WO2001069505A1 - Systeme de developpement de communication avec des patients interactifs afin de les informer de leur etat de sante - Google Patents
Systeme de developpement de communication avec des patients interactifs afin de les informer de leur etat de sante Download PDFInfo
- Publication number
- WO2001069505A1 WO2001069505A1 PCT/US2001/008614 US0108614W WO0169505A1 WO 2001069505 A1 WO2001069505 A1 WO 2001069505A1 US 0108614 W US0108614 W US 0108614W WO 0169505 A1 WO0169505 A1 WO 0169505A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- individual
- questionnaire
- script program
- server
- responses
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H15/00—ICT specially adapted for medical reports, e.g. generation or transmission thereof
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/20—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for electronic clinical trials or questionnaires
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/40—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H70/00—ICT specially adapted for the handling or processing of medical references
- G16H70/20—ICT specially adapted for the handling or processing of medical references relating to practices or guidelines
Definitions
- the present invention relates generally to a modular interactive development system and method for reporting on patient management, and in particular to an automated content delivery program able to connect remote users across independent platforms to a central database of libraries whereby a patient's health can be scored dynamically.
- This invention relates to the field of health management, particularly to an automated interactive system and method for reducing the risk associated with a monitored client.
- the know art includes a number of health-management systems for providing outpatient services to patients with chronic health conditions such as asthma and diabetes.
- these systems are incapable of administering a treatment protocol responsive to the patient's current profile and of updating the profile in response to the administered protocol.
- This invention presents a flexible and scalable system in content development for patient management healthcare. Due to the modular object oriented-structure, individual content modules (“dialogs”) can be mixed into an unlimited number of updateable customized programs, addressing individual as well as co-existing disease states (“co-morbid”) in any combinations, and with automated content variation for improved patient compliance.
- a dialog is the smallest content object in the FlexCube content structure. Its content addresses issues related to a unique set of symptoms, behaviors or knowledge related to a specific aspect of managing a certain disease referred to as an aspect of care.
- each dialog contains questions related to signs and symptoms, behaviors and knowledge with answers categorized as high, medium or low risk answers. For each answer there is a relevant follow up, which can be a teaching statement, an acknowledgment, a motivational statement or a new question that will explore the patient's condition in more depth. While the logical branching within a dialog is driven by patient answers, no dependency exists between individual dialogs.
- Dialogs are located in a common pool organized by library. From this library each individual dialog is referenced for participation (appearance) in programs and daily sessions.
- a dialog's behavior in a program is defined at the time of the dialog creation or it is custom defined during the program content selection process. In this way dialogs maintain their integrity while being used and re-used in several client programs. They combine freely with other dialogs in user defined program selections, allowing an unlimited combination of aspects of care and co-existing diseases. Finally, they are easily accessible for revisions and updates.
- the present invention provides an object-oriented dialog and modular toolkit structure that enhances quality control options. Also included are the centrally located content objects that offer overview and tracking of the currently active content, global error correction and global update of content to current standards of care. Because the present invention splits up interfaces for content creation and content selection into separate modules, the present invention exercises control over customer's access to content development in compliance with current and future Federal Drug Administration labeling. Finally the system's structure limits logical branching errors to within a dialog, thereby offering a more robust and less error prone system overall.
- the user Since the content of a dialog and the output of a dialog is related and mapped to a specific aspect of care, the user will have the power and flexibility to model risk evaluation and outcomes reporting around custom selected aspects of care.
- FIGURE 1 is a block diagram depicting a system's compositional and referenced components
- FIGURE 2 is a flow chart diagram depicting the overview of dialog creation
- FIGURE 3 is a block diagram depicting an interdependent characteristics (operators) of a dialog
- FIGURE 4 is flow chart depicting the steps in creating and storing of content data from a dialog
- FIGURE 5 is a flow chart diagram depicting the creation of the programming statements using a Dialog Editor Platform
- FIGURE 6 is a block diagram illustrating the three dimensional aspects of the dynamically determined risk state output scale
- FIGURE 7 is a flowchart depicting the creation of programs using a Program Composer User Interface
- FIGURE 8 is a flow chart depicting a Linker User Interface
- FIGURE 9 is a flow chart depicting a Reporter User Interface.
- the present invention includes an object-oriented content structure in which the smallest content object, a care specific dialog, is located in a central library from where its characteristics (operators) are composed and referenced by a modular set of tools located at a client computer.
- FIGURE 1 is a block diagram depicting a system 10's compositional and referenced components. Compositionally, the system 10 relies on four system components for dialog or program creation. Additionally, FIGURE 1 illustrates two other system components that interact with the referenced components of the system.
- a Program Composer 30, further referenced in FIGURE 7, is a user interfaced click and drag assembly platform for composing programs (a virtual content defined collection of dialogs). On a computer desktop, content dialogs are selected (referenced) for use in disease/client specific programs, with program specific tagging of individual dialog attributes related to frequency (scheduling) and reporting.
- a Program Patient Linker 40 is a user interface integrated into the desktop on which patients are assigned to programs. During the assignment process patient identification and patient specific metrics are added to the program.
- a Care Reporter 50 is a user interface for easy patient result lookup, triage and trend reports. Reporting requirements set in the Program Composer 30 determine which reports are displayed.
- Compositional elements of the system 10 reference either one or both of the two remaining components of the system depicted in FIGURE 1.
- a Program Scheduler 60 is an engine for automated scheduling of dialogs based on attributes set in the Program Composer 30, and A Dialog Library 70.
- the Dialog Library is the principal central location of dialog content units. Dialogs are organized into body system labeled sub-libraries and stored within the Dialog Library 70.
- FIGURE 2 is a flow chart diagram depicting the overview of dialog creation and is referenced with more particularity in FIGURE 4.
- a patient 100 reports on a specific aspect of care 110 (i.e., foot care in a Diabetes Structure) that is addressed by a dialog 125, the smallest content structure of the system, from a disease specific library 120.
- the basic format of each dialog includes questions 130 related to patient self-management behaviors 132, patient-reportable symptoms 134, or patient knowledge 136.
- Each question provides a choice for an answer ("output variable") 140 that falls into one of three risk categories; high 142 medium 144 and low risk 146.
- output variable an answer
- FIGURE 3 is a block diagram depicting the interdependent characteristics
- the interdependent characteristics include a Name Label 310 for the aspect of care addressed, a Library 320 that houses a body system specific Localization 325, client specific Programs 330 in which the dialog is being used (referenced), a Schedule frequency 340 by which the dialog is being displayed to a patient in a specific program, definition of Reporting requirements 350, and Patient Identification information 360 and metrics of each individual appliance to which the dialog is assigned.
- the user interface is easy to use due to the simplicity of program structure in which the user is able to interface with the program and dialog composition aspects of the system. Simply using drag and drop content selection procedures based on a medical decision creates a process familiar to the user. The user decides what aspects of care are relevant for a given program or for an individual patient and in most cases simply selects existing content based on that decision. In all steps of dialog composition, certain steps are taken to make available the dialog in a content library.
- FIGURE 4 is a flow chart depicting the steps in creating and storing of content data from a dialog
- a user's first task is to name the dialog-to-be-created as depicted in block 400.
- the user defines the library section of block 410, in which the dialog will reside.
- the user identifies an aspect of care at block 420 to which the dialog will primarily refer.
- the user creates dialog programming statements at block 430, in a graphical programming environment as embodied in FIGURE 5.
- New dialog content is then stored in an appropriate user library at block 440.
- the user who has access to create new content does so using a simple dialog composer as embodied in FIGURE 5.
- FIGURE 5 is a diagram depicting the creation components of a dialog Editor Platform.
- a user is presented with a palette 500 of programming statements that are represented as graphic symbols (icons) that can be dragged from the palette of available statements into a dialog construction platform 505.
- the user drags a start question icon 510 and a three pronged answer icon 520 from an icon palette down to the construction platform 500.
- the user then activates a dialog box for each icon by clicking on it with a mouse and specifying a question associated with that particular icon, for example, a Start Question Dialog 515.
- an Answer Dialog 524 the user enters three answer options relative to the start question and assigns a raw risk value to each answer 526.
- the risk values are assigned from high to low with a corresponding text answer. "Yes” equals low risk and “no” equals high risk and “medium” equals somewhere in the middle of low and high risk.
- follow up questions icons 530 are dragged onto the construction platform along with an associated answer icon 540.
- An answer dialog 545 is then prepared. Clicking on the output icon 550, the user activates the output dialog box 555.
- risk state output 558 in detail, further depicted with more particularity in FIGURE 5, defining the position of the answer relative to the axis of the risk cube.
- the user can review the dialog created, using a simulation interface to an appropriate appliance or in the alternative, the user can review the actual dialog content in a text only overview window.
- the newly created dialogs are store in a user library 560 from where it can be referenced for participation in any user defined care management program or for later updating or editing.
- FIGURE 6 is a block diagram illustrating the three dimensional aspects of the dynamically determined risk state output scale which in the Dialog Composer, FIGURE 5, is referenced at block 558.
- the X-axis 610 scales whether the answer to a question dialog sets the risk at a certain risk level on a 9 point risk scale or whether the answer moves the patient risk state in a certain direction and by how much, thereby creating an accumulated risk profile. Additionally, the answer to a dialog is incorporated as a value in a mathematically calculated risk state that may incorporate other answers as well, creating a composite, weighted risk state.
- the Y-axis 620 refers to the actual aspect of care in which the risk will be incorporated.
- the Z-axis 630 incorporates the expression of risk 530, i.e, whether the risk is assigned to a sign or symptom 632, a behavior 634, or a knowledge expression 636.
- This dynamic model allows for very sophisticated risk profiling including risk trend alerts, composite risk profiling by aspects of care and profiling by risk expression.
- the dynamic risk "foot prints" available at any time can serve as triggers for automated content selection.
- dialogs are named, created and assigned to an aspect of care and the risk output is assigned to the appropriate dialog, a user of the system can then use the Program Composer 30 to create the program that eventually is assigned to a patient.
- FIGURE 7 is a flowchart depicting the creation of "programs” using the Program Composer User Interface ("UI").
- the UI is a platform for selecting library resident Dialogs created as depicted in FIGURE 6, for participation in user- defined care management programs.
- the first step is to name the future program block 700.
- a user selects the disease libraries from which the program dialogs are created.
- the user checks the Utilities Library to add dialogs to the program that are not disease specific like generic greetings. This gives the user access to the detailed content of both of these libraries organized by aspects of care and their respective dialogs.
- Creating the program is now a simple task of adding dialogs to the program list, see block 730, and at block 740 to define the delivery of the dialogs as a user can choose specific delivery of the dialogs on a daily 750, weekly 752, or any other 754 programmed timed basis.
- a user checks the priority of dialogs to set parameters necessary for the correct scheduling of the dialogs in the program. Options are to force the scheduler to include the dialog block 744, or to assign dialogs as fillers, block 746. The later could be the case, for example, with trivia type dialogs, entertainment dialogs etc. Also, the user has the opportunity to decide the placement of dialogs in daily sessions.
- FIGURE 8 is a flow chart depicting the Linker UI, which is a platform for assigning or "linking" care management programs to patient populations or to individual patients.
- the first step at block 800 is to retrieve patient's name(s) to be used on the work platform through a filtering or sorting procedure defined by the user.
- the user marks the patient(s) and the care management program to be assigned.
- the user creates the "Link" to activate a dialog box that allows the user to specify a time frame in which the program will run for the selected patient(s), block 820. Should the user wish to link the patient to other programs all that is needed is to repeat the process.
- To process the linking of an entire population or part of a population a user selects all patients, block 800, and assigns all of them, block 810, to a program.
- FIGURE 9 is a flow chart depicting the Reporter UI and the creation of reports.
- the layout of the Reporter UI is completely consistent with that of the Linker UI depicted in FIGURE 8.
- a user can trend a risk profile, block 910, for the patient in the aspect of care where the patient has scored, for example, a high-risk profile as depicted in FIGURE 6.
- a user can configure the Reporter UI to display block 920 the actual answers or results that led to the exampled high-risk profile.
- a patient is assigned to a program based on the risk profile or Aspect of Care. Reports assigned to patients can now for example, allow the user to see details for each aspect of care, order a report printed or write a note that will be associated with a linked event.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
L'invention concerne un système interactif modulaire et un procédé permettant d'éduquer de façon personnalisée un individu, se trouvant au niveau d'un téléterminal, afin d'induire une modification dans son comportement associé à la santé. La première étape consiste à nommer le futur programme (700). Puis, un utilisateur sélectionne des banques de maladies (710) à partir desquelles les dialogues de programme sont créés. Dans le même temps, l'utilisateur contrôle la banque de services (720) afin d'ajouter dans le programme les dialogues qui ne sont pas spécifiques à la maladie, tels que des salutations génériques. La création du programme consiste, en réalité, en une simple tâche d'ajout de dialogues à la liste du programme (730), et permet de définir l'envoi des dialogues (740), étant donné qu'un utilisateur peut déterminer la fréquence de leur envoi, sur une base journalière (750), hebdomadaire (752) ou n'importe quelle autre base programmée en fonction du temps (754).
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2001247534A AU2001247534A1 (en) | 2000-03-15 | 2001-03-14 | An interactive patient communication development system for reporting on patienthealthcare management |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US18953600P | 2000-03-15 | 2000-03-15 | |
| US60/189,536 | 2000-03-15 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2001069505A1 true WO2001069505A1 (fr) | 2001-09-20 |
Family
ID=22697756
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2001/008614 Ceased WO2001069505A1 (fr) | 2000-03-15 | 2001-03-14 | Systeme de developpement de communication avec des patients interactifs afin de les informer de leur etat de sante |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU2001247534A1 (fr) |
| WO (1) | WO2001069505A1 (fr) |
Cited By (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006056003A1 (fr) * | 2004-11-26 | 2006-06-01 | Iba Health Limited | Systeme de personnalisation de donnees cliniques de patients |
| US7103578B2 (en) | 2001-05-25 | 2006-09-05 | Roche Diagnostics Operations, Inc. | Remote medical device access |
| US7297151B2 (en) | 2002-04-19 | 2007-11-20 | Elikan Technologies, Inc. | Method and apparatus for body fluid sampling with improved sensing |
| US7316700B2 (en) | 2001-06-12 | 2008-01-08 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
| US7344507B2 (en) | 2002-04-19 | 2008-03-18 | Pelikan Technologies, Inc. | Method and apparatus for lancet actuation |
| US7344894B2 (en) | 2001-10-16 | 2008-03-18 | Agilent Technologies, Inc. | Thermal regulation of fluidic samples within a diagnostic cartridge |
| US7374544B2 (en) | 2002-04-19 | 2008-05-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7410468B2 (en) | 2002-04-19 | 2008-08-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7481776B2 (en) | 2002-04-19 | 2009-01-27 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7524293B2 (en) | 2002-04-19 | 2009-04-28 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7537571B2 (en) | 2001-06-12 | 2009-05-26 | Pelikan Technologies, Inc. | Integrated blood sampling analysis system with multi-use sampling module |
| US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7563232B2 (en) | 2002-04-19 | 2009-07-21 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7582099B2 (en) | 2002-04-19 | 2009-09-01 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
| US7582063B2 (en) | 2000-11-21 | 2009-09-01 | Pelikan Technologies, Inc. | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
| US7604592B2 (en) | 2003-06-13 | 2009-10-20 | Pelikan Technologies, Inc. | Method and apparatus for a point of care device |
| US8845550B2 (en) | 2001-06-12 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US8905945B2 (en) | 2002-04-19 | 2014-12-09 | Dominique M. Freeman | Method and apparatus for penetrating tissue |
| US8945910B2 (en) | 2003-09-29 | 2015-02-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
| US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US9034639B2 (en) | 2002-12-30 | 2015-05-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
| US9072842B2 (en) | 2002-04-19 | 2015-07-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US9089678B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US9089294B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
| US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
| US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
| US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
| US9261476B2 (en) | 2004-05-20 | 2016-02-16 | Sanofi Sa | Printable hydrogel for biosensors |
| US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
| US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
| US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
| US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US9561000B2 (en) | 2003-12-31 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
| US9560993B2 (en) | 2001-11-21 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
| US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
| US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
| US9839386B2 (en) | 2002-04-19 | 2017-12-12 | Sanofi-Aventis Deustschland Gmbh | Body fluid sampling device with capacitive sensor |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5517405A (en) * | 1993-10-14 | 1996-05-14 | Aetna Life And Casualty Company | Expert system for providing interactive assistance in solving problems such as health care management |
| US5574828A (en) * | 1994-04-28 | 1996-11-12 | Tmrc | Expert system for generating guideline-based information tools |
| US5897493A (en) * | 1997-03-28 | 1999-04-27 | Health Hero Network, Inc. | Monitoring system for remotely querying individuals |
| US5918603A (en) * | 1994-05-23 | 1999-07-06 | Health Hero Network, Inc. | Method for treating medical conditions using a microprocessor-based video game |
-
2001
- 2001-03-14 AU AU2001247534A patent/AU2001247534A1/en not_active Abandoned
- 2001-03-14 WO PCT/US2001/008614 patent/WO2001069505A1/fr not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5517405A (en) * | 1993-10-14 | 1996-05-14 | Aetna Life And Casualty Company | Expert system for providing interactive assistance in solving problems such as health care management |
| US5574828A (en) * | 1994-04-28 | 1996-11-12 | Tmrc | Expert system for generating guideline-based information tools |
| US5918603A (en) * | 1994-05-23 | 1999-07-06 | Health Hero Network, Inc. | Method for treating medical conditions using a microprocessor-based video game |
| US5897493A (en) * | 1997-03-28 | 1999-04-27 | Health Hero Network, Inc. | Monitoring system for remotely querying individuals |
Cited By (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7582063B2 (en) | 2000-11-21 | 2009-09-01 | Pelikan Technologies, Inc. | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
| US7103578B2 (en) | 2001-05-25 | 2006-09-05 | Roche Diagnostics Operations, Inc. | Remote medical device access |
| US7537571B2 (en) | 2001-06-12 | 2009-05-26 | Pelikan Technologies, Inc. | Integrated blood sampling analysis system with multi-use sampling module |
| US7316700B2 (en) | 2001-06-12 | 2008-01-08 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
| US9694144B2 (en) | 2001-06-12 | 2017-07-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
| US9802007B2 (en) | 2001-06-12 | 2017-10-31 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
| US8845550B2 (en) | 2001-06-12 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US7344894B2 (en) | 2001-10-16 | 2008-03-18 | Agilent Technologies, Inc. | Thermal regulation of fluidic samples within a diagnostic cartridge |
| US9560993B2 (en) | 2001-11-21 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
| US9839386B2 (en) | 2002-04-19 | 2017-12-12 | Sanofi-Aventis Deustschland Gmbh | Body fluid sampling device with capacitive sensor |
| US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7563232B2 (en) | 2002-04-19 | 2009-07-21 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7582099B2 (en) | 2002-04-19 | 2009-09-01 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
| US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7481776B2 (en) | 2002-04-19 | 2009-01-27 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US8690796B2 (en) | 2002-04-19 | 2014-04-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US7410468B2 (en) | 2002-04-19 | 2008-08-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US8905945B2 (en) | 2002-04-19 | 2014-12-09 | Dominique M. Freeman | Method and apparatus for penetrating tissue |
| US7374544B2 (en) | 2002-04-19 | 2008-05-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US7524293B2 (en) | 2002-04-19 | 2009-04-28 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
| US9724021B2 (en) | 2002-04-19 | 2017-08-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US9072842B2 (en) | 2002-04-19 | 2015-07-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US9089678B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US9089294B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
| US7344507B2 (en) | 2002-04-19 | 2008-03-18 | Pelikan Technologies, Inc. | Method and apparatus for lancet actuation |
| US9186468B2 (en) | 2002-04-19 | 2015-11-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
| US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
| US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
| US7297151B2 (en) | 2002-04-19 | 2007-11-20 | Elikan Technologies, Inc. | Method and apparatus for body fluid sampling with improved sensing |
| US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US9498160B2 (en) | 2002-04-19 | 2016-11-22 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
| US9034639B2 (en) | 2002-12-30 | 2015-05-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
| US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
| US10034628B2 (en) | 2003-06-11 | 2018-07-31 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
| US7604592B2 (en) | 2003-06-13 | 2009-10-20 | Pelikan Technologies, Inc. | Method and apparatus for a point of care device |
| US8945910B2 (en) | 2003-09-29 | 2015-02-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
| US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
| US9561000B2 (en) | 2003-12-31 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
| US9261476B2 (en) | 2004-05-20 | 2016-02-16 | Sanofi Sa | Printable hydrogel for biosensors |
| US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
| WO2006056003A1 (fr) * | 2004-11-26 | 2006-06-01 | Iba Health Limited | Systeme de personnalisation de donnees cliniques de patients |
| US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
| US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
| US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
| US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2001247534A1 (en) | 2001-09-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7941326B2 (en) | Interactive patient communication development system for reporting on patient healthcare management | |
| WO2001069505A1 (fr) | Systeme de developpement de communication avec des patients interactifs afin de les informer de leur etat de sante | |
| US6988088B1 (en) | Systems and methods for adaptive medical decision support | |
| US7020618B1 (en) | Method and system for customer service process management | |
| AU2023214261A1 (en) | Method and platform for creating a web-based form that Incorporates an embedded knowledge base, wherein the form provides automatic feedback to a user during and following completion of the form | |
| JP4658036B2 (ja) | 機能増強型データ記録システム及びデータ記録方法 | |
| US20040088317A1 (en) | Methods, system, software and graphical user interface for presenting medical information | |
| US8959012B2 (en) | System and method for the automatic generation of patient-specific and grammatically correct electronic medical records | |
| US20130090945A1 (en) | System and method for collection of community health and administrative data | |
| US20070208596A1 (en) | Service module in clinical workflow simulation tool for healthcare institutions | |
| US20020093537A1 (en) | System and user interface supporting user navigation and concurrent application operation | |
| US20090106313A1 (en) | Interactive prescription processing and managing system | |
| MXPA03006289A (es) | Arquitectura colaboradora de multiagentes para resolucion de problemas y tutoria. | |
| WO2000042487A9 (fr) | Outil de construction de protocole pour systeme expert medical d'aide a la decision | |
| US20110159470A1 (en) | Interactive medical diagnostics training system | |
| JP2004529436A (ja) | 超音波診療院情報管理システム及び方法 | |
| US20080036784A1 (en) | Automated system and method to develop computer-administered research questionnaires using a virtual questionnaire model | |
| US20030233253A1 (en) | Point-of-care clinical documentation software system and associated methods | |
| Acock et al. | GUICS: A generic user interface for on‐farm crop simulations | |
| Chin et al. | Successful implementation of a comprehensive computer-based patient record system in Kaiser Permanente Northwest: strategy and experience. | |
| Cutting et al. | Using workflow modeling to identify areas to improve genetic test processes in the University of Maryland Translational Pharmacogenomics Project | |
| US20130290012A1 (en) | Method and system for delivering patient specific content | |
| CN112836107A (zh) | 医疗信息的处理方法、获取方法以及交互方法 | |
| US20060271856A1 (en) | Interface design system and method with integrated usability considerations | |
| Scandurra | Building usability into health informatics: development and evaluation of information systems for shared homecare |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: JP |
|
| DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |