WO2000071095A2 - Release of poorly soluble agents - Google Patents
Release of poorly soluble agents Download PDFInfo
- Publication number
- WO2000071095A2 WO2000071095A2 PCT/GB2000/001856 GB0001856W WO0071095A2 WO 2000071095 A2 WO2000071095 A2 WO 2000071095A2 GB 0001856 W GB0001856 W GB 0001856W WO 0071095 A2 WO0071095 A2 WO 0071095A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- weight
- pellet according
- active agent
- polyethylene glycol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5026—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5036—Polysaccharides, e.g. gums, alginate; Cyclodextrin
- A61K9/5042—Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5073—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
Definitions
- the present invention relates to a controlled release pellet composition for delivering a poorly soluble pharmaceutically active agent in a controlled manner over an extended period of time, typically over a period of 24 hours.
- the formulation is intended to enhance and control the release rate of agents, such as nifedipine, which are otherwise only poorly soluble in aqueous liquids.
- nifedipine with Eudragit RL PM (a water-insoluble acrylic polymer) .
- the core contained in addition to nifedipine, hydroxypropylmethyl cellulose and microcrystalline cellulose. Release of nifedipine over a period of 12 hours was reported.
- US Patent 5,051,263 (Barry et al) describes a sustained release granule formulation comprising a core containing a poorly soluble active agent such as nifedipine, the core being coated with a mixture comprising a water insoluble but water swellable acrylic polymer and a water-soluble hydroxylated cellulose derivative.
- the core comprises the active agent, a carbomer (generic name for carboxypolymethylene) and microcrystalline cellulose.
- the present invention is based on the surprising discovery that the incorporation of a polyethylene glycol into the core improves the controlled release properties.
- a controlled release pellet which comprises:
- the invention also relates to a corresponding method of forming the controlled release pellet.
- the core may be formed in conventional manner as set out in, for example, patent specifications US 4,900,558, US 5 , 051 , 3 63 and US 5 , 055 , 306 .
- the core may also contain a disintegrant such as sodium starch glycolate, crospovidone and croscarmellose sodium.
- a disintegrant such as sodium starch glycolate, crospovidone and croscarmellose sodium.
- the amount of disintegrant is generally in the region 0-10% by weight, particularly 1-5% by weight.
- the core generally also comprises a carrier such as a water-insoluble swellable cellulose, such as microcrystalline cellulose.
- a pH modifier such as sodium bicarbonate, dibasic calcium phosphate, citric acid or tris(hydroxymethyl) aminomethane (Tris) , may be included in the core to buffer the core to a pH which gives preferred dissolution characteristics for the active agent. This may be used to improve the solubility of certain poorly soluble active agents.
- a proportion of a water insoluble or pH sensitive acrylic polymer may also be included in the core to maintain the preferred dissolution rate after compression.
- the amount of carrier in the core is preferably in the region 0-70% by weight, particularly 10- 60% by weight.
- the amount of water insoluble acrylic polymer in the core is preferably in the region 0-50% by weight, particularly 10-30% by weight.
- the cores have a size in the range 0.5 to 2.0mm, preferably 0.5 to 1.4mm.
- the polyethylene glycol which is included in the core has been found to enhance the dissolution rate of the poorly soluble active agent and also to assist in providing controlled release.
- Polyethylene glycols are well known in the art and include a repeating -(CH 2 CH 2 0)- group with various terminal groups. Polyethylene glycols are categorised according to their nominal molecular weight and in the present invention nominal molecular weights of 1000 to 8000 (i.e. PEG 1000 to PEG 8000) are preferred.
- the polyethylene glycol is generally a solid at room temperature but is melted prior to formulation. Usually, the amount of polyethylene glycol in the core is in the range 5-50% by weight, particularly 10-30% by weight.
- the amount of polyethylene glycol required is to an extent dependent on the amount of active agent present and it is preferred that the ratio of polyethylene glycol to active agent lies in the range 0.5 to 2.0:1 by weight.
- the poorly soluble pharmaceutically active agent is typically nifedipine or other poorly soluble active agent such as glibenclamide, griseofulvin oxaprozin, ibuprofen, diclofenac, or nabumetone.
- the active agent is generally present in an amount of 1-90% by weight, typically 5-70% by weight of the core weight.
- the solubility of the poorly soluble active agent in water is generally less than lmg/i ⁇ l at room temperature and pH7.
- the solubility of nifedipine is less than O.lmg/ l.
- the coating around the core controls release of the active agent from the core itself (in conjunction with the properties of the core matrix) .
- the coating comprises a mixture of a water soluble cellulose and a water insoluble acrylic polymer.
- the ratio of water insoluble agent to water soluble agent is a factor controlling the release rate and the ratio is generally in the range of 1:1 to 10:1, generally 5:3 to 5:1 respectively.
- the water insoluble acrylic polymer is preferably neutral and may comprise a homopolymer or copolymer, for instance of acrylic acid esters or methacrylic acid esters.
- the acrylic polymer is provided as an aqueous dispersion.
- a particularly suitable acrylic polymer is sold under the trademark Eudragit NE30D and comprises a copolymer of acrylic and methacrylic acid esters and is usually supplied as an aqueous dispersion containing approximately 30% by weight solids.
- the water soluble cellulose may be a hydroxylated cellulose derivative, such as hydroxypropylmethyl cellulose, typically having a degree of substitution of 28- 30% of methoxy groups and 7-12% of hydroxypropyl groups. Hydroxypropyl, hydroxyethyl or hydroxymethyl celluloses may also be used.
- the coating preferably comprises from 3-40% by weight, preferably 5-25% by weight of the pellet.
- the pellet is further coated with an enteric coating.
- Enteric coatings are well known in the art and typically comprise an acid-resistant agent.
- pellets of the present invention may be formed into tablets together with conventional tableting agents .
- Embodiments of the present invention will now be described by way of example only.
- Cores containing nifedipine and polyethylene glycol (PEG4000) having the formulations set out in Table 1 were prepared as described below.
- the cores were coated with two coating suspensions.
- the first coating suspension functioned as a release rate controlling coat and had the formulation as set out in Table 2.
- the coating suspension contained 20%w/w solid material and the weight of suspension added was equivalent to 5% of the core weight.
- a second (enteric) coating was also applied.
- the second coating suspension is shown in Table 3 and contained 20%w/w solid material. The weight of suspension added was equivalent to 10% of the core weight.
- a 1kg batch of cores (batch 5507:00198) was produced as follows. Molten PEG4000 was weighed into a pre-heated mixing bowl of a Erweka AR401 planetary mixer at a temperature of 90°C. Nifedipine was added over a period of 1 to 2 minutes at a mixing speed of approximately I80rpm and the mixture mixed for a further 2 to 3 minutes . Ac-Di- Sol was dispersed in the batch quantity of water and added to the nifedipine/PEG4000 mixture over 4 minutes at lOOrpm. Avicel PH101 was added and mixed over a period of 7 to 8 minutes at lOOrpm to produce a wet mass.
- the wet mass was covered and allowed to cool for approximately 30 mins to 29°C. Then the wet mass was extruded through a 0.8mm screen of a Niro Fielder E140 extruder at a feeder speed of approximately 45rpm and an impeller speed of approximately 30rpm. The extrudate was collected and spheronised for 12.5 minutes in a Niro Fielder S450 spheroniser at approximately 400rpm. The spheres were collected and dried at approximately 55°C in an Aeromatic Fielder Strea 1 fluid bed drier. The dried cores were sieved to between 0.5 and 1.4mm to remove fines and large agglomerates.
- a batch size of 600g of the cores was coated to produce pellets (batch 5509:00198) as follows.
- the first coating suspension was prepared by dissolving hydroxypropylmethyl cellulose (Pharmacoat 603) in approximately 450g of purified water and mixing with a low shear mixer for approximately 2 hours .
- Talc was added and dispersed using a Silverson SL2 hi-shear mixer for approximately 30 mins. This mixture was added to the Eudragit NE30D, made up to lOOOg with the remaining purified water and stirred for 20 minutes at approximately 350rpm using a Heidolph RZR2051 mixer until uniform.
- the second coating suspension was prepared by dispersing the triethyl citrate and talc in approximately 300g of purified water using a Silverson SL2 hi-shear mixer for 7 minutes, adding to Eudragit L30D-55 and the remaining water and stirring at approximately 350rpm for 6 minutes using a Heidolph RZR2051 mixer until uniform.
- the first coating suspension was added to the batch of cores in an Aeromatic Fielder Strea 1 fluid bed drier using a 0.8mm spray gun nozzle at 8g/min (1 bar atomising pressure, inlet temperature 35 °C and airflow of 90m 3 /hr) to form a first coat.
- the second coating suspension was added immediately thereafter using a 1. lmm spray gun nozzle at approximately llg/min (1 bar atomising pressure, inlet temperature 35 °C and airflow of approximately 100m 3 /hr) to form a second coat.
- the coated cores were placed in an LTE Vulcan 150 oven to cure at approximately 45°C for approximately 20 hours.
- the coated cores were sieved through a 1.4mm screen to remove agglomerates. The pellets so produced were then stored.
- Figure 1 shows the release profile of the coated core of the invention in 900ml of a dissolution medium containing 1% sodium lauryl sulphate and 1% propanediol in simulated gastric fluid (37°C and lOOrpm. stirring) . It will be noted that there is good controlled release over the 24 hour period shown.
- Example 2 Comparparison
- Example 1 For comparison purposes, four batches of uncoated nifedipine-containing cores were prepared as in Example 1 having the composition set out in Table 4.
- the formulation DNIF97/041 is substantially the same as the uncoated core of Example 1.
- Figure 2 shows the release profiles in vitro (determined as in Example 1) . It can be seen that the presence of both the polyethylene glycol and the croscarmellose sodium (Ac-Di-Sol) enhance the release rate of nifedipine. Both of these additives are preferred to provide a sufficiently fast dissolution rate of the uncoated pellet cores such that control can be exercised over the final release rate by addition of a rate controlling coating.
- Example 3
- Uncoated Oxaprozin containing cores were manufactured as detailed in Example 1. The composition of these uncoated cores is summarised in Table 5.
- Pellets were sieved to between 0.5 and 1.4mm and further processed by coating with a suspension in order to produce a release rate controlling membrane.
- the composition of the coating suspension applied is detailed in Table 6.
- the coating suspension contained 20% w/w solid material and the weight of suspension applied was equivalent to 25% of the initial core weight.
- Oxaprozin release was studied in-vitro in 0.05M KH 2 P0 4 buffer (pH 8.0, 37°C, lOOrpm). Samples were taken manually and Oxaprozin determined by HPLC (Acetonitrile: H 2 0 45:55 with 2.5ml/L Acetic acid; Nucleosil ODS lO ⁇ m 250 x 4.6mm, flow rate - 1.5ml/min; 250nm) .
- HPLC Aceonitrile: H 2 0 45:55 with 2.5ml/L Acetic acid; Nucleosil ODS lO ⁇ m 250 x 4.6mm, flow rate - 1.5ml/min; 250nm
- the resulting release profiles are summarised on Figure 3. It will be noted that the effect of polyethylene glycol and Ac-di-sol follows broadly the same trend as seen in Example 2. That is to say that the rate of release is increased in the presence of Ac-di-sol and further by the presence of PEG and Ac-di- sol. However, PEG
- Uncoated Ibuprofen containing cores were manufactured as detailed in Example 1. The composition of these uncoated cores is detailed in Table 7.
- Pellets were sieved to between 0.5mm-1.4mm and further processed by coating with a suspension to produce a release rate controlling membrane.
- the composition of this suspension is detailed in Table 8.
- the coating suspension contained 20% w/w solid material and the weight of suspension applied was equivalent to 12% of the initial core weight.
- Uncoated Diclofenac sodium containing cores were manufactured as detailed in Example 1. The composition of these cores is detailed in Table 9.
- Pellets were sieved to between 0.5mm-1.4mm and further processed by coating with a suspension to form a release rate controlling membrane.
- the composition of this suspension is detailed in Table 10.
- the coating suspension contained 20% w/w solid material and the weight of suspension added was equivalent to 25% of core weight.
- Diclofenac release was studied in-vitro in 0.05M KH 2 P0 4 buffer (pH 6.8, 37°C and lOOrpm). Samples were taken Diclofenac release was studied in-vitro in 0.05M KH 2 P0 4 buffer (pH 6.8, 37°C and lOOrpm). Samples were taken manually and Diclofenac determined spectrophotometrically (248nm) .
- the resulting release profiles are summarised in Figure 5. It will be noted that the effect of polyethylene glycol and Ac-di-sol follows the same trend as seen in Example 2. That is to say that the rate of release is increased in the presence of PEG, is increased still further by Ac-di-sol and is greatest in the presence of both PEG and Ac-di-sol.
- Uncoated Diclofenac Sodium containing cores were manufactured as detailed in Example 1. These cores contained PEG 6000 which replaced the PEG 4000 used in Example 5. The formulation of the uncoated cores is detailed in Table 11.
- Pellets were sieved to between 0.5mm - 1.4mm and coated with a suspension to form a release rate controlling membrane.
- the composition of this suspension is summarised in Table 12.
- the suspension contained 20% solid material and the weight of suspension added was equivalent to 25% of core weight.
- Diclofenac release was studied in-vitro in 0.05M KH 2 P0 buffer (pH 6.8, 37°C and lOOrpm). Samples were taken manually and Diclofenac determined spectrophotometrically (248nm) . The resulting release profiles are summarised in Figure 6.
- the effect of PEG 6000 is similar to that of PEG 4000. This can be seen from the superimposition of the profiles obtained from pellets containing these two components. Furthermore the effect of PEG 4000 and 6000 is potentiated in the presence of Ac-di-sol in line with other examples.
- Uncoated Glibenclamide containing cores were manufactured as detailed in Example 1. The formulation of the uncoated cores is detailed in Table 11.
- Pellets were sieved to between 0.5mm-1.4mm and further processed by coating with a suspension to form a release rate controlling membrane.
- the composition of this suspension is detailed in Table 14.
- the coating suspension contained 20% w/w solid material and the weight of suspension applied was equivalent to 25% of core weight.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
Claims
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP00935270A EP1198228A2 (en) | 1999-05-19 | 2000-05-18 | Release of poorly soluble agents |
| CA002374051A CA2374051A1 (en) | 1999-05-19 | 2000-05-18 | Release of poorly soluble agents |
| AU50827/00A AU5082700A (en) | 1999-05-19 | 2000-05-18 | Release of poorly soluble agents |
| JP2000619403A JP2003500347A (en) | 1999-05-19 | 2000-05-18 | Release of poorly soluble drugs |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB9911546.1 | 1999-05-19 | ||
| GBGB9911546.1A GB9911546D0 (en) | 1999-05-19 | 1999-05-19 | Release of poorly soluble agents |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2000071095A2 true WO2000071095A2 (en) | 2000-11-30 |
| WO2000071095A3 WO2000071095A3 (en) | 2001-01-25 |
Family
ID=10853685
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2000/001856 Ceased WO2000071095A2 (en) | 1999-05-19 | 2000-05-18 | Release of poorly soluble agents |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP1198228A2 (en) |
| JP (1) | JP2003500347A (en) |
| AU (1) | AU5082700A (en) |
| CA (1) | CA2374051A1 (en) |
| GB (1) | GB9911546D0 (en) |
| WO (1) | WO2000071095A2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007096902A3 (en) * | 2006-02-23 | 2007-10-25 | Lupin Ltd | Solid oral dosage forms of griseofulvin |
| WO2008110534A1 (en) * | 2007-03-13 | 2008-09-18 | Sandoz Ag | Pharmaceutical compositions of poorly soluble drugs |
| CN111481527A (en) * | 2020-04-30 | 2020-08-04 | 福建太平洋制药有限公司 | Method for improving yield of ibuprofen sustained-release capsule finished product |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4926495B2 (en) * | 2006-02-22 | 2012-05-09 | 興和株式会社 | Coated granules containing ibuprofen |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5288505A (en) * | 1991-06-26 | 1994-02-22 | Galephar P.R., Inc., Ltd. | Extended release form of diltiazem |
| DE4200821A1 (en) * | 1992-01-15 | 1993-07-22 | Bayer Ag | TASTE-MASKED PHARMACEUTICAL AGENTS |
| DE4227385A1 (en) * | 1992-08-19 | 1994-02-24 | Kali Chemie Pharma Gmbh | Pancreatin micropellets |
-
1999
- 1999-05-19 GB GBGB9911546.1A patent/GB9911546D0/en not_active Ceased
-
2000
- 2000-05-18 CA CA002374051A patent/CA2374051A1/en not_active Abandoned
- 2000-05-18 AU AU50827/00A patent/AU5082700A/en not_active Abandoned
- 2000-05-18 WO PCT/GB2000/001856 patent/WO2000071095A2/en not_active Ceased
- 2000-05-18 EP EP00935270A patent/EP1198228A2/en not_active Withdrawn
- 2000-05-18 JP JP2000619403A patent/JP2003500347A/en not_active Withdrawn
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007096902A3 (en) * | 2006-02-23 | 2007-10-25 | Lupin Ltd | Solid oral dosage forms of griseofulvin |
| WO2008110534A1 (en) * | 2007-03-13 | 2008-09-18 | Sandoz Ag | Pharmaceutical compositions of poorly soluble drugs |
| CN111481527A (en) * | 2020-04-30 | 2020-08-04 | 福建太平洋制药有限公司 | Method for improving yield of ibuprofen sustained-release capsule finished product |
| CN111481527B (en) * | 2020-04-30 | 2022-05-06 | 福建太平洋制药有限公司 | Method for improving yield of ibuprofen sustained-release capsule finished product |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2003500347A (en) | 2003-01-07 |
| EP1198228A2 (en) | 2002-04-24 |
| AU5082700A (en) | 2000-12-12 |
| WO2000071095A3 (en) | 2001-01-25 |
| GB9911546D0 (en) | 1999-07-21 |
| CA2374051A1 (en) | 2000-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2021282393B2 (en) | Muco-adhesive, controlled release formulations of levodopa and/or esters of levodopa and uses thereof | |
| JP4549442B2 (en) | Galen formulation with sustained release of milnacipran | |
| CA1297018C (en) | Pharmaceutical composition | |
| US5644011A (en) | Coating and binder for pharmaceutical agents | |
| DK200200229U3 (en) | Enteric coated pharmaceutical composition | |
| NZ517554A (en) | Oral pharmaceutical forms of administration of tramadol with a delayed action | |
| JP2002523443A (en) | Omeprazole preparation | |
| EP1729741A2 (en) | Polymeric drug delivery system for hydrophobic drugs | |
| JP2011513204A5 (en) | ||
| CZ284924B6 (en) | Oral pharmaceutical preparation containing therapeutically active amount of morphine salt, process of its preparation and use | |
| AU2002223074B2 (en) | Microgranules based on active principle and method for making same | |
| WO2008012346A1 (en) | Extended release pharmaceutical formulation of metoprolol and process for its preparation | |
| JP2014518205A (en) | Coating composition suitable for pharmaceutical dosage form or functional food dosage form | |
| WO2006048895A1 (en) | Aqueous pharmaceutical coating | |
| JP2002529399A (en) | Particles coated with granulated crystalline ibuprofen | |
| WO1999053905A1 (en) | Multiple-unit sustained release tablets | |
| JP4785000B2 (en) | Coating method | |
| EP1722821A1 (en) | Composition for oral administration of tamsulosin hydrochloride and controlled release granule formulation comprising same | |
| WO2000071095A2 (en) | Release of poorly soluble agents | |
| US20090136550A1 (en) | Modified release formulations of diltiazem | |
| CN1232386A (en) | Colonic delivery of weak acid drugs | |
| JPWO2002034268A1 (en) | Sustained-release preparation containing 5-acetyl-4,6-dimethyl-2- [2- [4- (2-methoxyphenyl) piperazinyl] ethylamino] pyrimidine trihydrochloride as an active ingredient | |
| CA2547586C (en) | Controlled-release pharmaceutical formulation | |
| WO2009063021A1 (en) | Pharmaceutical forms for the release of active compounds | |
| MXPA00010963A (en) | Enteric coated pharmaceutical composition and method of manufacturing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2000935270 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 50827/00 Country of ref document: AU |
|
| ENP | Entry into the national phase |
Ref document number: 2374051 Country of ref document: CA Ref country code: JP Ref document number: 2000 619403 Kind code of ref document: A Format of ref document f/p: F Ref country code: CA Ref document number: 2374051 Kind code of ref document: A Format of ref document f/p: F |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 10009314 Country of ref document: US |
|
| WWP | Wipo information: published in national office |
Ref document number: 2000935270 Country of ref document: EP |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 2000935270 Country of ref document: EP |
|
| DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |