[go: up one dir, main page]

WO2000011649A9 - Speech encoder using a classifier for smoothing noise coding - Google Patents

Speech encoder using a classifier for smoothing noise coding

Info

Publication number
WO2000011649A9
WO2000011649A9 PCT/US1999/019275 US9919275W WO0011649A9 WO 2000011649 A9 WO2000011649 A9 WO 2000011649A9 US 9919275 W US9919275 W US 9919275W WO 0011649 A9 WO0011649 A9 WO 0011649A9
Authority
WO
WIPO (PCT)
Prior art keywords
speech
signal
excitation
gain
codebook
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1999/019275
Other languages
French (fr)
Other versions
WO2000011649A1 (en
Inventor
Jes Thyssen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conexant Systems LLC
Original Assignee
Conexant Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conexant Systems LLC filed Critical Conexant Systems LLC
Publication of WO2000011649A1 publication Critical patent/WO2000011649A1/en
Publication of WO2000011649A9 publication Critical patent/WO2000011649A9/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/012Comfort noise or silence coding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0316Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
    • G10L21/0364Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude for improving intelligibility

Definitions

  • TITLE SPEECH ENCODER USING A CLASSIFIER FOR SMOOTHING NOISE CODING
  • the present invention relates generally to speech encoding and decoding in voice communication systems; and, more particularly, it relates to various techniques used with code- excited linear prediction coding to obtain high quality speech reproduction through a limited bit rate communication channel.
  • LPC linear predictive coding
  • a conventional source encoder operates on speech signals to extract modeling and parameter information for communication to a conventional source decoder via a communication channel. Once received, the decoder attempts to reconstruct a counterpart signal for playback that sounds to a human ear like the original speech.
  • a certain amount of communication channel bandwidth is required to communicate the modeling and parameter information to the decoder.
  • a reduction in the required bandwidth proves beneficial.
  • the quality of communication channel bandwidth is required to communicate the modeling and parameter information to the decoder.
  • Speech encoding becomes increasingly difficult as transmission bit rates decrease. Particularly for noise encoding, perceptual quality diminishes significantly at lower bit rates.
  • Straightforward code-excited linear prediction CELP
  • CELP code-excited linear prediction
  • this method may fail to provide perceptually accurate signal reproduction at lower bit rates.
  • One such reason is that the pulse like excitation for noise signals becomes more sparse at these lower bit rates as less bits are available for coding and transmission, thereby resulting in annoying distortion of the noise signal upon reproduction.
  • the inability to determine the optimal encoding mode for a given noise signal at a given bit rate also results in an inefficient use of encoding resources.
  • the ability to selectively apply an optimal coding scheme at a given bit rate would provide more efficient use of an encoder processing circuit.
  • the ability to select the optimal encoding mode for type of noise signal would further maximize the available encoding resources while providing a more perceptually accurate reproduction of the noise signal.
  • Va ⁇ ous aspects of the present invention can be found in a speech encoding system using an analysis by synthesis coding approach on a speech signal.
  • An intelligent encoding process selects and applies a particular encoding scheme to provide optimal computational resource allocation within an encoder processing circuit.
  • code-excited linear prediction containing pulse-like excitation is employed.
  • the encoder processing circuit classifies a given speech signal as having a noise-like spectral envelope.
  • the envelope can further be classified as a substantially stationary or non-stationary noise signal.
  • the excitation may possess a substantially random character.
  • an excitation vector having a substantially Gaussian characteristic may be used.
  • One intrinsic quality to using Gaussian excitation is that the human ear is relatively insensitive to Gaussian noise.
  • the excitation provided to encode the speech signal may contain both a pulse-like and a Gaussian like component.
  • a smoothing process is performed while encoding speech signals having a substantially noise-like character.
  • the line spectral frequencies (LSFs) which are generated during the encoding process may be smoothed to adjusted to perform perceptual smoothing of the noise-like signal.
  • the relative gain of various codebooks used in the invention including an adaptive codebook and a fixed codebook, may be adjusted. These smoothing procedures need not be synchronous. The smoothing of the codebook gains may be performed on one time scale basis and the smoothing of the LSFs on another.
  • Fig. 1 a is a schematic block diagram of a speech communication system illustrating the use of source encoding and decoding in accordance with the present invention.
  • Fig. lb is a schematic block diagram illustrating an exemplary communication device utilizing the source encoding and decoding functionality of Fig. la.
  • Figs. 2-4 are functional block diagrams illustrating a multi-step encoding approach used by one embodiment of the speech encoder illustrated in Figs, la and lb.
  • Fig. 2 is a functional block diagram illustrating of a first stage of operations performed by one embodiment of the speech encoder of Figs, la and lb.
  • Fig. 3 is a functional block diagram of a second stage of operations, while Fig. 4 illustrates a third stage.
  • Fig. 5 is a block diagram of one embodiment of the speech decoder shown in Figs. 1 a and lb having corresponding functionality to that illustrated in Figs. 2-4.
  • Fig. 6 is a block diagram of an alternate embodiment of a speech encoder that is built in accordance with the present invention.
  • Fig. 7 is a block diagram of an embodiment of a speech decoder having corresponding functionality to that of the speech encoder of Fig. 6.
  • Fig. 8 is a functional block diagram depicting the present invention that, in one embodiment, selects an appropriate coding scheme depending on the existence of a stationary noise-like spectral content in a speech signal.
  • Fig. 9 is a functional block diagram illustrating an operational selection process that adaptively selects an appropriate coding scheme upon considering both the spectral content of the speech signal, whether it be noise-like or not, as well as the available transmission bit rate.
  • Fig. la is a schematic block diagram of a speech communication system illustrating the use of source encoding and decoding in accordance with the present invention.
  • a speech communication system 100 supports communication and reproduction of speech across a communication channel 103. Although it may compnse for example a wire, fiber or optical link, the communication channel 103 typically compnses, at least in part, a radio frequency link that often must support multiple, simultaneous speech exchanges requiring shared bandwidth resources such as may be found with cellular telephony embodiments.
  • a storage device may be coupled to the communication channel 103 to temporanly store speech information for delayed reproduction or playback, e.g., to perform answe ⁇ ng machine functionality, voiced email, etc.
  • the communication channel 103 might be replaced by such a storage device in a single device embodiment of the communication system 100 that, for example, merely records and stores speech for subsequent playback.
  • a microphone 11 1 produces a speech signal in real time.
  • the microphone 1 1 1 delivers the speech signal to an A/D (analog to digital) converter 115.
  • the A/D converter 1 15 converts the speech signal to a digital form then delivers the digitized speech signal to a speech encoder 117.
  • the speech encoder 117 encodes the digitized speech by using a selected one of a plurality of encoding modes. Each of the plurality of encoding modes utilizes particular techniques that attempt to optimize quality of resultant reproduced speech. While operating in any of the plurality of modes, the speech encoder 117 produces a series of modeling and parameter information (hereinafter "speech indices"), and delivers the speech indices to a channel encoder 119.
  • speech indices modeling and parameter information
  • the channel encoder 1 19 coordinates with a channel decoder 131 to deliver the speech indices across the communication channel 103
  • the channel decoder 131 forwards the speech indices to a speech decoder 133 While operating in a mode that corresponds to that of the speech encoder 1 17, the speech decoder 133 attempts to recreate the o ⁇ ginal speech from the speech indices as accurately as possible at a speaker 137 via a D/A (digital to analog) converter 135
  • the speech encoder 1 17 adaptively selects one of the plurality of operating modes based on the data rate restnctions through the communication channel 103.
  • the communication channel 103 compnses a bandwidth allocation between the channel encoder 119 and the channel decoder 131
  • the allocation is established, for example, by telephone switching networks wherein many such channels are allocated and reallocated as need arises.
  • a 22.8 kbps (kilobits per second) channel bandwidth i.e., a full rate channel
  • a 1 1 4 kbps channel bandwidth i.e., a half rate channel
  • the speech encoder 1 17 may adaptively select an encoding mode that supports a bit rate of 11.0, 8.0, 6.65 or 5.8 kbps.
  • the speech encoder 117 adaptively selects an either 8.0, 6.65, 5.8 or 4.5 kbps encoding bit rate mode when only the half rate channel has been .allocated.
  • these encoding bit rates and the aforementioned channel allocations are only representative of the present embodiment. Other vanations to meet the goals of alternate embodiments are contemplated.
  • the speech encoder 117 attempts to communicate using the highest encoding bit rate mode that the allocated channel will support If the allocated channel is or becomes noisy or otherwise restnctive to the highest or higher encoding bit rates, the speech encoder 117 adapts by selecting a lower bit rate encoding mode Similarly, when the communication channel 103 becomes more favorable, the speech encoder 1 17 adapts by switching to a higher bit rate encoding mode.
  • the speech encoder 117 incorporates various techniques to generate better low bit rate speech reproduction. Many of the techniques applied are based on characteristics of the speech itself. For example, with lower bit rate encoding, the speech encoder 117 classifies noise, unvoiced speech, and voiced speech so that an appropriate modeling scheme corresponding to a particular classification can be selected and implemented. Thus, the speech encoder 117 adaptively selects from among a plurality of modeling schemes those most suited for the current speech. The speech encoder 117 also applies various other techniques to optimize the modeling as set forth in more detail below.
  • Fig. lb is a schematic block diagram illustrating several variations of an exemplary communication device employing the functionality of Fig. la.
  • a communication device 151 comprises both a speech encoder and decoder for simultaneous capture and reproduction of speech.
  • the communication device 151 might, for example, comprise a cellular telephone, portable telephone, computing system, etc.
  • the communication device 151 might, for example, comprise a cellular telephone, portable telephone, computing system, etc.
  • the communication device 151 might comprise an answering machine, a recorder, voice mail system, etc.
  • a microphone 155 and an A D converter 157 coordinate to deliver a digital voice signal to an encoding system 159.
  • the encoding system 159 performs speech and channel encoding and delivers resultant speech information to the channel.
  • the delivered speech information may be destined for another communication device (not shown) at a remote location.
  • a decoding system 165 performs channel and speech decoding then coordinates with a D/A convener 167 and a speaker 169 to reproduce something that sounds like the onginally captured speech
  • the encoding system 159 compnses both a speech processing circuit 185 that performs speech encoding, and a channel processing circuit 187 that performs channel encoding Similarly, the decoding system 165 compnses a speech processing circuit 189 that performs speech decoding, and a channel processing circuit 191 that performs channel decoding
  • the speech processing circuit 185 and the channel processing circuit 187 are separately illustrated, they might be combined in part or in total into a single unit.
  • the speech processing circuit 185 and the channel processing circuitry 187 might share a single DSP (digital signal processor) and/or other processing circuitry.
  • the speech processing circuit 189 and the channel processing circuit 191 might be entirely separate or combined in pan or in whole.
  • combinations in whole or m part might be applied to the speech processing circuits 185 and 189, the channel processing circuits 187 and 191, the processing circuits 185, 187, 189 and 191, or otherwise.
  • the encoding system 159 and the decoding system 165 both utilize a memory 161
  • the speech processing circuit 185 utilizes a fixed codebook 181 and an adaptive codebook 183 of a speech memory 177 in the source encoding process.
  • the channel processing circuit 187 utilizes a channel memory 175 to perform channel encoding.
  • the speech processing circuit 189 utilizes the fixed codebook 181 and the adaptive codebook 183 in the source decoding process.
  • the channel processing circuit 187 utilizes the channel memory 175 to perform channel decoding.
  • the speech memory 177 is shared as illustrated, separate copies thereof can be assigned for the processing circuits 185 and 189. Likewise, separate channel memory can be allocated to both the processing circuits 187 and 191.
  • the memory 161 also contains software utilized by the processing circuits 185,187,189 and 191 to perform va ⁇ ous functionality required in the source and channel encoding and decoding processes.
  • Figs. 2-4 are functional block diagrams illustrating a multi-step encoding approach used by one embodiment of the speech encoder illustrated in Figs, la and lb.
  • Fig. 2 is a functional block diagram illustrating of a first stage of operations performed by one embodiment of the speech encoder shown in Figs, la and lb.
  • the speech encoder which compnses encoder processing circuitry, typically operates pursuant to software instruction carrying out the following functionality.
  • source encoder processing circuitry performs high pass filtering of a speech signal 21 1.
  • the filter uses a cutoff frequency of around 80 Hz to remove, for example, 60 Hz power line noise and other lower frequency signals.
  • the source encoder processing circuitry applies a perceptual weighting filter as represented by a block 219.
  • the perceptual weighting filter operates to emphasize the valley areas of the filtered speech signal.
  • a pitch preprocessing operation is performed on the weighted speech signal at a block 225.
  • the pitch preprocessing operation involves warping the weighted speech signal to match interpolated pitch values that will be generated by the decoder processing circuitry.
  • the warped speech signal is designated a first target signal 229. If pitch preprocessing is not selected the control block 245, the weighted
  • SUBSTITUTE SHEET (RULE 28) speech signal passes through the block 225 without pitch preprocessing and is designated the first target signal 229
  • the encoder processing circuitry applies a process wherein a contribution from an adaptive codebook 257 is selected along with a conesponding gain 257 whicn minimize a first error signal 253.
  • the first error signal 253 compnses the difference between the first target signal 229 and a weighted, synthesized contribution from the adaptive codebook 257.
  • the resultant excitation vector is applied after adaptive gain reduction to both a synthesis and a weighting filter to generate a modeled signal that best matches the first target signal 229.
  • the encoder processing circuitry uses LPC (linear predictive coding) analysis, as indicated by a block 239, to generate filter parameters for the synthesis and weighting filters.
  • LPC linear predictive coding
  • the encoder processing circuitry designates the first error signal 253 as a second target signal for matching using contributions from a fixed codebook 261.
  • the encoder processing circuitry searches through at least one of the plurality of subcodebooks within the fixed codebook 261 m an attempt to select a most appropriate contribution while generally attempting to match the second target signal.
  • the encoder processing circuitry selects an excitation vector, its corresponding subcodebook and gain based on a variety of factors. For example, the encoding bit rate, the degree of minimization, and characteristics of the speech itself as represented by a block 279 are considered by the encoder processing circuitry at control block 275. Although many other factors may be considered, exemplary charactenstics include speech classification, noise level, sharpness, periodicity, etc. Thus, by considering other such factors, a first subcodebook with its best excitation vector may be selected rather than a second subcodebook ' s best excitation vector even though the second subcodebook's better minimizes the second target signal 265.
  • Fig. 3 is a functional block diagram depicting of a second stage of operations performed by the embodiment of the speech encoder illustrated in Fig. 2.
  • the speech encoding circuitry simultaneously uses both the adaptive the fixed codebook vectors found in the first stage of operations to minimize a third error signal 311.
  • the speech encoding circuitry searches for optimum gain values for the previously identified excitation vectors ( in the first stage) from both the adaptive and fixed codebooks 257 and 261. As indicated by blocks 307 and 309, the speech encoding circuitry identifies the optimum gain by generating a synthesized and weighted signal, i.e., via a block 301 and 303, that best matches the first target signal 229 (which minimizes the third error signal 311).
  • the first and second stages could be combined wherein joint optimization of both gain and adaptive and fixed codebook rector selection could be used.
  • Fig. 4 is a functional block diagram depicting of a third stage of operations performed by the embodiment of the speech encoder illustrated in Figs. 2 and 3.
  • the encoder processing circuitry applies gain normalization, smoothing and quantization, as represented by blocks 401 , 403 and 405, respectively, to the jointly optimized gains identified in the second stage of encoder processing.
  • the adaptive and fixed codebook vectors used are those identified in the first stage processing.
  • the encoder processing circuitry With normalization, smoothing and quantization functionally applied, the encoder processing circuitry has completed the modeling process. Therefore, the modeling parameters identified are communicated to the decoder.
  • the encoder processing circuitry delivers an index to the selected adaptive codebook vector to the channel encoder via a multiplexor 419.
  • the encoder processing circuitry delivers the index to the selected fixed codebook vector, resultant gains, synthesis filter parameters, etc., to the muliplexor 419.
  • the multiplexor 419 generates a bit stream 421 of such information for delivery to the channel encoder for communication to the channel and speech decoder of receiving device.
  • Fig. 5 is a block diagram of an embodiment illustrating functionality of speech decoder having corresponding functionality to that illustrated in Figs. 2-4.
  • the speech decoder which comprises decoder processing circuitry, typically operates pursuant to software instruction carrying out the following functionality.
  • a demultiplexor 51 1 receives a bit stream 513 of speech modeling indices from an often remote encoder via a channel decoder. As previously discussed, the encoder selected each index value during the multi-stage encoding process described above in reference to Figs. 2-4.
  • the decoder processing circuitry utilizes indices, for example, to select excitation vectors from an adaptive codebook 515 and a fixed codebook 519, set the adaptive and fixed codebook gains at a block 521 , and set the parameters for a synthesis filter 531.
  • the decoder processing circuitry With such parameters and vectors selected or set, the decoder processing circuitry generates a reproduced speech signal 539.
  • the codebooks 515 and 519 generate excitation vectors identified by the indices from the demultiplexor 511.
  • the decoder processing circuitry applies the indexed gains at the block 521 to the vectors which are summed.
  • the decoder processing circuitry modifies the gains to emphasize the contribution of vector from the adaptive codebook 515.
  • adaptive tilt compensation is applied to the combined vectors with a goal of flattening the excitation spectrum.
  • the decoder processing circuitry performs synthesis filtering at the block 531 using the flattened excitation signal.
  • the A/D converter 1 15 (Fig. la) will generally involve analog to uniform digital PCM including 1 ) an input level adjustment device; 2) an input anti-aliasing filter; 3) a sample-hold device sampling at 8 kHz; and 4) analog to uniform digital conversion to 13-bit representation.
  • the D/A converter 135 will generally involve uniform digital PCM to analog including- 1) conversion from 13-b ⁇ t/8 kHz uniform PCM to analog; 2) a hold device; 3) reconstruction filter including x/s ⁇ n(x) correction; and 4) an output level adjustment device
  • the A/D function may be achieved by direct conversion to 13-bit uniform PCM format, or by conversion to 8-b ⁇ t/A-law compounded format.
  • the inverse operations take place.
  • the encoder 117 receives data samples with a resolution of 13 bits left justified in a 16-bit word. The three least significant bits are set to zero.
  • the decoder 133 outputs data in the same format. Outside the speech codec, further processing can be applied to accommodate traffic data having a different representation.
  • a specific embodiment of an AMR (adaptive multi-rate) codec with the operational functionality illustrated in Figs. 2-5 uses five source codecs with bit-rates 11.0, 8.0, 6.65, 5 8 and 4 55 kbps Four of the highest source coding bit-rates are used in the full rate channel and the four lowest bit-rates in the half rate channel.
  • All five source codecs within the AMR codec are generally based on a code-excited linear predictive (CELP) coding model.
  • CELP code-excited linear predictive
  • a 10th order linear prediction (LP), or short-term, synthesis filter, e.g.. used at the blocks 249. 267, 301, 407 and 531 (of Figs. 2-5), is used which is given by:
  • a long-term filter i.e., the pitch synthesis filter
  • the pitch synthesis filter is given by:
  • the excitation signal at the input of the short-term LP synthesis filter at the block 249 is constructed by adding two excitation vectors from the adaptive and the fixed codebooks 257 and 261, respectively.
  • the speech is synthesized by feeding the two properly chosen vectors from these codebooks through the short-term synthesis filter at the block 249 and 267, respectively.
  • the optimum excitation sequence in a codebook is chosen using an analysis-by-synthesis search procedure in which the error between the original and synthesized speech is minimized according to a perceptually weighted distortion measure.
  • the perceptual weighting filter e.g., at the blocks 251 and 268, used in the analysis-by-synthesis search technique is given by:
  • the weighting filter e.g., at the blocks 251 and 268, uses the unquantized LP parameters while the formant synthesis filter, e.g.. at the blocks 249 and 267, uses the quantized LP parameters. Both the unquantized and quantized LP parameters are generated at the block 239.
  • the present encoder embodiment operates on 20 ms (millisecond) speech frames corresponding to 160 samples at the sampling frequency of 8000 samples per second.
  • the speech signal is analyzed to extract the parameters of the CELP model, i.e., the LP filter coefficients, adaptive and fixed codebook indices and gains. These parameters are encoded and transmitted.
  • these parameters are decoded and speech is synthesized by filtering the reconstructed excitation signal through the LP synthesis filter.
  • LP analysis at the block 239 is performed twice per frame but only a single set of LP parameters is converted to line spectrum frequencies (LSF) and vector quantized using predictive multi-stage quantization (PMVQ).
  • LSF line spectrum frequencies
  • PMVQ predictive multi-stage quantization
  • the speech frame is divided into subframes. Parameters from the adaptive and fixed codebooks 257 and 261 are transmitted every subframe. The quantized and unquantized LP parameters or their interpolated versions are used depending on the subframe.
  • An open-loop pitch lag is estimated at the block 241 once or twice per frame for PP mode or LTP mode, respectively.
  • the encoder processing circuitry (operating pursuant to software instruction) computes x( n ) , the first target signal 229, by filtering the LP residual through the weighted synthesis filter W( z )H( z ) with the initial states of the filters having been updated by filtering the error between LP residual and excitation. This is equivalent to an alternate approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal.
  • the encoder processing circuitry computes the impulse response, hi n ) . of the weighted synthesis filter.
  • closed-loop pitch analysis is performed to find the pitch lag and gam, using the first target signal 229, x( n ) , and impulse response, n ) , by searching around the open-loop pitch lag. Fractional pitch with va ⁇ ous sample resolutions are used.
  • the input original signal has been pitch-preprocessed to match the interpolated pitch contour, so nc losed-loop search is needed.
  • the LTP excitation vector is computed using the interpolated pitch contour and the past synthesized excitation.
  • the encoder processing circuitry generates a new target signal x,( n ) , the second target signal 253, by removing the adaptive codebook contribution (filtered adaptive code vector) from The encoder processing circuitry uses the second target signal 253 in the fixed codebook search to find the optimum innovation.
  • the gains of the adaptive and fixed codebook are scalar quantized with 4 and 5 bits respectively (with moving average prediction applied to the fixed codebook gain).
  • the gains of the adaptive and fixed codebook are vector quantized (with moving average prediction applied to the fixed codebook gain).
  • the filter memories are updated using the determined excitation signal for finding the first target signal in the next subframe.
  • bit allocation of the AMR codec modes is shown in table 1. For example, for each 20 ms speech frame, 220, 160, 133 , 116 or 91 bits are produced, corresponding to bit rates of 1 1.0, 8.0, 6.65, 5.8 or 4.55 kbps, respectively.
  • Table 1 Bit allocation of the AMR coding algorithm for 20 ms frame
  • the decoder processing circuitry pursuant to software control, reconstructs the speech signal using the transmitted modeling indices extracted from the received bit stream by the demultiplexor 511.
  • the decoder processing circuitry decodes the indices to obtain the coder parameters at each transmission frame. These parameters are the LSF vectors, the fractional pitch lags, the innovative code vectors, and the two gains.
  • the LSF vectors are converted to the LP filter coefficients and interpolated to obtain LP filters at each subframe.
  • the decoder processing circuitry constructs the excitation signal by: 1) identifying the adaptive and innovative code vectors from the codebooks 515 and 519; 2) scaling the contributions by their respective gains at the block 521; 3) summing the scaled contributions; and 3) modifying and applying adaptive tilt compensation at the blocks 527 and 529.
  • the speech signal is also reconstructed on a subframe basis by filtering the excitation through the LP synthesis at the block 531. Finally, the speech signal is passed through an adaptive post filter at the block 535 to generate the reproduced speech signal 539.
  • the AMR encoder will produce the speech modeling information in a unique sequence and format, and the AMR decoder receives the same information in the same way.
  • the different parameters of the encoded speech and their individual bits have unequal importance with respect
  • Short-term prediction, or linear prediction (LP) analysis is performed twice per speech frame using the autocorrelation approach with 30 ms windows. Specifically, two LP analyses are performed twice per frame using two different windows. In the first LP analysis
  • a hybnd window is used which has its weight concentrated at the fourth subframe.
  • the hybnd window consists of two parts. The first part is half a Hamming window, and the second part is a quarter of a cosine cycle.
  • the window is given by:
  • a 60 Hz bandwidth expansion is used by lag windowing, the autocorrelations using the window:
  • r(0) is multiplied by a white noise correction factor 1.0001 which is equivalent to adding a noise floor at -40 dB.
  • LSFs Line Spectral Frequencies
  • a VAD Voice Activity Detection
  • a VAD Voice Activity Detection algorithm is used to classify input speech frames into either active voice or inactive voice frame (background noise or silence) at a block 235 (Fig. 2 ⁇
  • the input speech s(n) is used to obtain a weighted speech signal s w (n) by passing s(n)
  • a voiced/unvoiced classification and mode decision within the block 279 using the input speech s(n) and the residual r w (n) is derived where:
  • the classification is based on four measures: 1) speech sharpness P1_SHP; 2) norm ized one delay conelation P2_R1; 3) normalized zero-crossing rate P3_ZC; and 4) normalized LP residual energy P4_RE.
  • the speech shyness is given by:
  • MaxL Max is the maximum of abs(r w (n)) the specified interval of length L .
  • the normalized one delay conelation and normalized zero-crossing rate are given by:
  • Ipc _ gain J ⁇ J (1 — ⁇ r, 2 ) .
  • k t are the reflection coefficients obtained from LP
  • Open loop pitch analysis is performed once or twice (each 10 ms) per frame depending on the coding rate in order to find estimates of the pitch lag at the block 241 (Fig. 2). It is based
  • a delay, k/_ among the four candidates is selected by maximizing the four normalized correlations.
  • LTP_mode long-term prediction
  • LTP_mode is set to 0 at all times.
  • LTP_mode is set to 1 all of the time.
  • the encoder decides whether to operate in the LTP or PP mode. During the PP mode, only one pitch lag is transmitted per coding frame.
  • LTP _ mode _m is previous frame LTP _ ode
  • lag _f[ ⁇ ],lag _ f[3] are the past closed
  • lagl is the cunent frame open-loop
  • lagll is the previous frame open-loop pitch lag at the first half of the frame.
  • one integer lag it is selected maximizing the R* in the range it €[T op - 10, T op + 10] bounded by [17, 145]. Then, the precise pitch lag P m and the
  • conesponding index I m for the cunent frame is searched around the integer lag, [k-1, k+l], by up-sampling R*.
  • the obtained index I m will be sent to the decoder.
  • One frame is divided into 3 subframes for the long-term preprocessing.
  • the subframe size, L 1 is 53
  • the subframe size for searching, L sr> is 70
  • L s is 54
  • L sr is:
  • T c (n) trunc ⁇ X c (n + m- L-) ⁇
  • T IC (n) ⁇ c (n)- T c (n)
  • I s (i,T, c (n)) is a set of interpolation coefficients, and// is 10. Then, the
  • P sh2 is the sha ⁇ ness from the weighted speech signal:
  • nO trunc ⁇ mO+ ⁇ + 05 ⁇ (here, m is subframe number and ⁇ is the previous accumulated delay).
  • ⁇ ⁇ pl a normalized conelation vector between the original weighted speech signal and the modified matching target is defined as:
  • R ⁇ (k) is inte ⁇ olated to obtain the fractional conelation vector, R j), by:
  • ⁇ I i,j) ⁇ is a set of interpolation coefficients.
  • the optimal fractional delay index, j op , is selected by maximizing R j).
  • the best local delay, ⁇ op at the end of the cunent processing subframe is given by,
  • the local delay is then adjusted by:
  • TvAn and 7 n are calculated by:
  • T w (n) trunc ⁇ acc + n - ⁇ opl / L s )
  • T m (n) ⁇ acc + n ⁇ ⁇ opt I L, - T w (n) ,
  • ⁇ /.(i, r w ( ⁇ )) ⁇ is a set of interpolation coefficients.
  • the accumulated delay at the end of the current subframe is renewed by:
  • the LSFs Prior to quantization the LSFs are smoothed in order to improve the perceptual quality. In principle, no smoothing is applied during speech and segments with rapid variations in the spectral envelope. During non-speech with slow variations in the spectral envelope, smoothing is applied to reduce unwanted spectral variations. Unwanted spectral variations could typically occur due to the estimation of the LPC parameters and LSF quantization. As an example, in stationary noise-like signals with constant spectral envelope introducing even very small variations in the spectral envelope is picked up easily by the human ear and perceived as an annoying modulation.
  • the smoothing of the LSFs is done as a running mean according to:
  • lsf_est,(n) is the '* estimated LSF of frame n
  • lsf,(n) is the /'* LSF for quantization
  • ⁇ (n) controls the amount of smoothing, e.g. if ⁇ (n) is zero no smoothing is applied.
  • ⁇ (n) is calculated from the VAD information (generated at the block 235) and two estimates of the evolution of the spectral envelope. The two estimates of the evolution are defined as:
  • ⁇ SP (Isf jest, (n) -isf jest, (n - 1)) 2
  • ⁇ nx- 5 .TM(») ⁇ mode ll ⁇ n ( ⁇ -l) + l if(N fm ⁇ J ⁇ (n)>5)
  • step 1 the encoder processing circuitry checks the VAD and the evolution of the spectral envelope, and performs a full or partial reset of the smoothing if required.
  • step 2 the encoder processing circuitry updates the counter, N, ⁇ ⁇ ( ⁇ ) , and calculates the smoothing
  • the parameter ⁇ (n) varies between 0.0 and 0.9, being 0.0 for speech, music, tonal-like signals, and non-stationary background noise and ramping up towards 0.9 when stationary background noise occurs.
  • the LSFs are quantized once per 20 ms frame using a predictive multi-stage vector quantization. A minimal spacing of 50 Hz is ensured between each two neighbonng LSFs before
  • a vector of mean values is subtracted from the LSFs, and a vector of prediction enor vector fe is calculated from the mean removed LSFs vector, using a full-matrix AR(2) predictor.
  • a single predictor is used for the rates 5.8, 6.65, 8.0, and 11.0 kbps coders, and two sets of prediction coefficients are tested as possible predictors for the 4.55 kbps coder.
  • the vector of prediction enor is qu.antized using a multi-stage VQ, with multi-surviving candidates from each stage to the next stage.
  • the two possible sets of prediction enor vectors generated for the 4.55 kbps coder are considered as surviving candidates for the first stage.
  • the first 4 stages have 64 entries each, and the fifth and last table have 16 ent ⁇ es.
  • the first 3 stages are used for the 4.55 kbps coder, the first 4 stages are used for the 5.8, 6.65 and 8.0 kbps coders, and all 5 stages are used for the 11.0 kbps coder.
  • the following table summa ⁇ zes the number of bits used for the quantization of the LSFs for each rate.
  • the quantization in each stage is done by minimizing the weighted distortion measure given by:
  • fe represents in this equation both the initial prediction enor to the first stage and the successive quantization error from each stage to the next one).
  • the quantized LSFs are ordered and spaced with a minimal spacing of 50 Hz.
  • the interpolation of the quantized LSF is performed in the cosine domain in two ways depending on the LTP_mode. If the LTP_mode is 0, a linear interpolation between the quantized LSF set of the current frame and the quantized LSF set of the previous frame is performed to get the LSF set for the first, second and third subframes as:
  • LTP_mode If the LTP_mode is 1, a search of the best interpolation path is performed in order to get the inte ⁇ olated LSF sets.
  • the search is based on a weighted mean absolute difference between a reference LSF set r/( ⁇ )and the LSF set obtained from LP analysis_2 ⁇ (n) .
  • the weights w are computed as follows:
  • Min(a,b) returns the smallest of a and b.
  • H(z)W(z) A(z/ ⁇ )/[A(z)A(zl ⁇ 2 )] is computed each subframe.
  • This impulse response is needed for the search of adaptive and fixed codebooks 257 and 261.
  • the impulse response h(n) is computed by filtering the vector of coefficients of the filter A(z I y, ) extended by zeros
  • the target signal for the search of the adaptive codebook 257 is usually computed by subtracting the zero input response of the weighted synthesis filter H(z)W(z) from the weighted speech signal s ⁇ (n) . This operation is performed on a frame basis.
  • computing the target signal is the filtering of the LP residual signal r(n) through the
  • the initial states of these filters are updated by filtering the difference between the LP residual and the excitation.
  • the residual signal r(n) which is needed for finding the target vector is also used in the adaptive codebook search to extend the past excitation buffer. This simplifies the adaptive codebook search procedure for delays less than the subframe size of 40 samples.
  • the LTP excitation codevector, temporally memorized in ext(MAX_LAG+n), 0 ⁇ -n ⁇ L_SF], is calculated by interpolating the past excitation (adaptive codebook) with the pitch lag contour, ⁇ c (n + m-L _ SF), m 0.1.2.3.
  • the inte ⁇ olation is
  • Tc(n) and T / c(n) are calculated by
  • T c (n ) trunc ⁇ c (n + m ⁇ L _ SF) ) ,
  • T IC (n) ⁇ c (n) - T c (n) ,
  • m is subframe number
  • is a set of interpolation coefficients, // is 10
  • MAX_LAG is
  • Adaptive codebook searching is performed on a subframe basis. It consists of performing closed-loop pitch lag search, and then computing the adaptive code vector by interpolating the past excitation at the selected fractional pitch lag.
  • the LTP parameters (or the adaptive codebook parameters) are the pitch lag (or the delay) and gain of the pitch filter.
  • the excitation is extended by the LP residual to simplify the closed-loop search.
  • the pitch delay is encoded with 9 bits for the 1 st and 3 rd subframes and the relative delay of the other subframes is encoded with 6 bits.
  • the close-loop pitch search is performed by minimizing the mean-square weighted enor between the original and synthesized speech. This is achieved by maximizing the term:
  • the samples u(n),n 0 to 39, are not available and are needed for pitch delays less than 40.
  • the LP residual is copied to u(n) to make the relation in the calculations valid for all delays.
  • the adaptive codebook vector, v(n) is computed by interpolating the past excitation u( ⁇ ) at the given phase (fraction). The interpolations are performed using two FIR filters (Hamming windowed sine functions), one for inte ⁇ olating the term in the calculations to find the fractional pitch lag and the other for inte ⁇ olating the past excitation as previously described.
  • the adaptive codebook gain, g - . is temporally given then by:
  • codebook vector zero state response of H(zW(z) to v(n) .
  • the adaptive codebook gain could be modified again due to joint optimization of the gains, gain normalization and smoothing.
  • y(n) is also referred to herein as C p (n) .
  • pitch lag maximizing conelation might result in two or more times the conect one.
  • the candidate of shorter pitch lag is favored by weighting the conelations of different candidates with constant weighting coefficients.
  • this approach does not conect the double or treble pitch lag because the weighting coefficients are not aggressive enough or could result in halving the pitch lag due to the strong weighting coefficients.
  • these weighting coefficients become adaptive by checking if the present candidate is in the neighborhood of the previous pitch lags (when the previous frames are voiced) and if the candidate of shorter lag is in the neighborhood of the value obtained by dividing the longer lag (which maximizes the conelation) with an integer.
  • a speech classifier is used to direct the searching procedure of the fixed codebook (as indicated by the blocks 275 and 279) and to- control gain normalization (as indicated in the block 401 of Fig. 4).
  • the speech classifier serves to improve the background noise performance for the lower rate coders, .and to get a quick start- up of the noise level estimation.
  • the speech classifier distinguishes stationary noise-like segments from segments of speech, music, tonal-like signals, non-stationary noise, etc
  • the speech classification is performed in two steps.
  • An initial classification (speech mode) is obtained based on the modified input signal.
  • the final classification (exc node) is obtained from the initial classification and the residual signal after the pitch contnbution has been removed.
  • the two outputs from the speech classification are the excitation mode, excjnode, and the parameter ⁇ sub (n) , used to control the subframe based smoothing of the
  • the speech classification is used to direct the encoder according to the characte ⁇ stics of the input signal and need not be transmitted to the decoder.
  • the encoder emphasizes the perceptually important features of the input signal on a subframe basis by adapting the encoding in response to such features. It is important to notice that misclassification will not result in disastrous speech quality degradations.
  • the speech classifier identified within the block 279 (Fig. 2) is designed to be somewhat more aggressive for optimal perceptual quality.
  • the initial classifier (speech_classifier) has adaptive thresholds and is performed in six steps
  • majnax_speech(n) a spttdl ⁇ majnax_speech(n - 1) + (1 - tt spe ⁇ h ) ⁇ max(n)
  • the target signal, T g (n) is
  • T gs (n) is the original target signal 253, YJn) is the filtered signal from the adaptive codebook
  • g p is the LTP gain for the selected adaptive codebook vector
  • R p normalized LTP gain
  • noise level + Another factor considered at the control block 275 in conducting the fixed codebook search and at the block 401 (Fig. 4) during gain normalization is the noise level + ")" which is given by:
  • E s is the energy of the cunent input signal including background noise
  • E Albany is a running average energy of the background noise.
  • E n is updated only when the input signal is detected to be background noise as follows: if (first background noise frame is true)
  • E Keep 0.75 E n _ m + 0.25 E s ; where E n m is the last estimation of the background noise energy.
  • a fast searching approach is used to choose a subcodebook and select the code word for the cunent subframe.
  • the same searching routine is used for all the bit rate modes with different input parameters.
  • the long-term enhancement filter, F p (z) is used to filter through the selected
  • the impulsive response h(n) includes the filter F p (z).
  • Gaussian subcodebooks For the Gaussian subcodebooks, a special structure is used in order to bring down the storage requirement and the computational complexity. Furthermore, no pitch enhancement is applied to the Gaussian subcodebooks.
  • All pulses have the amplitudes of + 1 or - 1. Each pulse has 0, 1 , 2, 3 or 4 bits to code the pulse position.
  • the signs of some pulses are transmitted to the decoder with one bit coding one sign.
  • the signs of other pulses are determined in a way related to the coded signs and their pulse positions.
  • each pulse has 3 or 4 bits to code the pulse position.
  • phase _mode 0 or 1
  • TRACK(0,i) ⁇ ⁇ 0, 4, 8, 12, 18, 24, 30, 36 ⁇
  • TRACK(l.i) ⁇ ⁇ 0, 6, 12, 18, 22, 26, 30, 34 ⁇ .
  • the initial phase of each pulse is fixed as:
  • PHAS(n p ,0) modulus(n p I MAXPHAS)
  • PHAS(n p , 1) PHAS(N p - ⁇ - n p , 0)
  • MAXPHAS is the maximum phase value
  • At least the first sign for the first pulse, SIGN(n p ), n p 0, is encoded because the gain sign is embedded.
  • the innovation vector contains 10 signed pulses. Each pulse has 0, 1, or 2 bits to code the pulse position.
  • One subframe with the size of 40 samples is divided into 10 small segments with the length of 4 samples.
  • 10 pulses are respectively located into 10 segments. Since the position of each pulse is limited into one segment, the possible locations for the pulse numbered with n p are, ⁇ 4n p ⁇ , ⁇ 4n p , 4n p +2], or (4n p , 4n p +l, 4n p +2, 4n p +3 ⁇ , respectively for 0, 1, or 2 bits to code the pulse position. All the signs for all the 10 pulses are encoded.
  • the fixed codebook 261 is searched by minimizing the mean square enor between the weighted input speech and the weighted synthesized speech.
  • H is a the lower triangular Toepliz convolution matrix with diagonal h(0) .and lower
  • the energy in the denominator is given by:
  • the pulse signs are preset by using the signal bin), which is a weighted sum of the normalized d(n) vector and the normalized target signal of x(n) in the residual domain res ⁇ n):
  • the encoder processing circuitry conects each pulse position sequentially from the first pulse to the last pulse by checking the criterion value A contributed from all the pulses for all possible locations of the current pulse.
  • the functionality of the second searching turn is repeated a final time. Of course further rums may be utilized if the added complexity is not prohibitive.
  • the above searching approach proves very efficient, because only one position of one pulse is changed leading to changes in only one term in the criterion numerator C and few terms in the criterion denominator E D for each computation of the A k .
  • one of the subcodebooks in the fixed codebook 261 is chosen after finishing the first searching turn. Further searching turns are done only with the chosen subcodebook. In other embodiments, one of the subcodebooks might be chosen only after the second searching turn or thereafter should processing resources so permit.
  • the Gaussian codebook is structured to reduce the storage requirement and the computational complexity.
  • a comb-structure with two basis vectors is used.
  • the basis vectors are orthogonal, facilitating a low complexity search.
  • the first basis vector occupies the even sample positions, (0.2 38) . and the second
  • basis vector occupies the odd sample positions, (1,3,... , 39) .
  • the same codebook is used for both basis vectors, and the length of the codebook vectors is 20 samples (half the subframe size).
  • basis vector 22 populates the conesponding part of a code vector, c ldx , in the following way:
  • each entry in the Gaussian table can produce as many as 20 unique vectors, all with the same energy due to the circular shift.
  • the 10 entries are all normalized to have identical energy of 0.5, i.e.,
  • SUBST1TUTE SHEET (RULE 26) have unity energy since no pitch enhancement is applied to candidate vectors from the Gaussian subcodebook.
  • the search of the Gaussian codebook utilizes the structure of the codebook to facilitate a low complexity search Initially, the candidates for the two basis vectors are searched independently based on the ideal excitation, res 2 For each basis vector, the two best candidates, along with the respective signs, are found according to the mean squared enor This is exemplified by the equations to find the best candidate, index ⁇ dx s , and its sign, j ld -
  • the total number of ent ⁇ es in the Gaussian codebook is 2 2 N Gau :
  • the fine search minimizes the enor between the weighted speech and the weighted synthesized speech conside ⁇ ng the possible combination of candidates for the two basis vectors from the preselection If c ⁇ k is the Gaussian code vector from the candidate vectors represented by the
  • two subcodebooks are included (or utilized) in the fixed codebook 261 with 31 bits in the 11 kbps encoding mode.
  • the innovation vector contains 8 pulses. Each pulse has 3 bits to code the pulse position. The signs of 6 pulses are transmitted to the decoder with 6 bits.
  • the second subcodebook contains innovation vectors comprising 10 pulses. Two bits for each pulse are assigned to code the pulse position which is limited in one of the 10 segments. Ten bits are spent for 10 signs of the 10 pulses.
  • P NSR is the background noise to speech signal ratio (i.e., the "noise level” in the block 279)
  • R p is the normalized LTP gain
  • P S a rp is the sha ⁇ ness parameter of the ideal excitation res (n) (i.e., the "sha ⁇ ness” in the block 279).
  • the innovation vector contains 4 pulses. Each pulse has 4 bits to code the pulse position. The signs of 3 pulses are transmitted to the decoder with 3 bits.
  • the second subcodebook contains innovation vectors having 10 pulses. One bit for each of 9 pulses is assigned to code the pulse position which is limited in one of the 10 segments. Ten bits are spent for 10 signs of the 10 pulses.
  • the bit allocation for the subcodebook can be summanzed as the following:
  • One of the two subcodebooks is chosen by favoring the second subcodebook using adaptive weighting applied when comparing the criterion value FI from the first subcodebook to the cnte ⁇ on value F2 from the second subcodebook as in the 1 1 kbps mode.
  • the weighting
  • the 6.65kbps mode operates using the long-term preprocessing (PP) or the traditional
  • a pulse subcodebook of 18 bits is used when in the PP-mode.
  • a total of 13 bits are allocated for three subcodebooks when operating in the LTP-mode.
  • the bit allocation for the subcodebooks can be summarized as follows:
  • One of the 3 subcodebooks is chosen by favoring the Gaussian subcodebook when searching with LTP-mode.
  • Adaptive weighting is applied when comparing the criterion value from the two pulse subcodebooks to the criterion value from the Gaussian subcodebook. The weighting.
  • the 5.8 kbps encoding mode works only with the long-term preprocessing (PP).
  • Total 14 bits are allocated for three subcodebooks.
  • the bit allocation for the subcodebooks can be summarized as the following:
  • One of the 3 subcodebooks is chosen favoring the Gaussian subcodebook with aaptive weighting applied when comparing the criterion value from the two pulse subcodebooks to the criterion value from the Gaussian subcodebook.
  • W l .0-P
  • the 4.55 kbps bit rate mode works only with the long-term preprocessing (PP). Total 10 bits are allocated for three subcodebooks.
  • the bit allocation for the subcodebooks can be summarized as the following:
  • One of the 3 subcodebooks is chosen by favoring the Gaussian subcodebook with weighting applied when comparing the criterion value from the two pulse subcodebooks to the criterion value from the Gaussian subcodebook.
  • a gain re-optimization procedure is performed to jointly optimize the adaptive and fixed codebook gains, g . and g t ,
  • R, ⁇ C.,7.. >
  • R 2 ⁇ C. , C. >
  • /? 3 ⁇ C p ,C c >
  • R ⁇ ⁇ C C V >
  • R 5 ⁇ C p ,C p > .
  • C c , . , and 7.. are filtered fixed codebook excitation, filtered adaptive
  • the adaptive codebook gam, g p remains the same as that
  • the fixed codebook gain, g c is obtained as:
  • O ⁇ gmal CELP algorithm is based on the concept of analysis by synthesis (waveform matching). At low bit rate or when coding noisy speech, the waveform matching becomes difficult so that the gains are up-down, frequently resulting in unnatural sounds. To compensate for this problem, the gains obtained in the analysis by synthesis close-loop sometimes need to be modified or normalized.
  • the gain normalization factor is a linear combination of the one from the close-loop approach and the one from the open-loop approach; the weighting coefficients used for the combination are controlled according to the LPC gain.
  • the decision to do the gain normalization is made if one of the following conditions is met: (a) the bit rate is 8.0 or 6.65 kbps, and noise-like unvoiced speech is true; (b) the noise level P NS R is larger than 0.5; (c) the bit rate is 6.65 kbps, and the noise level P NSR IS larger than 0.2; and (d) the bit rate is 5.8 or 4.45kbps.
  • the residual energy, E res , and the target signal energy, E ⁇ gs . are defined respectively as:
  • the adaptive codebook gain and the fixed codebook gain are vector quantized using 6 bits for rate 4.55 kbps and 7 bits for the other rates.
  • the gain codebook search is done by minimizing the mean squared weighted enor, Err . between the original and reconstructed speech signals:
  • scalar quantization is performed to quantize both the adaptive codebook gain, g p , using 4 bits and the fixed codebook gain, g c , using 5 bits each.
  • the fixed codebook gain, g c is obtained by MA prediction of the energy of the scaled
  • E(n) be the mean removed energy of the scaled fixed codebook excitation in (dB) at subframe n be given by:
  • E(n) ⁇ 0 ⁇ og( -g] ⁇ c l ( ⁇ ))- E, 40 ⁇ o
  • c( ⁇ ) is the unsealed fixed codebook excitation
  • E 30 dB is the mean energy of scaled fixed codebook excitation.
  • the predicted energy is given by:
  • the predicted energy is used to compute a predicted fixed codebook gam g c (by
  • a conection factor between the gain, g c , and the estimated one, g c is given by:
  • the codebook search for 4.55, 5.8, 6.65 and 8.0 kbps encoding bit rates consists of two steps.
  • a binary search of a single entry table representing the quantized prediction enor is performed.
  • the index Index _ 1 of the optimum entry that is closest to the unquantized prediction enor in mean square enor sense is used to limit the search of the two-dimensional VQ table representing the adaptive codebook gain and the prediction enor.
  • a fast search using few candidates around the entry pointed by Index _ 1 is performed. In fact, only about half of the VQ table entries are tested to lead to the optimum entry with Index _ 2. Only Index _ 2 is transmitted.
  • a full search of both scalar gain codebooks are used to quantize g p and g c .
  • the search is performed by minimizing the enor
  • the state of the filters can be updated by filtering the signal r(n) - u( ⁇ ) through the
  • the function of the decoder consists of decoding the transmitted parameters (dLP parameters, adaptive codebook vector and its gain, fixed codebook vector and its gain) and performing synthesis to obtain the reconstructed speech. The reconstructed speech is then postfiltered and upscaled.
  • the decoding process is performed in the following order.
  • the LP filter parameters are encoded.
  • the received indices of LSF quantization are used to reconstruct the quantized LSF vector.
  • Inte ⁇ olation is performed to obtain 4 interpolated LSF vectors (conesponding to 4 subframes).
  • the inte ⁇ olated LSF vector is converted to LP filter coefficient domain, a k , which is used for synthesizing the reconstructed speech in the subframe.
  • the received pitch index is used to interpolate the pitch lag across the entire subframe. The following three steps are repeated for each subframe:
  • the quantized fixed codebook gain, g c is obtained following these steps:
  • the received adaptive codebook gam index is used to readily find the quantized adaptive gain.
  • g p from the quantization table.
  • the received fixed codebook gam index gives the fixed
  • the received codebook indices are used to extract the type of the codebook (pulse or Gaussian) and either the amplitudes and positions of the excitation pulses or the bases and signs of the Gaussian excitation.
  • excitation elements is performed. This means that the total excitation is modified by emphasizing the contnbution of the adaptive codebook vector: 00/11649
  • Adaptive gain control is used to compensate for the gain difference between the unemphasized excitation u(n) and emphasized excitation u(n) .
  • the gain scaling factor ⁇ for the emphasized excitation is computed by:
  • ⁇ (n) ⁇ u(n) .
  • the reconstructed speech is given by:
  • Post-processing consists of two functions: adaptive postfiltering and signal up-scaling.
  • the adaptive postfilter is the cascade of three filters: a formant postfilter and two tilt compensation filters.
  • the postfilter is updated every subframe of 5 ms.
  • the formant postfilter is given by:
  • A(z) is the received quantized and inte ⁇ olated LP inverse filter and ⁇ n and ⁇ u control the amount of the formant postfiltering.
  • the first tilt compensation filter /,, (z) compensates for the tilt in the formant postfilter
  • the postfiltering process is performed as follows. First, the synthesized speech s(n) is
  • the signal r(n) is filtered
  • Adaptive gain control is used to compensate for the gain difference between the synthesized speech signal s(n) and the postfiltered signal s f (n) .
  • the present subframe is computed by:
  • the gain-scaled postfiltered signal J (n) is given by:
  • Figs. 6 and 7 are drawings of an alternate embodiment of a 4 kbps speech codec that also illustrates various aspects of the present invention.
  • Fig. 6 is a block diagram of a speech encoder 601 that is built in accordance with the present invention.
  • the speech encoder 601 is based on the analysis-by-synthesis principle. To achieve toll quality at 4 kbps, the speech encoder 601 departs from the strict waveform-matching criterion of regular CELP coders and strives to catch the perceptual important features of the input signal.
  • the speech encoder 601 operates on a frame size of 20 ms with three subframes (two of 6.625 ms and one of 6.75 ms). A look-ahead of 15 ms is used. The one-way coding delay of the codec adds up to 55 ms.
  • the spectral envelope is represented by a 10 th order LPC analysis for each frame.
  • the prediction coefficients are transformed to the Line Spectrum Frequencies (LSFs) for quantization.
  • LSFs Line Spectrum Frequencies
  • the input signal is modified to better fit the coding model without loss of quality. This processing is denoted "signal modification" as indicated by a block 621.
  • signal modification In order to improve the quality of the reconstructed signal, perceptual important features are estimated and emphasized during encoding.
  • the excitation signal for an LPC synthesis filter 625 is build from the two traditional components: 1) the pitch contribution; and 2) the innovation contribution.
  • the pitch contribution is provided through use of an adaptive codebook 627.
  • An innovation codebook 629 has several
  • SUBSTJTUTE SHEET (RULE 28) subcodebooks in order to provide robustness against a wide range of input signals To each of the two contnbutions a gam is applied which, multiplied with their respective codebook vectors and summed, provide the excitation signal
  • the LSFs and pitch lag are coded on a frame basis, and the remaining parameters (the innovation codebook index, the pitch ga , and the innovation codebook gain) are coded for every subframe.
  • the LSF vector is coded using predictive vector quantization.
  • the pitch lag has an integer part and a fractional part constituting the pitch pe ⁇ od.
  • the quantized pitch period has a non-uniform resolution with higher density of quantized values at lower delays
  • the bit allocation for the parameters is shown in the following table.
  • the indices are multiplexed to form the 80 bits for the se ⁇ al bit-stream.
  • Fig 7 is a block diagram of a decoder 701 with conesponding functionality to that of the encoder of Fig. 6.
  • the decoder 701 receives the 80 bits on a frame basis from a demultiplexor 711 Upon receipt of the bits, the decoder 701 checks the sync-word for a bad frame indication, and decides whether the entire 80 bits should be disregarded and frame erasure concealment applied If the frame is not declared a frame erasure, the 80 bits are mapped to the parameter indices of the codec, and the parameters are decoded from the indices using the inverse quantization schemes of the encoder of Fig. 6.
  • the excitation signal is reconstructed via a block 715.
  • the output signal is synthesized by passing the reconstructed excitation signal through an LPC synthesis filter 721.
  • LPC synthesis filter 721 To enhance the perceptual quality of the reconstructed signal both short-term and long-term postprocessing are applied at a block 731.
  • the LSFs and pitch lag are quantized with 21 and 8 bits per 20 ms, respectively. Although the three subframes are of different size the remaining bits are allocated evenly among them. Thus, the innovation vector is quantized with 13 bits per subframe. This adds up to a total of 80 bits per 20 ms, equivalent to 4 kbps.
  • the estimated complexity numbers for the proposed 4 kbps codec are listed in the following table. All numbers are under the assumption that the codec is implemented on commercially available 16-bit fixed point DSPs in full duplex mode. All storage numbers are under the assumption of 16-bit words, and the complexity estimates are based on the floating point C-source code of the codec.
  • the decoder 701 comprises decode processing circuitry that generally operates pursuant to software control.
  • the encoder 601 (Fig. 6) comprises encoder processing circuitry also operating pursuant to software control.
  • processing circuitry may coexists, at least in part, within a single processing unit such as a single DSP.
  • Fig. 8 is a functional block diagram depicting the present invention that, in one embodiment, selects an appropriate coding scheme depending on the existence of a stationary noise-like spectral content in a speech signal.
  • the speech signal may be partitioned into individual frames to facilitate the classification of those individual frames as having various characteristics.
  • encoder processing circuitry utilizes a coding selection process 801 to select the appropriate coding scheme for a given voice signal.
  • encoder processing circuitry first identifies whether or not the speech signal possesses stationary noise-like spectral content in a block 810.
  • Any method capable of identifying detecting the existence of stationary noise-like spectral content may be performed. Many such methods are known to those having skill in the art of voice signal processing.
  • the identification in the block 810 of stationary noise-like spectral content is used to select the appropriate coding scheme for the voice signal.
  • Embedded intelligence within the encoder processing circuitry may be used to perform this decisional operation of the block 820.
  • the stationary noise-like spectral content of that particular frame may be further classified in a block 830 as being one particular type of noise. If desired, when stationary noise-like spectral content is detected within a frame of the voice signal, the stationary noise-like spectral content of that particular frame may be further classified as being either stationary noise-like or non-stationary noise-like in the block 830.
  • the particular frame may be smoothed in a block 840.
  • the smoothing may include adjusting parameters such as the line
  • HET HET
  • LSFs spectral frequencies
  • Fig. 9 is a functional block diagram illustrating another embodiment of the present invention.
  • Fig. 9 illustrates an operational selection process 901 that adaptively selects an appropriate coding scheme upon considering both the spectral content of the speech signal, whether it be noise-like or not, as well as the available transmission bit rate.
  • the operational selection process can further consider whether the noise-like spectral content is stationary or non-stationary.
  • the spectral envelope of a frame of the speech signal is classified in a block 910.
  • alternative operational paths are chosen depending upon the classification of the frame of the speech signal in a decision block 920. If the frame is classified as not having any noise-like content, then another determination is made in a decision block 980 as to whether the speech encoding system is operating at a relatively low bit rate. If a relatively high bit rate is being used, then pulse-like code-excited linear prediction excitation is employed to the speech signal frame. If the relatively low bit rate is being used, then partial pulse-like code-excited linear prediction excitation and partial Gaussian excitation is employed to the speech signal frame in a block 985.
  • a decision block 940 directs the operational selection process 901 to proceed to the decision block 980 to repeat the analysis described above.
  • the speech signal is found to possess only stationary
  • decision block 940 directs the operational selection process 901 to proceed to a more appropriate and more efficient encoding scheme.
  • the speech signal frame possesses only stationary noise-like spectral content, then purely Gaussian excitation is provided in a block 950.
  • the line spectral frequencies (LSFs) may be smoothed on a frame by frame basis in a block 960.
  • the encoder processing circuit may be used to perform such a smoothing encoding scheme.
  • smoothing of the adaptive and fixed codebook gains may be performed in a block 970.
  • Appendix A provides a list of many of the definitions, symbols and abbreviations used in this application.
  • Appendices B and C respectively provide source and channel bit ordering information at various encoding bit rates used in one embodiment of the present invention.
  • Appendices A, B and C comprise part of the detailed description of the present application, and, otherwise, are hereby incorporated herein by reference in its entirety.
  • adaptive codebook contains excitation vectors that are adapted for every subframe.
  • the adaptive codebook is denved from the long term filter state.
  • the pitch lag value can be viewed as an index into the adaptive codebook.
  • adaptive postfilter The adaptive postfilter is applied to the output of the short term synthesis filter to enhance the perceptual quality of the reconstructed speech.
  • AMR adaptive multi-rate codec
  • the adaptive postfilter is a cascade of two filters: a formant postfilter and a tilt compensation filter.
  • the adaptive multi-rate code is a speech and channel codec capable of operating at gross bit-rates of 11.4 kbps ("half-rate") and 22.8 kbs ("full-rate").
  • the codec may operate at various combinations of speech and channel coding (codec mode) bit-rates for each channel mode.
  • AMR handover Handover between the full rate and half rate channel modes to optimize AMR operation.
  • channel mode Half-rate (HR) or full-rate (FR) operation.
  • channel mode adaptation The control and selection of the (FR or HR) channel mode.
  • channel repacking Repacking of HR (and FR) radio channels of a given radio cell to achieve higher capacity within the cell.
  • closed-loop pitch analysis This is the adaptive codebook search, i.e., a process of estimating the pitch (lag) value from the weighted input speech .and the long term filter state. In the closed-loop search, the lag is searched using enor minimization loop (analysis-by-synthesis). In the adaptive multi rate codec, closed-loop pitch search is performed for every subframe.
  • codec mode For a given channel mode, the bit partitioning between the speech and channel codecs.
  • codec mode adaptation The control and selection of the codec mode bit-rates. Normally, implies no change to the channel mode.
  • SUBSTITUTE SHEET (R ⁇ lE 26) direct form coefficients- One of the formats for sto ⁇ ng the short term filter parameters
  • all filters used to modify speech samples use direct form coefficients.
  • fixed codebook The fixed codebook contains excitation vectors for speech synthesis filters. The contents of the codebook are non-adaptive (i.e., fixed).
  • the fixed codebook for a specific rate is implemented using a multi-function codebook fractional lags: A set of lag values having sub-sample resolution.
  • FR Full-rate channel or channel mode.
  • m-band signaling Signaling for DTX, Link Control, Channel and codec mode modification, etc. carried within the traffic.
  • integer lags A set of lag values having whole sample resolution.
  • interpolating filter An FIR filter used to produce an estimate of sub-sample resolution samples, given an input sampled with integer sample resolution.
  • inverse filter This filter removes the short term conelation from the speech signal. The filter models an inverse frequency response of the vocal tract. lag: The long term filter delay. This is typically the true pitch period, or its multiple or sub-multiple.
  • Line Spectral Frequencies (see Line Spectral Pair)
  • Line Spectral Pair Transformation of LPC parameters.
  • Line Spectral Pairs are obtained by decomposing the inverse filter transfer function A(z) to a set of two transfer functions, one having even symmetry and the other having odd symmetry.
  • the Line Spectral Pairs (also called as Line Spectral Frequencies) are the roots of these polynomials on the z-unit circle). 00/11649
  • LP analysis window For each frame, the short term filter coefficients are computed using the high pass filtered speech samples within the analysis window. In the adaptive multi rate codec, the length of the analysis window is always 240 samples. For each frame, two asymmet ⁇ c windows are used to generate two sets of LP coefficient coefficients which are interpolated in the LSF domain to construct the perceptual weighting filter. Only a single set of LP coefficients per frame is quantized and transmitted to the decoder to obtain the synthesis filter. A lookahead of 25 samples is used for both HR and FR.
  • LP coefficients Linear Prediction (LP) coefficients (also refened as Linear Predictive Coding (LPC) coefficients) is a generic descriptive term for describing the short term filter coefficients.
  • LPC Linear Predictive Coding
  • LTP Mode Codec works with traditional LTP.
  • mode When used alone, refers to the source codec mode, i.e., to one of the source codecs employed in the AMR codec. (See also codec mode and channel mode.)
  • multi-function codebook A fixed codebook consisting of several subcodebooks constructed with different kinds of pulse innovation vector structures and noise innovation vectors, where codeword from the codebook is used to synthesize the excitation vectors.
  • open-loop pitch search A process of estimating the near optimal pitch lag directly from the weighted input speech. This is done to simplify the pitch analysis and confine the closed-loop pitch search to a small number of lags around the open-loop estimated lags. In the adaptive multi rate codec, open-loop pitch search is performed once per frame for PP mode and twice per frame for LTP mode.
  • out-of-band signaling Signaling on the GSM control channels to support link control.
  • PP Mode Codec works with pitch preprocessing.
  • residual The output signal resulting from an inverse filtering operation.
  • short term synthesis filter This filter introduces, into the excitation signal, short term conelation which models the impulse response of the vocal tract.
  • perceptual weighting filter This filter is employed in the analysis-by-synthesis search of the codebooks. The filter exploits the noise masking properties of the formants (vocal tract resonances) by weighting the enor less in regions near the formant frequencies and more in regions away from them.
  • subframe A time interval equal to 5-10 ms (40-80 samples at an 8 kHz sampling rate).
  • vector quantization A method of grouping several parameters into a vector and quantizing them simultaneously.
  • zero input response The output of a filter due to past inputs, i.e. due to the present state of the filter, given that an input of zeros is applied.
  • zero state response The output of a filter due to the present input, given that no past inputs have been applied, i.e., given the state information in the filter is all zeroes.
  • the adaptive pre-filter coefficient (the quantized pitch gain)
  • the filtered fixed codebook vector y k (n) The past filtered excitation u( n ) The excitation signal u(n) The fully quantized excitation signal u' (n) The gain-scaled emphasized excitation signal
  • R(k) t The interpolated value of R(k) for the integer delay it and fraction t
  • Vgc The optimum value for ⁇ gc
  • Bit orderin of out ut bits from source encoder (4.55 kbits).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

A speech encoder employing various encoding schemes based upon parameters including the noise-like spectral content. The spectral content may be further classified as being either substantially stationary or non-stationary noise signal. For stationary noise-like signals, Gaussian excitation may be used. For relatively lower bit rates, the excitation may contain both a pulse-like and a Gaussian like component. In certain embodiments of the invention, a smoothing process is performed. For example, the line spectral frequencies (LSFs) and various gain parameters that are used to perform encoding of the speech signal may be adjusted to perform perceptual smoothing of stationary noise-like signals. These smoothing procedures need not be synchronous. The smoothing of the codebook gains may be performed on one time scale basis and the smoothing of the LSFs or another.

Description

TITLE: SPEECH ENCODER USING A CLASSIFIER FOR SMOOTHING NOISE CODING
SPECIFICATION
CROSS-REFERENCE TO RELATED APPLICATIONS
The present application is based on U.S. Patent Application Ser. No. 09/154,657, filed September 18, 1998. This application is based on U.S. Provisional Application Serial No 60/097,569, filed on August 24, 1998. All of such applications are hereby incorporated herein by reference in their entirety and made part of the present application.
INCORPORATION BY REFERENCE
The following applications are hereby incorporated herein by reference in their entirety and made part of the present application.
1) U.S. Provisional Application Seπal No. 60/097,569 (Attorney Docket No 98RSS325), filed August 24, 1998;
2) U.S. Patent Application Seπal No. 09/154,657 (Attorney Docket No. 98RSS328), filed September 18, 1998;
3) U.S. Patent Application Seπal No. 09/156,814 (Attorney Docket No. 98RSS365), filed September 18, 1998;
4) U.S. Patent Application Senal No. 09/156,649 (Attorney Docket No 95E020), filed September 18, 1998;
5) U.S. Patent Application Serial No 09/156,648 (Attorney Docket No 98RSS228), filed September 18, 1998;
6) U.S. Patent Application Seπal No. 09/156,650 (Attorney Docket No. 98RSS343), filed September 18, 1998;
7) U.S. Patent Application Seπal No. 09/156,832 (Attorney Docket No. 97RSS039), filed September 18, 1998; 8) U.S. Patent Application Seπal No. 09/154,654 (Attorney Docket No 98RSS344), filed September 18, 1998;
9) U.S. Patent Application Senal No. 09/154,675 (Attorney Docket No. 97RSS383), filed September 18, 1998;
10) U.S. Patent Application Serial No. 09/156,826 (Attorney Docket No. 98RSS382), filed September 18, 1998;
1 1) U.S. Patent Application Seπal No. 09/154,662 (Attorney Docket No 98RSS383), filed September 18, 1998;
12) U.S. Patent Application Seπal No. 09/154,653 (Attorney Docket No 98RSS406), filed September 18, 1998;
13) U.S. Patent Application Seπal No. 09/154,660 (Attorney Docket No 98RSS384), filed September 18, 1998.
14) U.S. Patent Application Seπal No. 09/198,414 (Attorney Docket No 97RSS039CIP), filed November 24, 1998.
00/11649
BACKGROUND
1. Technical Field
The present invention relates generally to speech encoding and decoding in voice communication systems; and, more particularly, it relates to various techniques used with code- excited linear prediction coding to obtain high quality speech reproduction through a limited bit rate communication channel.
2. Related Art
Signal modeling and parameter estimation play significant roles in communicating voice information with limited bandwidth constraints. To model basic speech sounds, speech signals are sampled as a discrete waveform to be digitally processed. In one type of signal coding technique called LPC (linear predictive coding), the signal value at any particular time index is modeled as a linear function of previous values. A subsequent signal is thus linearly predictable according to an earlier value. As a result, efficient signal representations can be determined by estimating and applying certain prediction parameters to represent the signal.
Applying LPC techniques, a conventional source encoder operates on speech signals to extract modeling and parameter information for communication to a conventional source decoder via a communication channel. Once received, the decoder attempts to reconstruct a counterpart signal for playback that sounds to a human ear like the original speech.
A certain amount of communication channel bandwidth is required to communicate the modeling and parameter information to the decoder. In embodiments, for ex.ample where the channel bandwidth is shared and real-time reconstruction is necessary, a reduction in the required bandwidth proves beneficial. However, using conventional modeling techniques, the quality
-3-
SUBSTITUTE SHEET (RULE 28) requirements in the reproduced speech limit the reduction of such bandwidth below certain levels.
Speech encoding becomes increasingly difficult as transmission bit rates decrease. Particularly for noise encoding, perceptual quality diminishes significantly at lower bit rates. Straightforward code-excited linear prediction (CELP) is used in many speech codecs, and it can be very effective method of encoding speech at relatively high transmission rates. However, even this method may fail to provide perceptually accurate signal reproduction at lower bit rates. One such reason is that the pulse like excitation for noise signals becomes more sparse at these lower bit rates as less bits are available for coding and transmission, thereby resulting in annoying distortion of the noise signal upon reproduction.
Many communication systems operate at bit rates that vary with any number of factors including total traffic on the communication system. For such variable rate communication systems, the inability to detect low bit rates and to handle the coding of noise at those lower bit rates in an effective manner often can result in perceptually inaccurate reproduction of the speech signal. This inaccurate reproduction could be avoided if a more effective method for encoding noise at those low bit rates were identified.
Additionally, the inability to determine the optimal encoding mode for a given noise signal at a given bit rate also results in an inefficient use of encoding resources. For a given speech signal having a particular noise component, the ability to selectively apply an optimal coding scheme at a given bit rate would provide more efficient use of an encoder processing circuit. Moreover, the ability to select the optimal encoding mode for type of noise signal would further maximize the available encoding resources while providing a more perceptually accurate reproduction of the noise signal. Further limitations and disadvantages of conventional systems will become apparent to one of skill in the art after reviewing the remainder of the present application with reference to the drawings.
SUMMARY OF THE INVENTION
Vaπous aspects of the present invention can be found in a speech encoding system using an analysis by synthesis coding approach on a speech signal. An intelligent encoding process selects and applies a particular encoding scheme to provide optimal computational resource allocation within an encoder processing circuit. For certain speech signals, code-excited linear prediction containing pulse-like excitation is employed.
In certain embodiments of the invention, the encoder processing circuit classifies a given speech signal as having a noise-like spectral envelope. In the event that a speech signal does possess a noise-like spectral envelope, the envelope can further be classified as a substantially stationary or non-stationary noise signal. For stationary noise-like signals, the excitation may possess a substantially random character. For example, an excitation vector having a substantially Gaussian characteristic may be used. One intrinsic quality to using Gaussian excitation is that the human ear is relatively insensitive to Gaussian noise. If desired, the excitation provided to encode the speech signal may contain both a pulse-like and a Gaussian like component.
In other embodiments of the invention, a smoothing process is performed while encoding speech signals having a substantially noise-like character. For example, the line spectral frequencies (LSFs) which are generated during the encoding process may be smoothed to adjusted to perform perceptual smoothing of the noise-like signal. For similar reasons, the relative gain of various codebooks used in the invention, including an adaptive codebook and a fixed codebook, may be adjusted. These smoothing procedures need not be synchronous. The smoothing of the codebook gains may be performed on one time scale basis and the smoothing of the LSFs on another. Other aspects, advantages and novel features of the present invention will become apparent from the following detailed descπption of the invention when considered in conjunction with the accompanying drawings.
Brief Description Of The Drawings
Fig. 1 a is a schematic block diagram of a speech communication system illustrating the use of source encoding and decoding in accordance with the present invention.
Fig. lb is a schematic block diagram illustrating an exemplary communication device utilizing the source encoding and decoding functionality of Fig. la.
Figs. 2-4 are functional block diagrams illustrating a multi-step encoding approach used by one embodiment of the speech encoder illustrated in Figs, la and lb. In particular, Fig. 2 is a functional block diagram illustrating of a first stage of operations performed by one embodiment of the speech encoder of Figs, la and lb. Fig. 3 is a functional block diagram of a second stage of operations, while Fig. 4 illustrates a third stage.
Fig. 5 is a block diagram of one embodiment of the speech decoder shown in Figs. 1 a and lb having corresponding functionality to that illustrated in Figs. 2-4.
Fig. 6 is a block diagram of an alternate embodiment of a speech encoder that is built in accordance with the present invention.
Fig. 7 is a block diagram of an embodiment of a speech decoder having corresponding functionality to that of the speech encoder of Fig. 6.
Fig. 8 is a functional block diagram depicting the present invention that, in one embodiment, selects an appropriate coding scheme depending on the existence of a stationary noise-like spectral content in a speech signal. Fig. 9 is a functional block diagram illustrating an operational selection process that adaptively selects an appropriate coding scheme upon considering both the spectral content of the speech signal, whether it be noise-like or not, as well as the available transmission bit rate.
DETAILED DESCRIPTION
Fig. la is a schematic block diagram of a speech communication system illustrating the use of source encoding and decoding in accordance with the present invention. Therein, a speech communication system 100 supports communication and reproduction of speech across a communication channel 103. Although it may compnse for example a wire, fiber or optical link, the communication channel 103 typically compnses, at least in part, a radio frequency link that often must support multiple, simultaneous speech exchanges requiring shared bandwidth resources such as may be found with cellular telephony embodiments.
Although not shown, a storage device may be coupled to the communication channel 103 to temporanly store speech information for delayed reproduction or playback, e.g., to perform answeπng machine functionality, voiced email, etc. Likewise, the communication channel 103 might be replaced by such a storage device in a single device embodiment of the communication system 100 that, for example, merely records and stores speech for subsequent playback.
In particular, a microphone 11 1 produces a speech signal in real time. The microphone 1 1 1 delivers the speech signal to an A/D (analog to digital) converter 115. The A/D converter 1 15 converts the speech signal to a digital form then delivers the digitized speech signal to a speech encoder 117.
The speech encoder 117 encodes the digitized speech by using a selected one of a plurality of encoding modes. Each of the plurality of encoding modes utilizes particular techniques that attempt to optimize quality of resultant reproduced speech. While operating in any of the plurality of modes, the speech encoder 117 produces a series of modeling and parameter information (hereinafter "speech indices"), and delivers the speech indices to a channel encoder 119. The channel encoder 1 19 coordinates with a channel decoder 131 to deliver the speech indices across the communication channel 103 The channel decoder 131 forwards the speech indices to a speech decoder 133 While operating in a mode that corresponds to that of the speech encoder 1 17, the speech decoder 133 attempts to recreate the oπginal speech from the speech indices as accurately as possible at a speaker 137 via a D/A (digital to analog) converter 135
The speech encoder 1 17 adaptively selects one of the plurality of operating modes based on the data rate restnctions through the communication channel 103. The communication channel 103 compnses a bandwidth allocation between the channel encoder 119 and the channel decoder 131 The allocation is established, for example, by telephone switching networks wherein many such channels are allocated and reallocated as need arises. In one such embodiment, either a 22.8 kbps (kilobits per second) channel bandwidth, i.e., a full rate channel, or a 1 1 4 kbps channel bandwidth, i.e., a half rate channel, may be allocated.
With the full rate channel bandwidth allocation, the speech encoder 1 17 may adaptively select an encoding mode that supports a bit rate of 11.0, 8.0, 6.65 or 5.8 kbps. The speech encoder 117 adaptively selects an either 8.0, 6.65, 5.8 or 4.5 kbps encoding bit rate mode when only the half rate channel has been .allocated. Of course these encoding bit rates and the aforementioned channel allocations are only representative of the present embodiment. Other vanations to meet the goals of alternate embodiments are contemplated.
With either the full or half rate allocation, the speech encoder 117 attempts to communicate using the highest encoding bit rate mode that the allocated channel will support If the allocated channel is or becomes noisy or otherwise restnctive to the highest or higher encoding bit rates, the speech encoder 117 adapts by selecting a lower bit rate encoding mode Similarly, when the communication channel 103 becomes more favorable, the speech encoder 1 17 adapts by switching to a higher bit rate encoding mode.
With lower bit rate encoding, the speech encoder 117 incorporates various techniques to generate better low bit rate speech reproduction. Many of the techniques applied are based on characteristics of the speech itself. For example, with lower bit rate encoding, the speech encoder 117 classifies noise, unvoiced speech, and voiced speech so that an appropriate modeling scheme corresponding to a particular classification can be selected and implemented. Thus, the speech encoder 117 adaptively selects from among a plurality of modeling schemes those most suited for the current speech. The speech encoder 117 also applies various other techniques to optimize the modeling as set forth in more detail below.
Fig. lb is a schematic block diagram illustrating several variations of an exemplary communication device employing the functionality of Fig. la. A communication device 151 comprises both a speech encoder and decoder for simultaneous capture and reproduction of speech. Typically within a single housing, the communication device 151 might, for example, comprise a cellular telephone, portable telephone, computing system, etc. Alternatively, with some modification to include for example a memory element to store encoded speech information the communication device 151 might comprise an answering machine, a recorder, voice mail system, etc.
A microphone 155 and an A D converter 157 coordinate to deliver a digital voice signal to an encoding system 159. The encoding system 159 performs speech and channel encoding and delivers resultant speech information to the channel. The delivered speech information may be destined for another communication device ( not shown) at a remote location. As speech information is received, a decoding system 165 performs channel and speech decoding then coordinates with a D/A convener 167 and a speaker 169 to reproduce something that sounds like the onginally captured speech
The encoding system 159 compnses both a speech processing circuit 185 that performs speech encoding, and a channel processing circuit 187 that performs channel encoding Similarly, the decoding system 165 compnses a speech processing circuit 189 that performs speech decoding, and a channel processing circuit 191 that performs channel decoding
Although the speech processing circuit 185 and the channel processing circuit 187 are separately illustrated, they might be combined in part or in total into a single unit. For example, the speech processing circuit 185 and the channel processing circuitry 187 might share a single DSP (digital signal processor) and/or other processing circuitry. Similarly, the speech processing circuit 189 and the channel processing circuit 191 might be entirely separate or combined in pan or in whole. Moreover, combinations in whole or m part might be applied to the speech processing circuits 185 and 189, the channel processing circuits 187 and 191, the processing circuits 185, 187, 189 and 191, or otherwise.
The encoding system 159 and the decoding system 165 both utilize a memory 161 The speech processing circuit 185 utilizes a fixed codebook 181 and an adaptive codebook 183 of a speech memory 177 in the source encoding process. The channel processing circuit 187 utilizes a channel memory 175 to perform channel encoding. Similarly, the speech processing circuit 189 utilizes the fixed codebook 181 and the adaptive codebook 183 in the source decoding process. The channel processing circuit 187 utilizes the channel memory 175 to perform channel decoding. 11649
Although the speech memory 177 is shared as illustrated, separate copies thereof can be assigned for the processing circuits 185 and 189. Likewise, separate channel memory can be allocated to both the processing circuits 187 and 191. The memory 161 also contains software utilized by the processing circuits 185,187,189 and 191 to perform vaπous functionality required in the source and channel encoding and decoding processes.
Figs. 2-4 are functional block diagrams illustrating a multi-step encoding approach used by one embodiment of the speech encoder illustrated in Figs, la and lb. In particular. Fig. 2 is a functional block diagram illustrating of a first stage of operations performed by one embodiment of the speech encoder shown in Figs, la and lb. The speech encoder, which compnses encoder processing circuitry, typically operates pursuant to software instruction carrying out the following functionality.
At a block 215, source encoder processing circuitry performs high pass filtering of a speech signal 21 1. The filter uses a cutoff frequency of around 80 Hz to remove, for example, 60 Hz power line noise and other lower frequency signals. After such filteπng, the source encoder processing circuitry applies a perceptual weighting filter as represented by a block 219. The perceptual weighting filter operates to emphasize the valley areas of the filtered speech signal.
If the encoder processing circuitry selects operation in a pitch preprocessing (PP) mode as indicated at a control block 245, a pitch preprocessing operation is performed on the weighted speech signal at a block 225. The pitch preprocessing operation involves warping the weighted speech signal to match interpolated pitch values that will be generated by the decoder processing circuitry. When pitch preprocessing is applied, the warped speech signal is designated a first target signal 229. If pitch preprocessing is not selected the control block 245, the weighted
-13-
SUBSTITUTE SHEET (RULE 28) speech signal passes through the block 225 without pitch preprocessing and is designated the first target signal 229
As represented by a block 255, the encoder processing circuitry applies a process wherein a contribution from an adaptive codebook 257 is selected along with a conesponding gain 257 whicn minimize a first error signal 253. The first error signal 253 compnses the difference between the first target signal 229 and a weighted, synthesized contribution from the adaptive codebook 257.
At blocks 247, 249 and 251, the resultant excitation vector is applied after adaptive gain reduction to both a synthesis and a weighting filter to generate a modeled signal that best matches the first target signal 229. The encoder processing circuitry uses LPC (linear predictive coding) analysis, as indicated by a block 239, to generate filter parameters for the synthesis and weighting filters. The weighting filters 219 and 251 are equivalent in functionality.
Next, the encoder processing circuitry designates the first error signal 253 as a second target signal for matching using contributions from a fixed codebook 261. The encoder processing circuitry searches through at least one of the plurality of subcodebooks within the fixed codebook 261 m an attempt to select a most appropriate contribution while generally attempting to match the second target signal.
More specifically, the encoder processing circuitry selects an excitation vector, its corresponding subcodebook and gain based on a variety of factors. For example, the encoding bit rate, the degree of minimization, and characteristics of the speech itself as represented by a block 279 are considered by the encoder processing circuitry at control block 275. Although many other factors may be considered, exemplary charactenstics include speech classification, noise level, sharpness, periodicity, etc. Thus, by considering other such factors, a first subcodebook with its best excitation vector may be selected rather than a second subcodebook's best excitation vector even though the second subcodebook's better minimizes the second target signal 265.
Fig. 3 is a functional block diagram depicting of a second stage of operations performed by the embodiment of the speech encoder illustrated in Fig. 2. In the second stage, the speech encoding circuitry simultaneously uses both the adaptive the fixed codebook vectors found in the first stage of operations to minimize a third error signal 311.
The speech encoding circuitry searches for optimum gain values for the previously identified excitation vectors ( in the first stage) from both the adaptive and fixed codebooks 257 and 261. As indicated by blocks 307 and 309, the speech encoding circuitry identifies the optimum gain by generating a synthesized and weighted signal, i.e., via a block 301 and 303, that best matches the first target signal 229 (which minimizes the third error signal 311). Of course if processing capabilities permit, the first and second stages could be combined wherein joint optimization of both gain and adaptive and fixed codebook rector selection could be used.
Fig. 4 is a functional block diagram depicting of a third stage of operations performed by the embodiment of the speech encoder illustrated in Figs. 2 and 3. The encoder processing circuitry applies gain normalization, smoothing and quantization, as represented by blocks 401 , 403 and 405, respectively, to the jointly optimized gains identified in the second stage of encoder processing. Again, the adaptive and fixed codebook vectors used are those identified in the first stage processing.
With normalization, smoothing and quantization functionally applied, the encoder processing circuitry has completed the modeling process. Therefore, the modeling parameters identified are communicated to the decoder. In particular, the encoder processing circuitry delivers an index to the selected adaptive codebook vector to the channel encoder via a multiplexor 419. Similarly, the encoder processing circuitry delivers the index to the selected fixed codebook vector, resultant gains, synthesis filter parameters, etc., to the muliplexor 419. The multiplexor 419 generates a bit stream 421 of such information for delivery to the channel encoder for communication to the channel and speech decoder of receiving device.
Fig. 5 is a block diagram of an embodiment illustrating functionality of speech decoder having corresponding functionality to that illustrated in Figs. 2-4. As with the speech encoder, the speech decoder, which comprises decoder processing circuitry, typically operates pursuant to software instruction carrying out the following functionality.
A demultiplexor 51 1 receives a bit stream 513 of speech modeling indices from an often remote encoder via a channel decoder. As previously discussed, the encoder selected each index value during the multi-stage encoding process described above in reference to Figs. 2-4. The decoder processing circuitry utilizes indices, for example, to select excitation vectors from an adaptive codebook 515 and a fixed codebook 519, set the adaptive and fixed codebook gains at a block 521 , and set the parameters for a synthesis filter 531.
With such parameters and vectors selected or set, the decoder processing circuitry generates a reproduced speech signal 539. In particular, the codebooks 515 and 519 generate excitation vectors identified by the indices from the demultiplexor 511. The decoder processing circuitry applies the indexed gains at the block 521 to the vectors which are summed. At a block 527, the decoder processing circuitry modifies the gains to emphasize the contribution of vector from the adaptive codebook 515. At a block 529, adaptive tilt compensation is applied to the combined vectors with a goal of flattening the excitation spectrum. The decoder processing circuitry performs synthesis filtering at the block 531 using the flattened excitation signal.
-16-
SUBSTITUTE SHEET (ROLE 26) Finally, to generate the reproduced speech signal 539, post filteπng is applied at a block 535 deemphasizing the valley areas of the reproduced speech signal 539 to reduce the effect of distortion
In the exemplary cellular telephony embodiment of the present invention, the A/D converter 1 15 (Fig. la) will generally involve analog to uniform digital PCM including 1 ) an input level adjustment device; 2) an input anti-aliasing filter; 3) a sample-hold device sampling at 8 kHz; and 4) analog to uniform digital conversion to 13-bit representation.
Similarly, the D/A converter 135 will generally involve uniform digital PCM to analog including- 1) conversion from 13-bιt/8 kHz uniform PCM to analog; 2) a hold device; 3) reconstruction filter including x/sιn(x) correction; and 4) an output level adjustment device
In terminal equipment, the A/D function may be achieved by direct conversion to 13-bit uniform PCM format, or by conversion to 8-bιt/A-law compounded format. For the D/A operation, the inverse operations take place.
The encoder 117 receives data samples with a resolution of 13 bits left justified in a 16-bit word. The three least significant bits are set to zero. The decoder 133 outputs data in the same format. Outside the speech codec, further processing can be applied to accommodate traffic data having a different representation.
A specific embodiment of an AMR (adaptive multi-rate) codec with the operational functionality illustrated in Figs. 2-5 uses five source codecs with bit-rates 11.0, 8.0, 6.65, 5 8 and 4 55 kbps Four of the highest source coding bit-rates are used in the full rate channel and the four lowest bit-rates in the half rate channel.
All five source codecs within the AMR codec are generally based on a code-excited linear predictive (CELP) coding model. A 10th order linear prediction (LP), or short-term, synthesis filter, e.g.. used at the blocks 249. 267, 301, 407 and 531 (of Figs. 2-5), is used which is given by:
Figure imgf000020_0001
where ά, , = 1 m, are the (quantized) linear prediction (LP) parameters.
A long-term filter, i.e., the pitch synthesis filter, is implemented using the either an adaptive codebook approach or a pitch pre-processing approach. The pitch synthesis filter is given by:
B( z ) \ - gpz-τ where T is the pitch delay and gp is the pitch gain.
With reference to Fig. 2, the excitation signal at the input of the short-term LP synthesis filter at the block 249 is constructed by adding two excitation vectors from the adaptive and the fixed codebooks 257 and 261, respectively. The speech is synthesized by feeding the two properly chosen vectors from these codebooks through the short-term synthesis filter at the block 249 and 267, respectively.
The optimum excitation sequence in a codebook is chosen using an analysis-by-synthesis search procedure in which the error between the original and synthesized speech is minimized according to a perceptually weighted distortion measure. The perceptual weighting filter, e.g., at the blocks 251 and 268, used in the analysis-by-synthesis search technique is given by:
wω sB £/ϊj2. (3)
A(z/ 2> where A(z) is the unquantized LP filter and 0 < γ2 < \ ≤ 1 are the perceptual weighting
factors. The values y, = [0.9, 0.94] and γ2 = 0.6 are used. The weighting filter, e.g., at the blocks 251 and 268, uses the unquantized LP parameters while the formant synthesis filter, e.g.. at the blocks 249 and 267, uses the quantized LP parameters. Both the unquantized and quantized LP parameters are generated at the block 239.
The present encoder embodiment operates on 20 ms (millisecond) speech frames corresponding to 160 samples at the sampling frequency of 8000 samples per second. At each 160 speech samples, the speech signal is analyzed to extract the parameters of the CELP model, i.e., the LP filter coefficients, adaptive and fixed codebook indices and gains. These parameters are encoded and transmitted. At the decoder, these parameters are decoded and speech is synthesized by filtering the reconstructed excitation signal through the LP synthesis filter.
More specifically, LP analysis at the block 239 is performed twice per frame but only a single set of LP parameters is converted to line spectrum frequencies (LSF) and vector quantized using predictive multi-stage quantization (PMVQ). The speech frame is divided into subframes. Parameters from the adaptive and fixed codebooks 257 and 261 are transmitted every subframe. The quantized and unquantized LP parameters or their interpolated versions are used depending on the subframe. An open-loop pitch lag is estimated at the block 241 once or twice per frame for PP mode or LTP mode, respectively.
Each subframe, at least the following operations are repeated. First, the encoder processing circuitry (operating pursuant to software instruction) computes x( n ) , the first target signal 229, by filtering the LP residual through the weighted synthesis filter W( z )H( z ) with the initial states of the filters having been updated by filtering the error between LP residual and excitation. This is equivalent to an alternate approach of subtracting the zero input response of the weighted synthesis filter from the weighted speech signal. Second, the encoder processing circuitry computes the impulse response, hi n ) . of the weighted synthesis filter. Third, in the LTP mode, closed-loop pitch analysis is performed to find the pitch lag and gam, using the first target signal 229, x( n ) , and impulse response, n ) , by searching around the open-loop pitch lag. Fractional pitch with vaπous sample resolutions are used.
In the PP mode, the input original signal has been pitch-preprocessed to match the interpolated pitch contour, so nc losed-loop search is needed. The LTP excitation vector is computed using the interpolated pitch contour and the past synthesized excitation.
Fourth, the encoder processing circuitry generates a new target signal x,( n ) , the second target signal 253, by removing the adaptive codebook contribution (filtered adaptive code vector) from The encoder processing circuitry uses the second target signal 253 in the fixed codebook search to find the optimum innovation.
Fifth, for the 11.0 kbps bit rate mode, the gains of the adaptive and fixed codebook are scalar quantized with 4 and 5 bits respectively (with moving average prediction applied to the fixed codebook gain). For the other modes the gains of the adaptive and fixed codebook are vector quantized (with moving average prediction applied to the fixed codebook gain).
Finally, the filter memories are updated using the determined excitation signal for finding the first target signal in the next subframe.
The bit allocation of the AMR codec modes is shown in table 1. For example, for each 20 ms speech frame, 220, 160, 133 , 116 or 91 bits are produced, corresponding to bit rates of 1 1.0, 8.0, 6.65, 5.8 or 4.55 kbps, respectively. Table 1: Bit allocation of the AMR coding algorithm for 20 ms frame
Figure imgf000023_0001
With reference to Fig. 5, the decoder processing circuitry, pursuant to software control, reconstructs the speech signal using the transmitted modeling indices extracted from the received bit stream by the demultiplexor 511. The decoder processing circuitry decodes the indices to obtain the coder parameters at each transmission frame. These parameters are the LSF vectors, the fractional pitch lags, the innovative code vectors, and the two gains.
The LSF vectors are converted to the LP filter coefficients and interpolated to obtain LP filters at each subframe. At each subframe, the decoder processing circuitry constructs the excitation signal by: 1) identifying the adaptive and innovative code vectors from the codebooks 515 and 519; 2) scaling the contributions by their respective gains at the block 521; 3) summing the scaled contributions; and 3) modifying and applying adaptive tilt compensation at the blocks 527 and 529. The speech signal is also reconstructed on a subframe basis by filtering the excitation through the LP synthesis at the block 531. Finally, the speech signal is passed through an adaptive post filter at the block 535 to generate the reproduced speech signal 539.
The AMR encoder will produce the speech modeling information in a unique sequence and format, and the AMR decoder receives the same information in the same way. The different parameters of the encoded speech and their individual bits have unequal importance with respect
-21-
SURSTITUTE SHEET (BOLE 26) to subjective quality Before being submitted to the channel encoding function the bits are rearranged in the sequence of importance.
Two pre-processing functions are applied pπor to the encoding process high-pass filtenng and signal down-scaling Down-scaling consists of dividing the input by a factor of 2 to reduce the possibility of overflows in the fixed point implementation. The high-pass filtering at the block 215 (Fig 2) serves as a precaution against undesired low frequency components A filter with cut off frequency of 80 Hz is used, and it is given by:
_ 092727435- 1.854494 '1 + 0.92727435.: ~2 *' 1 - 1.90594652"' +0.9114024Z"2
Down scaling and high-pass filtenng are combined by dividing the coefficients of the numerator of HM (z) by 2.
Short-term prediction, or linear prediction (LP) analysis is performed twice per speech frame using the autocorrelation approach with 30 ms windows. Specifically, two LP analyses are performed twice per frame using two different windows. In the first LP analysis
(LP_analysιs_l), a hybnd window is used which has its weight concentrated at the fourth subframe. The hybnd window consists of two parts. The first part is half a Hamming window, and the second part is a quarter of a cosine cycle. The window is given by:
Figure imgf000024_0001
In the second LP analysis (LP_analysιs_2), a symmetnc Hamming window is used
Figure imgf000025_0001
past frame current frame future frame
55 160 25 (samples)
In either LP analysis, the autocorrelations of the windowed speech s (n),n = 0,239 are computed by:
.39 r(*) = ∑s (n)s (n- k), k = 0,10.
A 60 Hz bandwidth expansion is used by lag windowing, the autocorrelations using the window:
2τr60i Y v ('') = exp| - , i = l,10. ^ 8000
Moreover, r(0)is multiplied by a white noise correction factor 1.0001 which is equivalent to adding a noise floor at -40 dB.
The modified autoconelations r (0) = 1.0001r(0) and r (k) = r(Jfc)wta- (it), k = 1,10 are
used to obtain the reflection coefficients k, and LP filter coefficients α, , i = 1,10 using the
Levinson-Durbin algorithm. Furthermore, the LP filter coefficients , are used to obtain the
Line Spectral Frequencies (LSFs).
The interpolated unquantized LP parameters are obtained by interpolating the LSF coefficients obtained from the LP analysis.1 and those from LP_analysis_2 as: (n) = 0.5q4(n - \) + 0.5q2(n) qi(n) = 0.5q2(n) + 0.5qA(n)
-23-
SUBST1TUTE SHEET (RULE 26) where qt (n) is the interpolated LSF for subframe 1, q, (n) is the LSF of subframe 2 obtained from LP_analysis_2 of current frame, q}(n) is the interpolated LSF for subframe 3. q^n - l) is
the LSF (cosine domain) from LP_analysis_l of previous frame, and qt(n) is the LSF for subframe 4 obtained from LP_analysis_l of current frame. The interpolation is carried out in the cosine domain.
A VAD (Voice Activity Detection) algorithm is used to classify input speech frames into either active voice or inactive voice frame (background noise or silence) at a block 235 (Fig. 2 ^
The input speech s(n) is used to obtain a weighted speech signal sw(n) by passing s(n)
through a filter:
Figure imgf000026_0001
That is, in a subframe of size L_SF, the weighted speech is given by: ιo 10 s n) = s(n) + ∑a,γl's(n -i) - aιγ2'sw(n -i), n = OX_SF- l .
A voiced/unvoiced classification and mode decision within the block 279 using the input speech s(n) and the residual rw(n) is derived where:
10 rw(n) = s(n) + ∑ιaιγ{s(n-i), n = 0,L_SF- l . ι»l
The classification is based on four measures: 1) speech sharpness P1_SHP; 2) norm ized one delay conelation P2_R1; 3) normalized zero-crossing rate P3_ZC; and 4) normalized LP residual energy P4_RE.
The speech shyness is given by:
-24-
SUBSTITUTE SHEET (ROLE 28 ∑θks(r n))
P\ SHP = * ,
MaxL where Max is the maximum of abs(rw(n))
Figure imgf000027_0001
the specified interval of length L . The normalized one delay conelation and normalized zero-crossing rate are given by:
Figure imgf000027_0002
3_ZC sgn[ ( ]- sgnb(* - l)] l],
Figure imgf000027_0003
where sgn is the sign function whose output is either 1 or -1 depending that the input sample is positive or negative. Finally, the normalized LP residual energy is given by:
Figure imgf000027_0004
10 where Ipc _ gain = J~J (1 — Λr,2 ) . where kt are the reflection coefficients obtained from LP
analysis_l.
The voiced/unvoiced decision is derived if the following conditions are met: if P2_ R\ < 0.6 and PI _ SHP > 0.2 set mode = 2, if P3 _ ZC > 0.4 and PI _ SHP > 0.18 set mode = 2, if P4_RE < 0.4 and PI _ SHP > 0.2 set mode = 2, if (P2 _ Rl < -1.2 + 3.2PI _ SHP) set VUV = -3 if(P4 _ RE < -0.21 + 1.4286/ _ SHP) set VUV = -3 if (P3 _ ZC > 0.8 - Q.6PI _ SHP) set VUV = -3 if(P4_RE < 0.1) set VUV = -3
Open loop pitch analysis is performed once or twice (each 10 ms) per frame depending on the coding rate in order to find estimates of the pitch lag at the block 241 (Fig. 2). It is based
-25-
SUBST JTE SHET (RULE26) on the weighted speech signal sw(n + nm ),n = 0,1 79, in which nm defines the location of this
signal on the first half frame or the last half frame. In the first step, four maxima of the conelation:
Figure imgf000028_0001
.are found in the four ranges 17 — 33, 34 — 67, 68 — 135, 136....145, respectively. The retained maxima Ck , i - 1,2,3,4, are normalized by dividing by:
l∑n si nm + n - k), i = 1, ... ,4, respectively.
The normalized maxima and corresponding delays are denoted by (R„k,),i= 1,2,3,4.
In the second step, a delay, k/_ among the four candidates, is selected by maximizing the four normalized correlations. In the third step, k/ is probably conected to k, ( </) by favonng the lower ranges. That is, k, ( </) is selected if k, is within [k/m-4, kι/m+4],m=2,3,4,5, and if
k, > k, 0.95 '~' D, i < I, where D is 1.0, 0.85, or 0.65, depending on whether the previous frame is unvoiced, the previous frame is voiced and k, is in the neighborhood (specified by ± 8) of the previous pitch lag, or the previous two frames are voiced and k, is in the neighborhood of the previous two pitch lags. The final selected pitch lag is denoted by Top.
A decision is made every frame to either operate the LTP (long-term prediction) as the traditional CELP approach (LTP_mode=l), or as a modified time warping approach (LTP_mode=0) herein referred to as PP (pitch preprocessing). For 4.55 and 5.8 kbps encoding bit rates, LTP_mode is set to 0 at all times. For 8.0 and 1 1.0 kbps, LTP_mode is set to 1 all of the time. Whereas, for a 6.65 kbps encoding bit rate, the encoder decides whether to operate in the LTP or PP mode. During the PP mode, only one pitch lag is transmitted per coding frame.
-26-
SUBSTITUTE SHE! (RULE 26) For 6.65 kbps, the decision algorithm is as follows. First, at the block 241 , a prediction of the pitch lag pit for the cunent frame is determined as follows: if(LTP_MODE_m = 1 ) pit = laglϊ + 2Λ*(lagJ[3]-lagl\ ); else pit = lag J[ 1 / + 2.75*( lag J[ 3 )-lagJ[ 1 /);
where LTP _ mode _m is previous frame LTP _ ode , lag _f[\],lag _ f[3] are the past closed
loop pitch lags for second and fourth subframes respectively, lagl is the cunent frame open-loop
pitch lag at the second half of the frame, and , lagll is the previous frame open-loop pitch lag at the first half of the frame.
Second, a normalized spectrum difference between the Line Spectrum Frequencies (LSF) of cunent and previous frame is computed as:
e - lsf = T Σ a UFd) - LSF_ m(i)) , 1 „o if(abs(pit-lagl) < TH and abs(lag_fl 3 J-lagl) < lagl*0.2 ) if(Rp > 0.5 &ά pgain_past > 0.7 and ejsf < 03/30 ) LTP_ mod e = 0; else LTP_ mod e = 1 ; where Rp is current frame normalized pitch conelation, pgain_ past is the quantized pitch gain
from the fourth subframe of the past frame, TH - MIN(lagl*0.l 5 , and TH = MAX( 2.0, TH ) .
The estimation of the precise pitch lag at the end of the frame is based on the normalized conelation:
Figure imgf000029_0001
where s (n + nl), n = 0,\ L-\, represents the last segment of the weighted speech signal including the look-ahead ( the look-ahead length is 25 samples), and the size L is defined according to the open-loop pitch lag Top with the conesponding normalized conelation Cτ :
if(CT o >0.6)
L = max{ 50, Top }
L = min{ 80, L } else L = 80
In the first step, one integer lag it is selected maximizing the R* in the range it €[Top - 10, Top + 10] bounded by [17, 145]. Then, the precise pitch lag Pm and the
conesponding index Im for the cunent frame is searched around the integer lag, [k-1, k+l], by up-sampling R*.
The possible candidates of the precise pitch lag are obtained from the table named as
PitLagTab8b[i], i=0,l 127. In the last step, the precise pitch lag Pm = PitL gTab8b[Im] is possibly modified by checking the accumulated delay :,-.. due to the modification of the speech signal:
'/(*«<•> 5) lm^=rmn{Im + l, 127}, and ι/(τ-„<-5)/m<=max{/,.-l,0}.
The precise pitch lag could be modified again: ιy(τβκ>10) /m<=min{/m + l, 127), and
Figure imgf000030_0001
The obtained index Im will be sent to the decoder.
The pitch lag contour, τc(n) , is defined using both the cunent lag Pm and the previous
Figure imgf000031_0001
rt (n) = Pm . n=Lf,... , 170
Figure imgf000031_0002
τc(π) = Pm , n=40 170 where Z./= 160 is the frame size.
One frame is divided into 3 subframes for the long-term preprocessing. For the first two subframes, the subframe size, L„ is 53, and the subframe size for searching, Lsr> is 70. For the last subframe, Ls is 54 and Lsr is:
Lsr = min{70, Ls + L^ - 10 - xKC } ,
where
Figure imgf000031_0003
is limited to 14.
The target for the modification process of the weighted speech temporally memorized in
{ sw(m0 + n), n = 0,1 Lsr - 1 } is calculated by warping the past modified weighted speech
buffer, sw(m0 + n), n < 0, with the pitch lag contour, τc(n + m- L, ), m = 0,1,2 ,
sw(m0 + n) = ∑ sw(mO + n - Tc(n) + i) /.(/, Tιc(n)\ n = 0,1,..., ,r - 1,
<—fι where Tc(n) and Tidn) are calculated by:
Tc(n) = trunc{Xc(n + m- L-)} , TIC(n) = τc(n)- Tc(n),
m is subframe number, Is(i,T,c(n)) is a set of interpolation coefficients, and// is 10. Then, the
target for matching, s, (n), n = 0,1 Lsr - 1, is calculated by weighting
i (m0 + π), n = 0,l,...,L.r - 1, in the time domain:
st(n) = n sw(m0 + n) /L, , π = 0,l,..., L. - 1, s, (n)=sw (m0 + n),n = Ls, L„ - \ The locsHnteger shifting range [SRO, SRI] for searching for the best local delay is computed as the following: if speech is unvoiced
SR0=-1,
SR1 = 1, else
SR0=round{ -4 minfl.O, maxfO.O, 1-0.4 (Psh-0.2)]JJ,
SRl=round{ 4 minfl.O, maxfO.O, 1-0.4 (Psh-0.2)}}}, where
Figure imgf000032_0001
PM), PM is the average to peak ratio (i.e., shaφness) from the target signal:
Figure imgf000032_0002
and Psh2 is the shaφness from the weighted speech signal:
L„ -L,II-\
∑|*w(π + n0 + , / 2)|
Figure imgf000032_0003
where nO = trunc{mO+ τ^ + 05} (here, m is subframe number and τ^ is the previous accumulated delay).
In order to find the best local delay, τσpl, at the end of the current processing subframe, a normalized conelation vector between the original weighted speech signal and the modified matching target is defined as:
Figure imgf000032_0004
A best local delay in the integer domain, kop„ is selected by maximizing Rrfk) in the range of k 6 [5R0.5R1] , which is conesponding to the real delay: k r = kopt +n0 - m0- τacc
If Rι(kopt)<0.5, kr is set to zero.
In order to get a more precise local delay in the range { kr-0.75+0.1j, j=0,l,...15) around kr, Rι(k) is inteφolated to obtain the fractional conelation vector, R j), by:
Rf (j) = ∑ R,(kop, + Ij + i) //'. ;), 7 = 0,1,...,15 , ι=-7 where {I i,j)} is a set of interpolation coefficients. The optimal fractional delay index, jop, , is selected by maximizing R j). Finally, the best local delay, τop at the end of the cunent processing subframe, is given by,
Figure imgf000033_0001
The local delay is then adjusted by:
[0, if τ^c + τopt > 14 "*" ~op, , otherwise
The modified weighted speech of the current subframe, memorized in
{ sw(m0 + n),n = 0,1 , - 1 } to update the buffer and produce the second target signal 253 for searching the fixed codebook 261, is generated by waφing the original weighted speech { sw(n) } from the original time region,
[m + τ^ , OTO+T^ +1. +τopl],
to the modified time region, [m , m0+Ls]: s (m0 + n) = -J . (/πO+ n + rw(π) + i) /.(i, 7/w(π)), n = 0, \ . - 1.
where TvAn) and 7 n) are calculated by:
Tw(n) = trunc{τacc + n - τopl / Ls ) , Tm(n) = τacc + n τopt I L, - Tw(n) ,
{/.(i, rw(π))} is a set of interpolation coefficients.
After having completed the modification of the weighted speech for the cunent subframe, the modified target weighted speech buffer is updated as follows: iM (n) *= sw(n + Ls ) , « = 0,1, nm - \.
The accumulated delay at the end of the current subframe is renewed by:
T *acc €__: T ''ace 4- T ''opt
Prior to quantization the LSFs are smoothed in order to improve the perceptual quality. In principle, no smoothing is applied during speech and segments with rapid variations in the spectral envelope. During non-speech with slow variations in the spectral envelope, smoothing is applied to reduce unwanted spectral variations. Unwanted spectral variations could typically occur due to the estimation of the LPC parameters and LSF quantization. As an example, in stationary noise-like signals with constant spectral envelope introducing even very small variations in the spectral envelope is picked up easily by the human ear and perceived as an annoying modulation.
The smoothing of the LSFs is done as a running mean according to:
lsf (n) = β(n) lsf (n - 1) + (1 - β(n))
Figure imgf000034_0001
i = 1 10 where lsf_est,(n) is the '* estimated LSF of frame n , and lsf,(n) is the /'* LSF for quantization
of frame n . The parameter β(n) controls the amount of smoothing, e.g. if β(n) is zero no smoothing is applied. β(n) is calculated from the VAD information (generated at the block 235) and two estimates of the evolution of the spectral envelope. The two estimates of the evolution are defined as:
10
ΔSP = (Isf jest, (n) -isf jest, (n - 1))2
ΔS , = (lsf_est,(n)-maJsf(n-\))1
ma_lsf,(n) = β(n) majsft(n - 1) + (1 - β(n)) lsf_est,(n), i = 1 10
-33- The parameter β(n) is controlled by the following logic:
Step 1 : if(Vad = 11 PastVad = 11 it, > 0.5) N^.im(n-\) = 0 j8(π) = 0.0 elseif(NmaΛcJm(n - 1) > 0& (ASP > 0.00151 ASPm > 0.0024))
j8(n) = 0.0 elseif(NmoύtJm(n - 1) > 1 & ASP > 0.0025)
Λ ^(«-0 = 1 endif
Step 2 : ι (VαJ = 0 & PastVad = 0)
^nx-5.™(») = ^mode llιn(π-l) + l if(NfmΛJπΛ(n)>5)
enrfi/ j3(n) = 2 (Nmode.frm(π)-l)2
Nmoάe_fm(n) = Nmait_lm(n-l) endif
where it, is the first reflection coefficient.
In step 1, the encoder processing circuitry checks the VAD and the evolution of the spectral envelope, and performs a full or partial reset of the smoothing if required. In step 2, the encoder processing circuitry updates the counter, N,^ ^ (π) , and calculates the smoothing
parameter, β(n) . The parameter β(n) varies between 0.0 and 0.9, being 0.0 for speech, music, tonal-like signals, and non-stationary background noise and ramping up towards 0.9 when stationary background noise occurs.
The LSFs are quantized once per 20 ms frame using a predictive multi-stage vector quantization. A minimal spacing of 50 Hz is ensured between each two neighbonng LSFs before
quantization. A set of weights is calculated from the LSFs, given by w, = K P(f, )| where is
the i'h LSF value and P(f ) is the LPC power spectrum at /, ( K is an inelevant multiplicative constant). The reciprocal of the power spectrum is obtained by (up to a multiplicative constant):
[(1 - cos(2#, )π[cos(2#, ) - cos(2#,)]2 even i odd/
P(f, )' ~ \ (1 + cos(2 ) fltcosW,) - cos(2τζf,)]2 odd i even; and the power of - 0.4 is then calculated using a lookup table and cubic-spline inteφolation between table entries.
A vector of mean values is subtracted from the LSFs, and a vector of prediction enor vector fe is calculated from the mean removed LSFs vector, using a full-matrix AR(2) predictor. A single predictor is used for the rates 5.8, 6.65, 8.0, and 11.0 kbps coders, and two sets of prediction coefficients are tested as possible predictors for the 4.55 kbps coder.
The vector of prediction enor is qu.antized using a multi-stage VQ, with multi-surviving candidates from each stage to the next stage. The two possible sets of prediction enor vectors generated for the 4.55 kbps coder are considered as surviving candidates for the first stage.
The first 4 stages have 64 entries each, and the fifth and last table have 16 entπes. The first 3 stages are used for the 4.55 kbps coder, the first 4 stages are used for the 5.8, 6.65 and 8.0 kbps coders, and all 5 stages are used for the 11.0 kbps coder. The following table summaπzes the number of bits used for the quantization of the LSFs for each rate.
Figure imgf000038_0001
The number of surviving candidates for each stage is summarized in the following table.
Figure imgf000038_0002
The quantization in each stage is done by minimizing the weighted distortion measure given by:
9 2 ι=0
The code vector with index *„-„, which minimizes εk such that εk < εk for all k , is chosen to
represent the prediction/quantization enor ( fe represents in this equation both the initial prediction enor to the first stage and the successive quantization error from each stage to the next one).
The final choice of vectors from all of the surviving candidates (and for the 4.55 kbps coder - also the predictor) is done at the end, after the last stage is searched, by choosing a
-36-
SUBSTITUTE SHffT (RULE 28) 00/11649
combined set of vectors (and predictor) which minimizes the total enor. The contribution from all of the stages is summed to form the quantized prediction enor vector, and the quantized prediction enor is added to the prediction states and the mean LSFs value to generate the quantized LSFs vector.
For the 4.55 kbps coder, the number of order flips of the LSFs as the result of the quantization if counted, and if the number of flips is more than 1, the LSFs vector is replaced with 0.9 • (LSFs of previous frame) + 0.1 • (mean LSFs value) . For all the rates, the quantized LSFs are ordered and spaced with a minimal spacing of 50 Hz.
The interpolation of the quantized LSF is performed in the cosine domain in two ways depending on the LTP_mode. If the LTP_mode is 0, a linear interpolation between the quantized LSF set of the current frame and the quantized LSF set of the previous frame is performed to get the LSF set for the first, second and third subframes as:
-J, (Λ) = 0.75.?4 (n - 1) + 0.25.?4 (π) q2(n) = 0.5qA(n -l) + 0.5qt(n) q, (n) = 0.25q4 (n - 1) + 0.75q4 (n)
where q4 (n - 1) and q4 (n) are the cosines of the quantized LSF sets of the previous and cunent
frames, respectively, and q (n) , ^2(π)and^3(«) are the interpolated LSF sets in cosine domain
for the first, second and third subframes respectively.
If the LTP_mode is 1, a search of the best interpolation path is performed in order to get the inteφolated LSF sets. The search is based on a weighted mean absolute difference between a reference LSF set r/(π)and the LSF set obtained from LP analysis_2 ϊ(n) . The weights w are computed as follows:
-37-
TE SHEET (RULE 28) w(0) = (l - /(0))(l - /(l) + /(0)) w(9) = (l - /(9»tl - /(9) + /(8)) /or = l to 9 w(i) = (1 - /(ι))(l - Min(l(i + 1) - /(/), /(ι) - /(j - 1)))
where Min(a,b) returns the smallest of a and b.
There are four different interpolation paths. For each path, a reference LSF set rq(n) in cosine domain is obtained as follows: rq(n) = a(k)q4(n) + (\ -a(k))q4(n - \),k = \ to 4
δ" = {0.4,0.5,0.6, 0.7} for each path respectively. Then the following distance measure is computed for each path as:
Figure imgf000040_0001
The path leading to the minimum distance D is chosen and the conesponding reference LSF set rq( ) is obtained as :
rq(n) = aop,q4 (n) + (l - «„ , )qt (n - 1)
The interpolated LSF sets in the cosine domain are then given by: q, (n) = 0.5 F4 (n - 1) + Q.Srq (n) q2(n) = rq(n) qι (n) = 0.5rq(n) + 0.5qA(n)
The impulse response, h(ή) , of the weighted synthesis filter
H(z)W(z) = A(z/γ )/[A(z)A(zlγ2)] is computed each subframe. This impulse response is needed for the search of adaptive and fixed codebooks 257 and 261. The impulse response h(n) is computed by filtering the vector of coefficients of the filter A(z I y, ) extended by zeros
through the two filters 1/ A(z) and 1/ A(zlγ2) ■
-38-
lf 26) The target signal for the search of the adaptive codebook 257 is usually computed by subtracting the zero input response of the weighted synthesis filter H(z)W(z) from the weighted speech signal sΛ (n) . This operation is performed on a frame basis. An equivalent procedure for
computing the target signal is the filtering of the LP residual signal r(n) through the
combination of the synthesis filter 1/ A(z) and the weighting filter W(z) .
After determining the excitation for the subframe, the initial states of these filters are updated by filtering the difference between the LP residual and the excitation. The LP residual is given by: ιo r(π) = s(n) + a,s(n -i),n = 0,L_SF -\
The residual signal r(n) which is needed for finding the target vector is also used in the adaptive codebook search to extend the past excitation buffer. This simplifies the adaptive codebook search procedure for delays less than the subframe size of 40 samples.
In the present embodiment, there are two ways to produce an LTP contribution. One uses pitch preprocessing (PP) when the PP-mode is selected, and another is computed like the traditional LTP when the LTP-mode is chosen. With the PP-mode, there is no need to do the adaptive codebook search, and LTP excitation is directly computed according to past synthesized excitation because the interpolated pitch contour is set for each frame. When the AMR coder operates with LTP-mode, the pitch lag is constant within one subframe, and searched and coded on a subframe basis.
Suppose the past synthesized excitation is memorized in ext(MAX_LAG+n), n<0), which is also called adaptive codebook. The LTP excitation codevector, temporally memorized in ext(MAX_LAG+n), 0<-n<L_SF], is calculated by interpolating the past excitation (adaptive codebook) with the pitch lag contour, τc(n + m-L _ SF), m = 0.1.2.3. The inteφolation is
performed using an FIR filter (Hamming windowed sine functions):
ext(MAX _ LAG + n) = ext(MAX _ LAG + n - Tc(n) + i) /. (ijιc(n)), n = 0,1 L _ SF - 1 .
where Tc(n) and T/c(n) are calculated by
Tc (n )=trunc{τc (n + m L _ SF) ) ,
TIC(n) = τc(n) - Tc(n) ,
m is subframe number, { /.( ,r/c(n)) } is a set of interpolation coefficients, // is 10, MAX_LAG is
145+1 1 , and L_SF=40 is the subframe size. Note that the interpolated values (ext(MAX_LAG+n), 0<=n<L_SF -17+11} might be used again to do the interpolation when the pitch lag is small. Once the interpolation is finished, the adaptive codevector \a=(va(n),n=0 to 39} is obtained by copying the interpolated values: va(n)=ext(MAX_LAG+n), 0<=n<L_SF
Adaptive codebook searching is performed on a subframe basis. It consists of performing closed-loop pitch lag search, and then computing the adaptive code vector by interpolating the past excitation at the selected fractional pitch lag. The LTP parameters (or the adaptive codebook parameters) are the pitch lag (or the delay) and gain of the pitch filter. In the search stage, the excitation is extended by the LP residual to simplify the closed-loop search.
For the bit rate of 11.0 kbps, the pitch delay is encoded with 9 bits for the 1st and 3rd subframes and the relative delay of the other subframes is encoded with 6 bits. A fractional pitch
4 delay is used in the first and third subframes with resolutions: 1/6 in the range [17,93-] , and
6 integers only in the range [95,145]. For the second and fourth subframes, a pitch resolution of
-40- 1/6 is always used for the rate 11.0 kbps in the range [7, -5-.7, +4-] . where 7, is the pitch
6 6 lag of the previous (1SI or 3rd) subframe.
The close-loop pitch search is performed by minimizing the mean-square weighted enor between the original and synthesized speech. This is achieved by maximizing the term:
R(k) where 7-, (n) is the target signal and yt (n) is the past filtered
Figure imgf000043_0001
excitation at delay k (past excitation convoluted with h(n) ). The convolution yk (n) is
computed for the first delay r,-,- in the search range, and for the other delays in the search range
* = f mn + 1-— - i • lt ιs updated using the recursive relation: yk {n) = yk.l(n -ϊ) + u(-)h(n),
where u( ),n = -(143 + 11) to 39 is the excitation buffer.
Note that in the search stage, the samples u(n),n = 0 to 39, are not available and are needed for pitch delays less than 40. To simplify the search, the LP residual is copied to u(n) to make the relation in the calculations valid for all delays. Once the optimum integer pitch delay is determined, the fractions, as defined above, around that integor are tested. The fractional pitch search is performed by interpolating the normalized correlation and searching for its maximum.
Once the fractional pitch lag is determined, the adaptive codebook vector, v(n) , is computed by interpolating the past excitation u(ή) at the given phase (fraction). The interpolations are performed using two FIR filters (Hamming windowed sine functions), one for inteφolating the term in the calculations to find the fractional pitch lag and the other for inteφolating the past excitation as previously described. The adaptive codebook gain, g - . is temporally given then by:
∑T n)y(n)
8„ = 19
∑ y(n)y(n) π=0 bounded by 0 < g - < 1.2 , where y(n) = v(n) * h(n) is the filtered adaptive
codebook vector (zero state response of H(zW(z) to v(n) ). The adaptive codebook gain could be modified again due to joint optimization of the gains, gain normalization and smoothing. The term y(n) is also referred to herein as Cp(n) .
With conventional approaches, pitch lag maximizing conelation might result in two or more times the conect one. Thus, with such convention^ approaches, the candidate of shorter pitch lag is favored by weighting the conelations of different candidates with constant weighting coefficients. At times this approach does not conect the double or treble pitch lag because the weighting coefficients are not aggressive enough or could result in halving the pitch lag due to the strong weighting coefficients.
In the present embodiment, these weighting coefficients become adaptive by checking if the present candidate is in the neighborhood of the previous pitch lags (when the previous frames are voiced) and if the candidate of shorter lag is in the neighborhood of the value obtained by dividing the longer lag (which maximizes the conelation) with an integer.
In order to improve the perceptual quality, a speech classifier is used to direct the searching procedure of the fixed codebook (as indicated by the blocks 275 and 279) and to- control gain normalization (as indicated in the block 401 of Fig. 4). The speech classifier serves to improve the background noise performance for the lower rate coders, .and to get a quick start- up of the noise level estimation. The speech classifier distinguishes stationary noise-like segments from segments of speech, music, tonal-like signals, non-stationary noise, etc
The speech classification is performed in two steps. An initial classification (speech mode) is obtained based on the modified input signal. The final classification (exc node) is obtained from the initial classification and the residual signal after the pitch contnbution has been removed. The two outputs from the speech classification are the excitation mode, excjnode, and the parameter βsub(n) , used to control the subframe based smoothing of the
gains.
The speech classification is used to direct the encoder according to the characteπstics of the input signal and need not be transmitted to the decoder. Thus, the bit allocation, codebooks, and decoding remain the same regardless of the classification. The encoder emphasizes the perceptually important features of the input signal on a subframe basis by adapting the encoding in response to such features. It is important to notice that misclassification will not result in disastrous speech quality degradations. Thus, as opposed to the VAD 235, the speech classifier identified within the block 279 (Fig. 2) is designed to be somewhat more aggressive for optimal perceptual quality.
The initial classifier (speech_classifier) has adaptive thresholds and is performed in six steps
1. Adapt thresholds: if (updates jioise ≥ 30 & updates_speech ≥ 30) majnaxjspeech
SNR_max = min ma max noise else
SNR nax = 3.5 endif if(SNR_max<\.5) decijnaxjnes = 1.30 decijnajcp = 0.70 update naxjnes = 1.10 update jna cp speech = 0.72 elseif (SNRjnax < 2.50) decijnaxjnes = 1.65 decijnajcp = 0.73 update jnaxjnes - 1.30 update jna_cp_speech = 0.72 else decijnaxjnes = 1.75 decijnajcp = 0.77 update jnaxjnes = 1.30 update jna_cp_speech - 0.77 endif
2. Calculate parameters: Pitch conelation:
L.SF-1
∑s(i) s(i-lag) cp =
L SF-l (LJF-t
∑s(i)-s(i) ∑s(i-lag) s(i-lag) Running mean of pitch conelation: ma_cp(n) =O 9 ma_cp(n - 1) + 0.1 ■ cp
Maximum of signal amplitude in cunent pitch cycle: max(n) = max{?( )|, i = start, .... L_SF - 1} where: start = mm {L_SF - lag,0)
Sum of signal amplitudes in cunent pitch cycle:
Figure imgf000047_0001
Measure of relative maximum: max(n) max mes = majnaxjιoise(n - 1)
Maximum to long-term sum:
Figure imgf000047_0002
Maximum in groups of 3 subframes for past 15 subframes: max_group(n,k) = max mαx(n - 3 • (4 - it ) -
Figure imgf000047_0003
0, ... ,2} k = 0 4
Group-maximum to minimum of previous 4 group-maxima:
. , . max_group(n,4) endmax2mιnmax = -, 1 mmφιax_group(n, k), k = 0, ... ,3}
Slope of 5 group maxima:
4 slope = 0.1 ∑(k - 2) max_group(n,k) i=0 3. Classify subframe: if(((maxjnes < decijnaxjnes & ma_cp < deci_ma_cp) I (VAD = 0)) &
(LTP_MODE = 1 15Mbit I s I A.SSkbitl s)) speechjnode = 0/* classλ * I else speechjnode = 1 /* class2 * I endif
4. Check for change in background noise level, i.e. reset required:
Check for decrease in level: if (updates_noise = 31 & max_mes <= 0.3) if (consecjow < 15) consec_low++ endif else consecjow = 0 endif if (consecjow = 15) updates_noise = 0 lev_reset = -1 /* low level reset */ endif
Check for increase in level: if ((updates_noise >= 301 lev_reset = -1) & max_mes > 1.5 & ma_cp < 0.70 & cp < 0.85
& kl < -0.4 & endmax2minmax < 50 & max2sum < 35 & slope > -100 & slope < 120) if (consec Jiigh < 15) consecJ igh++ endif else consec J igh = 0 endif if (consec Jiigh = 15 & endmax2minmax < 6 & max2sum < 5)) updates_noise = 30 lev_reset = 1 /* high level reset */ endif
-46- 5. Update running mean of maximum of class 1 segments, i.e. stationary noise:
'/( / * 1. condition : regular update * /
(maxjnes < update jnaxjnes & ma_cp < 0.6 & cp < 0.65 & maxjnes > 0.3) I
1 * 2. condition : VAD continued update * /
(consec _vad_0 = 8) I
/ * 3. condition : start - up/reset update * /
(updates jioise ≤ 30 & ma_cp < 0.7 & cp < 0.75 & Jt, < -0.4 & endmax2minmax < 5 &
(levjreset ≠ -\ \ (levjreset = -1 & maxjnes < 2)))
) ma_max_noise(n) = 0.9 • ma_max_noise(n - 1) + 0.1 • max(n)
if (updates jioise < 30) updates jioise + + else levjreset - 0 endif
where k, is the first reflection coefficient.
6. Update running mean of maximum of class 2 segments, i.e. speech, music, tonal-like signals, non-stationary noise, etc, continued from above:
elseif(ma_cp > update _ma_cp_speech) if (updates _speech ≤ 80)
^speech = 0.95 else
^s eech = 0.999 endif
majnax_speech(n) = aspttdl majnax_speech(n - 1) + (1 - ttspeκh ) max(n)
if (updates _speech ≤ 80) updates jspeech + + endif
-47-
SUBSTITUTE SHEET P,yiE The final classifier (exc_preselect) provides the final class, excjnode, and the subframe based smoothing parameter, βsub(n) . It has three steps:
1. Calculate parameters:
Maximum amplitude of ideal excitation in cunent subframe: maxm2(n) = max re.y2(»)|, = 0, ... , L_SF - l}
Measure of relative maximum: maxm2(n) max_mesm2 = ma_maxm2(n - 1)
2. Classify subframe and calculate smoothing: if (speech jnode = 1 1 maxjnesnι2 ≥ 1.75) excjnode = 1 1 * class 2 * / β*(n) = 0
N_mode_sub(n) = -4 else excjnode = 0 1 * class 1 * /
Njnode_sub(n) = Njnode_sub(n - 1) + 1 if(Njmode_sub(n) > 4) N_mode_sub(n) = 4 endif if(N_mode_sub(n) > 0)
A» (n) = " (N_mode_sub(n) - if else
/ ,(*) = o endif endif
3 Update run ng mean of maximum: ιf(max_mesm2 < 0.5) if (consec < 51) consec + + endif else consec = 0 endif if ((excjnode = 0 & (max_mesm2 > 0.51 consec > 50)) I (updates ≤ 30 & ,roι_c/> < 0.6 & cp < 0.65)) majnax(n) = 0.9 • ma_max(n - 1) + 0.1 • maxm2(n) if (updates ≤ 30) updates + + endif endif
When this process is completed, the final subframe based classification, exc_mode, and the smoothing parameter, βSUb(n), are available.
To enhance the quality of the search of the fixed codebook 261, the target signal, Tg(n), is
produced by temporally reducing the LTP contribution with a gain factor, Gr:
Tg(n) = Tgs(n) - Gr .gp . Ya(n), n=0,l 39
where Tgs(n) is the original target signal 253, YJn) is the filtered signal from the adaptive codebook, gp is the LTP gain for the selected adaptive codebook vector, and the gain factor is determined according to the normalized LTP gain, Rp, and the bit rate: if (rate <=0) /*for 4.45kbps and 5.8kbps*/ Gr = 0.7 Rp +0.3; if (rate = 1) /* for 6.65kbps */ Gr = 0.6 Rp +0.4; // (rate ==2) /* for 8.0kbps */
Figure imgf000052_0001
if (rate==3) /* for 11.0kbps */ Gr = 0.95: if (Tσp>L_SF & gp>0.5 & rate<=2) G, e=Gr (0.3'Rp' +-0. 7);and
where normalized LTP gain, Rp, is defined as:
Figure imgf000052_0002
Another factor considered at the control block 275 in conducting the fixed codebook search and at the block 401 (Fig. 4) during gain normalization is the noise level + ")" which is given by:
_ jmax{(£. - 100),0.0} "NSR -
where Es is the energy of the cunent input signal including background noise, and E„ is a running average energy of the background noise. En is updated only when the input signal is detected to be background noise as follows: if (first background noise frame is true)
En = 0.75 Es; else if (background noise frame is true)
E„ = 0.75 En_m + 0.25 Es; where En m is the last estimation of the background noise energy.
For each bit rate mode, the fixed codebook 261 (Fig. 2) consists of two or more subcodebooks which are constructed with different structure. For example, in the present embodiment at higher rates, all the subcodebooks only contain pulses. At lower bit rates, one of the subcodebooks is populated with Gaussian noise. For the lower bit-rates (e g . 6.65. 5 8. 4 55 kbps), the speech classifier forces the encoder to choose from the Gaussian subcodebook in case of stationary noise-like subframes, excjnode = 0. For excjnode = 1 all subcodebooks are searched using adaptive weighting.
For the pulse subcodebooks, a fast searching approach is used to choose a subcodebook and select the code word for the cunent subframe. The same searching routine is used for all the bit rate modes with different input parameters.
In particular, the long-term enhancement filter, Fp(z), is used to filter through the selected
pulse excitation. The filter is defined as Fp(z) = V. _ a -r . where 7 is the integer part of
pitch lag at the center of the cunent subframe, and β is the pitch gain of previous subframe, bounded by [0.2, 1.0]. Prior to the codebook search, the impulsive response h(n) includes the filter Fp(z).
For the Gaussian subcodebooks, a special structure is used in order to bring down the storage requirement and the computational complexity. Furthermore, no pitch enhancement is applied to the Gaussian subcodebooks.
There .are two kinds of pulse subcodebooks in the present AMR coder embodiment. All pulses have the amplitudes of + 1 or - 1. Each pulse has 0, 1 , 2, 3 or 4 bits to code the pulse position. The signs of some pulses are transmitted to the decoder with one bit coding one sign. The signs of other pulses are determined in a way related to the coded signs and their pulse positions.
In the first kind of pulse subcodebook, each pulse has 3 or 4 bits to code the pulse position. The possible locations of individual pulses are defined by two basic non-regular tracks and initial phases: POS(np,ι) = TRACK(mp ,i) + PHAS(np , phasjnode) ,
where ι=0, l 7 or 15 (conesponding to 3 or 4 bits to code the position), is the possible position index, np = 0 Np-1 (Np is the total number of pulses), distinguishes different pulses, mp=0 or 1. defines two tracks, and phase _mode=0 or 1, specifies two phase modes.
For 3 bits to code the pulse position, the two basic tracks are: TRACK(0,i) }={0, 4, 8, 12, 18, 24, 30, 36}, and TRACK(l.i) }={0, 6, 12, 18, 22, 26, 30, 34}.
If the position of each pulse is coded with 4 bits, the basic tracks are: TRACK(0,i) }=(0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32, 35, 38}, and / TRACK(l.i) }=(0, 3, 6, 9, 12, 15, 18, 21, 23, 25, 27, 29, 31, 33, 35, 37}.
The initial phase of each pulse is fixed as:
PHAS(np ,0) = modulus(np I MAXPHAS) PHAS(np , 1) = PHAS(Np - \ - np , 0)
where MAXPHAS is the maximum phase value.
For any pulse subcodebook, at least the first sign for the first pulse, SIGN(np), np=0, is encoded because the gain sign is embedded. Suppose Ns,g„ is the number of pulses with encoded signs; that is, SIGN(np), for np<Nslgn,<=Np, is encoded while SIGN(np), for np>=Nslgn, is not encoded. Generally, all the signs can be determined in the following way: SlGN(np)= - SIGN(np-l),fornp>=N„gn, due to that the pulse positions are sequentially searched from np=0 to np=Np-l using an iteration approach. If two pulses are located in the same track while only the sign of the first pulse in the track is encoded, the sign of the second pulse depends on its position relative to the first pulse. If the position of the second pulse is smaller, then it has opposite sign, otherwise it has the same sign as the first pulse.
-52- In the second kind of pulse subcodebook, the innovation vector contains 10 signed pulses. Each pulse has 0, 1, or 2 bits to code the pulse position. One subframe with the size of 40 samples is divided into 10 small segments with the length of 4 samples. 10 pulses are respectively located into 10 segments. Since the position of each pulse is limited into one segment, the possible locations for the pulse numbered with np are, {4np}, {4np, 4np+2], or (4np, 4np+l, 4np+2, 4np+3 }, respectively for 0, 1, or 2 bits to code the pulse position. All the signs for all the 10 pulses are encoded.
The fixed codebook 261 is searched by minimizing the mean square enor between the weighted input speech and the weighted synthesized speech. The target signal used for the LTP excitation is updated by subtracting the adaptive codebook contribution. That is: x2( n )=x(n )-gpy(n), *=0 39,
where y( n)=v(n )*h(n) is the filtered adaptive codebook vector and gp is the modified
(reduced) LTP gain.
If ck is the code vector at index it from the fixed codebook, then the pulse codebook is searched by maximizing the term:
Figure imgf000055_0001
where d = Hfx, is the conelation between the target signal xz(n) and the impulse response
h(n), H is a the lower triangular Toepliz convolution matrix with diagonal h(0) .and lower
diagonals h(\) Λ(39) , and Φ = H'H is the matrix of correlations of h(n) . The vector d
(backward filtered target) and the matrix Φ are computed prior to the codebook search. The elements of the vector d are computed by: 39 d(n)=^x2(i7hti-n), n=0 39, ι=n and the elements of the symmetric matrix Φ are computed by:
39 φ(i,j)=: h(n-i)n(n-j), (j≥i).
The conelation in the numerator is given by:
-v.-i C= ∑ύidimi), ι=0 where ,- is the position of the i th pulse andt?, is its amplitude. For the complexity reason, all
the amplitudes { t?, } are set to +1 or -1; that is, ύ^SIGNd), i = np=0 _V,-1. .
The energy in the denominator is given by:
Λ/--1 Np-2 Np-\
ED= ∑ Φ(mi,mi) + 2 ∑ ∑t?;i?;ø(m,-,/n,). i=0 i=0 j=i+\
To simplify the search procedure, the pulse signs are preset by using the signal bin), which is a weighted sum of the normalized d(n) vector and the normalized target signal of x(n) in the residual domain res^n):
Figure imgf000056_0001
If the sign of the i th (i=np) pulse located at , is encoded, it is set to the sign of signal b( n ) at that position, i.e., SlGN(i)=sign[b(mi)]. In the present embodiment, the fixed codebook 261 has 2 or 3 subcodebooks for each of the encoding bit rates. Of course many more might be used in other embodiments. Even with several subcodebooks, however, the searching of the fixed codebook 261 is very fast using the following procedure. In a first searching turn, the encoder processing circuitry searches the pulse positions sequentially from the first pulse (np=0) to the last pulse (np=Np-l) by considering the influence of all the existing pulses.
In a second searching turn, the encoder processing circuitry conects each pulse position sequentially from the first pulse to the last pulse by checking the criterion value A contributed from all the pulses for all possible locations of the current pulse. In a third rum, the functionality of the second searching turn is repeated a final time. Of course further rums may be utilized if the added complexity is not prohibitive.
The above searching approach proves very efficient, because only one position of one pulse is changed leading to changes in only one term in the criterion numerator C and few terms in the criterion denominator ED for each computation of the Ak. As an example, suppose a pulse subcodebook is constructed with 4 pulses and 3 bits per pulse to encode the position. Only 96 ( pulsesx2i positions per pulsex3tums= 96 ) simplified computations of the criteπon Ak need be performed.
Moreover, to save the complexity, usually one of the subcodebooks in the fixed codebook 261 is chosen after finishing the first searching turn. Further searching turns are done only with the chosen subcodebook. In other embodiments, one of the subcodebooks might be chosen only after the second searching turn or thereafter should processing resources so permit.
The Gaussian codebook is structured to reduce the storage requirement and the computational complexity. A comb-structure with two basis vectors is used. In the comb- structure, the basis vectors are orthogonal, facilitating a low complexity search. In the AMR coder, the first basis vector occupies the even sample positions, (0.2 38) . and the second
basis vector occupies the odd sample positions, (1,3,... , 39) .
The same codebook is used for both basis vectors, and the length of the codebook vectors is 20 samples (half the subframe size).
All rates (6.65, 5.8 and 4.55 kbps) use the same Gaussian codebook. The Gaussian codebook, CBGtmi , has only 10 entries, and thus the storage requirement is 10 - 20 = 200 16-bit
words. From the 10 entries, as many as 32 code vectors are generated. An index, idxδ , to one
basis vector 22 populates the conesponding part of a code vector, cldx , in the following way:
c^s (2 (i - τ) + δ) = CBCMU(l, i) i = τ,τ + l,...,19 ctiXs (2 - (i + 20- τ) + δ) = CBGtutt(l,i) i = 0,l, ...,τ - l
where the table entry, /, and the shift, r , are calculated from the index, idxs , according to: τ = trunc^dxs /\6} l = idxs - \0 τ and δ is 0 for the first basis vector and 1 for the second basis vector. In addition, a sign is applied to each basis vector.
Basically, each entry in the Gaussian table can produce as many as 20 unique vectors, all with the same energy due to the circular shift. The 10 entries are all normalized to have identical energy of 0.5, i.e.,
∑CBGluli(l,i)2 = 0.5, / = 0,1,...,9
.=0
That means that when both basis vectors have been selected, the combined code vector, cld-o ld-ι ,
will have unity energy, and thus the final excitation vector from the Gaussian subcodebook will
-56-
SUBST1TUTE SHEET (RULE 26) have unity energy since no pitch enhancement is applied to candidate vectors from the Gaussian subcodebook.
The search of the Gaussian codebook utilizes the structure of the codebook to facilitate a low complexity search Initially, the candidates for the two basis vectors are searched independently based on the ideal excitation, res2 For each basis vector, the two best candidates, along with the respective signs, are found according to the mean squared enor This is exemplified by the equations to find the best candidate, index ιdxs , and its sign, jld-
tdxz = max ∑res2(2 ι + δ) ck(2 i + δ)
0 k=0 \ N, fΛl
= sιgn ∑res2(2 i + δ) cld-4 (2 i + δ)
.=0 where N0lu.- is the number of candidate entπes for the basis vector The remaining parameters
are explained above. The total number of entπes in the Gaussian codebook is 2 2 NGau : The fine search minimizes the enor between the weighted speech and the weighted synthesized speech consideπng the possible combination of candidates for the two basis vectors from the preselection If c^ k is the Gaussian code vector from the candidate vectors represented by the
indices it0 and it, and the respective signs for the two basis vectors, then the final Gaussian code
vector is selected by maximizing the term:
Figure imgf000059_0001
over the candidate vectors d = H'x. is the conelation between the target signal *,(«) and the
impulse response h(n) (without the pitch enhancement), and H is a the lower triangular Toep z convolution matrix with diagonal Λ(0) and lower diagonals h(l) Λ(39) , and Φ = H'H is the
matrix of conelations of h(n).
More particularly, in the present embodiment, two subcodebooks are included (or utilized) in the fixed codebook 261 with 31 bits in the 11 kbps encoding mode. In the first subcodebook, the innovation vector contains 8 pulses. Each pulse has 3 bits to code the pulse position. The signs of 6 pulses are transmitted to the decoder with 6 bits. The second subcodebook contains innovation vectors comprising 10 pulses. Two bits for each pulse are assigned to code the pulse position which is limited in one of the 10 segments. Ten bits are spent for 10 signs of the 10 pulses. The bit allocation for the subcodebooks used in the fixed codebook
261 can be summarized as follows:
Subcodebookl : 8 pulses X 3 bits/pulse + 6 signs =30 bits Subcodebook.2: 10 pulses X 2 bits/pulse + 10 signs =30 bits
One of the two subcodebooks is chosen at the block 275 (Fig. 2) by favoring the second subcodebook using adaptive weighting applied when comparing the criterion value FI from the first subcodebook to the criterion value F2 from the second subcodebook: if(Wc F\ > F2 ), the first subcodebook is chosen, else, the second subcodebook is chosen, where the weighting, 0<WC<=1, is defined as:
J 1.0. if PN5R < 5,
W< - [1.0 - 03 PNSR (1.0 - 05 Rp ) • min { Psharp + 05, 1.0} ,
PNSR is the background noise to speech signal ratio (i.e., the "noise level" in the block 279), Rp is the normalized LTP gain, and PS arp is the shaφness parameter of the ideal excitation res (n) (i.e., the "shaφness" in the block 279). In the 8 kbps mode, two subcodebooks are included in the fixed codebook 261 with 20 bits. In the first subcodebook, the innovation vector contains 4 pulses. Each pulse has 4 bits to code the pulse position. The signs of 3 pulses are transmitted to the decoder with 3 bits. The second subcodebook contains innovation vectors having 10 pulses. One bit for each of 9 pulses is assigned to code the pulse position which is limited in one of the 10 segments. Ten bits are spent for 10 signs of the 10 pulses. The bit allocation for the subcodebook can be summanzed as the following:
Subcodebook! : 4 pulses X 4 bits/pulse + 3 signs =19 bits
Subcodebook.2: 9 pulses X 1 bits/pulse + 1 pulse X O bit + 10 signs =19 bits
One of the two subcodebooks is chosen by favoring the second subcodebook using adaptive weighting applied when comparing the criterion value FI from the first subcodebook to the cnteπon value F2 from the second subcodebook as in the 1 1 kbps mode. The weighting,
0< WC<=1, is defined as:
Wc = 1.0 - 0.6 PNSR (1.0 - 0.5 Rp )• min {Psharp + 05, 1.0} .
The 6.65kbps mode operates using the long-term preprocessing (PP) or the traditional
LTP. A pulse subcodebook of 18 bits is used when in the PP-mode. A total of 13 bits are allocated for three subcodebooks when operating in the LTP-mode. The bit allocation for the subcodebooks can be summarized as follows:
PP-mode:
Subcodebook: 5 pulses X 3 bits/pulse + 3 signs =18 bits
LTP-mode:
Subcodebook 1: 3 pulses X 3 bits/pulse + 3 signs =12 bits, phase jnode=l, Subcodebook.2: 3 pulses X 3 bits/pulse + 2 signs =11 bits, phase jnode=0, Subcodebook3: Gaussian subcodebook of 11 bits.
One of the 3 subcodebooks is chosen by favoring the Gaussian subcodebook when searching with LTP-mode. Adaptive weighting is applied when comparing the criterion value from the two pulse subcodebooks to the criterion value from the Gaussian subcodebook. The weighting.
0<W < = 1. is defined as:
Wc = 1.0 - 0.9 PNSR ( 1.0 - 0.5 Rp ) min { Pshaφ + 05, 1.0} , if (noise - like unvoiced), Wc e=Wc (0.2 Rp (1.0 - Psharp ) + 0&) .
The 5.8 kbps encoding mode works only with the long-term preprocessing (PP). Total 14 bits are allocated for three subcodebooks. The bit allocation for the subcodebooks can be summarized as the following:
Subcodebook] : 4 pulses X 3 bits/pulse + 1 signs =13 bits, phase jnode=l, Subcodebook!: 3 pulses X 3 bits/pulse + 3 signs =12 bits, phase jnode=0, Subcodebook3: Gaussian subcodebook of 12 bits.
One of the 3 subcodebooks is chosen favoring the Gaussian subcodebook with aaptive weighting applied when comparing the criterion value from the two pulse subcodebooks to the criterion value from the Gaussian subcodebook. The weighting, 0<WC<=1, is defined as:
W =l .0-P„SK (\.0-0.5Rp>mm{Pstuup +0.6,1.0} , if (noise - like unvoiced), Wc «=WC (0.3Rp (1.0 - Psharp )+ 0.7) .
The 4.55 kbps bit rate mode works only with the long-term preprocessing (PP). Total 10 bits are allocated for three subcodebooks. The bit allocation for the subcodebooks can be summarized as the following:
Subcodebookl : 2 pulses X 4 bits/pulse + 1 signs =9 bits, phase jnode=l, Subcodebook!: 2 pulses X 3 bits/pulse + 2 signs =8 bits, phase _mode=0, Subcodebook3: Gaussian subcodebook of 8 bits.
One of the 3 subcodebooks is chosen by favoring the Gaussian subcodebook with weighting applied when comparing the criterion value from the two pulse subcodebooks to the criterion value from the Gaussian subcodebook. The weighting, 0<WC<=1, is defined as:
WC = 10 -12 PNSR (l.0- 05 Rp) πύn {Pshaψ + 0.6, 1.0} , if ( noise - like unvoiced ), Wc «= Wc ( 0.6 Rp ( 1.0 - Psiιarp ) + 0.4)
For 4.55. 5.8, 6.65 and 8.0 kbps bit rate encoding modes, a gain re-optimization procedure is performed to jointly optimize the adaptive and fixed codebook gains, g . and gt ,
respectively, as indicated in Fig. 3. The optimal gains are obtained from the following conelations given by:
_ Λ| /?2 — °jΛ4 R,R2 - R3Λ3
Figure imgf000063_0001
where R, =< C.,7.. > , R2 =< C. , C. > , /?3 =< Cp,Cc >,RΛ =< CC V > , and
R5 =< Cp,Cp > . Cc, . , and 7.. are filtered fixed codebook excitation, filtered adaptive
codebook excitation and the target signal for the adaptive codebook search.
For 11 kbps bit rate encoding, the adaptive codebook gam, gp , remains the same as that
computed in the closeloop pitch search. The fixed codebook gain, gc , is obtained as:
Figure imgf000063_0002
where R6 =< Cc t > and f. = f., - gpCp .
Oπgmal CELP algorithm is based on the concept of analysis by synthesis (waveform matching). At low bit rate or when coding noisy speech, the waveform matching becomes difficult so that the gains are up-down, frequently resulting in unnatural sounds. To compensate for this problem, the gains obtained in the analysis by synthesis close-loop sometimes need to be modified or normalized. There are two basic gain normalization approaches. One is called open-loop approach which normalizes the energy of the synthesized excitation to the energy of the unquantized residual signal. Another one is close-loop approach with which the normalization is done considering the perceptual weighting. The gain normalization factor is a linear combination of the one from the close-loop approach and the one from the open-loop approach; the weighting coefficients used for the combination are controlled according to the LPC gain.
The decision to do the gain normalization is made if one of the following conditions is met: (a) the bit rate is 8.0 or 6.65 kbps, and noise-like unvoiced speech is true; (b) the noise level PNSR is larger than 0.5; (c) the bit rate is 6.65 kbps, and the noise level PNSR IS larger than 0.2; and (d) the bit rate is 5.8 or 4.45kbps.
The residual energy, Eres , and the target signal energy, Eτgs . are defined respectively as:
Figure imgf000064_0001
L.SF-l
Eτι, = ∑ Tv n)
Then the smoothed open-loop energy and the smoothed closed-loop energy are evaluated by:
if (first subframe is true)
Ol. Eg = Ens else
0l - εg <= βsub 0l _Eg + (\ - βlub)E„s if (first subframe is true)
Figure imgf000064_0002
else
Cl. Eg ^βsui Cl_Eg + (l - βslώ)ET!S where βsub is th«moothιng coefficient which is determined according to the classification After having the reference energy, the open-loop gam normalization factor is calculated
Figure imgf000065_0001
where C0ι is 0 8 for the bit rate 1 1 0 kbps, for the other rates C0ι is 0 7, and v(n) is the excitation v(n) = va(n) gp + vc(n) gc , n=0,l L_SF-1 where gp and gc are unquantized ga s. Similarly, the closed-loop gain normalization factor is
Cl _ g }
Figure imgf000065_0002
where Cc/ is 0 9 for the bit rate 11.0 kbps, for the other rates Cc. is 0.8, and y(n) is the filtered sign∑il (y(n)=v(n)*h(n)): y(n) = ya(n) gp + yc(n) gc , n=0,l, L_SF-1.
The final gain normalization factor, gf, is a combination of Cl_g and Ol_g, controlled in terms of an LPC ga parameter, Cwc, if (speech is true or the rate is 11kbps) gf = Cwc Ol_g + (I- Cwc ) Cl_g gf = MAX(1.0, gf) gf = MIN(gf, l+Cu>c) if (background noise is true and the rate is smaller than 1 lkbps) gf=l 2 MIN{Cl_g, Ol_g} where Cw is defined as:
Cwc = MIN(sqrt(Ert/Eτgs), 0.8}/0.8
-63-
SUBST1TUTE SHEET (RULE 26) Once the gain normalization factor is determined, the unquantized gains are modified:
g p *= g p ' g f
For 4.55 ,5.8, 6.65 and 8.0 kbps bit rate encoding, the adaptive codebook gain and the fixed codebook gain are vector quantized using 6 bits for rate 4.55 kbps and 7 bits for the other rates. The gain codebook search is done by minimizing the mean squared weighted enor, Err . between the original and reconstructed speech signals:
Figure imgf000066_0001
For rate 11.0 kbps, scalar quantization is performed to quantize both the adaptive codebook gain, g p , using 4 bits and the fixed codebook gain, gc , using 5 bits each.
The fixed codebook gain, gc , is obtained by MA prediction of the energy of the scaled
fixed codebook excitation in the following manner. Let E(n) be the mean removed energy of the scaled fixed codebook excitation in (dB) at subframe n be given by:
E(n) = \0\og( -g]∑cl(ϊ))- E, 40 ^o where c(ϊ) is the unsealed fixed codebook excitation, and E = 30 dB is the mean energy of scaled fixed codebook excitation.
The predicted energy is given by:
E(n) = ∑b,R(n -i)
where [b,*:b3t4]= [0.680.580.340.19] are the MA prediction coefficients and R(n) is the
quantized prediction enor at subframe n . The predicted energy is used to compute a predicted fixed codebook gam gc (by
substituting E(n) by E(«) and g. by gc ). This is done as follows. First, the mean energy of the unsealed fixed codebook excitation is computed as:
£, = 101og(-^∑c:( ), 40 and then the predicted gain gc is obtained as:
, _ (0.05(£(« y+E-EΛ gc = \0
A conection factor between the gain, gc , and the estimated one, gc , is given by:
' '/,
It is also related to the prediction enor as: R(n) = E(n)- E(n) = 20\ogγ .
The codebook search for 4.55, 5.8, 6.65 and 8.0 kbps encoding bit rates consists of two steps. In the first step, a binary search of a single entry table representing the quantized prediction enor is performed. In the second step, the index Index _ 1 of the optimum entry that is closest to the unquantized prediction enor in mean square enor sense is used to limit the search of the two-dimensional VQ table representing the adaptive codebook gain and the prediction enor. Taking advantage of the particular arrangement and ordering of the VQ table, a fast search using few candidates around the entry pointed by Index _ 1 is performed. In fact, only about half of the VQ table entries are tested to lead to the optimum entry with Index _ 2. Only Index _ 2 is transmitted. For 1 1.0 kbps bit rate encoding mode, a full search of both scalar gain codebooks are used to quantize gp and gc . For g - , the search is performed by minimizing the enor
Err = abs(gp - gp ) ■ Whereas for gc , the search is performed by minimizing the enor
Figure imgf000068_0001
An update of the states of the synthesis and weighting filters is needed in order to compute the target signal for the next subframe. After the two gains are quantized, the excitation signal, u(n) , in the present subframe is computed as:
"(«) = g„v(n) + gcc(n)>n = °' 39 • where gp and gc are the quantized adaptive and fixed codebook gains respectively, v(n) the
adaptive codebook excitation (interpolated past excitation), and c(n) is the fixed codebook excitation. The state of the filters can be updated by filtering the signal r(n) - u(ή) through the
filters \l A(z) and W(z) for the 40-sample subframe and saving the states of the filters. This would normally require 3 filterings.
A simpler approach which requires only one filtering is as follows. The local synthesized speech at the encoder, s(n) , is computed by filtering the excitation signal through 1/ A(z) . The output of the filter due to the input r(n) - u(ή) is equivalent to e(ή) = s(ή) - s(n) , so the states of
the synthesis filter 1/ A(z) are given by e(n),n = 0,39. Updating the states of the filter W(z) can be done by filtering the enor signal e(ή) through this filter to find the perceptually weighted
enor ew(n). However, the signal ew(n) can be equivalently found by:
e n) = Tgs(n) - gpCp(n) - gcCc(n) .
The states of the weighting filter are updated by computing ew (n) for π = 30 to 39. The function of the decoder consists of decoding the transmitted parameters (dLP parameters, adaptive codebook vector and its gain, fixed codebook vector and its gain) and performing synthesis to obtain the reconstructed speech. The reconstructed speech is then postfiltered and upscaled.
The decoding process is performed in the following order. First, the LP filter parameters are encoded. The received indices of LSF quantization are used to reconstruct the quantized LSF vector. Inteφolation is performed to obtain 4 interpolated LSF vectors (conesponding to 4 subframes). For each subframe, the inteφolated LSF vector is converted to LP filter coefficient domain, ak , which is used for synthesizing the reconstructed speech in the subframe.
For rates 4.55, 5.8 and 6.65 (during PP_mode) kbps bit rate encoding modes, the received pitch index is used to interpolate the pitch lag across the entire subframe. The following three steps are repeated for each subframe:
1 ) Decoding of the gains: for bit rates of 4.55, 5.8, 6.65 and 8.0 kbps, the received index is used to find the quantized adaptive codebook gain, gp , from the 2-dimensional VQ table. The
same index is used to get the fixed codebook gain conection factor γ from the same
quantization table. The quantized fixed codebook gain, gc , is obtained following these steps:
_ *
• the predicted energy is computed E(n) = ∑b,R(n - i) ;
• the energy of the unsealed fixed codebook excitation is calculated
as E, = 101og(^∑c2(/)); and 40 j
-67-
SUBSTITUTE SHEET (RULE 26. • . the predicted -i gain g, is o Lbtained as gc = , 10Λ(0 05( £(« )+£-£ ', )
The quantized fixed codebook gam is given as gc = γg. For 1 1 kbps bit rate, the received adaptive codebook gam index is used to readily find the quantized adaptive gain. gp from the quantization table. The received fixed codebook gam index gives the fixed
codebook gain correction factor γ . The calculation of the quantized fixed codebook
gain, g . follows the same steps as the other rates.
2) Decoding of adaptive codebook vector: for 8.0 , 11.0 and 6.65 (duπng LTP_mode= 1 ) kbps bit rate encoding modes, the received pitch index (adaptive codebook index) is used to find the integer and fractional parts of the pitch lag. The adaptive codebook v(n) is found by interpolating the past excitation u(n) (at the pitch delay) using the FIR filters.
3) Decoding of fixed codebook vector: the received codebook indices are used to extract the type of the codebook (pulse or Gaussian) and either the amplitudes and positions of the excitation pulses or the bases and signs of the Gaussian excitation. In either case, the reconstructed fixed codebook excitation is given as c(n) . If the integer part of the pitch lag is less than the subframe size 40 and the chosen excitation is pulse type, the pitch sharpening is applied. This translates into modifying c(n) as c(n) = c(n) + βc(n - 7) , where β is the
decoded pitch gain gp from the previous subframe bounded by [0.2,1.0].
The excitation at the input of the synthesis filter is given by "(") = gp v(n) + gcc(n),n = 0,39. Before the speech synthesis, a post-processing of the
excitation elements is performed. This means that the total excitation is modified by emphasizing the contnbution of the adaptive codebook vector: 00/11649
f u(n) + 0.25 βgpv(n), J. > 0.5 ff(π) =
<*(n), gp <= 0.5
Adaptive gain control (AGC) is used to compensate for the gain difference between the unemphasized excitation u(n) and emphasized excitation u(n) . The gain scaling factor η for the emphasized excitation is computed by:
Figure imgf000071_0001
The gain-scaled emphasized excitation u(n) is given by:
ύ (n) = ηu(n) .
The reconstructed speech is given by:
10 s(n) = u (n) - ∑a,I(n - i),n = 0 to 39 ,
where a, are the interpolated LP filter coefficients. The synthesized speech s(n) is then passed
through an adaptive postfilter.
Post-processing consists of two functions: adaptive postfiltering and signal up-scaling. The adaptive postfilter is the cascade of three filters: a formant postfilter and two tilt compensation filters. The postfilter is updated every subframe of 5 ms. The formant postfilter is given by:
Figure imgf000071_0002
-69-
ROLE 28) 0/11649
where A(z) is the received quantized and inteφolated LP inverse filter and γn and γu control the amount of the formant postfiltering.
The first tilt compensation filter /,, (z) compensates for the tilt in the formant postfilter
H f (z) and is given by:
H„ (z) = (\ -μz- )
where μ = y„ t, is a tilt factor, with kt being the first reflection coefficient calculated on the r (1) truncated impulse response h{ (n) , of the formant postfilter £, = — — with:
'*(') = ∑ * hf U)hf (j + i) , (Lh = 22) .
The postfiltering process is performed as follows. First, the synthesized speech s(n) is
inverse filtered through ( ) to produce the residual signal r(ή). The signal r(n) is filtered
by the synthesis filter
Figure imgf000072_0001
is passed to the first tilt compensation filter A„ (z) resulting in
the postfiltered speech signal sf (n) .
Adaptive gain control (AGC) is used to compensate for the gain difference between the synthesized speech signal s(n) and the postfiltered signal sf (n) . The gain scaling factor γ for
the present subframe is computed by:
Figure imgf000072_0002
The gain-scaled postfiltered signal J (n) is given by:
s (n) = β(n)sf (n)
-70-
SUBSTITUTE SHEET (RULE 28) where β(n) is updated in sample by sample basis and given by: β(n) = aβ(n - \) + (l - )γ where is an AGC factor with value 0.9. Finally, up-scaling consists of multiplying the postfiltered speech by a factor 2 to undo the down scaling by 2 which is applied to the input signal.
Figs. 6 and 7 are drawings of an alternate embodiment of a 4 kbps speech codec that also illustrates various aspects of the present invention. In particular, Fig. 6 is a block diagram of a speech encoder 601 that is built in accordance with the present invention. The speech encoder 601 is based on the analysis-by-synthesis principle. To achieve toll quality at 4 kbps, the speech encoder 601 departs from the strict waveform-matching criterion of regular CELP coders and strives to catch the perceptual important features of the input signal.
The speech encoder 601 operates on a frame size of 20 ms with three subframes (two of 6.625 ms and one of 6.75 ms). A look-ahead of 15 ms is used. The one-way coding delay of the codec adds up to 55 ms.
At a block 615, the spectral envelope is represented by a 10th order LPC analysis for each frame. The prediction coefficients are transformed to the Line Spectrum Frequencies (LSFs) for quantization. The input signal is modified to better fit the coding model without loss of quality. This processing is denoted "signal modification" as indicated by a block 621. In order to improve the quality of the reconstructed signal, perceptual important features are estimated and emphasized during encoding.
The excitation signal for an LPC synthesis filter 625 is build from the two traditional components: 1) the pitch contribution; and 2) the innovation contribution. The pitch contribution is provided through use of an adaptive codebook 627. An innovation codebook 629 has several
-71-
SUBSTJTUTE SHEET (RULE 28) subcodebooks in order to provide robustness against a wide range of input signals To each of the two contnbutions a gam is applied which, multiplied with their respective codebook vectors and summed, provide the excitation signal
The LSFs and pitch lag are coded on a frame basis, and the remaining parameters (the innovation codebook index, the pitch ga , and the innovation codebook gain) are coded for every subframe. The LSF vector is coded using predictive vector quantization. The pitch lag has an integer part and a fractional part constituting the pitch peπod. The quantized pitch period has a non-uniform resolution with higher density of quantized values at lower delays The bit allocation for the parameters is shown in the following table.
Table of Bit Allocation
Figure imgf000074_0001
When the quantization of all parameters for a frame is complete the indices are multiplexed to form the 80 bits for the seπal bit-stream.
Fig 7 is a block diagram of a decoder 701 with conesponding functionality to that of the encoder of Fig. 6. The decoder 701 receives the 80 bits on a frame basis from a demultiplexor 711 Upon receipt of the bits, the decoder 701 checks the sync-word for a bad frame indication, and decides whether the entire 80 bits should be disregarded and frame erasure concealment applied If the frame is not declared a frame erasure, the 80 bits are mapped to the parameter indices of the codec, and the parameters are decoded from the indices using the inverse quantization schemes of the encoder of Fig. 6.
-72-
SUBSHTUTE SHEET (RULE 26) 0/11649
When the LSFs. pitch lag, pitch gains, innovation vectors, and gains for the innovation vectors are decoded, the excitation signal is reconstructed via a block 715. The output signal is synthesized by passing the reconstructed excitation signal through an LPC synthesis filter 721. To enhance the perceptual quality of the reconstructed signal both short-term and long-term postprocessing are applied at a block 731.
Regarding the bit allocation of the 4 kbps codec (as shown in the prior table), the LSFs and pitch lag are quantized with 21 and 8 bits per 20 ms, respectively. Although the three subframes are of different size the remaining bits are allocated evenly among them. Thus, the innovation vector is quantized with 13 bits per subframe. This adds up to a total of 80 bits per 20 ms, equivalent to 4 kbps.
The estimated complexity numbers for the proposed 4 kbps codec are listed in the following table. All numbers are under the assumption that the codec is implemented on commercially available 16-bit fixed point DSPs in full duplex mode. All storage numbers are under the assumption of 16-bit words, and the complexity estimates are based on the floating point C-source code of the codec.
Table of Complexity Estimates
Figure imgf000075_0001
The decoder 701 comprises decode processing circuitry that generally operates pursuant to software control. Similarly, the encoder 601 (Fig. 6) comprises encoder processing circuitry also operating pursuant to software control. Such processing circuitry may coexists, at least in part, within a single processing unit such as a single DSP.
-73- Fig. 8 is a functional block diagram depicting the present invention that, in one embodiment, selects an appropriate coding scheme depending on the existence of a stationary noise-like spectral content in a speech signal. The speech signal may be partitioned into individual frames to facilitate the classification of those individual frames as having various characteristics.
In particular, encoder processing circuitry utilizes a coding selection process 801 to select the appropriate coding scheme for a given voice signal. In particular, encoder processing circuitry first identifies whether or not the speech signal possesses stationary noise-like spectral content in a block 810. Various methods of performing spectral analysis of the speech are envisioned in the invention. Any method capable of identifying detecting the existence of stationary noise-like spectral content may be performed. Many such methods are known to those having skill in the art of voice signal processing.
At a block 820, the identification in the block 810 of stationary noise-like spectral content is used to select the appropriate coding scheme for the voice signal. Embedded intelligence within the encoder processing circuitry may be used to perform this decisional operation of the block 820. In one embodiment, when stationary noise-like spectral content is detected within a frame of the voice signal, the stationary noise-like spectral content of that particular frame may be further classified in a block 830 as being one particular type of noise. If desired, when stationary noise-like spectral content is detected within a frame of the voice signal, the stationary noise-like spectral content of that particular frame may be further classified as being either stationary noise-like or non-stationary noise-like in the block 830.
To achieve better perceptual reproduction of the speech signal, the particular frame may be smoothed in a block 840. The smoothing may include adjusting parameters such as the line
-74-
HET (RULE 26) spectral frequencies (LSFs) or the gains required for reproduction of the speech signal duπng the encoding and decoding processes.
Fig. 9 is a functional block diagram illustrating another embodiment of the present invention. In particular, Fig. 9 illustrates an operational selection process 901 that adaptively selects an appropriate coding scheme upon considering both the spectral content of the speech signal, whether it be noise-like or not, as well as the available transmission bit rate. Furthermore, the operational selection process can further consider whether the noise-like spectral content is stationary or non-stationary.
The spectral envelope of a frame of the speech signal is classified in a block 910. Depending upon the classification performed in the block 910, alternative operational paths are chosen depending upon the classification of the frame of the speech signal in a decision block 920. If the frame is classified as not having any noise-like content, then another determination is made in a decision block 980 as to whether the speech encoding system is operating at a relatively low bit rate. If a relatively high bit rate is being used, then pulse-like code-excited linear prediction excitation is employed to the speech signal frame. If the relatively low bit rate is being used, then partial pulse-like code-excited linear prediction excitation and partial Gaussian excitation is employed to the speech signal frame in a block 985.
However, if the frame is in fact classified as being noise-like, then the frame is further classified in a block 930 as being either stationary or non-stationary noise-like. If the frame is found to possess only non-stationary noise-like spectral content, then a decision block 940 directs the operational selection process 901 to proceed to the decision block 980 to repeat the analysis described above. Alternatively, if the speech signal is found to possess only stationary
-75-
SUBSTΓΓUTE SHEET (RULE 26) /11649
noise-like spectral content, then decision block 940 directs the operational selection process 901 to proceed to a more appropriate and more efficient encoding scheme.
If the speech signal frame possesses only stationary noise-like spectral content, then purely Gaussian excitation is provided in a block 950. Further, the line spectral frequencies (LSFs) may be smoothed on a frame by frame basis in a block 960. The encoder processing circuit may be used to perform such a smoothing encoding scheme. Also, smoothing of the adaptive and fixed codebook gains may be performed in a block 970. Such a method for performing encoding of speech signals having only stationary noise-like spectral content provides for a more efficient allocation of the encoder processing circuit's computational resources as well as for better perceptual reproduction of the speech signal.
Of course, many other modifications and variations are also possible. In view of the above detailed description of the present invention and associated drawings, such other modifications and variations will now become apparent to those skilled in the art. It should also be apparent that such other modifications and variations may be effected without departing from the spirit and scope of the present invention.
In addition, the following Appendix A provides a list of many of the definitions, symbols and abbreviations used in this application. Appendices B and C respectively provide source and channel bit ordering information at various encoding bit rates used in one embodiment of the present invention. Appendices A, B and C comprise part of the detailed description of the present application, and, otherwise, are hereby incorporated herein by reference in its entirety. 0
APPENDIX A
For purposes of this application, the following symbols, definitions and abbreviations apply. adaptive codebook: The adaptive codebook contains excitation vectors that are adapted for every subframe. The adaptive codebook is denved from the long term filter state. The pitch lag value can be viewed as an index into the adaptive codebook. adaptive postfilter: The adaptive postfilter is applied to the output of the short term synthesis filter to enhance the perceptual quality of the reconstructed speech. In the adaptive multi-rate codec (AMR), the adaptive postfilter is a cascade of two filters: a formant postfilter and a tilt compensation filter.
Adaptive Multi Rate codec: The adaptive multi-rate code (AMR) is a speech and channel codec capable of operating at gross bit-rates of 11.4 kbps ("half-rate") and 22.8 kbs ("full-rate"). In addition, the codec may operate at various combinations of speech and channel coding (codec mode) bit-rates for each channel mode.
AMR handover: Handover between the full rate and half rate channel modes to optimize AMR operation. channel mode: Half-rate (HR) or full-rate (FR) operation. channel mode adaptation: The control and selection of the (FR or HR) channel mode. channel repacking: Repacking of HR (and FR) radio channels of a given radio cell to achieve higher capacity within the cell. closed-loop pitch analysis: This is the adaptive codebook search, i.e., a process of estimating the pitch (lag) value from the weighted input speech .and the long term filter state. In the closed-loop search, the lag is searched using enor minimization loop (analysis-by-synthesis). In the adaptive multi rate codec, closed-loop pitch search is performed for every subframe. codec mode: For a given channel mode, the bit partitioning between the speech and channel codecs. codec mode adaptation: The control and selection of the codec mode bit-rates. Normally, implies no change to the channel mode.
-77-
SUBSTITUTE SHEET (RϋlE 26) direct form coefficients- One of the formats for stoπng the short term filter parameters In the adaptive multi rate codec, all filters used to modify speech samples use direct form coefficients. fixed codebook: The fixed codebook contains excitation vectors for speech synthesis filters. The contents of the codebook are non-adaptive (i.e., fixed). In the adaptive multi rate codec, the fixed codebook for a specific rate is implemented using a multi-function codebook fractional lags: A set of lag values having sub-sample resolution. In the adaptive multi rate codec a sub-sample resolution between l/ό1*1 and 1.0 of a sample is used. full-rate (FR): Full-rate channel or channel mode. frame: A time interval equal to 20 ms (160 samples at an 8 kHz sampling rate). gross bit-rate: The bit-rate of the channel mode selected (22.8 kbps or 1 1.4 kbps) half-rate (HR): Half-rate channel or channel mode. m-band signaling: Signaling for DTX, Link Control, Channel and codec mode modification, etc. carried within the traffic. integer lags: A set of lag values having whole sample resolution. interpolating filter: An FIR filter used to produce an estimate of sub-sample resolution samples, given an input sampled with integer sample resolution. inverse filter: This filter removes the short term conelation from the speech signal. The filter models an inverse frequency response of the vocal tract. lag: The long term filter delay. This is typically the true pitch period, or its multiple or sub-multiple.
Line Spectral Frequencies: (see Line Spectral Pair) Line Spectral Pair: Transformation of LPC parameters. Line Spectral Pairs are obtained by decomposing the inverse filter transfer function A(z) to a set of two transfer functions, one having even symmetry and the other having odd symmetry. The Line Spectral Pairs (also called as Line Spectral Frequencies) are the roots of these polynomials on the z-unit circle). 00/11649
LP analysis window: For each frame, the short term filter coefficients are computed using the high pass filtered speech samples within the analysis window. In the adaptive multi rate codec, the length of the analysis window is always 240 samples. For each frame, two asymmetπc windows are used to generate two sets of LP coefficient coefficients which are interpolated in the LSF domain to construct the perceptual weighting filter. Only a single set of LP coefficients per frame is quantized and transmitted to the decoder to obtain the synthesis filter. A lookahead of 25 samples is used for both HR and FR.
LP coefficients: Linear Prediction (LP) coefficients (also refened as Linear Predictive Coding (LPC) coefficients) is a generic descriptive term for describing the short term filter coefficients.
LTP Mode: Codec works with traditional LTP. mode: When used alone, refers to the source codec mode, i.e., to one of the source codecs employed in the AMR codec. (See also codec mode and channel mode.) multi-function codebook: A fixed codebook consisting of several subcodebooks constructed with different kinds of pulse innovation vector structures and noise innovation vectors, where codeword from the codebook is used to synthesize the excitation vectors. open-loop pitch search: A process of estimating the near optimal pitch lag directly from the weighted input speech. This is done to simplify the pitch analysis and confine the closed-loop pitch search to a small number of lags around the open-loop estimated lags. In the adaptive multi rate codec, open-loop pitch search is performed once per frame for PP mode and twice per frame for LTP mode. out-of-band signaling: Signaling on the GSM control channels to support link control.
PP Mode: Codec works with pitch preprocessing. residual: The output signal resulting from an inverse filtering operation. short term synthesis filter: This filter introduces, into the excitation signal, short term conelation which models the impulse response of the vocal tract. perceptual weighting filter: This filter is employed in the analysis-by-synthesis search of the codebooks. The filter exploits the noise masking properties of the formants (vocal tract resonances) by weighting the enor less in regions near the formant frequencies and more in regions away from them. subframe: A time interval equal to 5-10 ms (40-80 samples at an 8 kHz sampling rate). vector quantization: A method of grouping several parameters into a vector and quantizing them simultaneously. zero input response: The output of a filter due to past inputs, i.e. due to the present state of the filter, given that an input of zeros is applied. zero state response: The output of a filter due to the present input, given that no past inputs have been applied, i.e., given the state information in the filter is all zeroes.
A(z) The inverse filter with unquantized coefficients
The inverse filter with quantized coefficients
The speech synthesis filter with quantized coefficients
A(z)
The unquantized linear prediction parameters (direct form coefficients)
The quantized linear prediction parameters
1 The long-term synthesis filter
B(z)
W(z) The perceptual weighting filter (unquantized coefficients)
YvYi The perceptual weighting factors FE(z) Adaptive pre-filter 7 The nearest integer pitch lag to the closed-loop fractional pitch lag of the subframe
The adaptive pre-filter coefficient (the quantized pitch gain)
The formant postfilter
Figure imgf000082_0001
yn Control coefficient for the amount of the formant post-filtering Control coefficient for the amount of the formant post-filtering H, (z) Tilt compensation filter γ, Control coefficient for the amount of the tilt compensation filtering μ = γtk A tilt factor, with k being the first reflection coefficient ht(n) The truncated impulse response of the formant postfilter
Lh The length of hf(n)
rh(i) The auto-conelations of ht(n)
A(z /yn ) The inverse filter (numerator) part of the formant postfilter
1 /λ(z /"id) The synthesis filter (denominator) part of the formant postfilter
r(n) The residual signal of the inverse filter A(z/ n) h,(z) Impulse response of the tilt compensation filter βsc(n) The AGC-controlled gain scaling factor of the adaptive postfilter α The AGC factor of the adaptive postfilter
HM(z) Pre-processing high-pass filter
W[(n) , W[[(n) LP analysis windows
Length of the first part of the LP analysis window
Figure imgf000083_0001
^2 Length of the second part of the LP analysis window w/(n)
Length of the first part of the LP analysis window w//(")
^2 Length of the second part of the LP analysis window v t/(") rα-. (k) The auto-conelations of the windowed speech s' (n) wlag(i) Lag window for the auto-conelations (60 Hz bandwidth expansion)
•to The bandwidth expansion in Hz
-81-
SUBST1TUTE SHttT (RULE 28) /, The sampling frequency in Hz r (k) ac The modified (bandwidth expanded) auto-conelations
Eu) i) The prediction enor in the z'th iteration of the Levinson algorithm k, The ith reflection coefficient
a^ The jt direct form coefficient in the rth iteration of the Levinson algorithm
F\ ( z ) Symmetric LSF polynomial
El( z ) Antisymmetric LSF polynomial
Ft (z) Polynomial Fl (z) with root z = -1 eliminated
F2 (z) Polynomial F2 (z) witn root * = l eliminated
^' The line spectral pairs (LSFs) in the cosine domain q An LSF vector in the cosine domain
q'π) The quantized LSF vector at the ith subframe of the frame n
ω> The line spectral frequencies (LSFs)
Tm (x) A th order Chebyshev polynomial
/ι ('), h (0 The coefficients of the polynomials F (z) and F2 (z)
/ι ( ./2( The coefficients of the polynomials F (z) and F2 (z) f (i) The coefficients of either F, ( z ) or F2( z )
C( x ) Sum polynomial of the Chebyshev polynomials x Cosine of angular frequency ω λk Recursion coefficients for the Chebyshev polynomial evaluation
/, The line spectral frequencies (LSFs) in Hz
-82-
UB TITUTE SHEET (HOLE 26) f ' =[/ι fι ■ ■■ f\o] The vector representation of the LSFs in Hz
z( l )( n ) , z{2)(n) The mean-removed LSF vectors at frame n
' "V n ) , r ( n ) The LSF prediction residual vectors at frame n p(n) The predicted LSF vector at frame n
f ^ 2 H n - 1 ) The quantized second residual vector at the past frame
f k The quantized LSF vector at quantization index it
E^p The LSF quantization enor w. , i = 1, ... ,10, LSF-quantization weighting factors dt The distance between the line spectral frequencies fi+x and f_x h(n) The impulse response of the weighted synthesis filter
Ok The conelation maximum of open-loop pitch analysis at delay k
Ot , ι'=l, ... ,3 The conelation maxima at delays t, : , i = 1 3
(Λf,,t,), ι* = l,..., 3 The normalized conelation maxima Λf, and the conesponding delays /,-,» = 1 3
H(z) W(z) = , A(z / /l ) The weighted synthesis filter A(z)A(z/γ2)
A( z/y\ ) The numerator of the perceptual weighting filter
1 / A( z / γ2 ) The denominator of the perceptual weighting filter
7! The nearest integer to the fractional pitch lag of the previous (1st or 3rd) subframe s'(n) The windowed speech signal sj n ) The weighted speech signal s( n ) Reconstructed speech signal
-83-
SUBSTΪTUTE SHEET (RULE 26 s'(n) The gain-scaled post-filtered signal
Sf( n ) Post-filtered speech signal (before scaling)
x( n ) The target signal for adaptive codebook search
x2(n ) x2 The target signal for Fixed codebook search
resu>(n) The LP residual signal c(n) The fixed codebook vector v(n) The adaptive codebook vector y(n) = v(n)* h(n) The filtered adaptive codebook vector
The filtered fixed codebook vector yk (n) The past filtered excitation u( n ) The excitation signal u(n) The fully quantized excitation signal u' (n) The gain-scaled emphasized excitation signal
Top The best open-loop lag
tmin Minimum lag search value t_ Maximum lag search value
R(it) Conelation term to be maximized in the adaptive codebook search
R(k)t The interpolated value of R(k) for the integer delay it and fraction t
Ak Conelation term to be maximized in the algebraic codebook search at index k
Ck The conelation in the numerator of Ak at index k
EDk The energy in the denominator of Ak at index k d = Hfx, The conelation between the target signal x2(n) and the impulse response h(n), i.e., backward filtered target
H The lower triangular Toepliz convolution matrix with diagonal
Λ(0) and lower diagonals Λ(l) htø)
Φ = Hf H The matrix of conelations of h(n) d(n) The elements of the vector d φ(i, j) The elements of the symmetric matrix Φ ct The innovation vector
C The conelation in the numerator of Ak m, The position of the i th pulse t?, The amplitude of the i th pulse
N- The number of pulses in the fixed codebook excitation
ED The energy in the denominator of Ak resLTP(n) The normalized long-term prediction residual b(n) The sum of the normalized d(n) vector and normalized long-term prediction residual resLTP(n) b(n) The sign signal for the algebraic codebook search
z' , z{n) The fixed codebook vector convolved with n )
E(n ) . The mean-removed innovation energy (in dB)
E The mean of the innovation energy
E( n ) The predicted energy
[bi b2 b ^4] The MA prediction coefficients
R(k) The quantized prediction enor at subframe it
-85-
HEET (RULE 26] E, The mean innovation energy
R(n) The prediction enor of the fixed-codebook gain quantization
EQ The quantization enor of the fixed-codebook gain quantization
e(n) The states of the synthesis filter 1/ M z ) e n ) The perceptually weighted enor of the analysis-by-synthes search n The gain scaling factor for the emphasized excitation
8, The fixed-codebook gain
8 The predicted fixed-codebook gain
8c The quantized fixed codebook gain
8„ The adaptive codebook gain
8P The quantized adaptive codebook gain
7 gc — 8c ' 8c A conection factor between the gain gc and the estimated one gc
Vgc The optimum value for γgc
Ysc Gain scaling factor
AGC Adaptive Gain Control
AMR Adaptive Multi Rate
CELP Code Excited Linear Prediction
C/I Carrier-to-Interferer ratio
DTX Discontinuous Transmission
EFR Enhanced Full Rate
FIR Finite Impulse Response
FR Full Rate HR Half Rate
LP Linear Prediction
LPC Linear Predictive Coding
LSF Line Spectral Frequency
LSF Line Spectral Pair
LTP Long Term Predictor (or Long Term Prediction)
MA Moving Average
TFO Tandem Free Operation
VAD Voice Activity Detection
APPENDIX B
Bit ordering (source coding)
Bit ordering of output bits from source encoder ( 11 kbit s)
Bits Descπption
1-6 Index of 1" LSF staff
7- 12 Index of 2"" LSF stage.
13-18 Index of 3" L-.F stage
19-24 Index of 4* LSF stage
25-28 Index of 3* LSF stage
29-32 Index of adaptive codebook gain. 1" subframe
33-37 Index of fixed codebook gain. 1* subframe
38^1 Index of adapove codebook gain. 2" subframe
42^6 Index of fixed codebook gain. 2" subframe
47-50 Index of adaptive codebook gain. 3" subframe
51-55 Index of fixed codebook gain. 3 subframe
56-59 Index of adapave codebook gain. 4* subframe
60-64 Index of fixed codebook gam. 4* subframe
65-73 Index of adapove codebook. I* subframe
74-82 Index of adapove codebook. 3" subframe
83-88 Index of adapove codebook (relative), 2 subframe
89-94 Index of adapove codebook (relaove), 4* subframe
95-96 Index for LSF interpolation
97-127 Index for fixed codebook. 1" subframe
128-158 Index for fixed codebook. 2 subframe
159-189 Index for fixed codebook. subframe
190-220 Index for fixed codebook. 4" subframe
Bit ordering of output bits from source encoder (8 kbit s)
Bits Descπpoon
1-6 Index of 1" LSF stage
7-12 Index of 2" LSF stage
13-18 Index of 3" LSF stage
19-24 Index of 4* LSF stage
25-31 Index of fixed and adapove codebook gains. 1" subframe
32-38 Index of fixed and adapove codebook gains. 2" subframe
39-45 Index of fixed and adapove codebook gains. 3" subframe
46-52 Index of fixed and adapove codebook gains.4* subframe
53-60 Index of adapove codebook. 1" subframe
61-68 Index of adapove codebook. 3" subframe
69-73 Index of adapove codebook (relaove). 2" subframe
74-78 Index of adapove codebook (relaove). 4* subframe
79-80 Index for LSF interpolation
81 -100 Index for fixed codebook. 1" subframe
101-120 index for fixed codebook. 2" subframe
121-140 Index for fixed codebook. 3" subframe
141-160 Index for fixed codebook. 4* subframe
-88-
SUBSΪlTϋϊE SHE! (RULE 26)
Figure imgf000091_0001
Figure imgf000091_0002
Bit orderin of out ut bits from source encoder (4.55 kbits).
Figure imgf000091_0003
APPENDIX C
Bit ordering (channel coding)
Ordeπn of bits accordin to sub ecnve importance ( 1 1 kbit s FRTCH)
Figure imgf000092_0001
Figure imgf000093_0001
-91-
ULE 28)
Figure imgf000094_0001
Figure imgf000095_0001
importance (8 0 kbit/s FRTCH)
Figure imgf000096_0001
-94-
SUBSTiTOTE SHEET {Bull 28)
Figure imgf000097_0001
-95-
SUBSTITUTE SHEET (ROLE 26)
Figure imgf000098_0001
-96-
SUBST ITUTE SHET (ROLE 26) FRTCH)
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000101_0001
importance (5 8 kbit s FRTCH)
Figure imgf000101_0002
-99-
SUBSTITUTE SHEET (RULE 26J
Figure imgf000102_0001
Ordeπn of bits accordin to subecαve importance (80 kbits HRTCH)
Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0001
-103-
SUBSTπUTE SHEET (RULE 26)
Figure imgf000106_0001
Figure imgf000107_0001
Figure imgf000108_0001
importance (5.8 kbits HRTCH)
Figure imgf000108_0002
-106-
Figure imgf000109_0001
rdeπn of bm accordin to sub ecnve importance (4 55 kbit s HRTCH)
-108-
Figure imgf000110_0001
SUBSTITUTE SHEET (RUUE 26)
Figure imgf000111_0001

Claims

CLAIMSI claim:
1. A speech encoding system using an analysis by synthesis approach on a speech signal having varying characteristics, the speech encoding system comprising: an encoder processing circuit that selectively applies an encoding scheme upon identification of at least one of the varying characteristics of the speech signal to improve a perceptual quality of the speech signal for reproduction; and at least one of the varying characteristic comprises a stationary noise-like spectral content.
2. The speech encoding system of Claim 1, wherein the encoding scheme involves applying a Gaussian excitation.
3. The speech encoding system of Claim 1, wherein the encoding scheme involves applying a combined excitation comprising a Gaussian excitation and a pulse-like excitation.
4. The speech encoding system of Claim 1, wherein the encoding scheme involves applying a smoothing of a gain that is used to perform reproduction of the speech signal.
5. The speech encoding system ol Claim 4, wherein the gain comprises an adaptive codebook gain.
-110-
SUBSTSTUTE SHEET (HOLE 20)
6. The speech encoding system of Claim 4, wherein the gain comprises a fixed codebook gain.
7. The speech encoding system of Claim 1, wherein the speech signal is partitioned into a plurality of frames; and the encoder processing circuit selectively applies the encoding scheme on a frame basis.
8. The speech encoding system of Claim 1, wherein the speech signal is partitioned into a plurality of frames, each frame having a plurality of sub-frames; and the encoder processing circuit selectively applies the encoding scheme on a sub-frame basis.
9. A method used by a speech encoding system that applies analysis by a synthesis coding approach to a speech signal having varying characteristics, the method comprising: selectively applying a first or a second encoding scheme upon identification of at least one of the varying characteristics of the speech signal to improve a perceptual quality of the speech signal for reproduction using an encoder processing circuit; and the first encoding scheme involves applying a Gaussian excitation.
10. The method of Claim 9, wherein the first encoding scheme is a code-excited linear predictor.
-111-
SUBSTITUTE SHEET (RULE 28) /11649
1 1. The method of Claim 9, wherein the second encoding scheme involves applying a smoothing of a gain that is used to perform reproduction of the speech signal.
12. The method of Claim 9, wherein the at least one of the varying characteristics comprises a stationary noise-like spectral content.
PCT/US1999/019275 1998-08-24 1999-08-24 Speech encoder using a classifier for smoothing noise coding Ceased WO2000011649A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9756998P 1998-08-24 1998-08-24
US60/097,569 1998-08-24
US15465798A 1998-09-18 1998-09-18
US09/154,657 1998-09-18

Publications (2)

Publication Number Publication Date
WO2000011649A1 WO2000011649A1 (en) 2000-03-02
WO2000011649A9 true WO2000011649A9 (en) 2000-08-24

Family

ID=26793418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/019275 Ceased WO2000011649A1 (en) 1998-08-24 1999-08-24 Speech encoder using a classifier for smoothing noise coding

Country Status (1)

Country Link
WO (1) WO2000011649A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6662155B2 (en) 2000-11-27 2003-12-09 Nokia Corporation Method and system for comfort noise generation in speech communication
KR100914220B1 (en) 2002-04-22 2009-08-26 노키아 코포레이션 Generation of Line Spectral Frequency (LSF) Vectors
CN101116135B (en) 2005-02-10 2012-11-14 皇家飞利浦电子股份有限公司 Sound synthesis
PL2118889T3 (en) * 2007-03-05 2013-03-29 Ericsson Telefon Ab L M Method and controller for smoothing stationary background noise

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5734789A (en) * 1992-06-01 1998-03-31 Hughes Electronics Voiced, unvoiced or noise modes in a CELP vocoder
JPH08263099A (en) * 1995-03-23 1996-10-11 Toshiba Corp Encoder
US5737716A (en) * 1995-12-26 1998-04-07 Motorola Method and apparatus for encoding speech using neural network technology for speech classification

Also Published As

Publication number Publication date
WO2000011649A1 (en) 2000-03-02

Similar Documents

Publication Publication Date Title
US6813602B2 (en) Methods and systems for searching a low complexity random codebook structure
US6173257B1 (en) Completed fixed codebook for speech encoder
US6240386B1 (en) Speech codec employing noise classification for noise compensation
US6507814B1 (en) Pitch determination using speech classification and prior pitch estimation
US6330533B2 (en) Speech encoder adaptively applying pitch preprocessing with warping of target signal
US6493665B1 (en) Speech classification and parameter weighting used in codebook search
US6260010B1 (en) Speech encoder using gain normalization that combines open and closed loop gains
US6823303B1 (en) Speech encoder using voice activity detection in coding noise
EP1194924B1 (en) Adaptive tilt compensation for synthesized speech residual
US6449590B1 (en) Speech encoder using warping in long term preprocessing
US6188980B1 (en) Synchronized encoder-decoder frame concealment using speech coding parameters including line spectral frequencies and filter coefficients
WO2000011661A1 (en) Adaptive gain reduction to produce fixed codebook target signal
WO2000011649A9 (en) Speech encoder using a classifier for smoothing noise coding
HK1034347B (en) Speech encoder and method for a speech encoder
HK1038422B (en) Speech encoder and method of searching a codebook
HK1133734A (en) Codebook sharing for lsf quantization

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: C2

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGES 1-110, DESCRIPTION, REPLACED BY NEW PAGES 1-109; PAGES 111-113, CLAIMS, REPLACED BY NEW PAGES110-112; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

122 Ep: pct app. not ent. europ. phase