[go: up one dir, main page]

WO2001072979A1 - Nouveau polypeptide, dihydroorotase humaine 15, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, dihydroorotase humaine 15, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001072979A1
WO2001072979A1 PCT/CN2001/000439 CN0100439W WO0172979A1 WO 2001072979 A1 WO2001072979 A1 WO 2001072979A1 CN 0100439 W CN0100439 W CN 0100439W WO 0172979 A1 WO0172979 A1 WO 0172979A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
human dihydroorotase
sequence
dihydroorotase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2001/000439
Other languages
English (en)
Chinese (zh)
Inventor
Yumin Mao
Yi Xie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Biowindow Gene Development Inc
Original Assignee
Shanghai Biowindow Gene Development Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Biowindow Gene Development Inc filed Critical Shanghai Biowindow Gene Development Inc
Priority to AU56075/01A priority Critical patent/AU5607501A/en
Publication of WO2001072979A1 publication Critical patent/WO2001072979A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/86Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/02Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amides (3.5.2)
    • C12Y305/02003Dihydroorotase (3.5.2.3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide "human dihydroorotase 15", and a polynucleotide sequence encoding the polypeptide. The present invention also relates to the polynucleotide And polypeptide preparation method and application.Technical background
  • Dihydroorotase also known as carbamoyl aspartate dehydratase, catalyzes the initiation of the third stage of pyrimidine biosynthesis and makes ureidosuccinate (N-carbamoyl-L- Aspartic acid) is converted to dihydroorotate.
  • Dihydroorotase is one of the very few enzymes that can biosynthesize an amino bond-catalyzed reaction without directly coupling energy such as ATP. This catalytic reaction also incorporates a zinc atom necessary for catalytic activity.
  • dihydroorotase In bacteria, dihydroorotase is a dimer composed of two identical long chains of about 400 amino acid residues; in higher eukaryotes, dihydroorotase is one This function is part of a large protein; in Drosophila and mammals, it catalyzes the first three steps of pyrimidine biosynthesis. Dihydroorotase is located at the center of this multiprotein. In yeast, dihydroorotase is encoded by a monofunctional protein gene (URA4). However, a dihydroorotase mutant strain was found to be encoded by the multifunctional protein gene (URA2), catalyzing the first two steps of pyrimidine synthesis.
  • UAA4 monofunctional protein gene
  • UAA2 multifunctional protein gene
  • N-terminal conserved sequence D- [LI VMFYWSAP] -H- [LI VA] -H- [LI VF]-[RN] -x- [PGN], where the two ⁇ may be the sites of a zinc ligand point.
  • conserved sequence at the C-terminus [GA]-[ST] -D-x- ⁇ - ⁇ - ⁇ - ⁇ (4)- ⁇ , applicable to all enzymes related to dihydroorotase except allantoinase.
  • the human dihydroorotase 15 protein plays an important role in regulating important functions of the body such as cell division and embryonic development, and it is believed that a large number of proteins are involved in these regulation processes, so more needs to be identified in the art
  • the human dihydroorotase 15 protein involved in these processes, and in particular the amino acid sequence of this protein was identified. Isolation of the new human dihydroorotase 15 protein encoding gene also provides a basis for research to determine the role of this protein in health and disease states. This protein may form the basis for developing diagnostic and / or therapeutic drugs for the disease, so isolating its coding DNA is important.
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a genetically engineered host cell containing a polynucleotide encoding human dihydroorotase 15.
  • Another object of the present invention is to provide a method for producing human dihydroorotase 15.
  • Another object of the present invention is to provide an antibody against the human dihydroorotase 15 of the polypeptide of the present invention.
  • Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors directed to the polypeptide of the present invention, human dihydroorotase 15.
  • Another object of the present invention is to provide a method for diagnosing and treating a disease associated with an abnormality of human dihydroorotase 15. Summary of invention
  • the present invention relates to an isolated polypeptide, which is of human origin, and includes: a polypeptide having the amino acid sequence of SEQ ID D. 2, or a conservative variant, biologically active fragment, or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 114 to 527 in SEQ ID NO: 1; and (b) a sequence having 1 to 002 in SEQ ID NO: 1 Sequence of bits.
  • the present invention further relates to a vector, particularly an expression vector, containing the polynucleotide of the present invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit human dihydroorotase 15 protein activity, which comprises utilizing the polypeptide of the invention.
  • the invention also relates to compounds obtained by this method.
  • the present invention also relates to a method for in vitro detection of a disease or disease susceptibility related to abnormal expression of human dihydroorotase 15 protein, which comprises detecting a mutation in the polypeptide or a polynucleotide sequence encoding the same in a biological sample, or Detection of the amount or biological activity of a polypeptide of the invention in a biological sample.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention for the preparation of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of human dihydroorotase 15.
  • Fig. 1 is a comparison diagram of gene chip expression profiles of the dihydroorotase 15 and human dihydroorotase 10 of the present invention.
  • the upper graph is a graph of the expression profile of human dihydroorotase 15 and the lower graph is the graph of the expression profile of human dihydroorotase 15.
  • FIG. 2 is a polyacrylamide gel electrophoresis diagram (SDS-PAGE) of human dihydroorotase 15 isolated. 15kDa is the molecular weight of the protein. The arrow indicates the isolated protein band. Summary of the invention
  • Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DNA or RNA, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • amino acid sequence in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, such "polypeptide” or “protein” does not mean to limit the amino acid sequence to a complete natural amino acid related to the protein molecule .
  • a “variant" of a protein or polynucleotide refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it.
  • the changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence.
  • Variants can have "conservative" changes, in which the amino acid substituted has a structural or chemical property similar to the original amino acid, such as replacing isoleucine with leucine.
  • Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • Insertion means that a change in the amino acid sequence or nucleotide sequence results in an increase in one or more amino acids or nucleotides compared to a molecule that exists in nature.
  • Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response and to bind specific antibodies in a suitable animal or cell.
  • An "agonist” refers to a molecule that, when combined with human dihydroorotase 15, can cause the protein to change, thereby regulating the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that binds human dihydroorotase 15.
  • Antagonist refers to a molecule that can block or regulate the biological or immunological activity of human dihydroorotase 15 when combined with human dihydroorotase 15 .
  • Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates, or any other molecule that binds human dihydroorotase 15.
  • Regular refers to a change in the function of human dihydroorotase 15, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological properties and functions of human dihydroorotase 15 Or changes in immune properties.
  • substantially pure means substantially free of other proteins, lipids, sugars or other substances with which it is naturally associated. Quality. Those skilled in the art can purify human dihydroorotase 15 using standard protein purification techniques. Substantially pure human dihydroorotase 15 produces a single main band on a non-reducing polyacrylamide gel. The purity of human dihydroorotase 15 polypeptide can be analyzed by amino acid sequence.
  • Complementary refers to the natural binding of polynucleotides by base-pairing under conditions of acceptable salt concentration and temperature.
  • sequence C-T-G-A
  • complementary sequence G-A-C-T.
  • the complementarity between two single-stranded molecules may be partial or complete.
  • the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be detected by performing hybridization (Southern imprinting or Northern blotting, etc.) under conditions of reduced stringency. Substantially homologous sequences or hybridization probes can compete and inhibit the binding of fully homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that the conditions of reduced stringency allow non-specific binding, because the conditions of reduced stringency require that the two sequences bind to each other as a specific or selective interaction.
  • Percent identity refers to the percentage of sequences that are the same or similar in a comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as through the MEGALIGN program (Lasergene sof tware package, DNASTAR, Inc., Madi son Wis.). The MEGALIGN program can compare two or more sequences according to different methods such as the Clus ter method (Hi gg ins, DG and PM Sharp (1988) Gene 73: 237-244). The C lus ter method checks all The distance arranges each group of sequences into clusters. Then the clusters are allocated in pairs or groups. The percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula:
  • Similarity refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
  • Amino acids used for conservative substitution for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RM sequence.
  • Antisense strand refers to a nucleic acid strand that is complementary to the “sense strand”.
  • Derivative refers to HFP or a chemical modification of its nucleic acid. This chemical modification may be the replacement of a hydrogen atom with an alkyl, acyl or amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological properties of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa, ⁇ ( ⁇ ') 2 and? It can specifically bind to the epitope of human dihydroorotase 15.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of a substance from its original environment (for example, its natural environment if it is naturally occurring).
  • a naturally-occurring polynucleotide or polypeptide is not isolated when it is present in a living thing, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
  • Such a polynucleotide may be part of a certain vector, or such a polynucleotide or polypeptide may be part of a certain composition. Since the carrier or composition is not part of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances in the natural state .
  • isolated human dihydroorotase 15 means that human dihydroorotase 15 is substantially free of other proteins, lipids, sugars or other substances naturally associated with it. Those skilled in the art can purify human dihydroorotase 15 using standard protein purification techniques. Substantially pure peptides can produce a single main band on a non-reducing polyacrylamide gel. The purity of human dihydroorotase 15 peptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide, human dihydroorotase 15, which is basically composed of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the present invention can be naturally purified products or chemically synthesized products, or can be produced from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells) using recombinant techniques. Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the invention also includes fragments, derivatives and analogs of human dihydroorotase 15.
  • fragment refers to a polypeptide that substantially maintains the same biological function or activity of the human dihydroorotase 15 of the present invention.
  • a fragment, derivative or analog of the polypeptide of the present invention may be: (I) a kind in which one or more amino acid residues are conserved or non-conserved Substitution of amino acid residues (preferably conservative amino acid residues), and the substituted amino acid may or may not be encoded by a genetic codon; or ( ⁇ ) such a type in which one or more of the amino acid residues A group is substituted by another group to include a substituent; or (III) one in which the mature polypeptide is fused to another compound (such as a compound that extends the half-life of the polypeptide, such as polyethylene glycol); or (IV) such a A polypeptide sequence in which an additional amino acid sequence is fused into a mature polypeptide (such as a leader sequence or a secreted sequence or a sequence used to purify this polypeptide or a proteinogen sequence).
  • an additional amino acid sequence is fused into a mature polypeptide (such as a leader sequence or a secreted sequence or a sequence used
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a full-length polynucleotide sequence of 1002 bases, and its open reading frames 114-527 encode 137 amino acids.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA, or synthetic D.
  • DNA can be single-stranded or double-stranded.
  • DNA can be coding or non-coding.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide comprising the polypeptide and a polynucleotide comprising additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • Variants of this polynucleotide can be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the present invention also relates to a polynucleotide that hybridizes to a sequence described above 50% less, preferably 70% identity).
  • the invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the invention under stringent conditions.
  • “strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 6 (TC; or (2) added during hybridization) Use a denaturant, such as 50% (v / v) formamide, 0.1% calf serum / 0.1% Ficoll, 42'C, etc .; or (3) the identity between the two sequences is at least 95% Above, it is more preferable that the hybridization occurs at 97% or more. Moreover, the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 nuclei. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques, such as PCR, to identify and / or isolate polynucleotides encoding human dihydroorotase 15.
  • polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • the specific polynucleotide sequence encoding human dihydroorotase 15 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
  • the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the D sequence to obtain the double-stranded D of the polypeptide.
  • genome D is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice.
  • the more commonly used method is the isolation of cDNA sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • Various methods have been used to extract mRNA, and kits are also commercially available (Qiagene).
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): (l) DNA-DNA or DNA-RNA hybridization; (2) the presence or absence of marker gene functions; (3) measuring the level of human dihydroorotase 15 transcripts; (4) Detecting the protein product of gene expression by immunological technology or measuring biological activity. The above methods can be used singly or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 Nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probe used here is usually a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect the protein product expressed by the human dihydroorotase 15 gene.
  • ELISA enzyme-linked immunosorbent assay
  • a method using DNA technology to amplify DNA / RNA is preferably used to obtain the gene of the present invention.
  • the RACE method RACE-rapid cDNA end rapid amplification method
  • the primers used for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods.
  • the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be measured by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, sequencing needs to be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
  • the present invention also relates to a vector comprising the polynucleotide of the present invention, and a host cell produced by genetic engineering using the vector of the present invention or directly using a human dihydroorotase 15 coding sequence, and the recombinant technology to produce the polypeptide of the present invention Methods.
  • a polynucleotide sequence encoding human dihydroorotase 15 can be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors expressed in bacteria (Rosenberg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
  • the expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenoviral enhancers.
  • the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding human dihydroorotase 15 or a recombinant vector containing the polynucleotide can be transformed or introduced into a host cell to form a genetically engineered host cell containing the polynucleotide or the recombinant vector.
  • host cell refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells such as fly S2 or Sf 9
  • animal cells such as CH0, COS or Bowes melanoma cells.
  • Transformation of a host cell with a D sequence according to the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of DNA uptake can be in the exponential growth phase were harvested, treated with CaC l 2 method used in steps well known in the art. Alternatively, MgCl 2 is used.
  • transformation can also be performed by electroporation.
  • the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
  • the polynucleotide sequence of the present invention can be used to express or produce recombinant human dihydroorotase 15 (Science, 1984; 224: 1431). Generally there are the following steps: (1) Use the polynucleotide (or variant) encoding human human dihydroorotase 15 of the present invention, or use a recombinant expression vector containing the polynucleotide to transform or transduce appropriately Host cell (2) culturing host cells in a suitable medium;
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • a suitable method such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell. If necessary, the recombinant protein can be isolated and purified by various separation methods using its physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid
  • polypeptides of the present invention as well as antagonists, agonists and inhibitors of the polypeptides, can be directly used in the treatment of diseases, for example, they can treat malignant tumors, adrenal deficiency, skin diseases, various types of inflammation, HIV infection, and immune diseases.
  • Dihydroorotase catalyzes the initiation of the third stage of pyrimidine biosynthesis, converting ureidosuccinic acid (N-carbamoyl-L-aspartic acid) to dihydroorotate.
  • Dihydroorotase is one of the very few enzymes to biosynthesize an amino bond-catalyzed reaction without directly coupling energy such as ATP.
  • the pyrimidine biosynthesis is necessary for the production of nucleotides.
  • Dihydroorotase-specific conserved sequences are required to form its active mot i f.
  • the abnormal expression of the specific dihydroorotase mot if will cause the function of the polypeptide containing the mot if of the present invention to be abnormal, thereby causing abnormalities in nucleotide biosynthesis, and then affecting the regulation and control of genetic information.
  • Expression, and produce related diseases such as tumors, embryonic developmental disorders, growth and development disorders, inflammation, etc.
  • human dihydroorotase 15 of the present invention will produce various diseases, especially tumors, embryonic developmental disorders, growth and development disorders, and inflammation, and these diseases include, but are not limited to:
  • Embryonic disorders congenital abortion, cleft palate, limb loss, limb differentiation disorder, hyaline membrane disease, atelectasis, polycystic kidney, double ureter, cryptorchidism, congenital inguinal hernia, double uterus, vaginal atresia, suburethral Fissure, hermaphroditism, atrial septal defect, ventricular septal defect, pulmonary stenosis, arterial duct occlusion, neural tube defect, congenital hydrocephalus, iris defect, congenital cataract, congenital glaucoma or cataract, congenital deafness
  • Growth disorders mental retardation, cerebral palsy, mental retardation, mental retardation, Familial cerebellar nucleus hypoplasia syndrome, strabismus, skin, fat, and muscular dysplasia such as congenital skin laxity, premature senility, congenital keratosis, various metabolic defects such as various amino acid metabolic defects, Stunting, dwarfism, sexual retardation
  • Tumors of various tissues gastric cancer, liver cancer, lung cancer, esophageal cancer, breast cancer, leukemia, lymphoma, thyroid tumor, uterine fibroids, neuroblastoma, astrocytoma, ependymoma, glioblastoma , Colon cancer, melanoma, adrenal cancer, bladder cancer, bone cancer, osteosarcoma, myeloma, bone marrow cancer, brain cancer, uterine cancer, endometrial cancer, gallbladder cancer, thymic tumor, nasal cavity and sinus tumor, nasopharyngeal cancer , Laryngeal cancer, tracheal tumor, fibroma, fibrosarcoma, lipoma, liposarcoma, leiomyoma
  • Inflammation allergic reaction, bronchial asthma, allergic pneumonia, adult respiratory distress syndrome, sarcoidosis, rheumatoid arthritis, rheumatoid arthritis, osteoarthritis, cholecystitis, glomerulonephritis, immune complex Types of glomerulonephritis, acute anterior uveitis, dermatomyositis, urticaria, atopic dermatitis, hemochromatosis, polymyositis, Addison's disease, chronic active hepatitis, emergency bowel syndrome, atrophy Gastritis, systemic lupus erythematosus, myasthenia gravis, cerebrospinal spinal multiple sclerosis, Guillain-Barre syndrome, intracranial granuloma, pancreatitis, myocarditis, and inflammation caused by infections and trauma
  • human dihydroorotase 15 of the present invention will also produce certain hereditary, hematological and immune system diseases.
  • the invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist) human dihydroorotase 15.
  • Agonists enhance human dihydroorotase 15 to stimulate biological functions such as cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
  • mammalian cells or membrane preparations expressing human dihydroorotase 15 can be cultured with labeled human dihydroorotase 15 in the presence of a drug. The ability of the drug to increase or block this interaction is then determined.
  • Antagonists of human dihydroorotase 15 include antibodies, compounds, receptor deletions, and the like that have been screened. Antagonists of human dihydroorotase 15 can bind to human dihydroorotase 15 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot function biological functions.
  • human dihydroorotase 15 When screening compounds as antagonists, human dihydroorotase 15 can be added to a bioanalytical assay, and the compound can be identified by measuring the effect of the compound on the interaction between human dihydroorotase 15 and its receptor Whether it is an antagonist. Receptor deletions and analogs that function as antagonists can be screened in the same manner as described above for screening compounds. Polypeptide molecules capable of binding to human dihydroorotase 15 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, the human dihydroorotase 15 molecule should generally be labeled.
  • the present invention provides polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. To produce antibodies. These antibodies can be polyclonal or monoclonal antibodies. The invention also provides antibodies against human dihydroorotase 15 epitopes. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments produced by Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting human dihydroorotase 15 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • adjuvants can be used to enhance the immune response, including but not limited to Freund's Adjuvant, etc.
  • Techniques for preparing monoclonal antibodies to human dihydroorotase 15 include, but are not limited to, hybridoma technology (Kohler and Miste in. Nature, 1975, 256: 495-497), triple tumor technology, human beta- Cell hybridoma technology, EBV-hybridoma technology, etc.
  • Embedding antibodies that bind human constant regions and non-human variable regions can be produced using existing techniques (Morrison et al, PNAS, 1985, 81: 6851).
  • the existing technology for producing single chain antibodies U. S. Pat No. 4946778, can also be used to produce single chain antibodies against human dihydroorotase 15.
  • Anti-human dihydroorotase 15 antibodies can be used in immunohistochemical techniques to detect human dihydroorotase 15 in biopsy specimens.
  • Monoclonal antibodies that bind to human dihydroorotase 15 can also be labeled with radioisotopes and injected into the body to track their location and distribution.
  • This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • human dihydroorotase 15 high affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of an antibody with a sulfhydryl crosslinker such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill human dihydroorotase 15 positive Cell.
  • the antibodies of the present invention can be used to treat or prevent diseases related to human dihydroorotase 15. Administration of an appropriate dose of the antibody can stimulate or block the production or activity of human dihydroorotase 15.
  • the invention also relates to a diagnostic test method for quantitative and localized detection of human dihydroorotase 15 levels. These tests are well known in the art and include FISH assays and radioimmunoassays. The level of human dihydroorotase 15 detected in the test can be used to explain the importance of human dihydroorotase 15 in various diseases and to diagnose human dihydroorotase 15 Disease.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • the polynucleotide encoding human dihydroorotase 15 can also be used for a variety of therapeutic purposes. Gene therapy It can be used to treat abnormal cell proliferation, development, or metabolism caused by the non-expression or abnormal / inactive expression of human dihydroorotase 15.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutated human dihydroorotase 15 to inhibit endogenous human dihydroorotase 15 activity.
  • a mutated human dihydroorotase 15 may be a shortened human dihydroorotase 15 lacking a signaling domain, and although it can bind to a downstream substrate, it lacks signaling activity.
  • the recombinant gene therapy vector can be used to treat diseases caused by abnormal expression or activity of human dihydroorotase 15.
  • Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, parvovirus, and the like can be used to transfer a polynucleotide encoding human dihydroorotase 15 into a cell.
  • Methods for constructing a recombinant viral vector carrying a polynucleotide encoding human dihydroorotase 15 can be found in the existing literature (Sambrook, etal.).
  • the recombinant polynucleotide encoding human dihydroorotase 15 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DNA
  • ribozymes that inhibit human dihydroorotase 15 mRNA are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that can specifically decompose a specific RM. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
  • Antisense RNA, DNA, and ribozymes can be obtained using any existing RNA or DNA synthesis technology, such as solid-phase phosphoramidite chemical synthesis to synthesize oligonucleotides.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RNA. This DNA sequence has been integrated downstream of the RNA polymerase promoter of the vector. In order to increase the stability of the nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the linkage between ribonucleosides using phosphorothioate or peptide bonds instead of phosphodiester bonds.
  • the polynucleotide encoding human dihydroorotase 15 can be used for the diagnosis of diseases related to human dihydroorotase 15.
  • a polynucleotide encoding human dihydroorotase 15 can be used to detect the expression of human dihydroorotase 15 or the abnormal expression of human dihydroorotase 15 in a disease state.
  • a DNA sequence encoding human dihydroorotase 15 can be used to hybridize biopsy specimens to determine the expression of human dihydroorotase 15.
  • Hybridization techniques include Sou thern blotting, Northern blotting, in situ hybridization, and the like. These techniques and methods are publicly available and mature, and related kits are commercially available.
  • polynucleotides of the present invention can be used as probes to be fixed on a microarray (Mic Roa ray) or a DM chip (also known as a "gene chip") for analyzing differential expression analysis of genes in tissues and Genetic diagnosis.
  • a microarray Movable Ribonucleic acid
  • DM chip also known as a "gene chip”
  • Human dihydroorotase 15 specific primers for RNA-polymerase chain reaction (RT-PCR) in vitro amplification also Transcripts of human dihydroorotase 15 can be detected.
  • Detection of mutations in the human dihydroorotase 15 gene can also be used to diagnose human dihydroorotase 15-related diseases.
  • Human dihydroorotase 15 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to the normal wild-type human dihydroorotase 15 D sequence. Mutations can be detected using existing techniques such as Southern blotting, DNA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect the expression of proteins. Therefore, Nor thern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • sequences of the invention are also valuable for chromosome identification. This sequence will specifically target a specific position on a human chromosome and can hybridize to it. Currently, specific sites for each gene on the chromosome need to be identified. Currently, only a few chromosome markers based on actual sequence data (repeating polymorphisms) are available for marking chromosome positions. According to the present invention, in order to associate these sequences with disease-related genes, an important first step is to locate these DNA sequences on a chromosome.
  • PCR primers (preferably 15-35bp) are prepared according to cDM, and the sequences can be located on chromosomes. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DM to specific chromosomes.
  • oligonucleotide primers of the present invention in a similar manner, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDM clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the differences in cDNA or genomic sequences between the affected and unaffected individuals need to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individuals, the mutation may be the cause of the disease. Comparing diseased and unaffected individuals usually involves first looking for structural changes in the chromosome, such as defects visible at the chromosomal level or detectable by cDNA sequence-based PCR Missing or transposing. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution) Capacity and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Human dihydroorotase 15 is administered in an amount effective to treat and / or prevent a specific indication.
  • the amount and dose range of human dihydroorotase 15 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician. Examples
  • Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
  • Poly (A) mRNA was isolated from total RNA using Quik mRNA I solat ion Kit (product of Qiegene). 2ug poly (A) mRNA is reverse transcribed to form cDNA.
  • the Smart cDNA cloning kit purchased from Clontech was used to insert the cDNA fragments into the multiple cloning site of pBSK (+) vector (Clontech) to transform DH5a. The bacteria formed a cDNA library.
  • the sequences at the 5 'and 3' ends of all clones were determined using Dye terminate cyc le react ion sequencing kit (Perkin-Elmer) and ABI 377 automatic sequencer (Perkin-Elmer).
  • the determined cDNA sequence was compared with the existing public D-sequence database (Genebank), and it was found that the cDNA sequence of one of the clones 0474 ⁇ 0 was new DNA. Insert a cDNA fragment into the clone by synthesizing a series of primers Segments are measured in both directions.
  • CDNA was synthesized using fetal brain total RNA as a template and oligo-dT as a primer for reverse transcription reaction. After purification with Qiagene's kit, the following primers were used for PCR amplification:
  • Primer 1 5'- ATGACCCTGGGATCAAAGGCTGCT-3 '(SEQ ID NO: 3)
  • Priraer2 5'- GGAGTCTCACTCTGTCACCCAGGC-3 '(SEQ ID NO: 4)
  • Primerl is a forward sequence starting at lbp of the 5th end of SEQ ID NO: 1;
  • Primer2 is the 3, terminal reverse sequence of SEQ ID NO: 1.
  • Conditions for the amplification reaction 50 mmol / L KC1, 10 crypto ol / L Tris-HCl, pH 8.5, 1.5 mmol / L MgCl 2 , 20 ( ⁇ mol / L dNTP, lOpmol primers in a reaction volume of 50 ⁇ 1 , 1U of Taq DNA polymerase (Clontech).
  • the reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) for 25 cycles under the following conditions: 94 ° C 30sec; 55 ° C 30sec; 72 ° C 2min.
  • ⁇ -actin was used as a positive control and template blank was used as a negative control.
  • the amplified products were purified using a QIAGEN kit and ligated to a pCR vector using a TA cloning kit (Invitrogen). DNA sequence analysis The results showed that the DM sequence of the PCR product was exactly the same as the 1- 1002bp shown in SEQ ID NO: 1.
  • Example 3 Northern blot analysis of human dihydroorotase 15 gene expression
  • RNA extraction in one step [Anal. Biochem 1987, 162, 156-159] rempliThis method involves acid guanidinium thiocyanate phenol-chloroform extraction. 4M guanidine isothiocyanate-25mM sodium citrate, 0.2M acetic acid Sodium ( ⁇ 4.0 ⁇ ) was used to homogenize the tissue, 1 volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1) were added, and the mixture was centrifuged. The aqueous phase layer was aspirated and isopropyl alcohol (0.8 (Volume) and centrifuge the mixture to obtain an RNA pellet. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
  • a 32P-labeled probe (approximately 2 x 10 6 cpm / ml) and an RNA-transferred nitrocellulose membrane were placed in a solution at 42 ° C. C hybridization overnight, the solution contains 50% formamide-25mM KH 2 P0 4 (pH 7.4)-5 ⁇ SSC-5 ⁇ Denhardt's solution and 20 (g / ml salmon sperm DM. After hybridization, filter membrane at 1 x SSC- Wash in 0.1% SDS for 30tnin at 55 ° C. Then, Phosphor Imager was used for analysis and quantification.
  • Example 4 In vitro expression, isolation and purification of recombinant human dihydroorotase 15
  • Primer3 5, — CCCCATATGATGGAGTCACCTCTCAGACTGTGG- 3, (Seq ID No: 5)
  • Primer4 5'-CATGGATCCTCAGACGGAATCCGTTCTAGAGGA-3 '(Seq ID No: 6)
  • the coding sequences of the 5 'and 3' ends of the gene of interest are followed, respectively.
  • the Ndel and BamHI restriction sites correspond to the selectivity within the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3). Digestion site.
  • the PCR reaction was performed using the pBS-0474flO plasmid containing the full-length target gene as a template.
  • PCR reaction conditions were: 1 in a total volume of 50 ⁇ plasmid pBS- 0474 ⁇ 0 containing 10pg, primer Pr imer- 3 and Pr imer- 4 are lOpmol, Advantage polymerase Mix (Clontech Products) 1 ⁇ 1. Cycle parameters: 94. C 20s, 60. C 30s, 68 ° C 2 min, a total of 25 cycles. Ndel and BamHI were used to double-digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase. The ligation product was transformed into colibacillus DH5C by the calcium chloride method.
  • Bind Quick Cartridge product of Novagen
  • Bind Quick Cartridge product of Novagen
  • 6His-Tag 6 histidines
  • a single band was obtained at 15 kDa ( Figure 2).
  • the band was transferred to a PVDF membrane and analyzed by N-terminal amino acid sequence using the Edams hydrolysis method. 15 N-terminal amino acid residues shown in SEQ ID NO: 2
  • Example 5 Production of anti-human dihydroorotase 15 antibody
  • a peptide synthesizer (product of PE company) was used to synthesize the following human dihydroorotase 15-specific peptides: NH2-Met-Glu-Ser-Pro-Leu-Arg-Leu-Trp-Gly-Leu-Leu-Ser -Ser-Leu-Pro-C00H (SEQ ID NO: 7).
  • the polypeptide is coupled with hemocyanin and bovine serum albumin to form a complex, respectively.
  • hemocyanin and bovine serum albumin for the method, see: Avraraeas, et al. Immunochemistry, 1969; 6: 43. Rabbits were immunized with 4 mg of the hemocyanin-polypeptide complex plus complete Freund's adjuvant. Incomplete Freund's adjuvant boosts immunity once.
  • a titer plate coated with a 15 g / ml bovine serum albumin peptide complex was used as an ELISA to determine antibody titers in rabbit serum.
  • Total I gG was isolated from antibody-positive rabbit serum using protein A-Sepharose.
  • the immunoprecipitation method proved that the purified antibody could specifically bind to human dihydroorotase 15.
  • Example 6 Application of the polynucleotide fragment of the present invention as a hybridization probe
  • Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
  • the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
  • the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method.
  • Filter hybridization methods include dot blotting, Southern imprinting, Northern blotting, and copying methods. They all use the same steps to immobilize the polynucleotide sample to be tested on the filter.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer to saturate the non-specific binding site of the sample on the filter with the carrier and the synthesized polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing labeled probes and incubated to hybridize the probes to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment uses higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
  • the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
  • oligonucleotide fragments for use as hybridization probes from the polynucleotide SEQ ID NO: 1 of the present invention should follow the following principles and several aspects to be considered:
  • the preferred range of probe size is 18-50 nucleotides
  • the GC content is 30% -70%, and the non-specific hybridization increases when it exceeds;
  • Probe 1 which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt):
  • Probe 2 which belongs to the second type of probe, is equivalent to the replacement mutant sequence (41Nt) of the gene fragment or its complementary fragment of SEQ ID NO: 1:
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membrane nitrocellulose membrane
  • the 32 P-Probe (the second peak is free ⁇ - 32 P-dATP) is prepared.
  • the sample membrane was placed in a plastic bag, and 3-lOmg prehybridization solution (10xDenhardt's; 6xSSC, 0.1mg / ml CT DNA (calf thymus DNA)) was added. After sealing the mouth of the bag, shake at 68 ° C for 2 hours.
  • 3-lOmg prehybridization solution (10xDenhardt's; 6xSSC, 0.1mg / ml CT DNA (calf thymus DNA)
  • Gene chip or DNA microarray is a new technology that many national laboratories and large pharmaceutical companies are currently developing and developing. It refers to the orderly and high-density arrangement of a large number of target gene fragments on glass, The data is compared and analyzed on a carrier such as silicon using fluorescence detection and computer software to achieve the purpose of fast, efficient, and high-throughput analysis of biological information.
  • the polynucleotide of the present invention can be used as target DNA for gene chip technology for high-throughput research of new gene functions; search for and screen new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases .
  • the specific method steps have been reported in the literature. For example, refer to the literature DeRi si, JL, Lyer, V. & Brown, P. 0. (1997) Sc ience 278, 680-686. And the literature Hel le, RA, Schema, M., Cha i, A., Sha lom, D., (1997) PNAS 94: 21
  • a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as the target DM, including the polynucleotide of the present invention. They were amplified by PCR respectively. After purification, the concentration of the amplified product was adjusted to about 500 ng / ul, and spotted on a glass medium using a Cartesian 7500 spotter (purchased from Cartesian Company, USA). The distance between the points is 280 ⁇ m. The spotted slides were hydrated and dried, cross-linked in a UV cross-linker, and dried after elution to fix the DNA on the glass slides to prepare chips. The specific method steps have been reported in the literature. The sample post-processing steps in this embodiment are:
  • the total tnRNA was extracted from the human mixed tissue and specific tissues (or stimulated cell lines) in one step, and the mRNA was purified using Oligotex mRNA Midi Kit (purchased from QiaGen), and the fluorescence was separated by reverse transcription!
  • Cy3dUTP (5-Amino-propargyl-2--deoxyuridine 5--triphate coupled to Cy3 fluorescent dye, purchased from Amersham Phamacia Biotech) was used to label the mRNA of human mixed tissue, and the fluorescent reagent Cy5dUTP (5-Araino-propargyl-2- -deoxyuridine 5'-triphate coupled to Cy5 fluorescent dye, purchased from Amersham Phamacia Biotech company, labeled the body's specific tissue (or stimulated cell line) mRNA, and purified the probe to prepare a probe.
  • fluorescent reagent Cy5dUTP (5-Araino-propargyl-2- -deoxyuridine 5'-triphate coupled to Cy5 fluorescent dye, purchased from Amersham Phamacia Biotech company, labeled the body's specific tissue (or stimulated cell line) mRNA, and purified the probe to prepare a probe.
  • Probes from the two types of tissues and the chip were hybridized in a UniHyb TM Hybridization Solution (purchased from TeleChem) hybridization solution for 16 hours, washed with a washing solution (1 x SSC, 0.2% SDS) at room temperature, and then scanned with ScanArray 3000.
  • the scanner purchased from General Scanning Company, USA
  • the scanned image was analyzed and processed with Imagene software (Biodiscovery, USA) to calculate the Cy3 / Cy5 ratio of each point.
  • the above specific tissues are thymus, testis, muscle, spleen, lung, skin, thyroid, liver, PMA + Ecv304 cell line, PMA-Ecv304 cell line, non-starved L02 cell line, Arsenic stimulated the L02 cell line and prostate tissue for 1 hour. Based on these 13 Cy3 / Cy5 ratios, draw a bar graph ( Figure 1). It can be seen from the figure that the expression profiles of human dihydroorotase 15 and human dihydroorotase 10 according to the present invention are very similar.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention concerne un nouveau polypeptide, une dihydroorotase humaine 15, et un polynucléotide codant pour ce polypeptide ainsi qu'un procédé d'obtention de ce polypeptide par des techniques recombinantes d'ADN. L'invention concerne en outre les applications de ce polypeptide dans le traitement de maladies, notamment des tumeurs malignes, de l'hémopathie, de l'infection par VIH, de maladies immunitaires et de diverses inflammations. L'invention concerne aussi l'antagoniste agissant contre le polypeptide et son action thérapeutique ainsi que les applications de ce polynucléotide codant pour la dihydroorotase humaine 15.
PCT/CN2001/000439 2000-03-27 2001-03-26 Nouveau polypeptide, dihydroorotase humaine 15, et polynucleotide codant pour ce polypeptide Ceased WO2001072979A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU56075/01A AU5607501A (en) 2000-03-27 2001-03-26 A new polypeptide-human dihydroorotase 15 and the polynucleotide encoding it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN00115187A CN1315578A (zh) 2000-03-27 2000-03-27 一种新的多肽——人二氢乳清酸酶15和编码这种多肽的多核苷酸
CN00115187.8 2000-03-27

Publications (1)

Publication Number Publication Date
WO2001072979A1 true WO2001072979A1 (fr) 2001-10-04

Family

ID=4584656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000439 Ceased WO2001072979A1 (fr) 2000-03-27 2001-03-26 Nouveau polypeptide, dihydroorotase humaine 15, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1315578A (fr)
AU (1) AU5607501A (fr)
WO (1) WO2001072979A1 (fr)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUGHES L.E. ET AL., CURR. MICROBIOL., vol. 39, no. 4, October 1999 (1999-10-01), pages 175 - 179 *
IWAHANA H. ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 219, no. 1, 2 June 1996 (1996-06-02), pages 249 - 255 *
KANEKO T. ET AL.: "Sequence analysis of the genome of the unicellular cyanobacterium, synechocystis sp. strain PCC6803", DNA RES., vol. 3, no. 3, 1996, pages 109 - 136 *
MAZUR D.J. AND PERRINO F.W.: "Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3'->5' exonucleases", J. BIOL. CHEM., vol. 274, no. 28, 1999, pages 19655 - 19660 *

Also Published As

Publication number Publication date
AU5607501A (en) 2001-10-08
CN1315578A (zh) 2001-10-03

Similar Documents

Publication Publication Date Title
WO2001083538A1 (fr) Nouveau polypeptide, proteine humaine 36 du gene k-ras, et polynucleotide codant pour ce polypeptide
WO2001072979A1 (fr) Nouveau polypeptide, dihydroorotase humaine 15, et polynucleotide codant pour ce polypeptide
WO2001072801A1 (fr) Nouveau polypeptide, proteine ribosomale humaine s11 12, et polynucleotide codant pour ce polypeptide
WO2001047975A1 (fr) Nouveau polypeptide, proteine 10 contenant un domaine chromo, et polynucleotide codant pour ce polypeptide
WO2001075101A1 (fr) Nouveau polypeptide, proteine humaine de regulation de la transcription 8, et polynucleotide codant pour ce polypeptide
WO2001079432A2 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 58, et polynucleotide codant pour ce polypeptide
WO2001075023A2 (fr) Nouveau polypeptide, phosphatidylinositol-3 (ptdins 3) kinase humaine 9, et polynucleotide codant pour ce polypeptide
WO2001070965A1 (fr) Nouveau polypeptide, facteur humain de regulation de la transcription 15, et polynucleotide codant pour ce polypeptide
WO2001083724A1 (fr) Nouveau polypeptide, dihydroorotase humaine 17, et polynucleotide codant pour ce polypeptide
WO2001083758A2 (fr) Nouveau polypeptide, dihydroorotase humaine 8, et polynucleotide codant pour ce polypeptide
WO2001085776A1 (fr) Polypeptide humain dihydro-orotase 12 et polynucleotide codant pour ce polypeptide
WO2001075037A2 (fr) Nouveau polypeptide, dihydroorotase humaine 40, et polynucleotide codant pour ce polypeptide
WO2001073054A1 (fr) Nouveau polypeptide, dihydroorotase humaine 11, et polynucleotide codant pour ce polypeptide
WO2001075017A2 (fr) Nouveau polypeptide, dihydroorotase humaine 17, et polynucleotide codant pour ce polypeptide
WO2001047974A1 (fr) Nouveau polypeptide, dihydroorotase humaine 10, et polynucleotide codant pour ce polypeptide
WO2001083681A2 (fr) Nouveau polypeptide, dihydroorotase humaine 21, et polynucleotide codant pour ce polypeptide
WO2001072810A1 (fr) Nouveau polypeptide, proteine humaine 12 de la famille des amidases, et polynucleotide codant pour ce polypeptide
WO2001083683A2 (fr) Nouveau polypeptide, proteine pax humaine 11.3, et polynucleotide codant pour ce polypeptide
WO2001075079A1 (fr) Nouveau polypeptide, dihydroorotase humaine 13, et polynucleotide codant pour ce polypeptide
WO2001073061A1 (fr) Nouveau polypeptide, proteine humaine 22 du retinoblastome, et polynucleotide codant pour ce polypeptide
WO2001090171A1 (fr) Nouveau polypeptide, proteine humaine ribosomale sii 12, et polynucleotide codant ce polypeptide
WO2001048160A1 (fr) Nouveau polypeptide, proteine tyrosine phosphatase 12, et polynucleotide codant pour ce polypeptide
WO2002026795A1 (fr) Nouveau polypeptide, dihydrooratase humaine 15.29, et polynucleotide codant ce polypeptide
WO2001083676A2 (fr) Nouveau polypeptide, phosphatase humaine 10 fortement striee, et polynucleotide codant pour ce polypeptide
WO2001070790A1 (fr) Nouveau polypeptide, dihydrooratase humaine 23, et polynucleotide codant pour ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP