[go: up one dir, main page]

WO2001038109A1 - A method of molding a tire and mold therefor - Google Patents

A method of molding a tire and mold therefor Download PDF

Info

Publication number
WO2001038109A1
WO2001038109A1 PCT/US1999/027906 US9927906W WO0138109A1 WO 2001038109 A1 WO2001038109 A1 WO 2001038109A1 US 9927906 W US9927906 W US 9927906W WO 0138109 A1 WO0138109 A1 WO 0138109A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
mold
forming
segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1999/027906
Other languages
French (fr)
Inventor
Billy Joe Ratliff, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodyear Tire and Rubber Co
Original Assignee
Goodyear Tire and Rubber Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodyear Tire and Rubber Co filed Critical Goodyear Tire and Rubber Co
Priority to PCT/US1999/027906 priority Critical patent/WO2001038109A1/en
Priority to CA002391154A priority patent/CA2391154A1/en
Priority to AU27067/00A priority patent/AU2706700A/en
Priority to BR9917562A priority patent/BR9917562A/en
Priority to US10/130,335 priority patent/US6955782B1/en
Publication of WO2001038109A1 publication Critical patent/WO2001038109A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D30/0629Vulcanising moulds not integral with vulcanising presses with radially movable sectors

Definitions

  • the unvulcanized tire is placed into a mold, the mold has surfaces for fo ⁇ ning the tread and sidewalls of the tire.
  • the first type is a two piece mold
  • the second type is a segmented mold.
  • the two-piece mold is considered the least expensive type, generally.
  • the mold has two halves, an upper mold half and a lower mold half, generally these halves meet at the tread center or equatorial plane of the tire.
  • the mold halves typically open similar to a clamshell.
  • the molds typically work best for tires having minimal blading, particularly in the tread shoulders.
  • segmented molds generally have radially expanding and contracting segments for forming the tread.
  • the segments form an annular ring when the mold is closed.
  • the segments are moved radially outwardly to release the tread from the segments.
  • Such a mold permits blades and circumferential and laterally inclined groves forming ribs to be used in the mold segments.
  • the segments are radially expanded forcing the segments from the freshly molded tread pattern without cutting the tread elements. Unlike the two piece mold, the tread elements do not need to deform out of the way of these ribs and blades as the mold opens.
  • the segmented mold also has two annular sidewall forming rings or plates. These sidewall rings of the mold can open similar to the two piece mold. The primary difference is the radially outer extremes of the two annular rings are abuttingly in contact with the tread forming segments when the mold is closed. The primary benefit to this mold is the segments can be made with a minimum concavity limited to the tread itself. In most passenger and light truck tires the tread extends radially inwardly to a very short distance called the tread shoulder. Thereafter, the tire sidewalls having indicia and other decorative bands are formed extending from the tread shoulders to the tire beads. It has become advantageous to form the tread extending much further down the tire sidewall.
  • the Goodyear Tire & Rubber company has developed a tire called the Wrangler MT/R which has the shoulder tread elements protruding outwardly and extending down the sidewall to a location 75 % of the section height of the tire above the nominal rim diameter.
  • This on/off road light truck tire employs extended shoulder traction elements to enhance off- road traction.
  • the tread forming segments of the mold were extended greatly increasing the depth of the concavity of the segments.
  • the resultant sidewall plates or rings were reduced diametrically.
  • the resultant tire had a very distinctive appearance, but at a fairly large increase in tooling cost.
  • the present invention has provided a new way to fabricate segmented molds with greatly reduce construction costs while at the same time providing extended axially outer ends of shoulder tread elements.
  • the present invention teaches a novel method of increasing the visual appearance of the tread shoulder.
  • the method has the steps of placing an unvulcanized tire (20) into the segmented mold (2); closing the mold (2) radially contracting the tread forming segments (4) into an annular ring (6,8) having a plurality of shoulder tread element fo ⁇ ning cavities (11) having circumferentially spaced axially outer ends (9) and bringing the tread forming segments (4) and annular sidewall forming rings (6,8) into abutting relation circumferentially aligning a plurality of tread element extension forming surfaces (12) of the sidewall forming annular rings (6,8) with the axially outer ends (9) of the tread element forming cavities (11) of the tread forming segments (4); applying heat and pressure thereby curing the tire (20); opening the mold (2); and removing the tire (20).
  • the method further includes the step of fabricating the segmented mold (2) and aligning the tread element extension forming surfaces (12) of the annular rings (6,8) with the axially outer ends (9) of the tread forming cavities (11) of the segments (4).
  • the tread (22) formed by the segments (4) is pitched with two or more pitch sizes arranged in preselected sequence and the tread elements extension surfaces (12) of each annular ring (6,8) are pitched to correspond to the pitch sizes and preselected pitch sequence of the tread forming segments (4).
  • Angle of Incidence means the angle formed by a line from a ray of light falling on a surface and a perpendicular arising from the point of incidence.
  • Axial and “axially” means the lines or directions that are parallel to the axis of rotation of the tire.
  • “Circumferential” means lines or directions extending along the perimeter of the surface of the annular tread perpendicular to the axial direction.
  • light deflection means that as light strikes a surface, the reflected light is angularly directed relative to the angle of incidence of the light source yielding what appears to be a light absorbing characteristic to an observer who is positioned in general alignment with the angle of incidence.
  • light reflection means that as light strikes an object, the reflected light is generally aligned with the angle of incidence yielding what appears to be a shiny or reflective characteristic to an observer who is positioned in general alignment with the angle of incidence.
  • Reflector and radially mean directions radially toward or away from the axis of rotation of the tire.
  • “Sidewall” means that portion of a tire between the tread and the bead.
  • Fig. 1 is a cross-sectional view of a portion of a tire mold in a partial exploded perspective according to the invention.
  • Fig. 2 is the portion of a tire mold of Fig. 1 in the closed position.
  • Fig. 3 is a tire perspective view made according to the invention.
  • Fig. 4 is a cross-sectional view of the tire made according to the invention.
  • Fig. 5 is a plan side view of a tire made according to the invention.
  • Fig. 6 is a cross-sectional view of the annular rings (6,8) taken along lines (6-6) of Fig. 2 depicting the band (50) forming ridges and grooves.
  • Fig. 7 is a partial enlarged plan view of a mold segment abutted against an annular ring (6,8) showing the relationship of the lug extension (12) and the axially outer portion (42) of the lug (40) forming cavity of the preferred embodiment tire exhibiting the band (50) forming ridges and grooves.
  • Fig. 8A is the cross-sectional view of the tire (20) as molded shown from Fig. 5 wherein the lug extension is flush or not projecting from the sidewall (24).
  • Fig. 8B is the alternative view of the Fig. 8A wherein the lug extension extends outwardly from the ridges of band (50).
  • Fig. 9 is an alternative tire (20) made according to the invention.
  • Fig. 1 a cross-sectional view of a segmented mold (2) according to the invention is shown.
  • the mold (2) when in the open position has the segments (4) expanded radially outwardly and spaced from the lower sidewall forming annular ring (6).
  • the upper sidewall-forming ring (8) is tilted away from the segments (4). In this open position the cured tire (20) can be removed from the mold (2).
  • the segments (4) preferably are moved radially inward abutting the lower sidewall ring (6) then the green tire (20) is placed in the mold (2) with an inflatable curing bladder (not illustrated) inserted in the air chamber of the tire (20).
  • the top sidewall forming the upper ring (8) is closed into abutting relation with the segments (4) as shown in Fig. 2.
  • the tire (20) is then cured by applying heat and pressure to the inside of the mold (2).
  • the curing bladder (not illustrated) is inflated and expands pressing the tire (20) firmly against the tread forming segments (4) and the sidewall fo ⁇ ning rings (6,8).
  • these sidewall lug extensions (30) extend radially inward a substantial distance into the sidewall indicia band (50) as shown.
  • the ridges forming the radially outer portion (52) of the indicia band (50) is preferably at the radially outermost extreme of the annular rings (6,8) of the mold (2).
  • the lug extensions (30) project outwardly from the sidewall of the tire such that the extensions have a pronounced radial height (hj as measured from the adjacent surfaces of the sidewall as shown in Fig. 8B.
  • the tire designer may (as in Fig. 5) or may not (as in Fig.3) employ an annular band of ridges (50) outlining the lug extensions (30).
  • the annular ring (6,8) has the lug extension-forming portion made of cavities (12) or depressions cut into the mold rings (6,8). Each of these cavities (12) must align precisely with the angular orientation of the axially outer portions (42) of the lug (40) forming cavities (11) in the mold segments (4).
  • tire tread patterns are generally pitched.
  • the lug fo ⁇ ning cavities (11) of the tread will utilize two or more pitch lengths, and the sidewall forming rings (6,8) have corresponding and aligned pitches for the lug extension surfaces (30) resulting in a tire (20) having the pitched tread lugs (40) and the corresponding pitched lug extensions (30) circumferentially aligned. That is the adjacent tread elements vary in size around the tread to minimize noise generation. Accordingly, this size variation is clearly seen and therefore added a unique alignment complexity to the use of this lug extension.
  • a noticeable step-off in the alignment can occur if the segments and the mold ring are not truly precisely aligned.
  • a second very subtle way in which a misalignment occurs is the thermal expansion of the components must be compensated for. That is when the molds are heated the rings (6,8) and the segment (4) must be assumed to operate at a steady state curing temperature.
  • a preferred embodiment method of forming the appearance of lug extensions (30) along the sidewall is to provide the sidewall band (50) comprised of a plurality of radially extending grooves (54) and ridges (52) in the sidewalls (24).
  • This band (50) is made by cutting ridges (14) of substantially triangular cross-section into the annular ring (6,8) having an included angle ⁇ of about 90° having a height (h) and preferably spaced a distance (d) respectively, extending to the location of the abutting relationship with the segment (4) or through the radial extremes of the annular rings (6,8) as shown in Fig. 7.
  • the scuff resistance of the lug extensions (30) is better in that the lug extensions (30) really are not extending outwardly. If on the other hand the tire designer chooses he may use this band (50) with a projecting lug extension (30) as shown in Fig. 8B, by simply having the annular rings (6,8) having the smooth portion defining the lug extension (30) deeper into the mold fo ⁇ ning the cavities (11) as described before wherein the depth of the cavity is greater than the space between the ridges (52) of the band (50). In this case, the lug extensions (30) project well above the sidewall (24) surface area by an amount of 1 mm or more.
  • a small groove (60) may be used at the location wherein the lug extension surface (30) abuts the axially outer portion of the lug (40) ; this groove (60) effectively mask any flash or joint lines that may occur as well as hide any misalignment of the abutting features.
  • this feature is generally not required because the fit between the segments (4) and the rings (6,8) can be made without any misalignment or fit problems.
  • the present invention achieves a novel method to create a distinctive aggressive looking tread pattern that is inexpensive to produce but also of superb styling and appearance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

A tire molding method is disclosed wherein a segmented mold (2) has lugs (40) in the shoulder regions of the segments (4) with complimentary lug extensions (30) in the sidewall forming annular rings (6, 8). The lug extensions (30) align with and form the appearance of a lug (40) that extends radially inward well into the sidewall of the tire (20). The resultant tire (20) and the mold (2) for making the tire (20) are less costly to fabricate than prior art segmented molds.

Description

A METHOD OF MOLDING A TIRE AND MOLD THEREFORE Technical Field The present invention relates to the art of molding tires having a tread pattern imparted thereon. Background Art
In the manufacture of tires the unvulcanized tire is placed into a mold, the mold has surfaces for foπning the tread and sidewalls of the tire. There are conventionally two basic types of tire molds; the first type is a two piece mold the second type is a segmented mold.
The two-piece mold is considered the least expensive type, generally. The mold has two halves, an upper mold half and a lower mold half, generally these halves meet at the tread center or equatorial plane of the tire. The mold halves typically open similar to a clamshell. The molds typically work best for tires having minimal blading, particularly in the tread shoulders.
When superior quality tires or more complex treads having shoulder blading and intricate grooves are needed then the use of segmented molds is preferred. Segmented molds generally have radially expanding and contracting segments for forming the tread. The segments form an annular ring when the mold is closed. When the mold is opened the segments are moved radially outwardly to release the tread from the segments. As can be appreciated such a mold permits blades and circumferential and laterally inclined groves forming ribs to be used in the mold segments. The segments are radially expanded forcing the segments from the freshly molded tread pattern without cutting the tread elements. Unlike the two piece mold, the tread elements do not need to deform out of the way of these ribs and blades as the mold opens.
These features or benefits of a segmented type mold come with a somewhat higher cost of the mold.
In most tire molding applications the segmented mold also has two annular sidewall forming rings or plates. These sidewall rings of the mold can open similar to the two piece mold. The primary difference is the radially outer extremes of the two annular rings are abuttingly in contact with the tread forming segments when the mold is closed. The primary benefit to this mold is the segments can be made with a minimum concavity limited to the tread itself. In most passenger and light truck tires the tread extends radially inwardly to a very short distance called the tread shoulder. Thereafter, the tire sidewalls having indicia and other decorative bands are formed extending from the tread shoulders to the tire beads. It has become advantageous to form the tread extending much further down the tire sidewall. The Goodyear Tire & Rubber company has developed a tire called the Wrangler MT/R which has the shoulder tread elements protruding outwardly and extending down the sidewall to a location 75 % of the section height of the tire above the nominal rim diameter. This on/off road light truck tire employs extended shoulder traction elements to enhance off- road traction.
In order to make this tire, the tread forming segments of the mold were extended greatly increasing the depth of the concavity of the segments. Correspondingly, the resultant sidewall plates or rings were reduced diametrically. The resultant tire had a very distinctive appearance, but at a fairly large increase in tooling cost.
The present invention has provided a new way to fabricate segmented molds with greatly reduce construction costs while at the same time providing extended axially outer ends of shoulder tread elements.
Besides providing a lower cost way to make such a tire, the present invention teaches a novel method of increasing the visual appearance of the tread shoulder. Summary of the Invention
The method of molding a tire (20) in a segmented mold (2) having tread forming segments (4) and a pair of annular sidewall forming rings (6,8) is disclosed.
The method has the steps of placing an unvulcanized tire (20) into the segmented mold (2); closing the mold (2) radially contracting the tread forming segments (4) into an annular ring (6,8) having a plurality of shoulder tread element foπning cavities (11) having circumferentially spaced axially outer ends (9) and bringing the tread forming segments (4) and annular sidewall forming rings (6,8) into abutting relation circumferentially aligning a plurality of tread element extension forming surfaces (12) of the sidewall forming annular rings (6,8) with the axially outer ends (9) of the tread element forming cavities (11) of the tread forming segments (4); applying heat and pressure thereby curing the tire (20); opening the mold (2); and removing the tire (20).
The method further includes the step of fabricating the segmented mold (2) and aligning the tread element extension forming surfaces (12) of the annular rings (6,8) with the axially outer ends (9) of the tread forming cavities (11) of the segments (4).
In the preferred method the tread (22) formed by the segments (4) is pitched with two or more pitch sizes arranged in preselected sequence and the tread elements extension surfaces (12) of each annular ring (6,8) are pitched to correspond to the pitch sizes and preselected pitch sequence of the tread forming segments (4). Definitions
"Angle of Incidence" means the angle formed by a line from a ray of light falling on a surface and a perpendicular arising from the point of incidence.
"Axial" and "axially" means the lines or directions that are parallel to the axis of rotation of the tire.
"Circumferential" means lines or directions extending along the perimeter of the surface of the annular tread perpendicular to the axial direction.
"light deflection" means that as light strikes a surface, the reflected light is angularly directed relative to the angle of incidence of the light source yielding what appears to be a light absorbing characteristic to an observer who is positioned in general alignment with the angle of incidence.
"light reflection" means that as light strikes an object, the reflected light is generally aligned with the angle of incidence yielding what appears to be a shiny or reflective characteristic to an observer who is positioned in general alignment with the angle of incidence. "Radial" and "radially" mean directions radially toward or away from the axis of rotation of the tire.
"Sidewall" means that portion of a tire between the tread and the bead.
"Tread" means that portion of the tire that comes into contact with the road under normal inflation and load. Brief Description of Drawings
Fig. 1 is a cross-sectional view of a portion of a tire mold in a partial exploded perspective according to the invention.
Fig. 2 is the portion of a tire mold of Fig. 1 in the closed position.
Fig. 3 is a tire perspective view made according to the invention. Fig. 4 is a cross-sectional view of the tire made according to the invention.
Fig. 5 is a plan side view of a tire made according to the invention.
Fig. 6 is a cross-sectional view of the annular rings (6,8) taken along lines (6-6) of Fig. 2 depicting the band (50) forming ridges and grooves.
Fig. 7 is a partial enlarged plan view of a mold segment abutted against an annular ring (6,8) showing the relationship of the lug extension (12) and the axially outer portion (42) of the lug (40) forming cavity of the preferred embodiment tire exhibiting the band (50) forming ridges and grooves.
Fig. 8A is the cross-sectional view of the tire (20) as molded shown from Fig. 5 wherein the lug extension is flush or not projecting from the sidewall (24). Fig. 8B is the alternative view of the Fig. 8A wherein the lug extension extends outwardly from the ridges of band (50).
Fig. 9 is an alternative tire (20) made according to the invention. Detailed Description of the Invention With reference to Fig. 1 a cross-sectional view of a segmented mold (2) according to the invention is shown. The mold (2) when in the open position has the segments (4) expanded radially outwardly and spaced from the lower sidewall forming annular ring (6). The upper sidewall-forming ring (8) is tilted away from the segments (4). In this open position the cured tire (20) can be removed from the mold (2). To cure a green or uncured tire the segments (4) preferably are moved radially inward abutting the lower sidewall ring (6) then the green tire (20) is placed in the mold (2) with an inflatable curing bladder (not illustrated) inserted in the air chamber of the tire (20).
The top sidewall forming the upper ring (8) is closed into abutting relation with the segments (4) as shown in Fig. 2. The tire (20) is then cured by applying heat and pressure to the inside of the mold (2). The curing bladder (not illustrated) is inflated and expands pressing the tire (20) firmly against the tread forming segments (4) and the sidewall foπning rings (6,8).
While the sequence of steps described above are generally appreciated by those of ordinary skill in the tire molding art. The segments (4) of the mold (2) and the upper and lower sidewall forming annular rings (6,8) are fabricated in such a way that in the process of molding the tire (20) the tread (22) is formed with a sidewall (24) having complimentary lug extensions (30) circumferentially aligned with the axially outer portion (42) of the traction lugs (40) as illustrated in Figs. 3, 4 and 5 of the drawings of the tire (20).
As shown in Figs. 5, 6, and 7 in the preferred embodiment tire (20) of the invention these sidewall lug extensions (30) extend radially inward a substantial distance into the sidewall indicia band (50) as shown. The ridges forming the radially outer portion (52) of the indicia band (50) is preferably at the radially outermost extreme of the annular rings (6,8) of the mold (2).
In some cases the lug extensions (30) project outwardly from the sidewall of the tire such that the extensions have a pronounced radial height (hj as measured from the adjacent surfaces of the sidewall as shown in Fig. 8B. In these cases the tire designer may (as in Fig. 5) or may not (as in Fig.3) employ an annular band of ridges (50) outlining the lug extensions (30). In such a case the annular ring (6,8) has the lug extension-forming portion made of cavities (12) or depressions cut into the mold rings (6,8). Each of these cavities (12) must align precisely with the angular orientation of the axially outer portions (42) of the lug (40) forming cavities (11) in the mold segments (4).
While this may appear simple it must be understood that tire tread patterns are generally pitched. When the tire (20) is pitched, the lug foπning cavities (11) of the tread will utilize two or more pitch lengths, and the sidewall forming rings (6,8) have corresponding and aligned pitches for the lug extension surfaces (30) resulting in a tire (20) having the pitched tread lugs (40) and the corresponding pitched lug extensions (30) circumferentially aligned. That is the adjacent tread elements vary in size around the tread to minimize noise generation. Accordingly, this size variation is clearly seen and therefore added a unique alignment complexity to the use of this lug extension. A noticeable step-off in the alignment can occur if the segments and the mold ring are not truly precisely aligned. A second very subtle way in which a misalignment occurs is the thermal expansion of the components must be compensated for. That is when the molds are heated the rings (6,8) and the segment (4) must be assumed to operate at a steady state curing temperature.
If this is not true the expansion difference can effect the alignment. Fortunately, while the segment (4) and the annular rings (6,8) are not always operated at identical temperatures due to heating and cooling differences in the mold itself. Each mold achieves a steady state temperature at each location of the segment (4) and the rings (6,8) such that the cavities (11,12) can be aligned by a mold maker adjusting the ring cavities (12) to match corresponding the segment cavity (11) at the edges so that a precise alignment is achieved. In this way the lug extensions (30) are so accurately aligned it is almost impossible to discern where the ring (6,8) starts and segments (4) stop. While this may seem trivial to a tire manufacturer tire appearance is important and in the area of the sidewall where the manufactures name appears this region demands the highest of quality.
A preferred embodiment method of forming the appearance of lug extensions (30) along the sidewall is to provide the sidewall band (50) comprised of a plurality of radially extending grooves (54) and ridges (52) in the sidewalls (24). This band (50) is made by cutting ridges (14) of substantially triangular cross-section into the annular ring (6,8) having an included angle θ of about 90° having a height (h) and preferably spaced a distance (d) respectively, extending to the location of the abutting relationship with the segment (4) or through the radial extremes of the annular rings (6,8) as shown in Fig. 7. In one method as shown in Fig. 8A at the locations where the lug extensions (30) are to be formed the ridges (14) are simply ground away leaving a smooth surface (5) on the rings (6,8). What is so clever about this approach is that the band grooves (54) are depressions in the sidewall (24) and the lug extension (30) actually can be made flush to the exterior surface of the sidewall (24) without actually projecting outwardly. Nevertheless to the observer it appears as though the lugs are projecting outwardly when they are not. This technique has several benefits in that the propensity for crack propagation to occur is e___minated in that the stress risers common in this area of the tread shoulder are eliminated. Furthermore, the scuff resistance of the lug extensions (30) is better in that the lug extensions (30) really are not extending outwardly. If on the other hand the tire designer chooses he may use this band (50) with a projecting lug extension (30) as shown in Fig. 8B, by simply having the annular rings (6,8) having the smooth portion defining the lug extension (30) deeper into the mold foπning the cavities (11) as described before wherein the depth of the cavity is greater than the space between the ridges (52) of the band (50). In this case, the lug extensions (30) project well above the sidewall (24) surface area by an amount of 1 mm or more.
In one alternative tire (20) at the location wherein the lug extension surface (30) abuts the axially outer portion of the lug (40) a small groove (60) may be used; this groove (60) effectively mask any flash or joint lines that may occur as well as hide any misalignment of the abutting features. Interestingly with computer-controlled modeling and mold manufacture, this feature is generally not required because the fit between the segments (4) and the rings (6,8) can be made without any misalignment or fit problems.
As can be seen from the above description the present invention achieves a novel method to create a distinctive aggressive looking tread pattern that is inexpensive to produce but also of superb styling and appearance.

Claims

1. The method of molding a tire (20) in a segmented mold (2) having tread forming segments (4) and a pair of annular sidewall foπning rings (6,8); placing an unvulcanized tire (20) into the segmented mold (2); closing the mold (2) radially contracting the tread forming segments (4) each segment (4) having a plurality of a shoulder tread element forming cavities (11) having circumferentially spaced axially outer ends (9), and bringing into abutting relation the tread forming segments (4) and the annular sidewall forming rings (6,8) circumferentially aligning a plurality tread element extension forming surfaces (12) of the sidewall forming annular rings (6,8) with the axially outer ends (9) of the tread element forming cavities (11) of the tread forming segments (4); applying heat and pressure curing the tire; opening the mold (2); and removing the cured tire (20).
2. The method of molding a tire (20) in a segmented mold (2) having tread forming segments (4) of claim 1 further includes the step of fabricating the segmented mold (2), and aligning the tread element lug extension forming (12) of the annular rings (6,8) with the axially outer ends (9) of the tread forming cavities (11) of the segments (4) when the mold (2) is in the closed position.
3. The method of molding a tire (20) in a segmented mold (2) having tread forming segments (4) of claim 2 wherein the step of fabricating the mold (2) includes the step of pitching the tread formed by the segments (4) in two or more distinct pitch sizes and arranging the two or more pitch sizes in a pitch sequence, and pitching the tread element extension surfaces (12) foπned by the annular rings (6,8) to correspond to the pitch sizes and the pitch sequence of the tread foπning segments (4).
4. A tire (20) having a pair of sidewalls (24) and a radially outer tread (22), the tread (22) having a plurality of traction lugs (40) having an axially outer portion (42) extending radially inwardly a distance R, the tire (20) characterized by: the sidewalls (24) having a plurality of shoulder lug extensions (30) circumferentially aligned with the axially outer portions (42) and extending from the location R radially inwardly along the sidewall (24), the combination of the lug extension (30) and the axially outer portion (42) form shoulder lugs (40) wrapped over the sidewalls (24).
5. The tire of claim 1 wherein the sidewall (24) has a serrated band (50) formed by a plurality of closely spaced ridges (51), the ridges (51) bounding the lug extension surfaces (30) and extending radially to the location R between the axially outer portion (42) of the shoulder lugs (40).
6. The tire of claim 2 wherein the lug extension (30) extends outwardly from the sidewall (24) as measured from the ridges (51) in an amount of .0 mm or more.
7. The tire (20) of claim 3 wherein the lug extension (30) extends outwardly from the sidewall (24) as measured from the ridges (51) in an amount of 1 mm or more.
8. The tire (20) of claim 1 wherein the shoulder lugs (40) have two or more pitch lengths and the shoulder lug extension (30) are correspondingly pitched relative to the shoulder lug (40) to which the lug extension (30) is circumferentially aligned.
9. A mold (2) for making a tire having a plurality of tread lugs (40), the mold (2) having four or more radially movable tread forming segments (4), the segment (4) when closed foπning an annular tread ring, and an upper sidewall forming ring (8) and a lower sidewall forming ring (6), the segments having a plurality of lug forming cavities (11) each extending to a radially inner end (9) locatio, the mold being characterized by: each sidewall foπning a ring (6,8) having a plurality of shoulder lug extension surfaces (12) circumferentially aligned with the lug foπning cavities (11) of the mold segments (4).
10. The mold of claim 6 wherein the lug foπning cavities (11) are pitched utilizing two or more pitch lengths, and the sidewall forming rings (6,8) have corresponding and aligned pitches for the lug extension surfaces (30).
PCT/US1999/027906 1999-11-24 1999-11-24 A method of molding a tire and mold therefor Ceased WO2001038109A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/US1999/027906 WO2001038109A1 (en) 1999-11-24 1999-11-24 A method of molding a tire and mold therefor
CA002391154A CA2391154A1 (en) 1999-11-24 1999-11-24 A method of molding a tire and mold therefore
AU27067/00A AU2706700A (en) 1999-11-24 1999-11-24 A method of molding a tire and mold therefor
BR9917562A BR9917562A (en) 1999-11-24 1999-11-24 Molding method of a tire and mold for it
US10/130,335 US6955782B1 (en) 1999-11-24 1999-11-24 Method of molding a tire and mold therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1999/027906 WO2001038109A1 (en) 1999-11-24 1999-11-24 A method of molding a tire and mold therefor

Publications (1)

Publication Number Publication Date
WO2001038109A1 true WO2001038109A1 (en) 2001-05-31

Family

ID=22274141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/027906 Ceased WO2001038109A1 (en) 1999-11-24 1999-11-24 A method of molding a tire and mold therefor

Country Status (3)

Country Link
AU (1) AU2706700A (en)
CA (1) CA2391154A1 (en)
WO (1) WO2001038109A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009337A1 (en) * 2002-07-24 2004-01-29 Bridgestone/Firestone North American Tire, Llc Segmented tire mold to reduce flash
WO2015009401A1 (en) * 2013-07-15 2015-01-22 Bridgestone Americas Tire Operations, Llc Tire with pre-formed tread and method of making same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247880A (en) * 1964-11-25 1966-04-26 George J Batori Tire
EP0320143A2 (en) * 1987-11-30 1989-06-14 Sumitomo Rubber Industries, Co. Ltd Pneumatic tyre
JPH039817A (en) * 1989-06-06 1991-01-17 Bridgestone Corp Pneumatic tire and its molding die
EP0726174A1 (en) * 1995-02-13 1996-08-14 Sumitomo Rubber Industries Limited Pneumatic tyre and method of making the same
WO1999052720A1 (en) * 1998-08-26 1999-10-21 The Goodyear Tire & Rubber Company An on/off-road tread

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247880A (en) * 1964-11-25 1966-04-26 George J Batori Tire
EP0320143A2 (en) * 1987-11-30 1989-06-14 Sumitomo Rubber Industries, Co. Ltd Pneumatic tyre
JPH039817A (en) * 1989-06-06 1991-01-17 Bridgestone Corp Pneumatic tire and its molding die
EP0726174A1 (en) * 1995-02-13 1996-08-14 Sumitomo Rubber Industries Limited Pneumatic tyre and method of making the same
WO1999052720A1 (en) * 1998-08-26 1999-10-21 The Goodyear Tire & Rubber Company An on/off-road tread

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 120 (M - 1096) 25 March 1991 (1991-03-25) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009337A1 (en) * 2002-07-24 2004-01-29 Bridgestone/Firestone North American Tire, Llc Segmented tire mold to reduce flash
WO2015009401A1 (en) * 2013-07-15 2015-01-22 Bridgestone Americas Tire Operations, Llc Tire with pre-formed tread and method of making same
RU2628864C2 (en) * 2013-07-15 2017-08-25 БРИДЖСТОУН АМЕРИКАС ТАЙР ОПЕРЕЙШЕНС, ЭлЭлСи Tire with preliminary professional protector and method of its manufacture

Also Published As

Publication number Publication date
CA2391154A1 (en) 2001-05-31
AU2706700A (en) 2001-06-04

Similar Documents

Publication Publication Date Title
US6955782B1 (en) Method of molding a tire and mold therefor
JP6407820B2 (en) Lining assembly including skin for tire vulcanization mold
US6767495B2 (en) Mold and process for molding a tread
EP0818290A2 (en) Mold for tyre vulcanization and manufacturing method thereof
JPH0911706A5 (en)
EP1189744B1 (en) Method and apparatus for moulding and curing tyres for vehicle wheels
GB2074953A (en) Pneumatic tyre and method of building a pneumatic tyre
JP2004314606A (en) Tire vulcanizing method and self-locking tire mold
CN101306580A (en) Method for manufacturing pneumatic tires
US20090309265A1 (en) Method and apparatus for moulding and curing tyres for vehicle wheels
JP2006506254A (en) Method and apparatus for molding and curing tires for car wheels
EP1629963B1 (en) Tire curing bladder
JP4615824B2 (en) Pneumatic tire manufacturing method and vulcanization mold used therefor
WO2001038109A1 (en) A method of molding a tire and mold therefor
CN116723922B (en) Flexible mold segment having raised sipe elements for forming a tire
EP1038657B1 (en) Method and apparatus for moulding and curing tyres for vehicle wheels
US20080152742A1 (en) Three piece tire mold
EP1629962B1 (en) Tire curing bladder
US20070009623A1 (en) Annular venting of tire tread molds
CA2087631C (en) Apparatus, insert and method for forming curing envelope
JPH09225945A (en) Tire mold
JP2007515310A (en) Method for manufacturing a tire and toroidal support for carrying out said method
RU2678266C1 (en) Method of manufacturing large-size pneumatic tires
JP4604783B2 (en) Manufacturing method of rigid core for tire vulcanization and pneumatic tire
EP0235071B1 (en) Method and apparatus for assembling a vehicle tyre

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2391154

Country of ref document: CA

Ref document number: 10130335

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase