, can be performed.
ステップ S 30で収束していないと判定されると、 ステップ S 3 1にて、 ステ ップ S 29で最新に得られた近似解 ηκ (ω), η, (ω) を新たな近似値として設 定し、 ステップ S 27へ戻る。 If it is determined in step S30 that convergence has not occurred, in step S31, the approximate solution η κ (ω), η, (ω) obtained most recently in step S29 is replaced with a new approximate value. And return to step S27.
一方、 ステップ S 30で収束したと判定されると、 制御 ·演算処理部 23は、 当該測定部位についての演算を終了する。 その後、 制御,演算処理部 23は、 移 動機構 26を制御して、 残りの測定部位に対してステップ S 26〜S 3 1の処理 を繰り返し、 全ての測定部位に対して、 近似解 ηκ (ω), η, (ω) が収束したと 判定すると、 各測定部位についての収束した近似解 nR (ω), ηΓ (ω) (すなわ ち、 当該測定部位の複素屈折率) を画像処理部に 24に供給する。 画像処理部 2 4は、 複素屈折率の分布を示す画像を表示部 25に表示し (ステップ S 32)、 動 作を終了する。 On the other hand, if it is determined that the convergence has been achieved in step S30, the control / calculation processing section 23 ends the calculation for the measurement site. Thereafter, control, arithmetic processing unit 23 controls the moving mechanism 26 repeats the processing of steps S 26~S 3 1 for the rest of the measurement site, for every measurement site, approximate solution eta kappa When it is determined that (ω), η, (ω) have converged, the converged approximate solution n R (ω), η Γ (ω) (that is, the complex refractive index of the measurement site) for each measurement site is calculated. Supply to 24 to the image processing unit. The image processing unit 24 displays an image showing the distribution of the complex refractive index on the display unit 25 (step S32), and ends the operation.
なお、 ステップ S 2 1, S 22では、 被測定物 20の複素屈折率測定の度に行 う必要はなく、 適宜の頻度で行ってもよい。 例えば、 製品出荷時などに最初に 1 回行うのみでもよい。 In steps S21 and S22, it is not necessary to perform the measurement every time the complex refractive index of the device under test 20 is measured, but may be performed at an appropriate frequency. For example, it may be performed only once at the time of product shipment.
本実施の形態によれば、 比較的少ない計算量で安定して精度良く複素屈折率又 は複素誘電率を測定することができる。 According to the present embodiment, the complex refractive index or complex permittivity can be measured stably and accurately with a relatively small amount of calculation.
なお、 前述した方法によって求めた複素屈折率 Ν (ω) を式 (16) に代入す ることによって、 複素誘電率 ε (ω) を求めることができる。 また、 式 (16) を式 (3) 〜式 (7)、 式 ( 1 8) 〜式 (2 5) に代入しておけば、 複素屈折率 Ν (ω) を求めることなく、複素屈折率 Ν (ω) の場合と同様に、複素誘電率 ε (ω) を求めることも可能である。 The complex permittivity ε (ω) can be obtained by substituting the complex refractive index Ν (ω) obtained by the method described above into equation (16). By substituting Equation (16) into Equations (3) to (7) and Equations (18) to (25), the complex refractive index Ν (ω) can be obtained without calculating the complex refractive index Ν (ω). As in the case of Ν (ω), it is also possible to obtain the complex permittivity ε (ω).
以上、 本発明の各実施の形態について説明したが、 本発明はこれらの実施の形 態に限定されるものではない。 The embodiments of the present invention have been described above, but the present invention is not limited to these embodiments.
例えば、 上述した第 1 , 第 2実施の形態では、 被測定物 20の各測定部位の複 素屈折率が測定されて、 その分布がイメージ化されていたが、 本発明では、 被測 定物 20のある測定部位のみの複素屈折率又は複素誘電率を測定するだけでもよ い。 さらに、 イメージが不要で、 被測定物 20のある範囲の平均の複素屈折率又 は複素誘電率を測定したい場合には、 前述のように、 テラへルツパルス光 L 4が 被測定物 20に対して平行光として入射するような照明光学系を利用してもよレ^ また、 上述した各実施の形態では、 最終的な測定結果として複素屈折率を求め たが、 他の物性値を所望の最終的な測定結果とする場合において、 当該物性値を 得るための途中段階として複素屈折率又は複素誘電率を得る場合にも、 適用する ことができる。 例えば、 被測定物 20が半導体などである場合のように、 複素屈 折率の周波数依存性が理論的に求まる場合には、 最小二乗法によりパラメータを 最適化すれば、 被測定物 20に関する他の情報 (例えば、 半導体のキャリア密度 や移動度など) を得ることが可能である。 半導体のキャリア密度と移動度を求め たい塲合には、 単一周波数の複素屈折率に基づいて直ちに求めることができる。 この場合に、 より高い精度でこれらの値を求めたければ、 複素屈折率の周波数 依存性を利用して最小二乗法により算出することが有効である。 同様の計算は、 透過又は反射スぺクトルの測定値と理論値との差を最小にするように、 パラメ一 タを最適化することによつても可能であるが、比較的計算量が多くなる。従って、 上述したように、 測定結果に基づいて複素屈折率を算出し、 算出結果と理論式と を比較しながらパラメ一夕の最適化を行つた方が計算量は軽減される。 したがつ て、 本発明はパラメータ最適化の前処理としても有効である。 For example, in the above-described first and second embodiments, the complex refractive index of each measurement site of the DUT 20 is measured and its distribution is imaged. It is sufficient to measure only the complex refractive index or complex permittivity of only 20 measurement sites. No. Further, if no image is required and it is desired to measure the average complex refractive index or complex permittivity of a certain range of the device under test 20, the terahertz pulse light L4 is applied to the device under test 20 as described above. In the above embodiments, the complex refractive index was obtained as a final measurement result, but other physical property values may be used. In the case of obtaining a final measurement result, the present invention can also be applied to a case where a complex refractive index or a complex permittivity is obtained as an intermediate step for obtaining the physical property value. For example, if the frequency dependence of the complex refractive index can be theoretically determined, such as when the device under test 20 is a semiconductor, etc. (Eg, carrier density and mobility of semiconductors) can be obtained. If you want to find the carrier density and mobility of a semiconductor, you can do so immediately based on the complex index of refraction at a single frequency. In this case, if it is desired to obtain these values with higher accuracy, it is effective to calculate by the least squares method using the frequency dependence of the complex refractive index. A similar calculation can be made by optimizing the parameters to minimize the difference between the measured transmission and reflection spectra and the theoretical value, but the computational complexity is relatively high. Become. Therefore, as described above, the amount of calculation is reduced by calculating the complex refractive index based on the measurement result and optimizing the parameters while comparing the calculation result with the theoretical formula. Therefore, the present invention is also effective as preprocessing for parameter optimization.
本発明者は、 前述した第 1の実施の形態で採用されている測定手法に従って、 n型のシリコンウェハを被測定物 20として用いて、 複素屈折率を求めた。 The inventor obtained a complex refractive index using an n-type silicon wafer as the object 20 according to the measurement method employed in the first embodiment described above.
図 3に示すフローチャートのステップ S 5で得た周波数 0. 6THz (〜20 cm-') における振幅透過率 Τ (ω) 及び位相差 φ (ω) は、 それぞれ Τ (ω) = 0. 6 10、 位相差 φ (ω) = 5. 78であった。 この結果に基づいて、 上述 した方法により最終的に得られた複素屈折率 Ν (ω) は、 nR (ω) = 3. 44、 η, (ω) = 0. 0027であった。 この値は、 シリコンウェハの複素屈折率とし て知られている値 ηκ (ω) = 3. 41及び (ω) = 0. 0024 (「基礎物性 図表」 ェ藤惠栄 (共立出版、 ( 1 972)、 p. 254)) に極めて近い。 このよう に、 本発明が複素屈折率を求める際に有用であることが、 実際に確認された。 以上説明したように、 本実施の形態によれば、 屈折率の波長依存性を求めるな どの煩雑な手順が不要となる。 この結果、 計算量を低減しかつ安定して精度良く 複素屈折率又は複素誘電率を測定することができる測定方法及び装置、 並びに、 これを用いた被測定物のイメージ化方法及び装置を提供することができる。 産業上の利用可能性 The amplitude transmittance Τ (ω) and the phase difference φ (ω) at the frequency 0.6 THz (up to 20 cm- ') obtained in step S5 of the flowchart shown in FIG. 3 are Τ (ω) = 0.6 10 The phase difference φ (ω) was 5.78. Based on this result, the complex refractive index Ν (ω) finally obtained by the above-described method was n R (ω) = 3.44 and η, (ω) = 0.0027. This value is the value known as the complex refractive index of a silicon wafer, η κ (ω) = 3.41 and (ω) = 0.0024 (“Basic physical properties chart” Eto Keiei (Kyoritsu Shuppan, (1 972), p. 254)). As described above, it was actually confirmed that the present invention is useful in obtaining a complex refractive index. As described above, according to the present embodiment, a complicated procedure for determining the wavelength dependence of the refractive index is not required. As a result, it is possible to provide a measuring method and an apparatus capable of reducing the amount of calculation and stably and accurately measuring the complex refractive index or the complex dielectric constant, and an imaging method and an apparatus for an object to be measured using the same. be able to. Industrial applicability
本発明による測定方法および測定装置は、 物質の複素屈折率又は複素誘電率を 得る方法および装置などに適用することができる。 また、 被測定物の複素屈折率 又は複素誘電率あるいはこれらのいずれかの物性値の分布に従って、 被測定物を イメージ化する方法および装置に利用することができる。 The measuring method and measuring device according to the present invention can be applied to a method and a device for obtaining a complex refractive index or a complex dielectric constant of a substance. Further, the present invention can be applied to a method and an apparatus for imaging an object to be measured according to the complex refractive index or the complex dielectric constant of the object to be measured or the distribution of physical property values of any of these.
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001-74551 | 2001-03-15 | ||
| JP2001074551A JP2002277393A (en) | 2001-03-15 | 2001-03-15 | Measurement method and apparatus, and imaging method and apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2002075290A1 true WO2002075290A1 (en) | 2002-09-26 |
Family
ID=18931797
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2002/002363 Ceased WO2002075290A1 (en) | 2001-03-15 | 2002-03-13 | Measuring method and device, and imaging method and device |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2002277393A (en) |
| WO (1) | WO2002075290A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102798608A (en) * | 2012-08-17 | 2012-11-28 | 中国计量学院 | Method for measuring water-soluble protein drug terahertz dielectric spectrum by waveform rebuilding technology |
| CN119880843A (en) * | 2025-03-28 | 2025-04-25 | 长春理工大学 | Multilayer medium optical parameter iterative extraction method and system |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1640709B1 (en) * | 2003-06-19 | 2017-09-20 | National Institute of Information and Communications Technology | Optical waveform measurement device and measurement method thereof, complex refractive index measurement device and measurement method thereof, and computer program recording medium containing the program |
| JP2005069840A (en) | 2003-08-22 | 2005-03-17 | Japan Science & Technology Agency | Optical path difference compensation mechanism for time-series signal acquisition of time-series conversion pulse spectrometer |
| US7787122B2 (en) | 2004-06-18 | 2010-08-31 | National Institute Of Information And Communications Technology | Optical waveform measurement device and measurement method thereof, complex refractive index measurement device and measurement method thereof, and computer program recording medium containing the program |
| JP4724822B2 (en) * | 2005-06-28 | 2011-07-13 | 株式会社アドバンテスト | Integrated structure, measuring apparatus, method and program |
| JP4911964B2 (en) * | 2005-12-09 | 2012-04-04 | 株式会社アドバンテスト | Contained structure, measuring device, method and program |
| JP4911965B2 (en) * | 2005-12-09 | 2012-04-04 | 株式会社アドバンテスト | Measuring structure, measuring apparatus, method and program |
| JP4872530B2 (en) * | 2006-08-22 | 2012-02-08 | 日産自動車株式会社 | Object identification method and object identification apparatus |
| JP5177548B2 (en) * | 2008-12-12 | 2013-04-03 | アイシン精機株式会社 | Non-contact film thickness measuring apparatus and method |
| JP5570771B2 (en) * | 2009-07-30 | 2014-08-13 | グローリー株式会社 | Authenticity discrimination method and apparatus for paper sheets using terahertz light |
| JP2011112548A (en) * | 2009-11-27 | 2011-06-09 | Sony Corp | Biosample analysis method, biosample analyzer, and biosample analysis program |
| US8618485B1 (en) * | 2011-09-23 | 2013-12-31 | The United States Of America As Represented By The Secretary Of The Navy | Detection of discontinuity densities in composite materials |
| CN106770039B (en) * | 2017-03-10 | 2023-04-21 | 厦门大学嘉庚学院 | Complex refractive index measuring device and measuring method thereof |
| CN106841110B (en) * | 2017-04-07 | 2023-05-05 | 厦门大学嘉庚学院 | Device and method for measuring complex refractive index of absorptive medium |
| CN111024305B (en) * | 2019-12-10 | 2021-07-13 | 云南电网有限责任公司玉溪供电局 | A method for vacuum degree detection using THz signal |
-
2001
- 2001-03-15 JP JP2001074551A patent/JP2002277393A/en active Pending
-
2002
- 2002-03-13 WO PCT/JP2002/002363 patent/WO2002075290A1/en not_active Ceased
Non-Patent Citations (2)
| Title |
|---|
| DUVILLARET L. ET AL.: "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 2, no. 3, 1996, pages 739 - 746, XP002951810 * |
| HUNSCHE S. ET AL.: "New dimensions in T-ray imaging", IEICE TRANS. ELECTRON., vol. E81-C, no. 2, 1998, pages 269 - 276, XP000774572 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102798608A (en) * | 2012-08-17 | 2012-11-28 | 中国计量学院 | Method for measuring water-soluble protein drug terahertz dielectric spectrum by waveform rebuilding technology |
| CN119880843A (en) * | 2025-03-28 | 2025-04-25 | 长春理工大学 | Multilayer medium optical parameter iterative extraction method and system |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2002277393A (en) | 2002-09-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2002075290A1 (en) | Measuring method and device, and imaging method and device | |
| Koch et al. | Terahertz time-domain spectroscopy | |
| JP5357531B2 (en) | Information acquisition apparatus and information acquisition method | |
| JP6034468B1 (en) | Real-time non-contact non-destructive thickness measurement system using terahertz waves | |
| US8378304B2 (en) | Continuous referencing for increasing measurement precision in time-domain spectroscopy | |
| JP4565198B2 (en) | High resolution and high speed terahertz spectrometer | |
| EP2815206B1 (en) | Caliper coating measurement on continuous non-uniform web using thz sensor | |
| JP4963640B2 (en) | Object information acquisition apparatus and method | |
| CN101419157B (en) | Accurate measurement method for optical parameter of edible oil by terahertz time-domain spectrum | |
| US8207501B2 (en) | Apparatus and method for measuring terahertz wave | |
| CN101294795A (en) | Apparatus and method for measuring film thickness | |
| US20130077084A1 (en) | Object characteristic measuring system | |
| US9012833B2 (en) | Terahertz wave measuring apparatus and measurement method | |
| US20130218008A1 (en) | Measuring device, measuring method, and tomographic apparatus | |
| JP2015161650A (en) | Measuring device and measuring method | |
| JP3896532B2 (en) | Terahertz complex permittivity measurement system | |
| JP2002243416A (en) | Method and apparatus for measuring thickness and wafer | |
| JP2006052948A (en) | Spectroscopic measurement method and spectroscopic measurement apparatus | |
| JP2011179902A (en) | Optical tomographic photographing apparatus and optical tomographic photographing method | |
| JPH09222359A (en) | Method for stabilizing wavelength of laser spectroscope system | |
| WO2004113885A1 (en) | Optical waveform measurement device and measurement method thereof, complex refractive index measurement device and measurement method thereof, and computer program recording medium containing the program | |
| JPH0694602A (en) | Spectral photographing device for detecting absorption of modulated electromagnetic wave based on ultrasonic wave | |
| JP2005274496A (en) | Component analysis method and component analysis apparatus using the method | |
| JP2004125712A (en) | Spectrometer | |
| JP2012208098A (en) | Physical property measuring device and physical property measuring method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase |