[go: up one dir, main page]

WO2002041914A1 - Methode permettant de traiter une neoplasie et consistant a administrer un anticorps dirige contre la proteine du recepteur 2 du facteur de croissance epidermique humain (her2) et un inhibiteur de phosphodiesterase specifique du gmp cyclique - Google Patents

Methode permettant de traiter une neoplasie et consistant a administrer un anticorps dirige contre la proteine du recepteur 2 du facteur de croissance epidermique humain (her2) et un inhibiteur de phosphodiesterase specifique du gmp cyclique Download PDF

Info

Publication number
WO2002041914A1
WO2002041914A1 PCT/US2001/043217 US0143217W WO0241914A1 WO 2002041914 A1 WO2002041914 A1 WO 2002041914A1 US 0143217 W US0143217 W US 0143217W WO 0241914 A1 WO0241914 A1 WO 0241914A1
Authority
WO
WIPO (PCT)
Prior art keywords
cgmp
cells
activity
pkg
pde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2001/043217
Other languages
English (en)
Inventor
Li Liu
W. Joseph Thompson
Patrick J. Pallansch
Joseph M. Lobacki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cell Pathways Inc
Original Assignee
Cell Pathways Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cell Pathways Inc filed Critical Cell Pathways Inc
Priority to AU2002232413A priority Critical patent/AU2002232413A1/en
Publication of WO2002041914A1 publication Critical patent/WO2002041914A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens

Definitions

  • This invention relates to methods for treating neoplasia using both an antibody against the human epidermal growth factor receptor 2 protein (HER2) (a common chemotherapeutic) and a cyclic GMP (cGMP) -specific phosphodiesterase (PDE) inhibitor to reduce the side effects or increase the efficacy of antibody treatment.
  • HER2 human epidermal growth factor receptor 2 protein
  • cGMP cyclic GMP
  • PDE phosphodiesterase
  • This invention relates to an improved method of cancer therapy that involves treating a patient with both a antibody against the human epidermal growth factor receptor 2 protein (HER2) (e.g., Herceptin) and a cyclic GMP-specific phosphodiesterase (PDE) inhibitor.
  • HER2 human epidermal growth factor receptor 2 protein
  • PDE cyclic GMP-specific phosphodiesterase
  • the specific PDE inhibitors useful for this invention are compounds that inhibit both PDE5 and the types of PDE2 described below.
  • the novel form of PDE2 disclosed herein is fully described by Liu, et al., in the copending U.S. Patent Application Serial No. 09/173,375 , A Novel Cyclic GMP- Specific Phosphodiesterase And Methods For Using Same In Pharmaceutical Screening For Identifying Compounds For Inhibition Of Neoplastic Lesions.
  • Figure 1 is a graph of the cGMP activities of the cGMP phosphodiesterases obtained from SW480 neoplastic cells, as assayed from the eluent from a DEAE- Trisacryl M column.
  • Figure 2 is a graph of cGMP activities of the reloaded cGMP phosphodiesterases obtained from SW480 neoplastic cells, as assayed from the eluent from a DEAE-Trisacryl M column.
  • Figure 3 is a graph of the kinetic behavior of the novel PDE of this invention.
  • Figure 4 illustrates the effect of the sulfide derivative of sulindac and the sulfone derivative of sulindac (a.k.a. exisulind) on purified cyclooxygenase activity.
  • Figure 5 illustrates the effects of test compounds B and E on COX inhibition.
  • Figure 6 illustrates the inhibitory effects of sulindac sulfide and exisulind on
  • PDE4 and PDE5 purified from cultured tumor cells.
  • Figure 7 illustrates the effects of sulindac sulfide on cyclic nucleotide levels in HT-29 cells.
  • Figure 8 illustrates the phosphodiesterase inhibitory activity of compound B.
  • Figure 9 illustrates the phosphodiesterase inhibitory activity of compound E.
  • Figure 10 illustrates the effects of sulindac sulfide and exisulind on apoptosis and necrosis of HT-29 cells.
  • Figure 11 illustrates the effects of sulindac sulfide and exisulind on HT-29 cell growth inhibition and apoptosis induction as determined by DNA fragmentation.
  • Figure 12 illustrates the apoptosis-inducing properties of compound E.
  • Figure 13 illustrates the apoptosis-inducing properties of compound B.
  • Figure 14 illustrates the effects of sulindac sulfide and exisulind on tumor cell growth.
  • Figure 15 illustrates the growth inhibitory and apoptosis-inducing activity of sulindac sulfide and control (DMSO).
  • Figure 16 illustrates the growth inhibitory activity of compound E.
  • Figure 17 illustrates the inhibition of pre-malignant, neoplastic lesions in mouse mammary gland organ culture by sulindac metabolites.
  • Figure 18 A is a radiography of SDS-PAGE gel of PKG activity from S W480 cells treated with drugs in the absence of added cGMP, where cells were treated in culture for 48 hours with DMSO (0.03%, lanes 1 and 2), exisulind (200, 400 and 600 ⁇ M; lanes 3, 4, 5) and E4021 (0.1, 1 and lO ⁇ M, lanes 6, 7, 8).
  • Figure 18 B is a radiography of the SDS-PAGE gel of PKG activity from SW480 cells treated with drugs in the presence of added cGMP, where cells were treated in culture for 48 hours with DMSO (0.03%, lanes 1 and 2), exisulind (200, 400 and 600 ⁇ M; lanes 3, 4, 5) and E4021 (0.1, 1 and lO ⁇ M, lanes 6, 7, 8).
  • Figure 19 is a bar graph of the results of Western blot experiments of the effects of exisulind on ⁇ -catenin and PKG levels in neoplastic cells relative to control.
  • Figure 20 is a graph of the cGMP hydrolytic activities of the cGMP phosphodiesterases obtained from HTB-26 neoplastic cells, as assayed from the eluent from a DEAE-Trisacryl M column.
  • Figure 21 is a graph of the cGMP hydrolytic activities of the cGMP phosphodiesterases obtained from HTB-26 neoplastic cells, as assayed from the eluent from a DEAE-Trisacryl M column with low and high substrate concentration.
  • Figure 22 is a graph of the cGMP hydrolytic activities of the cGMP phosphodiesterases obtained from LnCAP neoplastic cells, as assayed from the eluent from a DEAE-Trisacryl M column.
  • Figure 23 is a graph of the cGMP hydrolytic activities of the cGMP phosphodiesterases obtained from LnCAP neoplastic cells, as assayed from the eluent from a DEAE-Trisacryl M column with low and high substrate concentration.
  • Figure 24 is a bar graph illustrating the specificity binding of the non-catalytic cGMP binding sites of PDE5 for cyclic nucleotide analogs and selected PDE5 inhibitors.
  • Figure 25 is a graph of the cGMP hydrolytic activities of the cGMP phosphodiesterases obtained from SW480 neoplastic cells, as assayed from the eluent from a DEAE-Trisacryl M column using ethylene glycol in the buffer.
  • Figure 26 is a graph of the cGMP hydrolytic activities of the cGMP phosphodiesterases obtained from SW480 neoplastic cells grown in roller bottles, as assayed from the eluent from a DEAE-Trisacryl M column.
  • Figure 27 A shows a time-dependent increase in the amount of histone- associated fragmented DNA in LNCaP cell cultures following treatment with 50 ⁇ M Compound I.
  • Figure 27B shows the course of treatment of PrEC prostate cells with Compound I (50 ⁇ M) that did not affect DNA fragmentation for up to 4 days of treatment.
  • HER2 antibody therapies are currently used to treat neoplasias, particularly breast cancers.
  • the combination of these two types of therapies can produce an effect that neither can produce individually, specifically achieving synergistic effects as presented below.
  • this invention among other things is a method of causing the use of a particular class of anti-neoplastic cGMP PDE inhibitor that acts through the pathways described herein, in conjunction with a HER2 antibody-based therapeutic.
  • This method includes obtaining a pharmaceutical composition that includes such an inhibitor having one or more of the attributes set forth herein, informing physicians and patients about those attributes, providing said pharmaceutical composition to physicians and patients in need of treatment; and causing a patient to receive said pharmaceutical composition in conjunction with HER2 antibody therapy.
  • This invention also involves obtaining a pharmaceutical composition that includes a HER2 antibody, providing said pharmaceutical composition to physicians and patients in need of treatment; and causing a patient to receive said pharmaceutical composition in conjunction with an anti-neoplastic cGMP PDE inhibitor.
  • pharmaceutical companies can sponsor or initiate such mechanistic studies to be performed by third parties, and the results of those third party studies are then published.
  • packaged pharmaceutical we mean the drug (either the anti-neoplastic cGMP PDE inhibitor or the HER2 antibody) as formulated in its form to be administered to the patient) packaged in a bottle or blister card (that may or may not then be boxed with other bottles or blister cards), IN bag, aerosol inhaler, syringe, ointment tube, or the like.
  • written material is that material describing said compound characterized as having one or more of the attributes set forth herein, and typically containing directions for use in accordance with the teachings of this invention.
  • One non-limiting type of written material is a package insert, but brochures and the like represent other types. Written material also includes (but is not limited to) those materials in electronic form.
  • the packaging can carry such written material by having the written material affixed (releasably or otherwise) to the outside of the container, or provided inside the container itself (e.g., in the case of tableted drug, an insert inside the bottle containing the tablets).
  • the bottled pharmaceutical is packaged in multiple bottles in shipping containers (e.g., boxes), one or more copies of the written material can be placed in the outer box. If the bottled pharmaceutical is boxed in an individual box, the written material can be inside or on the box.
  • One aspect of the pathway involved in this invention is the inhibition of a PDE2 that exhibits a novel conformation and a conventional one, depending on the circumstances.
  • PDE5 inhibitors inhibit this PDE2-like enzyme, whereas PDE5 inhibitors that do not induce apoptosis have not been found to inhibit this PDE2-like enzyme.
  • an isolated cGMP-specific phosphodiesterase (which appears to be a novel conformation of PDE2) was first prepared from the human carcinoma cell line commonly referred to as SW480 available from the American Tissue Type Collection in Rockville, Maryland, U.S.A.
  • SW480 is a human colon cancer cell line that originated from moderately differentiated epithelial adenocarcinoma. As discussed below, a similar conformation has also been isolated from neoplasias of the breast (i.e., HTB-26 cell line) and prostate (i.e., LNCAP cell line).
  • isolated we mean (as is understood in the art) not only isolated from neoplastic cells, but also made by recombinant methods (e.g., expressed in a bacterial or other non-human host vector cell lines).
  • the novel PDE activity was first found in SW480 colon cancer cell lines. To isolate the novel phosphodiesterase from SW480, approximately four hundred million SW480 cells were grown to confluence in and were scraped from 150 cm 2 tissue culture dishes after two washes with 10 mL cold PBS and pelleted by centrifugation.
  • the cells were re-suspended in homogenization buffer (20 mL TMPI-EDTA-Triton pH 7.4: 20 mM Tris-HOAc, 5 mM MgAc 2 , 0.1 mM EDTA, 0.8% Triton-100, lO ⁇ M benzamidine, lO ⁇ M TLCK, 2000 U/mL aprotinin, 2 ⁇ M leupeptin, 2 ⁇ M pepstatin A) and homogenized on an ice bath using a polytron tissumizer (three times, 20 seconds/pulse).
  • homogenization buffer (20 mL TMPI-EDTA-Triton pH 7.4: 20 mM Tris-HOAc, 5 mM MgAc 2 , 0.1 mM EDTA, 0.8% Triton-100, lO ⁇ M benzamidine, lO ⁇ M TLCK, 2000 U/mL aprotinin, 2 ⁇ M leupeptin, 2
  • the homogenized material was centrifuged at 105,000 g for 60 minutes at 4°C in a Beckman L8 ultracentrifuge, and the supernatant was diluted with TMPI-EDTA (60 mL) and applied to a 10-milliliter DEAE-Trisacryl M column pre- equilibrated with TMPI-EDTA buffer.
  • the loaded column was washed with 60 mL of TM-EDTA, and PDE activities were eluted with a 120 mL linear gradient of NaOAC (0-0.5 M) in TM-EDTA, at a flow rate of 0.95 mL/minute, 1.4 mL/fraction. Eighty fractions were collected and assayed for cGMP hydrolysis immediately (i.e. within minutes).
  • Figure 1 shows the column's elution profile, revealing two initial peaks of cGMP PDE activity, Peaks A and B, which were eluted by 40-50 mM and 70-80 mM NaOAC, respectively. As explained below, Peak A is PDE5, whereas
  • Peak B is a novel cGMP-specific phosphodiesterase activity.
  • Cyclic nucleotide PDE activity of each fraction was determined using the modified two-step radio-isotopic method of Thompson et al. (Thompson W.J., et al., Adv. Cyclic Nucleotide Res. 10: 69-92, 1979), as further described below.
  • the reaction was in 400 ⁇ l containing Tris-HCl (40mM; pH 8.0), MgCl 2 (5mM), 2- mercaptoethanol (4 mM), bovine serum albumin (30 ⁇ g), cGMP (0.25 ⁇ M-5 ⁇ M) with constant tritiated substrate (200,000 cpm). The incubation time was adjusted to give less than 15% hydrolysis.
  • the first method involved growing the SW480 in 850 cm 2 Corning roller bottles instead of 150 cm 2 tissue culture flasks.
  • SW480 were grown in roller bottles at 0.5 rpm with each bottle containing 200 mL of RPMI 1640, 2 mM glutamine, and 25 mM HEPES. Cells were harvested by the following procedure. PBS media was warmed to 37°C for at least 15 minutes. 200 mL of 5%
  • FBS/RPMI 1640 complete media was prepared and 5 mL of glutamine was added. 5 mL of antibiotic/antimycotic was also added.
  • the PDEs from the harvested SW480 cells were isolated using an FPLC procedure.
  • a Pharmacia AKTA FPLC was used to control sample loading and elution on an 18 mL DEAE TrisAcryl M column. About 600 million cells of SW480 were used for the profiles.
  • FPLC buffer A was 8 mM TRIS-acetate, 5 mM Mg acetate, 0.1 mM EDTA, pH 7.5 and buffer B was
  • the selective PDE2 inhibitor EHNA inhibited 2 ⁇ M cGMP PDE activity in this Peak B with an IC 50 of 1.6 ⁇ M and inhibited 2.0 ⁇ M cAMP PDE activity in Peak B with an IC 5 o of 3.8 ⁇ M (and IC 50 of 2.5 ⁇ M with addition of 10 ⁇ M rolipram).
  • novel PDE Peak B As discussed below, cyclic GMP activated the cGMP hydrolytic activity of the enzyme, but did not activate any cAMP hydrolytic activity (in contrast with the Peak B from Section IIC above). This reveals that the novel PDE Peak B ⁇ the novel phosphodiesterase of this invention — is not a cGMP- stimulated cAMP hydrolysis ("cGS") or among the classic or previously known PDE2 family activities because the known isoforms of PDE2 hydro lyze both cGMP and cAMP.
  • cGS cGMP- stimulated cAMP hydrolysis
  • Peak A Is A Classic PDE5, But The Novel Peak B--A New cGMP- Specif ⁇ c PDE— Is Not
  • Peak A showed typical "PDE5" characteristics.
  • K m of the enzyme for cGMP was 1.07 ⁇ M, and Vmax was 0.16 nmol min/mg.
  • sildenafil inhibited activity of Peak A.
  • zaprinast showed inhibition for cGMP hydrolysis activity of Peak A, consistent with results reported in the literature.
  • PDE Peak B from Section IIB showed considerably different kinetic properties as compared to PDE Peak A.
  • K m • 8.4
  • Peak B (either form of it) is zaprinast- insensitive whereas Peaks A and B are both sensitive to sulindac sulfide and Compound E.
  • zaprinast, E4021 and sildenafil to ascertain whether they induce apoptosis or inhibit the growth of neoplastic cells, and have done the same for Compound E.
  • zaprinast by itself does not have significant apoptosis-inducing or growth-inhibiting properties, whereas sulindac sulfide and Compound E are precisely the opposite.
  • the ability of a compound to inhibit both PDE Peaks A and B correlates with its ability to induce apoptosis in neoplastic cells, whereas if a compound (e.g., zaprinast) has specificity for PDE Peak A only, that compound will not by itself induce apoptosis.
  • a compound e.g., zaprinast
  • Peak A and the novel Peak B were observed in their respective cGMP-hydrolytic activities in the presence of varying concentrations of cGMP-dependent protein kinase G (which phosphorylates typical PDE5).
  • Peak A and Peak B fractions from Section IIB were incubated with different concentrations of protein kinase G at 30°C for 30 minutes. Cyclic GMP hydrolysis of both peaks has assayed after phosphorylation was attempted. Consistent with previously published infoimation about PDE5, Peak A showed increasing cGMP hydrolysis activity in response to protein kinase G incubation, indicating that Peak A was phosphorylated.
  • Peak B was unchanged, however (i.e., was not phosphorylated and insensitive to incubation with cGMP-dependent protein kinase G). These data are consistent with Peak A being an isoform consistent with the known PDE5 family and Peak B from Section IIB being a novel cGMP-specific PDE activity.
  • the novel Peak B was also isolated from two other neoplastic cell lines, a breast cancer cell line, HTB-26, and a prostate cancer cell line, LnCAP, by a procedure similar to the one above used to isolate it from SW480.
  • the protocol was modified in several respects.
  • a Pharmacia AKTA FPLC was used to control sample loading and elution on an 18 mL DEAE TrisAcryl M column.
  • SW840 was run by this same procedure multiple times to provide a reference of Peak B. 200-400 million cells of SW480 were used for the profiles.
  • FPLC buffer A was 8 mM TRIS-acetate, 5 mM Mg acetate, 0.1 mM EDTA, pH 7.5
  • buffer B was 8 mM TRIS-acetate, 5 mM Mg acetate, 0.1 mM EDTA, 1 M Na acetate, pH 7.5.
  • ⁇ -catenin has been implicated in a variety of different cancers because researchers have found high levels of it in patients with neoplasias containing mutations in the APC tumor-suppressing gene. People with mutations in this gene at birth often develop thousands of small tumors in the lining of their colon. When it functions properly, the APC gene codes for a normal APC protein that is believed to bind to and regulate ⁇ -catenin.
  • This phosphorylation of ⁇ -catenin by PKG is important in neoplastic cells because it circumvents the effect of the APC and ⁇ -catenin mutations.
  • the mutated APC protein affects the binding of the ⁇ -catenin bound to the mutant APC protein, which change in binding has heretofore been thought to prevent the phosphorylation of ⁇ -catenin by GSK-3b kinase.
  • an elevation of PKG activity also allows the mutant ⁇ -catenin to be phosphorylated.
  • novel PDE of this invention and PDE2 are useful with or without PDE5 to identify compounds that can be used to treat or prevent neoplasias, and that are not characterized by serious side effects.
  • Cancer and precancer may be thought of as diseases that involve unregulated cell growth.
  • Cell growth involves a number of different factors. One factor is how rapidly cells proliferate, and another involves how rapidly cells die. Cells can die either by necrosis or apoptosis depending on the type of environmental stimuli. Cell differentiation is yet another factor that influences tumor growth kinetics. Resolving which of the many aspects of cell growth is affected by a compound is important to the discovery of a relevant target for pharmaceutical therapy. Screening assays based on this technology can be combined with other tests to select compounds that have growth inhibiting and pro-apoptotic activity.
  • This invention is the product of several important discoveries.
  • PDE5 EC 3.1.4.17
  • PDE5 is one of at least ten gene families of phosphodiesterase.
  • PDE5 and the novel PDE of this invention are unique in that they selectively degrade cyclic GMP and not cAMP, while the other families of PDE selectively degrade/hydro lyze cAMP and not cGMP or non-selectively degrade both cGMP and cAMP.
  • desirable compounds used to treat neoplasia do not substantially inhibit non-selective or cAMP degrading phosphodiesterase types.
  • a preferred embodiment of the present invention involves determining the cyclooxygenase inhibition activity of a given compound, and determining the cGMP specific PDE inhibitory activity of the compound.
  • the test compounds are assessed for their ability to treat neoplastic lesions either directly or indirectly by comparing their activities against known compounds useful for treating neoplastic lesions.
  • a standard compound that is known to be effective for treating neoplastic lesions without causing gastric irritation is 5-fluoro-2-methyl-l-(p- methylsulfonylbenzylidene)-3-indenylacetic acid ("exisulind").
  • useful compounds for comparative purposes include those that are known to inhibit COX, such as indomethacin and the sulfide metabolite of sulindac: 5-fluoro-2-methyl-l-(p- methylsulfinylbenzylidene)-3-indenylacetic acid ("sulindac sulfide”).
  • Other useful compounds for comparative purposes include those that are known to inhibit cGMP- specif ⁇ c PDEs, such as l-(3-chloroanilino)-4-phenyphthalazine (“MY5445").
  • precancerous lesion includes syndromes represented by abnormal neoplastic, including dysplastic, changes of tissue.
  • Examples include dysplastic growths in colonic, breast, prostate or lung tissues, or conditions such as dysplastic nevus syndrome, a precursor to malignant melanoma of the skin. Examples also include, in addition to dysplastic nevus syndromes, polyposis syndromes, colonic polyps, precancerous lesions of the cervix (i.e., cervical dysplasia), esophagus, lung, prostatic dysplasia, prostatic intraneoplasia, breast and/or skin and related conditions (e.g., actinic keratosis), whether the lesions are clinically identifiable or not.
  • cancer refers to lesions which are cancerous. Examples include malignant melanomas, breast cancer, prostate cancer and colon cancer.
  • neoplasia and “neoplasms” refer to both cancerous and pre-cancerous lesions.
  • PG represents prostaglandin
  • PS represents prostaglandin synthetase
  • PGE 2 represents prostaglandin E 2
  • PDE represents phosphodiesterase
  • COX represents cyclooxygenase
  • cyclic nucleotide RIA represents - radioimmunoassay.
  • COX inhibition by a compound can be determined by either of two methods.
  • One method involves measuring PGE 2 secretion by intact HL-60 cells following exposure to the compound being screened.
  • the other method involves measuring the activity of purified cyclooxygenases (COXs) in the presence of the compound. Both methods involve protocols previously described in the literature, but preferred protocols are set forth below.
  • PGE 2 prostaglandin E 2
  • Suitable cells include those that make an abundance of PG, such as HL-60 cells.
  • HL-60 cells are human promyelocytes that are differentiated with DMSO into mature granulocytes (see, Collins, S.J., Ruscetti, F.W., Gallagher, R.E. and Gallo, R.C., "Normal Functional Characteristics of Cultured Human
  • HL-60 Promyelocytic Leukemia Cells (HL-60) After Induction of Differentiation By Dimethylsulfoxide”, J. Exp. Med., 149:969-974, 1979). These differentiated cells produce PGE 2 after stimulation with a calcium ionophore, A23187 (see, Kargman, S., Prasit, P. and Evans, J.F., "Translocation of HL-60 Cell 5-Lipoxygenase", J. Biol. Chem., 266: 23745-23752, 1991). HL-60 cells are available from the ATCC
  • Acute CTL240 ATCC:CCL240. They can be grown in a RPMI 1640 medium supplemented with 20% heat-inactivated fetal bovine serum, 50 U/mL penicillin and 50 ⁇ g/mL streptomycin in an atmosphere of 5% CO 2 at 37°C. To induce myeloid differentiation, cells are exposed to 1.3% DMSO for 9 days and then washed and resuspended in Dulbecco's phosphate-buffered saline at a concentration of 3x10 6 cells/mL.
  • the differentiated HL-60 cells (3xl0 6 cells/mL) are incubated for 15 minutes at 37°C in the presence of the compounds tested at the desired concentration.
  • Cells aarree tthheenn ssttiimmuullaatteedd bbyy AA2233118877 ((55xxll00 ""66 MM)) ffoorr 1155 l minutes.
  • PGE 2 secreted into the external medium is measured as described above.
  • a second method to assess COX inhibition of a compound is to measure the COX activity in the presence of a test compound.
  • Two different forms of cyclooxygenase (COX-I and COX-2) have been reported in the literature to regulate prostaglandin synthesis.
  • COX-2 represents the inducible form of COX while COX-I represents a constitutive form.
  • COX-I activity can be measured using the method described by Mitchell et al. ("Selectivity of Nonsteroidal Anti-inflammatory Drugs as Inhibitors of Constitutive and Inducible Cyclooxygenase," Proc. Natl. Acad. Sci. USA., 90:11693-11697, 1993, which is incorporated herein by reference) using COX-I purified from ram seminal vesicles as described by Boopathy & Balasubramanian, "Purification And Characterization Of Sheep Platelet
  • COX-2 activity can be measured using COX-2 purified from sheep placenta as described by Mitchell et al., 1993, supra.
  • the cyclooxygenase inhibitory activity of a drug can be determined by methods known in the art. For example, Boopathy & Balasubramanian, 1988, supra, described a procedure in which prostaglandin H synthase 1 (Cayman Chemical, Ann Arbor, Michigan) is incubated at 37°C for 20 minutes with 100 ⁇ M arachidonic acid (Sigma Chemical Co.), cofactors (such as 1.0 mM glutathione, 1.0 mM hydroquinone, 0.625 ⁇ M hemoglobin and 1.25 mM CaCl 2 in 100 mM Tris-HCl, pH 7.4) and the drag to be tested. Following incubation, the reaction can be terminated with trichloroacetic acid. After stopping the reaction by adding thiobarbituric acid and malonaldehyde, enzymatic activity can then be measured spectrophotometrically at 530 nm.
  • a compound that exhibits a lower COX-I or COX-2 inhibitory activity in relation to its greater combined PDE5/novel PDE/PDE2 inhibitory activities may be a desirable compound.
  • the amount of COX inhibition is determined by comparing the activity of the cyclooxygenase in the presence and absence of the test compound. Residual (i.e., less than about 25%) or no COX inhibitory activity at a concentration of about 100 ⁇ M is indicative that the compound should be evaluated further for usefulness for treating neoplasia.
  • Compounds can be screened for inhibitory effect on the activity of the novel phosphodiesterase of this invention using either the enzyme isolated as described above, a recombinant version, or using the novel PDE and/or PDE2 together with PDE5. Alternatively, cyclic nucleotide levels in whole cells are measured by RIA and compared to untreated and zaprinast-treated cells.
  • Phosphodiesterase activity can be determined using methods known in the art, such as a method using radioactive 3 H cyclic GMP (cGMP)(cyclic 3',5'-guanosine monophosphate) as the substrate for the PDE enzyme.
  • cGMP radioactive 3 H cyclic GMP
  • a solution of defined substrate 3 H-cGMP specific activity (0.2 ⁇ M; 100,000 cpm; containing 40 mM Tris- HCl (pH 8.0), 5 mM MgCl 2 and 1 mg mL BSA) is mixed with the drug to be tested in a total volume of 400 ⁇ l.
  • the mixture is incubated at 30°C for 10 minutes with isolated PDE of this invention. Reactions are terminated, for example, by boiling the reaction mixture for 75 seconds. After cooling on ice, 100 ⁇ l of 0.5 mg/mL snake venom (O. Hannah venom available from Sigma) is added and incubated for 10 minutes at 30°C.
  • This reaction is then terminated by the addition of an alcohol, e.g. 1 mL of 100%) methanol.
  • Assay samples are applied to 1 mL Dowex 1-X8 column; and washed with 1 L of 100% methanol.
  • the amount of radioactivity in the breakthrough and the wash from the column is combined and measured with a scintillation counter.
  • the degree of phosphodiesterase inhibition is determined by calculating the amount of radioactivity in drug-treated reactions and comparing against a control sample (a reaction mixture lacking the tested compound but with drug solvent).
  • the ability of desirable compounds to inhibit the phosphodiesterases of this invention is reflected by an increase in cGMP in neoplastic cells exposed to a compound being screened.
  • the amount of PDE activity can be determined by assaying for the amount of cyclic GMP in the extract of treated cells using radioimmunoassay (RIA).
  • RIA radioimmunoassay
  • SW-480 contains both PDE5 and the novel PDE of this invention, so when PDE activity is evaluated in this fashion, a combined cGMP hydrolytic activity is assayed simultaneously.
  • the test compound is then incubated with the cell culture at a concentration of compound between about 200 ⁇ M to about 200 pM.
  • the culture media is removed from the cells, and the cells are solubilized.
  • the reaction is stopped by using 0.2N HCl/50% MeOH.
  • a sample is removed for protein assay.
  • Cyclic GMP is purified from the acid/alcohol extracts of cells using anion-exchange chromatography, such as a Dowex column.
  • the cGMP is dried, acetylated according to published procedures, such as using acetic anhydride in triethylamine, (Steiner, A.L., Parker,
  • the antiserum is from sheep injected with succinyl-cGMP-albumin conjugates and diluted 1/20,000. Dose-interpolation and error analysis from standard curves are applied as described previously (Seibert, A.F., Thompson, W.J., Taylor, A., Wilbourn, W.H., Barnard, J. and Haynes, J., J. Applied
  • the culture media may be acidified, frozen (-70°C) and also analyzed for cGMP and cAMP.
  • the intracellular targets of drag actions are being studied further, but current data support the concept hat the initial rise in cGMP content and the subsequent fall in cAMP content precede apoptosis in neoplastic cells exposed to desirable compounds.
  • the change in the ratio of the two cyclic nucleotides may be a more accurate tool for evaluating desirable cGMP-specific phosphodiesterase inhibition activity of test compounds, rather than measuring only the absolute value of cGMP, only cGMP- specific phosphodiesterase inhibition, or only the level of cGMP hydrolysis, hi neoplastic cells not treated with anti-neoplastic compounds, the ratio of cGMP content/cAMP content is in the 0.03-0.05 range (i.e., 300-500 fmol/mg protein cGMP content over 6000-8000 fmol/mg protein cAMP content).
  • cyclic nucleotides are purified from acid/alcohol extracts of cells using anion-exchange chromatography, dried, acetylated according to published procedures and quantitated using radioimmunoassay procedures. Iodinated ligands of derivatized cyclic AMP and cyclic GMP are incubated with standards or unknowns in the presence of specific antisera and appropriate buffers.
  • Verification of the cyclic nucleotide content may be obtained by determining the turnover or accumulation of cyclic nucleotides in intact cells.
  • 3 H-adenine pre-labeling is used according to published procedures (Whalin, M.E., Garrett Jr., R.L., Thompson, W.J., and Strada, S.J. "Correlation of cell-free brain cyclic nucleotide phosphodiesterase activities to cyclic AMP decay in intact brain slices", Sec. Mess. andPhos. Protein Research, 12:311-325, 1989, which is incorporated herein by reference).
  • the procedure measures flux of labeled ATP to cyclic AMP and can be used to estimate intact cell adenylate cyclase or cyclic nucleotide phosphodiesterase activities depending upon the specific protocol.
  • the PDE inhibitory activity effect of a compound can also be determined from a tissue sample.
  • Tissue biopsies from humans or tissues from anesthetized animals are collected from subjects exposed to the test compound. Briefly, a sample of tissue is homogenized in 500 ⁇ l of 6% TCA. A known amount of the homogenate is removed for protein analysis. The remaining homogenate is allowed to sit on ice for
  • the aqueous ether extract is dried in a speed vac. Once dried, the sample can be frozen for future use, or used immediately. The dried extract is dissolved in 500 ⁇ l of assay buffer. The amount of cGMP-specific inhibition is determined by assaying for the amount of cyclic nucleotides using RIA procedures as described above.
  • the amount of inhibition is determined by comparing the activity of the novel PDE (or PDE2) in the presence and absence of the compound. Inhibition of the novel
  • PDE activity is indicative that the compound is useful for treating neoplasia.
  • the IC 50 value for the novel PDE inhibition should be less than 50 ⁇ M for the compound to be further considered for potential use.
  • the method of the present invention involves further detennining whether the compound reduces the growth of tumor cells.
  • cell lines can be used in the sample depending on the tissue to be tested.
  • these cell lines include: SW-480 - colonic adenocarcinoma; HT-29 - colonic adenocarcinoma, A-427 - lung adenocarcinoma carcinoma; MCF-7 - breast adenocarcinoma; and UACC-375 - melanoma line; and DU145 - prostrate carcinoma. Cytotoxicity data obtained using these cell lines are indicative of an inhibitory effect on neoplastic lesions. These cell lines are well characterized, and are used by the United States National Cancer Institute in their screening program for new anti-cancer drugs.
  • HT-29 human colon carcinoma cell line obtained from ATCC.
  • HT-29 cells have previously been characterized as a relevant colon tumor cell culture model (Fogh, J., and Trempe, G. In: Human Tumor Cells in Vitro, J. Fogh (eds.), Plenum Press, New York, pp. 115-159, 1975).
  • HT-29 cells are maintained in RPMI media supplemented with 5% fetal bovine calf serum (Gemini Bioproducts, Inc., Carlsbad, CA) and 2 mm glutamine, and 1% antibiotic-antimycotic in a humidified atmosphere of 95% air and
  • HT-29 cells are plated at a density of 500 cells/well in 96 well microtiter plates and incubated for 24 hours at 37°C prior to the addition of compound. Each determination of cell number involved six replicates. After six days in culture, the cells are fixed by the addition of cold trichloroacetic acid to a final concentration of 10%o and protein levels are measured using the sulforhodamine B
  • SRB colorimetric protein stain assay as previously described by Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Nistica, D., Warren, J.T., Bokesch, H., Kenney, S., and Boyd, M.R., "New Colorimetric Assay For Anticancer-Drag Screening," J Natl. Cancer Inst. 82: 1107-1112, 1990, which is incorporated herein by reference.
  • SRB assay In addition to the SRB assay, a number of other methods are available to measure growth inhibition and could be substituted for the SRB assay. These methods include counting viable cells following trypan blue staining, labeling cells capable of DNA synthesis with BrdU or radiolabeled thymidine, neutral red staining of viable cells, or MTT staining of viable cells.
  • IC S Q value is determined and used for comparative purposes. This value is the concentration of drag needed to inhibit tumor cell growth by 50% relative to the control.
  • the IC 50 value should be less than 100 ⁇ M for the compound to be considered further for potential use for treating neoplastic lesions.
  • the screening method of the present invention further involves determining whether the compound induces apoptosis in cultures of tumor cells.
  • necrosis and apoptosis Two distinct forms of cell death may be described by morphological and biochemical criteria: necrosis and apoptosis. Necrosis is accompanied by increased permeability of the plasma membrane; the cells swell and the plasma membrane ruptures within minutes. Apoptosis is characterized by membrane blebbing, condensation of cytoplasm and the activation of endogenous endonucleases.
  • Apoptosis occurs naturally during normal tissue turnover and during embryonic development of organs and limbs. Apoptosis also is induced by cytotoxic
  • T-lymphocytes and natural killer cells by ionizing radiation and by certain chemotherapeutic drugs. Inappropriate regulation of apoptosis is thought to play an important role in many pathological conditions including cancer, AIDS, or Alzheimer's disease, etc.
  • Compounds can be screened for induction of apoptosis using cultures of tumor cells maintained under conditions as described above. Treahnent of cells with test compounds involves either pre- or post-confluent cultures and treatment for two to seven days at various concentrations. Apoptotic cells are measured in both the attached and "floating" compartments of the cultures. Both compartments are collected by removing the supernatant, trypsinizing the attached cells, and combining both preparations following a centrifugation wash step (10 minutes, 2000 rpm).
  • the protocol for treating tumor cell cultures with sulindac and related compounds to obtain a significant amount of apoptosis has been described in the literature. (See, Piazza, G.A., et al., Cancer Research, 55:3110-16, 1995, which is incorporated herein by reference).
  • the novel features include collecting both floating and attached cells, identification of the optimal treatment times and dose range for observing apoptosis, and identification of optimal cell culture conditions.
  • cultures can be assayed for apoptosis and necrosis by florescent microscopy following labeling with acridine orange and ethidium bromide.
  • the method for measuring apoptotic cell number has previously been described by Duke & Cohen, "Morphological And Biochemical Assays Of Apoptosis," Current Protocols In Immunology, Coligan et al., eds., 3.17.1-3.17.16 (1992), which is incorporated herein by reference.
  • floating and attached cells can be collected by trypsinization and washed three times in PBS. Aliquots of cells can be centrifuged. The pellet can then be re-suspended in media and a dye mixture containing acridine orange and ethidium bromide prepared in PBS and mixed gently. The mixture can then be placed on a microscope slide and examined for morpho logical features of apoptosis.
  • Apoptosis can also be quantified by measuring an increase in DNA fragmentation in cells that have been treated with test compounds.
  • Commercial photometric EIA for the quantitative, in vitro determination of cytoplasmic histone- associated-DNA-fragments (mono- and oligonucleosomes) are available (Cell Death Detection ELISA okys , Cat. No. 1,774,425, Boehringer Mannheim).
  • the Boehringer Mannheim assay is based on a sandwich-enzyme-immunoassay principle using mouse monoclonal antibodies directed against DNA and histones, respectively. This allows the specific determination of mono- and oligonucleosomes in the cytoplasmatic fraction of cell lysates.
  • apoptosis is measured in the following fashion.
  • the sample (cell-lysate) is placed into a streptavidin-coated microtiter plate ("MTP").
  • MTP streptavidin-coated microtiter plate
  • a mixture of anti-histone-biotin and anti-DNA peroxidase conjugate are added and incubated for two hours.
  • the anti-histone antibody binds to the histone-component of the nucleosomes and simultaneously fixes the immunocomplex to the streptavidin-coated MTP via its biotinylation.
  • the anti-DNA peroxidase antibody reacts with the DNA component of the nucleosomes.
  • Peroxidase is determined photometrically with ABTS7 (2,2'-Azido-[3- ethylbenzthiazolin-sulfonate]) as substrate.
  • SW-480 colon adenocarcinoma cells are plated in a 96-well MTP at a density of 10,000 cells per well. Cells are then treated with test compound, and allowed to incubate for 48 hours at 37°C. After the incubation, the MTP is centrifuged, and the supernatant is removed. The cell pellet in each well is then resuspended in lysis buffer for 30 minutes. The lysates are then centrifuged and aliquots of the supernatant (i.e., the cytoplasmic fraction) are transferred into a streptavidin-coated MTP. Care is taken not to shake the lysed pellets (i.e. cell nuclei containing high molecular weight, unfragmented DNA) in the MTP. Samples are then analyzed.
  • EC 50 values may also be determined by evaluating a series of concentrations of the test compound.
  • EC 50 value for apoptotic activity should be less than lOO ⁇ M for the compound to be further considered for potential use for treating neoplastic lesions.
  • EC 50 is herein defined as the concentration that causes 50% induction of apoptosis relative to vehicle treatment.
  • Test compounds identified by the above methods can be tested for antineoplastic activity by their ability to inhibit the incidence of pre-neoplastic lesions in a mammary gland organ culture system.
  • This mouse mammary gland organ culture technique has been successfully used by other investigators to study the effects of known antineoplastic agents such as certain NSAIDs, retinoids, tamoxifen, selenium, and certain natural products, and is useful for validation of the screening method of the present invention.
  • female BALB/c mice can be treated with a combination of estradiol and progesterone daily, in order to prime the glands to be responsive to hormones in vitro.
  • the animals are sacrificed, and thoracic mammary glands are excised aseptically and incubated for ten days in growth media supplemented with insulin, prolactin, hydrocortisone, and aldosterone.
  • DMBA 7,12- dimethylbenz(a)anthracene
  • Fully developed glands are then deprived of prolactin, hydrocortisone, and aldosterone, resulting in the regression of the glands but not the pre-malignant lesions.
  • test compound is dissolved in DMSO and added to the culture media for the duration of the culture period.
  • the glands are fixed in 10% formalin, stained with alum carmine, and mounted on glass slides.
  • the incidence of forming mammary lesions is the ratio of the glands with mammary lesions to glands without lesions.
  • the incidence of mammary lesions in test compound treated glands is compared with that of the untreated glands.
  • the extent of the area occupied by the mammary lesions can be quantitated by projecting an image of the gland onto a digitation pad.
  • the area covered by the gland is traced on the pad and considered as 100% of the area.
  • the space covered by each of the non-regressed structures is also outlined on the digitization pad and quantitated by the computer.
  • test compounds were examined in the various protocols and screened for potential use in treating neoplasia. The results of these tests are reported below.
  • the test compounds are hereinafter designated by a letter, code that corresponds to the following:
  • G ribo-(E)-l-Triazolo-[2',3':l",3"]-l-(butan-l ',4'-olido)-[3',4':l,2]-6- fluoro-2-methyl-3-(p-methylsulfonylbenzylidene)-indan; and H - rac-(E)-l-(butan-l',4'-olido)-[3',4':l,2]-6-fluoro-2-methyl-3-(p- methylsulfonylbenzylidene)- 1 S-indanyl-glutathione).
  • Example 1 - COX Inhibition Assay Reference compounds and test compounds were analyzed for their COX inhibitory activity in accordance with the protocol for the COX assay, supra.
  • Figure 4 shows the effect of various concentrations of either sulindac sulfide or exisulind on purified cyclooxygenase (Type 1) activity. Cyclooxygenase activity was determined using purified cyclooxygenase from ram seminal vesicles as described previously (Mitchell et al, supra). The IC 50 value for sulindac sulfide was calculated to be approximately 1.76 ⁇ M, while that for exisulind was greater than 10,000 ⁇ M.
  • COX activity was determined as for the compounds shown in Figure 4. The data show that neither test compound B and E significantly inhibit COX-I.
  • FIG. 6 shows the effect of various concentrations of sulindac sulfide and exisulind on either PDE4 or cGMP PDE activity purified from human colon HT-29 cultured tumor cells, as described previously (W. J. Thompson et al., supra).
  • the IC 50 value of sulindac sulfide for inhibition of PDE4 was 41 ⁇ M, and for inhibition of cGMP PDE was 17 ⁇ M.
  • the IC 50 value of exisulind for inhibition of PDE4 was 181 ⁇ M, and for inhibition of cGMP PDE was 56 ⁇ M.
  • Figure 7 shows the effects of sulindac sulfide on either cGMP or cAMP production as determined in cultured HT-29 cells in accordance with the assay described, supra.
  • HT-29 cells were treated with sulindac sulfide for 30 minutes and cGMP or cAMP was measured by conventional radioimmunoassay method.
  • sulindac sulfide increased the levels of cGMP by greater than 50% with an EC 5 Q value of 7.3 ⁇ M (Figure 7 A).
  • Levels of cAMP were unaffected by treatment, although a known PDE4 inhibitor, rolipram, increased cAMP ( Figure 7B).
  • the data demonstrate the pharmacological significance of inhibiting cGMP PDE, relative to PDE4.
  • Figure 8 shows the effect of the indicated dose of test compound B on either cGMP PDE or PDE4 isozymes of phosphodiesterase.
  • the calculated IC 50 value was 18 ⁇ M for cGMP PDE and was 58 ⁇ M for PDE4.
  • Figure 9 shows the effect of the indicated dose of test compound E on either PDE4 or cGMP PDE.
  • the calculated IC 50 value was 0.08 ⁇ M for cGMP PDE and greater than 25 ⁇ M for PDE4.
  • FIG. 10 shows the effects of sulindac sulfide and exisulind on apoptotic and necrotic cell death.
  • HT-29 cells were treated for six days with the indicated dose of either sulindac sulfide or exisulind. Apoptotic and necrotic cell death was determined previously (Duke and Cohen, hi: Current Protocols in Immunology, 3.17.1 - 3.17.16, New York, John Wiley and Sons, 1992). The data show that both sulindac sulfide and exisulind are capable of causing apoptotic cell death without inducing necrosis.
  • Figure 11 shows the effect of sulindac sulfide and exisulind on tumor growth inhibition and apoptosis induction as determined by DNA fragmentation.
  • Figure 12 shows the apoptosis inducing properties of compound E.
  • HT-29 colon adenocarcinoma cells were treated with the indicated concentration of compound E for 48 hours and apoptosis was determined by the DNA fragmentation assay.
  • the calculated EC 50 value was 0.05 ⁇ M.
  • Figure 13 shows the apoptosis inducing properties of compound B.
  • HT-29 colon adenocarcinoma cells were treated with the indicated concentration of compound B for 48 hours and apoptosis was determined by the DNA fragmentation assay.
  • the calculated EC 50 value was approximately 175 ⁇ M.
  • Test compounds Fold induction at 100 ⁇ M
  • apoptosis inducing activity for a series of phosphodiesterase inhibitors was determined. The data are presented in Table 5 below.
  • HT-29 cell were treated for 6 days with various inhibitors of phosphodiesterase.
  • Apoptosis and necrosis were determined morphologically after acridine orange and ethidium bromide labeling in accordance with the assay described, supra.
  • the data show that the novel cGMP- specific PDE is useful for screening compounds that induce apoptosis of HT-29 cells.
  • Table 5 Apoptosis-Induction Data for PDE Inhibitors
  • FIG. 14 shows the inhibitory effect of various concentrations of sulindac sulfide and exisulind on the growth of HT-29 cells.
  • HT-29 cells were treated for six days with various doses of exisulind (triangles) or sulindac sulfide (squares) as indicated.
  • Cell number was measured by a sulforhodamine assay as previously described (Piazza et al., Cancer Research, 55: 3110-3116, 1995).
  • the IC 50 value for sulindac sulfide was approximately 45 ⁇ M and 200 ⁇ M for exisulind. The data show that both sulindac sulfide and exisulind are capable of inhibiting tumor cell growth.
  • Figure 15 shows the growth inhibitory and apoptosis-inducing activity of sulindac sulfide.
  • a time course experiment is shown involving HT-29 cells treated with either vehicle, 0.1% DMSO (open symbols) or sulindac sulfide, 120 ⁇ M (closed symbols).
  • Growth inhibition (15 A top) was measured by counting viable cells after trypan blue staining.
  • Apoptosis (15B bottom) was measured by morphological determination following staining with acridine orange and ethidium bromide as described previously (Duke and Cohen, in: Current Protocols in Immunology, 3.17.1 - 3.17.16, New York, John Wiley and Sons, 1992).
  • the data demonstrate that sulindac sulfide is capable of inhibiting tumor cell growth, and that the effect is accompanied by an increase in apoptosis. All data were collected from the same experiment.
  • Figure 16 shows the growth inhibitory activity of test compound E.
  • HT-29 colon adenocarcinoma cells were treated with the indicated concentration of compound E for six days and cell number was determined by the SRB assay.
  • the calculated IC 50 value was 0.04 ⁇ M.
  • the growth inhibitory activity for a series of phosphodiesterase inhibitors was determined. The data are shown in Table 7 below. HT-29 cells were treated for 6 days with various inhibitors of phosphodiesterase. Cell growth was determined by the
  • Figure 17 shows the inhibition of premalignant lesions in mammary gland organ culture by sulindac metabolites.
  • Mammary gland organ culture experiment were performed as previously described (Mehta and Moon, Cancer Research, 46: 5832-5835, 1986). The results demonstrate that sulindac and exisulind effectively inhibit the formation of premalignant lesions, while sulindac sulfide was inactive. The data support the hypothesis that cyclooxygenase inhibition is not necessary for the anti-neoplastic properties of desired compounds.
  • test compounds can be ranked according to their potential use for treating neoplasia in humans. Those compounds having desirable effects may be selected for additional testing and subsequent human use.
  • E exhibit the appropriate activity to pass the screen of four assays: lack of COX inhibition, and presence of effective cGMP-specific PDE inhibition, growth inhibition and apoptosis induction.
  • the activity of these compounds in the mammary gland organ culture validates the effectiveness of this invention.
  • the qualitative valuations of the screening protocols rank compound E best, then compound B and then exisulind.
  • Table 9 Code Activity of compounds based on evaluating a series of experiments involving tests for maximal activity and potency.
  • a novel assay for PKG activity which is used in the screening methods of this invention, but also has more general usefulness in assaying for PKG activity for other purposes (e.g., for studying the role of PKG in normal cellular function).
  • PKG assay it is useful to describe the PKG assay first, before describing how PKG activity can be useful in drug evaluation in ascertaining whether a compound is potentially useful in the treatment of neoplasia.
  • the Novel PKG Assay of this invention involves binding to solid phase plural amino acid sequences, each of which contain at least the cGMP -binding (cGB) domain and the phosphorylation site of phosphodiesterase type 5 ("PDE5"). That sequence is known and described in the literature below.
  • the bound PDE5 sequence does not include the catalytic domain of PDE5 as described below.
  • One way to bind the PDE5 sequences to a solid phase is to express those sequences as a fusion protein of the PDE5 sequence and one member of an amino acid binding pair, and chemically link the other member of that amino acid binding pair to a solid phase (e.g., beads).
  • GST glutathione S-transferase
  • GSH glutathione
  • RT-PCR method is used to obtain the cGB domain of PDE5 with forward and reverse primers designed from bovine PDE5A cDNA sequence (McAllister-Lucas L.
  • kits for total RNA followed by oligo (dT) column purification of inRNA are used with HT-29 cells.
  • Forward primer (GAA-TTC-TGT-TAG-AAA- AGC-CAC-CAG-AGA-AAT-G, 203-227) and reverse primer (CTC-GAG-CTC- TCT-TGT-TTC-TTC-CTC-TGC-TG, 1664-1686) are used to synthesize the 1484 bp fragment coding for the phosphorylation site and both low and high affinity cGMP binding sites of human PDE5A (203-1686 bp, cGB-PDE5).
  • the synthesized cGB- PDE5 nucleotide fragment codes for 494 amino acids with 97% similarity to bovine PDE5A.
  • GST glutathione-S-transferase
  • Sepharose beads and the other proteins are washed off from the beads with excessive cold PBS.
  • the expressed GST-cGB-PDE5 fusion protein is displayed on 7.5% SDS- PAGE gel as a 85 Kd protein. It is characterized by its cGMP binding and phosphorylation by protein kinases G and A. It displays two cGMP binding sites and the KJ is 1.6+0.2 ⁇ M, which is close to ⁇ M of the native bovine PDE5.
  • the GST-cGB-PDE5 on GSH conjugated sepharose beads can be phosphorylated in vitro by cGMP-dependent protein kinase and cAMP-dependent protein kinase A.
  • the K m of GST-cGB-PDE5 phosphorylation by PKG is 2.7 ⁇ M and the Vmax is 2.8 ⁇ M, while the K m of BPDEtide phosphorylation is 68 ⁇ M.
  • the phosphorylation by PKG shows molecular phosphate incorporated into GST-cGB-PDE5 protein on a one-to- one ratio.
  • the sample and the solid phase are mixed with phosphorylation buffer containing 32 P- ⁇ -ATP.
  • the solution is incubated for 30 minutes at 30°C to allow for phosphorylation of the PDE5 sequence by PKG to occur, if PKG is present.
  • the solid phase is then separated from solution (e.g., by centrifugation or filtration) and washed with phosphate-buffered saline ("PBS") to remove any remaining solution and to remove any unreacted 32 P- ⁇ -ATP.
  • PBS phosphate-buffered saline
  • the solid phase can then be tested directly (e.g., by liquid scintillation counter) to ascertain whether 32 P is incorporated.
  • the PDE5 -containing fusion protein can be eluted from the solid phase with SDS buffer, and the eluent can be assayed for 32 P incorporation. This is particularly advantageous if there is the possibility that other proteins are present, since the eluent can be processed (e.g., by gel separation) to separate various proteins from each other so that the fusion protein fraction can be assayed for 32 P incorporation.
  • the phosphorylated fusion protein can be eluted from the solid phase with SDS buffer and further resolved by electrophoresis.
  • the proteins can be stained to see the position(s) of the protein, and 32 P phosphorylation of the PDE5 portion of the fusion protein by PKG can be measured by exposure of the gel to X-ray film. If P is made visible on X-ray film, that indicates that the original sample contained PKG, which phosphorylated the PDE5 portion of the fusion protein eluted from the solid phase.
  • PKI protein kinase inhibitor
  • PPA protein kinase inhibitor
  • Inhibiting PKA is desirable since it may contribute to the phosphorylation of the PKG substrate (e.g., PDE5). By adding PKI, any contribution to phosphorylation by PKA will be eliminated, and any phosphorylation detected is highly likely to be due to PKG alone.
  • PKG substrate e.g., PDE5
  • kit can be made for the assay of this invention, which kit contains the following pre-packaged reagents in separate containers:
  • Cell lysis buffer 50 mM Tris-HCl, 1% NP-40, 150 mM NaCl, 1 mM EDTA, ImM Na 3 VO 4 , 1 mM NaF, 500 ⁇ M IBMX, proteinase inhibitors.
  • Protein kinase G solid phase substrate recombinant GST-cGB-PDE5 bound Sepharose 4B (50% slurry).
  • 2x Phosphorylation buffer 32 P- ⁇ -ATP (3000 mCi/mmol, 5-10 ⁇ Ci/assay), 10 mM KH 2 PO 4 , 10 mM K 2 HPO 4 , 200 ⁇ M ATP, 5 mM MgCl 2.
  • PKA Protein Kinase I Inhibitor Disposable containers and the like in which to perform the above reactions can also be provided in the kit.
  • SAANDs Increase PKG Activity In Neoplastic Cells Using the PKG assay described above, the following experiments were performed to establish that SAANDs increase PKG activity due either to increase in PKG expression or an increase in cGMP levels (or both) in neoplastic cells treated with a SAAND. Test Procedures Two different types of PDE inhibitors were evaluated for their effects on PKG in neoplastic cells. A SAAND, exisulind, was evaluated since it is anti-neoplastic.
  • SW480 colon cancer cells were employed.
  • SW 480 is known to contain the APC mutation.
  • About 5 million SW480 cells in RPMI 5% serum are added to each of 8 dishes:
  • 3 - 10cm dishes 200 ⁇ M, 400 ⁇ M, 600 ⁇ M exisulind, and 3 - 10cm dishes — E4021; 0.1 ⁇ M, 1 ⁇ M and 10 ⁇ M.
  • the dishes are incubated for 48 l rs at 37°C in 5% CO incubator.
  • the liquid media are aspirated from the dishes (the cells will attach themselves to the dishes).
  • the attached cells are washed in each dish with cold PBS, and 200 ⁇ L cell lysis buffer (i.e., 50 mM Tris-HCl, 1% NP-40, 150 mM NaCl, 1 mM EDTA, ImM Na 3 VO 4 , 1 mM NaF, 500 ⁇ M IBMX with proteinase inhibitors) is added to each dish.
  • cell lysis buffer i.e., 50 mM Tris-HCl, 1% NP-40, 150 mM NaCl, 1 mM EDTA, ImM Na 3 VO 4 , 1 mM NaF, 500 ⁇ M IBMX with proteinase inhibitors
  • the cell lysate from each dish is transferred to a microfuge tube, and the microfuge tubes are incubated at 4°C for 15 minutes while gently agitating the microfuge tubes to allow the cells to lyse completely. After lysis is complete, the microfuge tubes are centrifuged full speed (14,000 r.p.m.) for 15 minutes. The supernatant from each microfuge tube is transferred to a fresh microfuge tube.
  • a protein assay is then performed on the contents of each microfuge tube because the amount of total protein will be greater in the control than in the drag- treated samples, if the drag inhibits cell growth. Obviously, if the drug does not work, the total protein in the drag-treated samples should be virtually the same as control. In the above situation, the control and the E-4021 microfuge tubes needed dilution to normalize them to the high-dose exisulind-treated samples (the lower dose groups of exisulind had to be normalized to the highest dose exisulind sample). Thus, after the protein assays are performed, the total protein concentration of the various samples must be normalized (e.g., by dilution).
  • PKG assays For each drug concentration and control, two PKG assays are performed, one with added cGMP, and one without added cGMP, as described in detail below.
  • the reason for performing these two different PKG assays is that cGMP specifically activates PKG.
  • PKG activity is assayed using the novel PKG assay of this invention, one cannot ascertain whether any increase the PKG activity is due to increased cGMP in the cells (that may be caused by cGMP-specific PDE inhibition) or whether the PKG activity level is due to an increased expression of PKG protein.
  • PKG activity in the same sample both with and without added cGMP one can ascertain whether the PKG activity increase, if any, is due to increased PKG expression.
  • an anti-neoplastic drug elevates PKG activity relative to control
  • the drug-induced increase is due to increased PKG protein expression (as opposed to activation) in the drag-treated sample if (1) the drag-treated sample with extra cGMP exhibits greater PKG activity compared to the control sample with extra cGMP, and (2) the drug-treated sample without extra cGMP exhibits greater PKG activity relative to control.
  • 50 ⁇ L of each cell lysate is added to 20 ⁇ L of the PDE5/GST solid phase substrate slurry described above.
  • the reaction is started by adding phosphorylation buffer containing 10 ⁇ Ci 32 P- ⁇ -ATP solution (200 ⁇ M ATP, 4.5 mM MgCl; 5 mM KH 2 PO 4 ; 5 mM K 2 HPO 4 ;) to each mixture.
  • the resultant mixtures are incubated at 30°C for 30 minutes.
  • the mixtures are then centrifuged to separate the solid phase, and the supernatant is discarded.
  • the solid phase in each tube is washed with 700 ⁇ L cold PBS.
  • Laemmli sample buffer Bio-Rad
  • the mixtures are boiled for 5 minutes, and loaded onto 7.5% SDS-PAGE.
  • the gel is ran at 150 V for one hour.
  • the bands obtained are stained with commassie blue to visualize the 85 Kd GST- PDE5 fusion protein bands, if present.
  • the gel is dried, and the gel is laid on x-ray film which, if the PDE5 is phosphorylated, the film will show a corresponding darkened band.
  • the darkness of each band relates to the degree of phosphorylation.
  • the SAAND exisulind causes PKG activity to increase in a dose-dependent manner in both the samples with added cGMP and without added cGMP relative to the control samples with and without extra cGMP. This is evidenced by the darker appearances of the 85 Kd bands in each of the drag- treated samples.
  • the SW480 samples treated with exisulind show a greater PKG phosphorylation activity with added cGMP in the assay relative to the samples treated with vehicle with added cGMP.
  • the increase in PKG activity in the drug-treated samples is not due only to the activation of PKG by the increase in cellular cGMP when the SAAND inhibits cGMP-specific PDE, the increase in PKG activity in neoplasia harboring the APC mutation is due to increased PKG expression as well.
  • HCT116 colon cancer cells were employed.
  • HCT116 is known to contain the ⁇ -catenin mutation, but is known not to contain the APC mutation.
  • the same procedure is used to grow the HCT116 cells as is used in the SW480 procedure described above, hi this experiment, only exisulind and controls were used.
  • the exisulind-treated cells yielded PKG that was phosphorylated to a greater extent than the corresponding controls, indicating that PKG activation occurred in the drug-treated cells that is independent of the APC mutation.
  • ⁇ -catenin refers to wild type and/or mutant forms of that protein.
  • SW480 cells treated with exisulind as described previously are harvested from the microfuge tubes by rinsing once with ice-cold PBS.
  • the cells are lysed by modified RIP A buffer for 15 minutes with agitation.
  • the cell lysate is spun down in a cold room.
  • the supernatants are transferred to fresh microcentrifuge tubes immediately after spinning.
  • BioRad DC Protein Assay (Temecula, CA) is performed to determine the protein concentrations in samples.
  • the samples are normalized for protein concentration, as described above. 50 ⁇ g of each sample is loaded onto a 10% SDS gel. SDS-PAGE is performed, and the proteins then are transferred to a nitrocellulose membrane.
  • the blotted nitrocellulose membrane is blocked in freshly prepared TBST containing 5% nonfat dry milk for one hour at room temperature with constant agitation.
  • a goat-anti-PKG primary antibody is diluted to the recommended concentration/dilution in fresh TBST/5% nonfat dry milk.
  • the nitrocellulose membrane is placed in the primary antibody solution and incubated one hour at room temperature with agitation.
  • the nitrocellulose membrane is washed three times for ten minutes each with TBST.
  • the nitrocellulose membrane is incubated in a solution containing a secondary peroxidase (POD) conjugated rabbit anti-goat antibody for 1 hour at room temperature with agitation.
  • the nitrocellulose membrane is washed three times for ten minutes each time with TBST.
  • the detection is performed by using Boehringer Mannheim BM blue POD substrate.
  • exisulind causes the drop of ⁇ -catenin and the increase of PKG, which data were obtained by Western blot.
  • SW480 cells were treated with exisulind or vehicle (0.1% DMSO) for 48 hours. 50 ⁇ g supernatant of each cell lysate was loaded onto a 10% SDS-gel and blotted to a nitrocellulose membrane, and the membrane was probed with rabbit-anti- ⁇ -catenin and rabbit anti- PKG antibodies.
  • the protein is released from the solid phase by SDS buffer, and the protein- containing mixture is run on a 7.5% SDS-PAGE gel.
  • the running of the mixture on the gel removes excess 32 P- ⁇ -ATP from the mixture.
  • Any 32 P- ⁇ -ATP detected in the 93Kd ⁇ -catenin band therefore, is due to the phosphorylation of the ⁇ -catenin.
  • Any increase in 32 P- ⁇ -ATP detected in the 93 Kd ⁇ -catenin band treated with extra PKG relative to the control without extra PKG is due to the phosphorylation of the ⁇ - catenin in the treated band by the extra PKG.
  • the phosphorylation of ⁇ - catenin refers to the phosphorylation of wild type and/or mutant forms of that protein.
  • ⁇ -Catenin Precipitates With PKG
  • the cell lysate/antibody mixture is gently mixed for 2 hours at 4°C on a tube shaker.
  • the immunocomplex is captured by adding 150 :1 protein A Sepharose bead slurry (75 :1 packed beads) and by gently rocking the mixture on a tube shaker for overnight at 4°C.
  • the Sepharose beads are collected by pulse centrifugation (5 seconds in the microcentrifuge at 14,000 rpm). The supernatant fraction is discarded, and the beads are washed 3 times with 800 :1 ice-cold PBS buffer.
  • the Sepharose beads are resuspended in 150 :1 2 x sample buffer and mixed gently.
  • the Sepharose beads are boiled for 5 minutes to dissociate the immunocomplexes from the beads.
  • the beads are collected by centrifugation and SDS-PAGE is performed on the supernatant.
  • a Western blot is run on the supernatant, and the membrane is then probed with a rabbit-anti- ⁇ -catenin antibody. Then the membrane is washed 3 times for 10 minutes each time with TBST to remove excess anti- ⁇ -catenin antibody.
  • a goat, anti- rabbit antibody conjugated to horseradish peroxidase is added, followed by a one hour incubation at room temperature. When that is done, one can visualize the presence of ⁇ -catenin with an HRPO substrate. In this experiment, we could clearly visualize the presence of ⁇ -catenin.
  • the anti- ⁇ -catenin antibody conjugate is first stripped from the membrane with a 62 mM tris-HCl buffer (pH 7.6) with 2 % SDS and 100 ⁇ M 2 ⁇ -mercaptoethanol in 55°C water bath for 0.5 hour.
  • the stripped membrane is then blocked in TBST with 5%> non-fat dried milk for one hour at room temperature while agitating the membrane.
  • the blocked, stripped membrane is then probed with rabbit polyclonal anti-PKG antibody (Calbiochem, LaJolla, CA), that is detected with goat, anti-rabbit second antibody conjugated to HRPO.
  • the presence of PKG on the blot membrane is visualized with an HRPO substrate.
  • GSK3- ⁇ antibody to ascertain whether it also co-precipitated with ⁇ -catenin.
  • GSK3- ⁇ on the membrane, indicating that the GSK3- ⁇ precipitated with the GSK3- ⁇ and PKG, suggesting that the three proteins may be part of the same complex.
  • PKG may be part of the same complex, and may be involved in the phosphorylation of ⁇ -catenin as part of that complex.
  • Anti-Neoplastic Pharmaceutical Compositions Containing cGMP PDE Inhibitors One drag that was also invented before its mechanism of action was found to involve cGMP inhibition and before it was known to meet the selection criterion of this invention is (Z)-5-fluoro-2-methyl-(4-pyridylidene)-3-(N- benzyl)indenylacetamide hydrochloride ("Compound I"). It has been demonstrated in in vitro and in vivo evaluations as anti-neoplastic having activities against a broad range of neoplasias. It is also safe in animal studies and in a single, escalating dose human study.
  • Compound I can safely be given to animals at doses far beyond the tolerable (and in many cases toxic) doses of conventional chemotherapeutics or anti-neoplastic NSAIDs.
  • single oral doses of Compound I administered (in a 0.5% carboxy-methylcellulose vehicle) at doses up to and including 2000 mg/kg resulted in no observable signs of toxicity.
  • body weight gains were slightly reduced.
  • a single dose of 1000 mg/kg administered intraperitoneally resulted in reduced body weight gain, with mesenteric adhesions seen in some animals from this group at necropsy.
  • Compound I is not acutely toxic. Based on the findings of these studies, the oral LD 50 of Compound I was considered to be greater than 1000 mg/kg in dogs and 4000 mg/kg in rats, and the intraperitoneal LD 50 was considered to be greater than 1000 mg/kg in rats.
  • treatment-related effects were limited to an increase in absolute and relative liver weights in female rats.
  • effects included labored breathing and/or abnonnal respiratory sounds, decreased weights gains and food consumption in male rats, and increased liver weights in female rats. No hematological or blood chemistry changes nor any microscopic pathology changes, were seen at any dose level.
  • the androgen-sensitive prostate tumor cell line, LNCaP (from ATCC (Rockville, MD)) was propagated under standard conditions using RPMI 160 medium containing 5% fetal calve serum and 2 mM glutamine.
  • Primary prostate epithelial cell cultures (PrEC) derived from normal prostate (from Clonetics Inc. (San Diego, CA)) were grown under the same conditions as the tumor cell line except a serum-free medium optimized for the growth of such cultures was used (Clonetics hie).
  • LNCaP or PrEC cells were seeded in 96 well plates at a density of 10,000 cells per well. After 24 hours, the cells were treated with either vehicle (0.1% DMSO) or 50 ⁇ M Compound I (free base) solubilized in DMSO. After various drag treatment times (4, 24, 48, 72, or 99 hours) the cells were lysed and processed for measurement of histone-associated DNA as an indicator of apoptotic cell death (see, Piazza et al., Cancer Research 57: 2452-2459, 1997).
  • Figure 27 shows a time-dependent increase in the amount of histone- associated fragmented DNA in LNCaP cell cultures following treatment with 50 ⁇ M Compound I(free base).
  • a significant increase in fragmented DNA was detected after 24 hours of treatment, and the induction was sustained for up to 4 days of continuous treatment.
  • treatment of PrEC ("normal" prostate) cells with Compound I (50 ⁇ M) did not affect DNA fragmentation for up to 4 days of treatment.
  • cGMP-specific PDE inhibiting compounds that can be effective therapeutically as anti-neoplasties
  • software such as that sold by Molecular Simulations Inc. release of WebLab® ViewerProTM includes molecular visualization and chemical communication capabilities.
  • Such software includes functionality, including 3D visualization of known active compounds to validate sketched or imported chemical structures for accuracy.
  • the software allows structures to be superimposed based on user-defined features, and the user can measure distances, angles, or dihedrals.
  • PDE5 sequence that does not include the catalytic domain was used.
  • One way to produce such a sequence is to express that sequence as a fusion protein, preferably with glutathione S-transferase ("GST").
  • GST- cGB-PDE5 fusion protein was carried out by the procedure described above in the section entitled The Novel PKG Assay.
  • Each compound to be tested is added at the same time as 3 H-cGMP substrate, and the mixture is incubated at 22°C for 1 hour.
  • the mixture is transferred to Brandel MB-24 cell harvester with GF/B as the filter membrane followed by 2 washes with 10 mL of cold 5 mM potassium buffer (pH 6.8).
  • the membranes are then cut out and transferred to scintillation vials followed by the addition of 1 mL of H 2 O and 6 mL of Ready SafeTM liquid scintillation cocktail to each vial.
  • the vials are counted on a Beckman LS 6500 scintillation counter.
  • blank samples are prepared by boiling the binding protein for 5 minutes, and the binding counts are ⁇ 1% when compared to unboiled protein.
  • the quenching by filter membrane or other debris are also calibrated.
  • PDE5 inhibitors sulfide, exisulind, Compound B, Compound E, E4021 and zaprinast, and cyclic nucleotide analogs, cAMP, cyclic IMP, 8-bromo-cGMP, cyclic UMP, cyclic CMP, 8-bromo-cAMP, 2'-O-butyl-cGMP and 2'-O-butyl-cAMP are selected to test whether they could competitively bind to the cGMP binding sites of the GST-cGB-PDE5 protein. The results were shown in Figure 24. cGMP specifically binds GST-cGB-PDE5 protein.
  • Cyclic AMP, cUMP, cCMP, 8-bromo- cAMP, 2'-O-butyl-cAMP and 2'-O-butyl-cGMP did not compete with cGMP in binding.
  • Cyclic IMP and 8-bromo-cGMP at high concentration (100 ⁇ M) can partially compete with cGMP (2 ⁇ M) binding. None of the PDE5 inhibitors showed any competition with cGMP in binding of GST-cGB-PDE5. Therefore, they do not bind to the cGMP binding sites of PDE5.
  • the method of this invention involves treating a patient with neoplasia with both a antibody against the human epidermal growth factor receptor 2 protein (HER2) and a cGMP-specific PDE inhibitor.
  • HER2 human epidermal growth factor receptor 2 protein
  • cGMP-specific PDE inhibitor an appropriate cGMP-specific PDE inhibitor to be used in combination with a antibody against the human epidermal growth factor receptor 2 protein (HER2) in the practice of this invention.
  • Exisulind inhibits both PDE5 and PDE2, and treatment of neoplastic cells with exisulind results in growth inl ibition and apoptosis. (See Table 8).
  • Exisulind and an antibody against HER2 were tested together to determine their combined effect on the growth of a tumor cell line.
  • the ability of the combination to * inhibit tumor cell growth was tested by growing cells in exisulind and * Compound I each.in the presence of an antibody against HER2 in a SRB assay. . .
  • the data show surprising and significant results on inhibition of cell growth • . after treatment with exisulind or Compound I, each with a HER2 antibody (in these cases, Herceptin).
  • the SRB tests were performed with both BT-474 and MDA-MB- 453 cell lines that over-express HER2.
  • Table 10 in the SRB assay in these cell lines treated with cGMP-specific inhibitors (exisulind and compound I) and herceptin according to the methodology developed by Chou T.C. and Talalay P. (Adv.
  • exisulind is one cGMP-specific PDE inhibitor that can be used in combination with a antibody against the human epidermal growth factor receptor 2 protein (HER2) in this invention.
  • HER2 human epidermal growth factor receptor 2 protein
  • Exisulind has no clinically significant side effects when administered at its recommended dose of 300 - 400 mg/day. When administered at doses higher than the recommended therapeutic levels, treatment with exisulind can lead to elevated levels of liver enzymes. This effect is reversible, and liver enzymes return to normal levels when the administered dose of exisulind returns to the traditionally recommended level or when treatment is discontinued.
  • the most serious side effect of HER2 antibody is of ventricular dysfunction and congestive heart failure. Since the side effects of the two drugs do not overlap, a PDE inhibitor, such as exisulind, can be used in combination with HER2 antibody without increasing the harmful side effects of the HER2 antibody.
  • Herceptin For treatment of breast cancer, the common dose of Herceptin is 4 mg/kg administered as a 90-minute infusion.
  • the recommended weekly maintenance dose is 2 m g / k g. if the initial loading dose was well tolerated, hi each of the aforementioned methodologies, the antibody against the human epidermal growth factor receptor 2 protein (HER2) and the PDE inhibitor may be administered simultaneously or in succession.
  • HER2 human epidermal growth factor receptor 2 protein
  • Antibody against the human epidermal growth factor receptor 2 protein are also used in combination with other antineoplastic chemotherapeutics such as paclitaxel (175 mg/m 2 over 3hours every 21 days for at least six cycles); or anthracycline plus cyclophosphamide (AC: doxorabicin 60 mg/m 2 or epirabicin 75 mg/m 2 plus 600 mg/m 2 cyclophosphamide every 21 days for six cycles).
  • antineoplastic chemotherapeutics such as paclitaxel (175 mg/m 2 over 3hours every 21 days for at least six cycles); or anthracycline plus cyclophosphamide (AC: doxorabicin 60 mg/m 2 or epirabicin 75 mg/m 2 plus 600 mg/m 2 cyclophosphamide every 21 days for six cycles).

Landscapes

  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Cette invention concerne une méthode permettant de traiter un patient atteint d'une néoplasie, au moyen d'un traitement adjuvant faisant appel à un anticorps dirigé contre la protéine du récepteur 2 de facteur de croissance épidermique humain (HER2) et à un inhibiteur de phosphodiestérase spécifique du GMP cyclique.
PCT/US2001/043217 2000-11-21 2001-11-19 Methode permettant de traiter une neoplasie et consistant a administrer un anticorps dirige contre la proteine du recepteur 2 du facteur de croissance epidermique humain (her2) et un inhibiteur de phosphodiesterase specifique du gmp cyclique Ceased WO2002041914A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002232413A AU2002232413A1 (en) 2000-11-21 2001-11-19 Method for treating neoplasia by administering an anti-her2 antibody and a cgmp-specific phosphodiesterase inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71698900A 2000-11-21 2000-11-21
US09/716,989 2000-11-21

Publications (1)

Publication Number Publication Date
WO2002041914A1 true WO2002041914A1 (fr) 2002-05-30

Family

ID=24880268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/043217 Ceased WO2002041914A1 (fr) 2000-11-21 2001-11-19 Methode permettant de traiter une neoplasie et consistant a administrer un anticorps dirige contre la proteine du recepteur 2 du facteur de croissance epidermique humain (her2) et un inhibiteur de phosphodiesterase specifique du gmp cyclique

Country Status (2)

Country Link
AU (1) AU2002232413A1 (fr)
WO (1) WO2002041914A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107787331A (zh) * 2015-06-17 2018-03-09 豪夫迈·罗氏有限公司 抗her2抗体和使用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333348B1 (en) * 1999-04-09 2001-12-25 Aventis Pharma S.A. Use of docetaxel for treating cancers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333348B1 (en) * 1999-04-09 2001-12-25 Aventis Pharma S.A. Use of docetaxel for treating cancers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BASELGA ET AL.: "Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer", vol. 14, no. 3, March 1996 (1996-03-01), pages 737 - 744, XP000918166 *
GOLDENBERG: "Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer", CLINICAL THERAPEUTICS, vol. 21, no. 2, February 1999 (1999-02-01), pages 309 - 318, XP000918210 *
RAHMAN ET AL.: "Sulindac and exisulind exhibit a significant antiproliferative effect and induce apoptosis in human hepatocellular carcinoma cell lines", CANCER RESEARCH, vol. 60, 15 April 2000 (2000-04-15), pages 2085 - 2089, XP002909510 *
SORIANO ET AL.: "Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines", CANCER RESEARCH, vol. 59, 15 December 1999 (1999-12-15), pages 6178 - 6184, XP002923259 *
THOMPSON ET AL.: "Inhibition of chemically induced pre-malignant and malignant mammary gland lesions by sulindac sulfone (FGN-1). Proceedings for the american association for cancer research", vol. 38, March 1997 (1997-03-01), pages 367 # 2461, XP002909511 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107787331A (zh) * 2015-06-17 2018-03-09 豪夫迈·罗氏有限公司 抗her2抗体和使用方法
CN107787331B (zh) * 2015-06-17 2022-01-11 豪夫迈·罗氏有限公司 抗her2抗体和使用方法

Also Published As

Publication number Publication date
AU2002232413A1 (en) 2002-06-03

Similar Documents

Publication Publication Date Title
WO2000027391A1 (fr) Methode de traitement d'un patient atteint de neoplasie au moyen d'un complexe de coordination de platine
US6500610B1 (en) Methods for identifying compounds for inhibiting of neoplastic lesions, and pharmaceutical compositions containing such compounds
US6130053A (en) Method for selecting compounds for inhibition of neoplastic lesions
US20030175833A1 (en) Packaged pharmaceuticals and methods for causing compounds and pharmaceutical compositions to be used as inhibitors of neoplastic lesions
WO2000027194A1 (fr) Methode de traitement d'un patient atteint de neoplasie au moyen d'un derive de paclitaxel
EP0997145B1 (fr) Procédés d'identification de substances pour l'inhibition des lésions néeoplastiques
US6555547B1 (en) Method for treating a patient with neoplasia by treatment with a vinca alkaloid derivative
US6569638B1 (en) Method for screening compounds for the treatment of neoplasia
US20030109418A1 (en) Methods for identifying compounds for inhibition of neoplastic lesions, and pharmaceutical compositions containing such compounds
WO2002041914A1 (fr) Methode permettant de traiter une neoplasie et consistant a administrer un anticorps dirige contre la proteine du recepteur 2 du facteur de croissance epidermique humain (her2) et un inhibiteur de phosphodiesterase specifique du gmp cyclique
US6906064B2 (en) Method for treating a patient with neoplasia using Iressa
WO2000027193A1 (fr) Methode de traitement d"un patient atteint de neoplasie a l"aide d"un analogue de la gonadoliberine
WO2001078651A2 (fr) Methode de traitement d'un patient atteint de neoplasie a l'aide d'un inhibiteur de topoisomerase i
KR100644365B1 (ko) 신생물의 병소부위를 억제하는 화합물의 동정방법 및 상기 화합물을 함유하는 약제학적 조성물
US20050244914A1 (en) Methods for identifying compounds for inhibition of neoplastic lesions, and pharmaceutical compositions containing such compounds
WO2000027404A1 (fr) Traitement d'une neoplasie chez un patient par l'administration d'une anthracycline
WO2000027403A1 (fr) Methode pour traiter une neoplasie chez un patient par administration d'un analogue de pyrimidine
US20040009464A1 (en) Methods for identifying compounds for inhibition of neoplastic lesions, and pharmacetical compositions containing such compounds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)