WO2001027368A1 - Nanofibres insolubles de polyethylenimine lineaire et utilisations correspondantes - Google Patents
Nanofibres insolubles de polyethylenimine lineaire et utilisations correspondantes Download PDFInfo
- Publication number
- WO2001027368A1 WO2001027368A1 PCT/US2000/027737 US0027737W WO0127368A1 WO 2001027368 A1 WO2001027368 A1 WO 2001027368A1 US 0027737 W US0027737 W US 0027737W WO 0127368 A1 WO0127368 A1 WO 0127368A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fabric
- fibers
- linear poly
- ethylenimine
- gases
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/76—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43835—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D5/00—Composition of materials for coverings or clothing affording protection against harmful chemical agents
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
- D01D5/0038—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/4334—Polyamides
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43838—Ultrafine fibres, e.g. microfibres
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/16—Physical properties antistatic; conductive
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/04—Outerwear; Protective garments
Definitions
- This invention relates generally to the production of fibers that can react chemically with nerve gases and other chemical warfare agents to render them inactive. More particularly, this invention relates to the production of insoluble fibers comprising crosslinked linear poly(ethylenimine) and ranging in diameter of from about 100 to about 1 micron, and more preferably, from about 100 nanometers to about 400 nanometers.
- the nanofibers are suitable for use in or on protective clothing and other fabrics and are insoluble in all solvents, including water, alcohol, and copper-containing water.
- Chemical warfare agents including but not limited to sarin, soman, tabun, and mustard gas, have been used by combatants in warfare throughout this past century and continue to be a potential threat to combatants and non-combatants in future conflicts. Such agents have also be used against civilian populations in terrorist attacks. As a result, counter-measures against such agents are continually being sought for military and civilian uses. Protection must be afforded against not only inhalation of these agents, but in some cases, protection against absorption through the skin must also be given. Nerve gases such as Soman and VX are examples of nerve agents that can penetrate the skin.
- the coating set forth in the Wu patent is believed to have achieved an important advance in the fight against chemical warfare agents, it nevertheless still has its drawbacks.
- the protective polymeric coating is water vapor permeable, it is not air permeable.
- fabrics produced by the process set forth in the Wu patent still were not suitable for uses other than clothing.
- the Wu patent offers essentially no advantage for breathing apparatuses, or fabrics and cloths where air must be allowed to permeate the fabric which contains the protective layer.
- the nonporous protective coating material of Wu is also not capable of being woven into the material of the fabric itself.
- electrostatic spinning also known within the fiber forming industry as electrospinning, of liquids and/or solutions capable of forming fibers, is well known and has been described in a number of patents as well as in the general literature.
- the process of electrostatic spinning generally involves the introduction of a liquid into an electric field, so that the liquid is caused to produce fibers. These fibers are generally drawn to a cathode for collection. During the drawing of the liquid, the fibers harden and dry. This may be caused by cooling of the liquid, i.e., where the liquid is normally a solid at room temperature; by evaporation of a solvent, e.g., by dehydration (physically induced hardening); or by a curing mechanism (chemically induced hardening).
- Fibers produced by this process have been used in a wide variety of applications, and are known, from U.S. Patent Nos. 4,043,331 and 4,878,908, to be particularly useful in forming non-woven mats suitable for use in wound dressings and prosthetic devices.
- One of the major advantages of using electrostatically spun fibers is that these fibers can be produced having very thin diameters, usually on the order of about 100 nanometers to about 25 microns, and more preferably, on the order of about 100 nanometers to about 4 microns.
- these fibers can be collected and formed into non-woven mats or membranes of any desired shape and thickness. It will be appreciated that, because of the very small diameter of the fibers, a mat or membrane with very small interstices and high surface area, two characteristics that are important in determining the porosity of the mat or membrane, can be produced.
- apoly(alkylenimine) electrospun nanofiber i.e., a fiber having a diameter of less than about 1 micron
- branched polyamines as a film or coating
- nanofibers of poly(ethylenimine) or the like suitable for use in fabrics in this purpose.
- L-PEI linear poly(ethylenimine)
- L-PEI linear poly(ethylenimine)
- an object of the present invention to provide a fiber having a very large surface area per unit mass which fiber can detoxify chemical warfare agents and nerve gases by chemically modifying the nerve gas and rendering it inactive.
- the present invention provides a fabric comprising a plurality of fibers of a linear poly(alkylenimine) which are insoluble in water, alcohol, or copper- containing water, and are capable of detoxifying chemical warfare agents and nerve gases, wherein the fabric is water vapor and gas permeable.
- the present invention also provides a method of making a fabric capable of protecting against attack by chemical warfare agents and nerve gases, the method comprising electrospinning linear poly(ethylenimine) into a plurality of fibers and crosslinking the fibers to render the fibers insoluble.
- This invention also provides a method of protecting a subject against attack by chemical warfare agents and nerve gases comprising covering the subject to be protected with a fabric comprising a plurality of fibers of a linear poly(alkylenimine) which are insoluble in water, alcohol, or copper-containing water, and are capable of detoxifying chemical warfare agents and nerve gases, wherein the fabric is water vapor and gas permeable.
- a protective fabric comprising a plurality of crosslinked fibers of linear poly(ethylenimine).
- the fibers are preferably electrostatically spun to provide a thin diameter of less than about 4 microns (preferably, less than one micron) and, therefore, have a high surface area per unit mass far in excess of textile fibers.
- These fibers are also preferably insoluble in all solvents, including water, alcohol and copper-containing water. Most importantly however, these fibers provide multiple useful secondary amine sites for the nucleophilic decomposition of various chemical warfare agents such as mustard gases or fluorophosphate nerve gases such as sarin, soman, and tabum.
- a protective covering comprising a plurality of crosslinked fibers of linear poly(ethylenimine) electrospun onto a support fabric containing textile fibers.
- electrospun fibers are blended into the support fabrics, it will be appreciated that, even if the blended covering contains only a few percent by weight of the nanofibers of the present invention, most of the surface area in the fabric will still be that of the nanofibers given the extreme differential in surface areas between textile fibers and electrospun fibers.
- this blended fabric will also have the ability to capture and neutralize the chemical warfare agents and nerve gases, with only minimal effects on the ordinary useful properties of the support fabric.
- the present invention is directed toward the production and use of electrospun fibers of linear poly(ethylenimine) having diameters of less than about 1 micron, more preferably, less than about 500 nanometers, and most preferably, from about 100 to about 400 nanometers.
- Such fibers when spun to form nanoporous membranes by themselves, or when spun on supporting fabrics, provide multiple secondary amine sites for nucleophilic decomposition of mustard gases and fluorophosphate nerve gases such as sarin, soman, and tabum. Because the fibers are produced by electrospinning techniques, the surface area per unit mass of the fibers is much higher than is the surface area for even the smallest commonly known textile fibers.
- the fabrics or membranes formed from the fibers are at least somewhat porous, typically having interstices on the micron or nanometer scale. This allows for the fabrics or membranes to be breathable to both air and water vapor, while maintaining its highly efficient defense against those nerve gases which are based on highly electrophilic or nucleophilic centers of reactivity.
- linear poly(ethylenimine) must first be prepared. While any linear poly(alkyleneimine) wherein the alkylene moiety has 2 to 8 carbon atoms could be employed, the preferred embodiment employs poly(ethylenimine).
- Linear poly(ethylenimine) may be prepared by any method known in the art or may be obtained commercially, if available. One well known and published method of synthesizing linear poly(ethylenimine) is by hydrolysis of poly(2-ethyl-2-oxazoline). This method is well known to those skilled in the art and, therefore, details of the process are not provided herein.
- the poly(2-ethyl-2-oxazoline) should have a number average molecular weight of about 500,000, although small or larger molecular weights should not readily affect the formation of linear poly(ethylenimine).
- the linear poly(ethylenimine) synthesized should have a molecular weight ranging from about 100,000 to about 500,000, although higher or lower molecular weights are not seen as materially affecting the essential nature of the invention, provided of course, the compound can be effectively dissolved in the desired solvent for use in electrospinning fibers therefrom.
- Linear poly(ethylenimine) (L-PEI) is known to be water insoluble, but soluble in alcohols or other organic solvents.
- linear poly(ethylenimine) can be dissolved in essentially any solvent known in the art in which it is known to be dissolvable, with a concentrated alcohol solution being preferred.
- concentration of the alcohol solution is, again, not materially important to the success of the invention, provided of course that the solution is capable of dissolving of linear poly(ethylenimine).
- concentration of the alcohol solution is, again, not materially important to the success of the invention, provided of course that the solution is capable of dissolving of linear poly(ethylenimine).
- about 10 percent by weight of linear poly(ethylenimine) may be dissolved in the solution, although higher or lower amounts can be used without departing from the scope or spirit of the invention.
- the concentrated alcohol solutions of linear poly(ethylenimine) can be used with known electrospinning techniques to electrospin and form fibers of linear poly(ethylenimine).
- These fibers typically have a diameter of from about 100 nanometers to about 1 micron, and more preferably, in the range of from about 100 nanometers to about 400 nanometers. In light of the diameter size of the fibers, these fibers are often termed "nanofibers.”
- the resultant nanofibers have very high surface areas per unit mass.
- the resultant mat while porous, will have very small intertices and high surface areas.
- the fibers when spun into a mat or membrane are not soluble in water, but remain soluble in alcohol and in copper containing water solutions.
- suitable fabrics for use in fighting chemical warfare agents should be insoluble in all solvents. Therefore, in order to render these fibers insoluble in all solvents, it is necessary to crosslink the linear poly(ethylenimine) fibers.
- Crosslinking of the fibers can be accomplished by any manner known in the art.
- One preferred method is to soak the fibers in minimum (less than 25 percent by weight, and more preferably, less than about 1 percent by weight) amounts of 1,4- butanediol diglycidyl ether (i.e., bis-epoxide) in ethanol and then to cure the fibers for about five minutes at about 80°C.
- the resultant crosslinked linear poly(ethylenimine) nanofibers are then rendered insoluble in all solvents including ethanol, water, and copper containing water solutions.
- linear poly(ethylenimine) could be crosslinked prior to being electrospun into fibers.
- linear poly(ethylenimine) either in solution or by itself, could be mixed with from about 1 to about 25 percent by weight bis-epoxide in ethanol and then electrospun into the desired fibers.
- the crosslinking agent i.e., the bis-epoxide
- the fiber would then be resident within the fiber and, upon curing of the fibers at about 80°C for about 1 to about 30 minutes, the fiber would become crosslinked.
- the fibers can be used in any of a number of applications. Because the fibers will have numerous secondary amine sites available for the nucleophilic decomposition of the various gases above described, the fibers are particularly suited for use as highly effective protective fabrics or coverings against known chemical warfare agents or nerve gases. Furthermore, the fibers of the present invention are compatible with other textile fabrics and may be used therewith. Consequently, protective clothing and breathing apparatus using such protective coverings or fabrics may be thereby rendered breathable to air and water vapor and lightweight.
- the present invention is highly effective in providing insoluble nanometer-sized (in diameter) fibers of linear poly(ethylenimine) suitable for use as a protective covering or shroud capable of detoxifying nerve gases and other chemical warfare agents.
- the fibers can be used to provide lightweight, highly efficient protective clothing or other fabrics which are permeable to both air and water vapor.
- the electrospun fibers are blended into support fabrics, it will be appreciated that, even if the blended covering contains only a few percent by weight of the nanofibers of the present invention, most of the surface area in the fabric will still be that of the nanofibers given the extreme differential in surface areas between textile fibers and electrospun fibers. Thus, this blended fabric will also have the ability to capture and neutralize the chemical warfare agents and nerve gases, with only minimal effects on the ordinary useful properties of the support fabric.
- the use of the nanofibers of the present invention allows for air to permeate the resultant covering as well.
- the fibers of the present invention may also be suitable for use in a protective breathing apparatus. It is also envisioned that the fibers of the present invention may be used in a shroud to cover one or more individuals in the event of a chemical agent or nerve gas attack. Such an embodiment may be particularly useful in response to an unanticipated attack on civilians.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Toxicology (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- Nonwoven Fabrics (AREA)
- Artificial Filaments (AREA)
Abstract
L'invention concerne une fibre améliorée utilisée dans des articles de manière à fournir une protection contre des armes aux gaz neurotoxiques et chimiques. Le polyéthylénimine produit des sites d'amines multiples pour la décomposition d'Ypérites et de gaz neurotoxiques de fluorophosphate. Des nanofibres de polyéthylénimine linéaire produisent un tissu protecteur léger pouvant capturer et neutraliser des agents chimiques de guerre. Des nanofibres produisent une zone superficielle plus grande par unité de masse que les tissus textiles traditionnels. Des nanofibres de polyéthylénimine linéaire génèrent une zone superficielle plus grande de matière capable de neutraliser des agents chimiques. Un tissu renfermant des nanofibres de polyéthylénimine linéaire engendre également une perméabilité à la vapeur d'eau et au gaz, ce qui se solde par un tissu plus confortable. En outre, il peut être utilisé dans des appareils respiratoires de protection.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU79996/00A AU7999600A (en) | 1999-10-08 | 2000-10-06 | Insoluble nanofibers of linear poly(ethylenimine) and uses therefor |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15867699P | 1999-10-08 | 1999-10-08 | |
| US60/158,676 | 1999-10-08 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2001027368A1 true WO2001027368A1 (fr) | 2001-04-19 |
Family
ID=22569207
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/027737 Ceased WO2001027368A1 (fr) | 1999-10-08 | 2000-10-06 | Nanofibres insolubles de polyethylenimine lineaire et utilisations correspondantes |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU7999600A (fr) |
| WO (1) | WO2001027368A1 (fr) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005078021A1 (fr) * | 2004-02-18 | 2005-08-25 | Kawamura Institute Of Chemical Research | Nanofibre composite organique-inorganique, structure composite organique-inorganique et procédé pour produire celles-ci |
| US7134857B2 (en) | 2004-04-08 | 2006-11-14 | Research Triangle Institute | Electrospinning of fibers using a rotatable spray head |
| US7297305B2 (en) | 2004-04-08 | 2007-11-20 | Research Triangle Institute | Electrospinning in a controlled gaseous environment |
| WO2008057417A1 (fr) * | 2006-11-03 | 2008-05-15 | E. I. Du Pont De Nemours And Company | Tissus imperméables respirants a avec couche teinte et soudée à micropores |
| US7445799B1 (en) | 2000-06-21 | 2008-11-04 | Icet, Inc. | Compositions for microbial and chemical protection |
| US7592277B2 (en) | 2005-05-17 | 2009-09-22 | Research Triangle Institute | Nanofiber mats and production methods thereof |
| US7670509B2 (en) * | 2004-05-31 | 2010-03-02 | Kawamura Institute Of Chemical Research | Composite nanofiber, composite nanofiber association, complex structure, and production method thereof |
| US7754197B2 (en) | 2003-10-16 | 2010-07-13 | Kimberly-Clark Worldwide, Inc. | Method for reducing odor using coordinated polydentate compounds |
| US7762801B2 (en) | 2004-04-08 | 2010-07-27 | Research Triangle Institute | Electrospray/electrospinning apparatus and method |
| KR101136494B1 (ko) * | 2004-05-31 | 2012-04-23 | 잇판자이단호진 가와무라 리카가쿠 겐큐쇼 | 복합 나노파이버, 복합 나노파이버 회합체, 복합 구조체 및이들의 제조 방법 |
| US8192765B2 (en) | 2000-06-21 | 2012-06-05 | Icet, Inc. | Material compositions for microbial and chemical protection |
| US8936668B2 (en) | 2011-06-07 | 2015-01-20 | Dpoint Technologies Inc. | Selective water vapour transport membranes comprising a nanofibrous layer and methods for making the same |
| US9604085B2 (en) | 2008-01-22 | 2017-03-28 | Emergent Protective Products Canada Ulc | Method and formulation for neutralizing toxic chemicals and materials |
| KR101874706B1 (ko) | 2016-11-17 | 2018-07-04 | 국방과학연구소 | Pan계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법 |
| KR101933340B1 (ko) * | 2018-01-23 | 2018-12-27 | 국방과학연구소 | 반응성 폴리머를 포함하는 보호직물 및 이의 제조방법 |
| CN117445504A (zh) * | 2023-10-19 | 2024-01-26 | 山西新华防化装备研究院有限公司 | 一种透气型生化防护材料 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3644251A (en) * | 1969-04-08 | 1972-02-22 | Nl Bewoid Mij Nv | Nonwoven fabrics and binders therefor |
| US3976604A (en) * | 1972-08-11 | 1976-08-24 | The United States Of America As Represented By The Secretary Of Agriculture | Preparation of ethylenimine prepolymer |
| US4043331A (en) * | 1974-08-05 | 1977-08-23 | Imperial Chemical Industries Limited | Fibrillar product of electrostatically spun organic material |
-
2000
- 2000-10-06 AU AU79996/00A patent/AU7999600A/en not_active Abandoned
- 2000-10-06 WO PCT/US2000/027737 patent/WO2001027368A1/fr not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3644251A (en) * | 1969-04-08 | 1972-02-22 | Nl Bewoid Mij Nv | Nonwoven fabrics and binders therefor |
| US3976604A (en) * | 1972-08-11 | 1976-08-24 | The United States Of America As Represented By The Secretary Of Agriculture | Preparation of ethylenimine prepolymer |
| US4043331A (en) * | 1974-08-05 | 1977-08-23 | Imperial Chemical Industries Limited | Fibrillar product of electrostatically spun organic material |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8192765B2 (en) | 2000-06-21 | 2012-06-05 | Icet, Inc. | Material compositions for microbial and chemical protection |
| US7445799B1 (en) | 2000-06-21 | 2008-11-04 | Icet, Inc. | Compositions for microbial and chemical protection |
| US7754197B2 (en) | 2003-10-16 | 2010-07-13 | Kimberly-Clark Worldwide, Inc. | Method for reducing odor using coordinated polydentate compounds |
| CN100532459C (zh) * | 2004-02-18 | 2009-08-26 | 财团法人川村理化学研究所 | 有机无机复合纳米纤维、有机无机复合结构体以及它们的制备方法 |
| WO2005078021A1 (fr) * | 2004-02-18 | 2005-08-25 | Kawamura Institute Of Chemical Research | Nanofibre composite organique-inorganique, structure composite organique-inorganique et procédé pour produire celles-ci |
| US8052407B2 (en) | 2004-04-08 | 2011-11-08 | Research Triangle Institute | Electrospinning in a controlled gaseous environment |
| US8088324B2 (en) | 2004-04-08 | 2012-01-03 | Research Triangle Institute | Electrospray/electrospinning apparatus and method |
| US8632721B2 (en) | 2004-04-08 | 2014-01-21 | Research Triangle Institute | Electrospinning in a controlled gaseous environment |
| US7134857B2 (en) | 2004-04-08 | 2006-11-14 | Research Triangle Institute | Electrospinning of fibers using a rotatable spray head |
| US7762801B2 (en) | 2004-04-08 | 2010-07-27 | Research Triangle Institute | Electrospray/electrospinning apparatus and method |
| US7297305B2 (en) | 2004-04-08 | 2007-11-20 | Research Triangle Institute | Electrospinning in a controlled gaseous environment |
| KR101136494B1 (ko) * | 2004-05-31 | 2012-04-23 | 잇판자이단호진 가와무라 리카가쿠 겐큐쇼 | 복합 나노파이버, 복합 나노파이버 회합체, 복합 구조체 및이들의 제조 방법 |
| US7670509B2 (en) * | 2004-05-31 | 2010-03-02 | Kawamura Institute Of Chemical Research | Composite nanofiber, composite nanofiber association, complex structure, and production method thereof |
| US7592277B2 (en) | 2005-05-17 | 2009-09-22 | Research Triangle Institute | Nanofiber mats and production methods thereof |
| WO2008057417A1 (fr) * | 2006-11-03 | 2008-05-15 | E. I. Du Pont De Nemours And Company | Tissus imperméables respirants a avec couche teinte et soudée à micropores |
| US9604085B2 (en) | 2008-01-22 | 2017-03-28 | Emergent Protective Products Canada Ulc | Method and formulation for neutralizing toxic chemicals and materials |
| US8936668B2 (en) | 2011-06-07 | 2015-01-20 | Dpoint Technologies Inc. | Selective water vapour transport membranes comprising a nanofibrous layer and methods for making the same |
| US9517433B2 (en) | 2011-06-07 | 2016-12-13 | Dpoint Technologies Inc. | Selective water vapour transport membranes comprising a nanofibrous layer and methods for making the same |
| KR101874706B1 (ko) | 2016-11-17 | 2018-07-04 | 국방과학연구소 | Pan계 섬유표면의 아민화 화학기상증착에 의한 독성물질분해 가능물질 제조방법 |
| KR101933340B1 (ko) * | 2018-01-23 | 2018-12-27 | 국방과학연구소 | 반응성 폴리머를 포함하는 보호직물 및 이의 제조방법 |
| CN117445504A (zh) * | 2023-10-19 | 2024-01-26 | 山西新华防化装备研究院有限公司 | 一种透气型生化防护材料 |
Also Published As
| Publication number | Publication date |
|---|---|
| AU7999600A (en) | 2001-04-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2001027368A1 (fr) | Nanofibres insolubles de polyethylenimine lineaire et utilisations correspondantes | |
| US5743775A (en) | Laminate for restraining organic vapors, aerosols, and biological agents | |
| CN108465383B (zh) | 保护性通气件和制备保护性通气件的方法 | |
| US20040116025A1 (en) | Air permeable garment and fabric with integral aerosol filtration | |
| EP1237629B1 (fr) | Revetement de protection contre les produits chimiques | |
| US4943475A (en) | Multilayer composite protective fabric material and use in protective clothing | |
| EP0199150B1 (fr) | Etoffe non tissée comprenant du charbon actif | |
| US4518650A (en) | Protective clothing of fabric containing a layer of highly fluorinated ion exchange polymer | |
| US4904343A (en) | Non-woven activated carbon fabric | |
| US4500581A (en) | Material for protecting human bodies from harmful or poisonous chemical substance | |
| US20020096246A1 (en) | Non-woven elastic microporous membranes | |
| US20160002484A1 (en) | Improved hydrophobicity with nanofiber and fluoropolymer coating | |
| DE202010018597U1 (de) | Textiler Verbundartikel | |
| JP2009006012A (ja) | 防護衣類用の積層構造体および防護衣類 | |
| WO1999039038A1 (fr) | Articles floques | |
| RU2213819C2 (ru) | Прочесываемые смеси двойных стекловолокон | |
| WO2008118955A1 (fr) | Tissu composite de haute durabilité | |
| CN107584824A (zh) | 一种多功能透气式防毒服面料及其制备方法 | |
| EP0144553B1 (fr) | Etoffe non-tissée comprenant du charbon actif | |
| CN112251919A (zh) | 一种单向导湿性织物及其制备方法 | |
| Kumar et al. | Characterization of electrospun polyurethane/polyacrylonitrile nanofiber for protective textiles | |
| US20080289088A1 (en) | N-alkylchitosan films and laminates made therefrom | |
| Li et al. | Design and preparation of porous meta-aramid fibers filled with highly exposed activated carbon for chemical hazard protection fabrics | |
| JPH11267244A (ja) | 有毒ガス用防護衣材料 | |
| Liu et al. | Mechanically robust superhydrophobic and oleophobic nanofiber membranes with breathability, solvent-resistance, and high-temperature-resistance |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: JP |